
CPE 323 Introduction to Embedded
Computer Systems:
The MSP430 System Architecture

Instructor: Dr Aleksandar Milenkovic
Lecture Notes

CPE 323 2

Outline

MSP430: System Architecture
System Resets, Interrupts, and
Operating Modes
Basic Clock Module
Watchdog Timer

MSP430: System Resets,
Interrupts, and Operating Modes

CPE 323 4

System Reset

Power-on Reset (POR)
Powering up the device
A low signal on the RST/NMI pin when
configured in the reset mode
An SVS low condition when PORON=1.

Power-up Clear
A POR signal
Watchdog timer expiration when in
watchdog mode only
Watchdog timer security key violation
A Flash memory security key violation

CPE 323 5

Power-On Reset (POR)

CPE 323 6

Brownout Reset

CPE 323 7

Device conditions after system reset

The RST/NMI pin is configured
in the reset mode
I/O pins are switched to input mode as
described in the Digital I/O chapter
Other peripheral modules and registers are
initialized as described in their respective
chapters in this manual
Status register (SR) is reset
The watchdog timer powers up active
in watchdog mode
Program counter (PC) is loaded with address
contained at reset vector location (0FFFEh).
CPU execution begins at that address

CPE 323 8

Software initialization

Your SW must initialize the MSP430
Initialize the SP, typically to the top of RAM
Initialize the watchdog to
the requirements of the application
Configure peripheral modules to
the requirements of the application
Additionally, the watchdog timer, oscillator fault,
and flash memory flags can be evaluated to
determine the source of the reset

CPE 323 9

Interrupts

3 types
System reset
(Non)-
maskable NMI
Maskable

Interrupt
priorities are
fixed and
defined by the
arrangement of
modules

CPE 323 10

(Non)-Maskable Interrupts (NMI)

Sources
An edge on the RST/NMI pin
when configured in NMI mode
An oscillator fault occurs
An access violation to the flash memory

Are not masked by GIE (General Interrupt
Enable), but are enabled by individual interrupt
enable bits (NMIIE, OFIE, ACCVIE)

CPE 323 11

NMI Interrupt Handler

CPE 323 12

Maskable Interrupts

Caused by peripherals with interrupt capability
Each can be disabled individually by
an interrupt enable bit
All can be disabled by GIE bit in the status
register

CPE 323 13

Interrupt acceptance

1) Any currently executing instruction is completed.
2) The PC, which points to the next instruction, is pushed onto the
stack.
3) The SR is pushed onto the stack.
4) The interrupt with the highest priority is selected if multiple
interrupts occurred during the last instruction and are pending for
service.
5) The interrupt request flag resets automatically on single-source
flags. Multiple source flags remain set for servicing by software.
6) The SR is cleared with the exception of SCG0, which is left
unchanged. This terminates any low-power mode. Because the GIE
bit is cleared, further interrupts are disabled.
7) The content of the interrupt vector is loaded into the PC: the
program continues with the interrupt service routine at that address.

Takes 6 cc to execute

CPE 323 14

Return from Interrupt

RETI - Return from Interrupt Service Routine
1) The SR with all previous settings pops from the
stack. All previous settings of GIE, CPUOFF, etc. are
now in effect, regardless of the settings used during
the interrupt service routine.
2) The PC pops from the stack and begins execution
at the point where it was interrupted.

Takes 5 cc to execute

CPE 323 15

Interrupt Vectors

CPE 323 16

Interrupt Service Routines
Interrupt Service Routine declaration

// Func. declaration
Interrupt[int_vector] void myISR (Void);

Interrupt[int_vector] void myISR (Void)
{
// ISR code
}

EXAMPLE

Interrupt[TIMERA0_VECTOR] void myISR (Void);

Interrupt[TIMERA0_VECTOR] void myISR (Void)

{
// ISR code

}

CPE 323 17

Interrupt Vectors
/**
* Interrupt Vectors (offset from 0xFFE0)
**/

#define PORT2_VECTOR 1 * 2 /* 0xFFE2 Port 2 */
#define UART1TX_VECTOR 2 * 2 /* 0xFFE4 UART 1 Transmit */
#define UART1RX_VECTOR 3 * 2 /* 0xFFE6 UART 1 Receive */
#define PORT1_VECTOR 4 * 2 /* 0xFFE8 Port 1 */
#define TIMERA1_VECTOR 5 * 2 /* 0xFFEA Timer A CC1-2, TA */
#define TIMERA0_VECTOR 6 * 2 /* 0xFFEC Timer A CC0 */
#define ADC_VECTOR 7 * 2 /* 0xFFEE ADC */
#define UART0TX_VECTOR 8 * 2 /* 0xFFF0 UART 0 Transmit */
#define UART0RX_VECTOR 9 * 2 /* 0xFFF2 UART 0 Receive */
#define WDT_VECTOR 10 * 2 /* 0xFFF4 Watchdog Timer */
#define COMPARATORA_VECTOR 11 * 2 /* 0xFFF6 Comparator A */
#define TIMERB1_VECTOR 12 * 2 /* 0xFFF8 Timer B 1-7 */
#define TIMERB0_VECTOR 13 * 2 /* 0xFFFA Timer B 0 */
#define NMI_VECTOR 14 * 2 /* 0xFFFC Non-maskable */
#define RESET_VECTOR 15 * 2 /* 0xFFFE Reset [Highest Pr.] */

CPE 323 18

Operating Modes
(to be discussed later)

MSP430: Basic Clock System

CPE 323 20

Basic Clock System

MSP430 Clock System
Low System Cost
Low Power

Variety of operating modes driven by application,
software selectable
Support for the Burst Mode –
when activated system starts and reacts rapidly
Stability over voltage and temperature

CPE 323 21

Basic Clock System: MSP430x1xx

One DCO, internal digitally
controlled oscillator

Generated on-chip RC-type
frequency controlled by SW + HW

One LF/XT oscillator
LF: 32768Hz
XT: 450kHz 8MHz

Second LF/XT2 oscillator
Optional XT: 450kHz 8MHz
Clocks:

ACLK auxiliary clock ACLK
MCLK main system clock MCLK
SMCLK sub main system clock

CPE 323 22

Basic Clock System: MSP430x1xx
DCOCLK Generated on-chip with 6μs start-up
32KHz Watch Crystal - or - High Speed Crystal / Resonator to 8MHz

(our system is 4MHz/8MHz high Speed Crystal)
Flexible clock distribution tree for CPU and peripherals
Programmable open-loop DCO Clock with
internal and external current source

SMCLK
Sub-System Clock
to peripherals

ACLK
Auxiliary Clock
to peripherals

MCLK
Main System Clock
to CPU

LFXT1CLKXIN

XOUT

LFXT1 oscillator

Rosc Digital Controlled Oscillator
DCO

DCOCLK

Clock
Distribution

32kHz

8MHz

100kHz - 5MHZ

LFXT2CLK

CPE 323 23

Basic Clock System – Block Diagram

DIVA

2

ACLKGEN

SMCLK

Sub-System Clock

SELS DIVS

2

SCG1

SMCLKGEN

/1, /2, /4, /8, off

ACLK

Auxiliary Clock

MCLK

Main System Clock

Digital Controlled Oscillator DCO
+

DCO

3

SELM

2

DIVM

2

CPUOff

DCOMOD

MCLKGEN

MOD

5

LFXTCLK

Modulator MOD

/1, /2, /4, /8, off

DCOCLK

Vcc

0

1
DCOR
1

P2.5
/Rosc

0

The DCO-Generator is connected to pin P2.5/Rosc if DCOR control bit is set.

The port pin P2.5/Rosc is selected if DCOR control bit is reset (initial state).

DC-

Generator

SCG0

Vcc

Rsel

DCGEN

Low power

OscOff

LF oscillator, XTS=0

High frequency
XT oscillator, XTS=1

XTS

3

2

0,1

/1, /2, /4, /8

CPE 323 24

Basic clock block diagram
(MSP430x13x/14x/15x/16x)

CPE 323 25

Basic operation

After POC (Power Up Clear)
MCLK and SMCLK are sourced by DCOCLK (approx. 800KHz) and
ACLK is sourced by LFXT1 in LF mode
Status register control bits SCG0, SCG1, OSCOFF, and CPUOFF
configure the MSP430 operating modes and enable or disable
portions of the basic clock module

SCG1 - when set, turns off the SMCLK
SCG0 - when set, turns off the DCO dc generator
(if DCOCLK is not used for MCLK or SMCLK)
OSCOFF - when set, turns off the LFXT1 crystal oscillator
(if LFXT1CLK is not use for MCLK or SMCLK)
CPUOFF - when set, turns off the CPU

DCOCTL, BCSCTL1, and BCSCTL2 registers
configure the basic clock module
The basic clock can be configured or reconfigured by software at
any time during program execution

CPE 323 26

Basic Clock Module - Control Registers

The Basic Clock Module is configured using control registers DCOCTL, BCSCTL1, and
BCSCTL2, and four bits from the CPU status register: SCG1, SCG0, OscOff, and CPUOFF.

User software can modify these control registers from their default condition at any time. The
Basic Clock Module control registers are located in the byte-wide peripheral map and should
be accessed with byte (.B) instructions.

Register State Short Form Register Type Address Initial State
DCO control
register DCOCTL Read/write 056h 060h
Basic clock
system control 1 BCSCTL1 Read/write 057h 084h
Basic clock
system control 2 BCSCTL2 Read/write 058h reset

CPE 323 27

Basic Clock Module - Control Registers

rw-0 rw-1 rw-1 rw-0 rw-0 rw-0 rw-0 rw-0

DCO.2

056h

DCOCTL

DCO.1 DCO.0 MOD.4 MOD.3 MOD.2 MOD.1 MOD.0

rw-(1) rw-(0) rw-(0) rw-(0) rw-0 rw-1 rw-0 rw-0

057h

BCSCTL1

XT2Off Rsel.0Rsel.1Rsel.2XTS DIVA.1 DIVA.0 XT5V

Selection of
DCO nominal
frequency

Which of eight
discrete DCO
frequencies is
selected

Define how often frequency
fDCO+1 within the period of
32 DCOCLK cycles is
used. Remaining clock
cycles (32-MOD) the
frequency fDCO is mixed

RSEL.x Select DCO nominal frequency
DCO.x and MOD.x set exact DCOCLK

… select other clock tree options

Direct SW Control
DCOCLK can be Set - Stabilized
Stable DCOCLK over Temp/Vcc.

rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0

SELM.1

058h

BCSCTL2

SELM.0 DIVM.1 DIVM.0 SELS DIVS.1 DIVS.0 DCOR

CPE 323 28

DCOCTL

Digitally-Controlled Oscillator (DCO) Clock-Frequency Control

DCOCTL is loaded with a value of 060h with a valid PUC condition.
7 0

DCOCTL DCO.2 DCO.1 DCO.0 MOD.4 MOD.3 MOD.2 MOD.1 MOD.0

056H 0 1 1 0 0 0 0 0

MOD.0 .. MOD.4: The MOD constant defines how often the discrete frequency
fDCO+1 is used within a period of 32 DCOCLK cycles.

During the remaining clock cycles (32–MOD) the discrete frequency f DCO is used.
When the DCO constant is set to seven, no modulation is possible since the
highest feasible frequency has then been selected.

DCO.0 .. DCO.2: The DCO constant defines which one of the eight discrete
frequencies is selected. The frequency is defined by the current injected into the
dc generator.

CPE 323 29

BCSCTL1

Oscillator and Clock Control Register
BCSCTL1 is affected by a valid PUC or POR condition.

7 0
BCSCTL1 XT2Off XTS DIVA.1 DIVA.0 XT5V Rsel.2 Rsel.1 Rsel.0
057h 1 0 0 0 0 1 0 0

Bit0 to Bit2: The internal resistor is selected in eight different steps.
Rsel.0 to Rsel.2 The value of the resistor defines the nominal frequency.

The lowest nominal frequency is selected by setting Rsel=0.
Bit3, XT5V: XT5V should always be reset.
Bit4 to Bit5: The selected source for ACLK is divided by:

DIVA = 0: 1
DIVA = 1: 2
DIVA = 2: 4
DIVA = 3: 8

CPE 323 30

BCSCTL1

Bit6, XTS: The LFXT1 oscillator operates with a low-frequency or with a
high-frequency crystal:
XTS = 0: The low-frequency oscillator is selected.
XTS = 1: The high-frequency oscillator is selected.

The oscillator selection must meet the external crystal’s operating condition.

Bit7, XT2Off: The XT2 oscillator is switched on or off:
XT2Off = 0: the oscillator is on
XT2Off = 1: the oscillator is off if it is not used for MCLK or SMCLK.

CPE 323 31

BCSCTL2

BCSCTL2 is affected by a valid PUC or POR condition.

7 0
BCSCTL2 SELM.1 SELM.0 DIVM.1 DIVM.0 SELS DIVS.1 DIVS.0 DCOR
058h

Bit0, DCOR: The DCOR bit selects the resistor for injecting current into the dc generator.
Based on this current, the oscillator operates if activated.

DCOR = 0: Internal resistor on, the oscillator can operate. The fail-safe mode is on.
DCOR = 1: Internal resistor off, the current must be injected externally if the DCO

output drives any clock using the DCOCLK.
Bit1, Bit2: The selected source for SMCLK is divided by:

DIVS.1 .. DIVS.0 DIVS = 0:1
DIVS = 1: 2
DIVS = 2: 4
DIVS = 3: 8

CPE 323 32

BCSCTL2
Bit3, SELS: Selects the source for generating SMCLK:

SELS = 0: Use the DCOCLK
SELS = 1: Use the XT2CLK signal (in three-oscillator systems)

or
LFXT1CLK signal (in two-oscillator systems)

Bit4, Bit5: The selected source for MCLK is divided by DIVM.0 .. DIVM.1
DIVM = 0: 1
DIVM = 1: 2
DIVM = 2: 4
DIVM = 3: 8

Bit6, Bit7: Selects the source for generating MCLK:
SELM.0 .. SELM.1

SELM = 0: Use the DCOCLK
SELM = 1: Use the DCOCLK
SELM = 2: Use the XT2CLK (x13x and x14x devices)

or
Use the LFXT1CLK (x11x(1) devices)
SELM = 3: Use the LFXT1CLK

CPE 323 33

Range (RSELx) and Steps (DCOx)

CPE 323 34

F149 default DCO clock setting

slas272c/page 46

CPE 323 35

External Resistor

The DCO temperature
coefficient can be reduced by
using an external resistor
ROSC to source the current
for the DC generator.
ROSC also allows the DCO to
operate at higher frequencies.

Internal resistor nominal value
is approximately 200 kOhm
=> DCO to operate up to 5
MHz.
External ROSC of
approximately 100 kOhm =>
the DCO can operate up to
approximately 10 MHz.

CPE 323 36

Basic Clock Systems-DCO TAPS
DCOCLK frequency control
nominal - injected current into DC generator
1) internal resistors Rsel2, Rsel1 and Rsel0
2) an external resistor at Rosc (P2.5/11x)

Control bits DCO0 to DCO2 set fDCO tap

Modulation bits MOD0 to MOD4 allow
mixing of fDCO and fDCO+1 for precise
frequency generation

Example
Selected:

f3:
f4:

1000kHz

943kHz
1042kHz

Frequency Cycle time

1000 nsec

1060 nsec
960 nsec

MOD=19
DCOCLK

DCO
+0
+1

Modulation Period

f0 f1 f2 f3 f4 f5 f6 f7

DCOCLK

fDCO

nominalf

nominal+1f

Selected

nominal-1f

To produce an intermediate effective frequency between fDCO and fDCO+1
Cycle_time = ((32-MOD)*tDCO+MOD*tDCO+1)/32 = 1000.625 ns, selected frequency ≈ 1 MHz.

CPE 323 37

Software FLL

Digital Controlled Oscillator DCO
+

DCO

3

DCOMOD

MOD

5

Modulator MOD

DCOCLK

Vcc

DCOR

1
P2.5
/Rosc

0 DC-

Generator

SCG0

Vcc

Rsel

DCGEN

reference clock e.g.
ACLK or 50/60Hz

SW+HW

Controls the DCOCLK

Basic Clock DCO is an open loop - close with SW+HW
A reference frequency e.g. ACLK or 50/60Hz can be used to measure DCOCLK’s
Initialization or Periodic software set and stabilizes DCOCLK over reference clock
DCOCLK is programmable 100kHz - 5Mhz and stable over voltage and temperature

CPE 323 38

Software FLL Implementation
Example: Set DCOCLK= 1228800, ACLK= 32768

ACLK/4 captured on CCI2B, DCOCLK is clock source for Timer_A
Comparator2 HW captures SMCLK (1228800Hz) in one ACLK/4 (8192Hz) period
Target Delta = 1228800/8192= 150

CCI2BInt … ; Compute Delta
cmp #150,Delta ; Delta= 1228800/8192
jlo IncDCO ; JMP to IncDCO

DecDCO dec &DCOCTL ; Decrease DCOCLK
reti

IncDCO inc &DCOCTL ; Increase DCOCLK
reti

15 0
Capture/Compare0

1
2
3

15 0

Register CCR2CCI2B Capture
Mode

Comparator 2

Capture

Target 1228800Hz DCOCLK source for timer

Stable reference ACLK/4, 8192Hz source

Delta

CPE 323 39

Fail Safe Operation

Basic module incorporates an
oscillator-fault detection fail-safe feature.
The oscillator fault detector is an analog circuit that
monitors the LFXT1CLK (in HF mode) and the XT2CLK.
An oscillator fault is detected when either clock signal is
not present for approximately 50 us.

When an oscillator fault is detected, and when MCLK is sourced
from either LFXT1 in HF mode or XT2, MCLK is automatically
switched to the DCO for its clock source.

When OFIFG is set and OFIE is set, an NMI interrupt is
requested. The NMI interrupt service routine can test the
OFIFG flag to determine if an oscillator fault occurred.
The OFIFG flag must be cleared by software.

CPE 323 40

Synchronization of clock signals

When switching MCLK and SMCLK from
one clock source to another
=> avoid race conditions

The current clock cycle continues until the next rising
edge
The clock remains high until the next rising edge of
the new clock
The new clock source is selected and continues with
a full high period

CPE 323 41

Basic Clock Module - Examples

How to select the Crystal Clock

BCSCTL1 |= XTS; // ACLK = LFXT1 = HF XTAL
BCSCTL1 |= DIVA0; // ACLK = XT1 / 8
BCSCTL1 |= DIVA1;
do {

IFG1 &= ~OFIFG; // Clear OSCFault flag from SW
for (i = 0xFF; i > 0; i--); // Time for flag to set by HW

} while ((IFG1 & OFIFG)); // OSCFault flag still set?
// clock is stable
BCSCTL2 |= SELM_3; // MCLK = LFXT1 (safe)

CPE 323 42

Basic Clock Systems-Examples
Adjusting the Basic Clock

The control registers of the Basic Clock are under full software control. If clock
requirements other than those of the default from PUC are necessary, the Basic
Clock can be configured or reconfigured by software at any time during program
execution.

ACLKGEN from LFXT1 crystal, resonator, or external-clock source and divided by 1, 2,
4, or 8. If no LFXTCLK clock signal is needed in the application, the OscOff bit should
be set in the status register.

SCLKGEN from LFXTCLK, DCOCLK, or XT2CLK (x13x and x14x only) and divided by
1, 2, 4, or 8. The SCG1 bit in the status register enables or disables SMCLK.

MCLKGEN from LFXTCLK, DCOCLK, or XT2CLK (x13x and x14x only) and divided by
1, 2, 4, or 8. When set, the CPUOff bit in the status register enables or disables MCLK.

DCOCLK frequency is adjusted using the RSEL, DCO, and MOD bits. The DCOCLK
clock source is stopped when not used, and the dc generator can be disabled by the
SCG0 bit in the status register (when set).

The XT2 oscillator sources XT2CLK (x13x and x14x only) by clearing the XT2Off bit.

CPE 323 43

FLL+ Clock Module (MSP430x4xx)

FLL+ clock module:
frequency-locked loop clock module

Low system cost
Ultra-low power consumption
Can operate with no external components
Supports one or two external crystals or resonators
(LFXT1 and XT2)
Internal digitally-controlled oscillator with stabilization
to a multiple of the LFXT1 watch crystal frequency
Full software control over 4 output clocks: ACLK,
ACLK/n, MCLK, and SMCLK

CPE 323 44

MSP430x43x, MSP430x44x and
MSP430x461x Frequency-Locked Loop

CPE 323 45

FLL+ Clock Module
LFXT1CLK: Low-frequency/high-frequency oscillator that can be
used

either with low-frequency 32768-Hz watch crystals, or
standard crystals or resonators in the 450-kHz to 8-MHz range.

XT2CLK: Optional high-frequency oscillator that can be used with
standard crystals, resonators, or external clock sources in the 450-
kHz to 8-MHz range. In MSP430F47x devices the upper limit is 16
MHz.
DCOCLK: Internal digitally controlled oscillator (DCO) with RC-type
characteristics, stabilized by the FLL.
Four clock signals are available from the FLL+ module:

ACLK: Auxiliary clock. The ACLK is the LFXT1CLK clock source. ACLK
is software selectable for individual peripheral modules.
ACLK/n: Buffered output of the ACLK. The ACLK/n is ACLK divided by
1,2,4 or 8 and only used externally.
MCLK: Master clock. MCLK is software selectable as LFXT1CLK,
XT2CLK (if available), or DCOCLK. MCLK can be divided by 1, 2, 4, or
8 within the FLL block. MCLK is used by the CPU and system.
SMCLK: Sub-main clock. SMCLK is software selectable as XT2CLK (if
available), or DCOCLK. SMCLK is software selectable for individual
peripheral modules.

CPE 323 46

FLL+ Clock Module Operation
After a PUC, MCLK and SMCLK are sourced from
DCOCLK at 32 times the ACLK frequency. When a
32,768-Hz crystal is used for ACLK, MCLK and SMCLK
will stabilize to 1.048576 MHz.
Status register control bits SCG0, SCG1, OSCOFF, and
CPUOFF configure the MSP430 operating modes and
enable or disable components of the FLL+ clock
module.
The SCFQCTL, SCFI0, SCFI1, FLL_CTL0, and
FLL_CTL1 registers configure the FLL+ clock module.
The FLL+ can be configured or reconfigured by software
at any time during program execution.
Example, MCLK = 64 × ACLK = 2097152
BIC #GIE,SR ; Disable interrupts
MOV.B #(64−1),&SCFQTL ; MCLK = 64 * ACLK, DCOPLUS=0
MOV.B #FN_2,&SCFIO ; Select DCO range
BIS #GIE,SR ; Enable interrupts

CPE 323 47

LFXT1 Oscillator

Low-frequency (LF) mode (XTS_FLL=0) with
32,768 Hz watch crystal connected to XIN and
XOUT
High-frequency (HF) mode (XTS_FLL=1) with
high-frequency crystals or resonators connected
to XIN and XOUT (~450 KHz to 8 MHz)
XCPxPF bits configure the internally provided
load capacitance for the LFXT1 crystal (1, 6, 8,
or 10 pF)
OSCOFF bit can be set to disable LFXT1

CPE 323 48

XT2 Oscillator

XT2 sources XT2CLK and its
characteristics are identical to LFXT1 in
HF mode, except it does not have internal
load capacitors (must be provided
externally)
XT2OFF bit disables the XT2 oscillator if
XT2CLK is not used for MCLK and
SMCLK

CPE 323 49

DCO

Integrated ring oscillator with RC-type characteristics
DCO frequency is stabilized by the FLL to a multiple of
ACLK as defined by N (the lowest 7 bits of the
SCFQCTL register)
DCOPLUS bit sets the fDCOCLK to fDCO or fDCO/D (divider).
The FLLDx bits define the divider D to 1, 2, 4 or 8. By
default DCOPLUS=0 and D=2, providing
fDCOCLK= fDCO/2

DCOPLUS = 0: fDCOCLK = (N + 1) x fACLK

DCOPLUS = 1: fDCOCLK = D x (N + 1) x fACLK

CPE 323 50

DCO Frequency Range

CPE 323 51

Frequency Locked Loop
FLL continuously counts up or down a 10-bit frequency integrator.
The output of the frequency integrator that drives the DCO can be
read in SCFI1 and SCFI0. The count is adjusted +1 or −1 with each
ACLK crystal period.
Five of the integrator bits, SCFI1 bits 7-3, set the DCO frequency
tap. Twenty-nine taps are implemented for the DCO (28, 29, 30,
and 31 are equivalent), and each is approximately 10% higher than
the previous. The modulator mixes two adjacent DCO frequencies
to produce fractional taps.
SCFI1 bits 2-0 and SCFI0 bits 1-0 are used for the modulator.
The DCO starts at the lowest tap after a PUC or when SCFI0 and
SCFI1 are cleared. Time must be allowed for the DCO to settle on
the proper tap for normal operation. 32 ACLK cycles are required
between taps requiring a worst case of 28 x 32 ACLK cycles for the
DCO to settle

CPE 323 52

FLL+ Clock Module Registers

MSP430: Watchdog Timer

CPE 323 54

Watchdog Timer-General

General
The primary function of the watchdog-timer module (WDT) is to perform a
controlled-system restart after a software problem occurs. If the selected time
interval expires, a system reset is generated. If the watchdog function is not
needed in an application, the module can work as an interval timer, to generate an
interrupt after the selected time interval.

Features of the Watchdog Timer include:
Eight software-selectable time intervals
Two operating modes: as watchdog or interval timer
Expiration of the time interval in watchdog mode, which generates a system
reset; or in timer mode, which generates an interrupt request
Safeguards which ensure that writing to the WDT control register is only
possible using a password
Support of ultralow-power using the hold mode

Watchdog/Timer two functions:
SW Watchdog Mode
Interval Timer Mode

CPE 323 55

Watchdog Timer-Diagram

CPE 323 56

Watchdog Timer-Registers

Watchdog Timer Counter
The watchdog-timer counter (WDTCNT) is a 16-bit up-counter that is
not directly accessible by software. The WDTCNT is controlled
through the watchdog-timer control register (WDTCTL), which is a 16-
bit read/write register located at the low byte of word address 0120h.
Any read or write access must be done using word instructions with
no suffix or .w suffix. In both operating modes (watchdog or timer), it
is only possible to write to WDTCTL using the correct password.

Watchdog Timer Control Register

MDB, LowByte

Password Compare

MDB, HighByte R/W

EQU

WDT 16-bit Control Register with Write Protection Read:HighByte is 069h Write:HighByte is 05Ah, otherwise
security key is violated

HOLD NMINMIES TMSEL CNTCL SSEL IS1

7 0

ISO

0120hWDTCTL

Bits 0, 1: Bits IS0 and IS1 select one of four taps from the WDTCNT, as described in
following table. Assuming f crystal = 32,768 Hz and f System = 1 MHz, the following
intervals are possible:

CPE 323 57

WDTCTL
Bits 0, 1: Bits IS0 and IS1 select one of four taps from the WDTCNT, as described

in following table. Assuming f crystal = 32,768 Hz and f System = 1 MHz, the
following intervals are possible:

SSEL IS1 IS0 Interval [ms]
0 1 1 0.064 t SMCLK × 2 6
0 1 0 0.5 t SMCLK × 2 9
1 1 1 1.9 t ACLK × 2 6
0 0 1 8 t SMCLK × 2 13

1 1 0 16.0 t ACLK × 2 9
0 0 0 32 t SMCLK × 2 15 <– Value after PUC (reset)
1 0 1 250 t ACLK × 2 13

1 0 0 1000 t ACLK × 2 15

Bit 2: The SSEL bit selects the clock source for WDTCNT.
SSEL = 0: WDTCNT is clocked by SMCLK .
SSEL = 1: WDTCNT is clocked by ACLK.

Bit 3: Counter clear bit. In both operating modes, writing a 1 to this bit
restarts the WDTCNT at 00000h. The value read is not defined.

Table: WDTCNT Taps

CPE 323 58

WDTCTL
Bit 4: The TMSEL bit selects the operating mode: watchdog or timer.

TMSEL = 0: Watchdog mode
TMSEL = 1: Interval-timer mode

Bit 5: The NMI bit selects the function of the RST/NMI input pin. It is cleared by the
PUC signal.

NMI = 0: The RST/NMI input works as reset input.
As long as the RST/NMI pin is held low, the internal signal is active (level sensitive).
NMI = 1: The RST/NMI input works as an edge-sensitive non-maskable interrupt
input.

Bit 6: If the NMI function is selected, this bit selects the activating edge of the
RST/NMI input. It is cleared by the PUC signal.
NMIES = 0: A rising edge triggers an NMI interrupt.
NMIES = 1: A falling edge triggers an NMI interrupt.
CAUTION: Changing the NMIES bit with software can generate an NMI interrupt.

Bit 7: This bit stops the operation of the watchdog counter. The clock multiplexer is
disabled and the counter stops incrementing. It holds the last value until the hold
bit is reset and the operation continues. It is cleared by the PUC signal.
HOLD = 0: The WDT is fully active.
HOLD = 1: The clock multiplexer and counter are stopped.

CPE 323 59

Watchdog Timer-Interrupt Function

The Watchdog Timer (WDT) uses two bits in the SFRs for interrupt control.
The WDT interrupt flag (WDTIFG) (located in IFG1.0, initial state is reset)
The WDT interrupt enable (WDTIE) (located in IE1.0, initial state is reset)

When using the watchdog mode, the WDTIFG flag is used by the reset interrupt
service routine to determine if the watchdog caused the device to reset. If the
flag is set, then the Watchdog Timer initiated the reset condition (either by
timing out or by a security key violation). If the flag is cleared, then the PUC
was caused by a different source. See chapter 3 for more details on the PUC
and POR signals.
When using the Watchdog Timer in interval-timer mode, the WDTIFG flag is set
after the selected time interval and a watchdog interval-timer interrupt is
requested. The interrupt vector address in interval-timer mode is different from
that in watchdog mode. In interval-timer mode, the WDTIFG flag is reset
automatically when the interrupt is serviced.
The WDTIE bit is used to enable or disable the interrupt from the Watchdog
Timer when it is being used in interval-timer mode. Also, the GIE bit enables or
disables the interrupt from the Watchdog Timer when it is being used in
interval-timer mode.

CPE 323 60

Watchdog Timer-Timer Mode

Setting WDTCTL register bit TMSEL to 1 selects the timer mode. This
mode provides periodic interrupts at the selected time interval. A time
interval can also be initiated by writing a 1 to bit CNTCL in the
WDTCTL register.

When the WDT is configured to operate in timer mode, the WDTIFG
flag is set after the selected time interval, and it requests a standard
interrupt service. The WDT interrupt flag is a single-source interrupt
flag and is automatically reset when it is serviced. The enable bit
remains unchanged. In interval-timer mode, the WDT interrupt-enable
bit and the GIE bit must be set to allow the WDT to request an
interrupt. The interrupt vector address in timer mode is different from
that in watchdog mode.

CPE 323 61

Watchdog Timer-Examples

How to select timer mode
/* WDT is clocked by fACLK (assumed 32Khz) */
WDTCL=WDT_ADLY_250; // WDT 250MS/4 INTERVAL TIMER

IE1 |=WDTIE; // ENABLE WDT INTERRUPT

How to stop watchdog timer

WDTCTL=WDTPW + WDTHOLD ; // stop watchdog timer

Assembly programming

WDT_key .equ 05A00h ; Key to access WDT
WDTStop mov #(WDT_Key+80h),&WDTCTL ; Hold Watchdog
WDT250 mov #(WDT_Key+1Dh),&WDTCTL ; WDT, 250ms Interval

MSP430x1xx Microcontrollers
Low Power Modes

CPE/EE 421/521 Microcomputers

CPE 323 63

Power as a Design Constraint

Why worry about power?
Battery life in portable and mobile platforms
Power consumption in desktops, server farms

Cooling costs, packaging costs, reliability, timing
Power density: 30 W/cm2 in Alpha 21364
(3x of typical hot plate)

Environment?
IT consumes 10% of energy in the US

Power becomes a first class architectural design constraint

CPE 323 64

Where does power go in CMOS?

leakshort
2 VIfAVIfACVP ++= τ

Dynamic power
consumption

Power due to
short-circuit
current during
transition

Power due to
leakage current

CPE 323 65

Dynamic Power Consumption

fACV2

A - Activity of gates
How often on average do
wires switch?

f – clock frequency
Trend: increasing ...

V – Supply voltage
Trend: has been dropping
with each successive fab

C – Total capacitance
seen by the gate’s outputs
Function of wire lengths,
transistor sizes, ...

Reducing Dynamic Power
1) Reducing V has quadratic effect; Limits?
2) Lower C - shrink structures, shorten wires
3) Reduce switching activity - Turn off unused parts or

use design techniques to minimize number of transitions

CPE 323 66

Short-circuit Power Consumption

Finite slope of the input signal
causes a direct current path
between VDD and GND for a
short period of time during
switching when both the
NMOS and PMOS transistors
are conducting

Vin Vout

CL

Ishort

fAVIshortτ

Reducing Short-circuit
1) Lower the supply voltage V
2) Slope engineering – match the rise/fall time of the input and output signals

CPE 323 67

Leakage Power

leakVI

Sub-threshold current grows exponentially with
increases in temperature and decreases in Vt

Sub-threshold
current

CPE 323 68

CMOS Power Equations

leakshort
2 VIfAVIfACVP ++= τ

V
)VV(f
2

t
max

−
∝

Reduce the
supply voltage, V

)
kT
qVexp(I t

leak −∝

Reduce
threshold Vt

CPE 323 69

How can we reduce
power consumption?

Dynamic power consumption
charge/discharge of the capacitive load
on each gate’s output
frequency

Control activity
reduce power supply voltage
reduce working frequency
turn off unused parts (module enables)
use low power modes
interrupt driven system

Minimize the number of transitions
instruction formats, coding?

CPE 323 70

Average power consumption

Dynamic power supply current
Set of modules that are periodically active
Typical situation – real time cycle T
Iave = ∫ Icc(t)dt /T
In most cases Iave = Σ Ii*ti/T

Icc (power supply current)

Time

T

CPE 323 71

The example of the heat cost allocator shows that the current of the non-activity periode
dominates the current consumption.

Measure Process data Real-Time Clock LCD Display

IAVG = IMeasure + ICalculate + IRTC + IDisplay

= IADC* tMeasure/T + Iactive * tcalc /T + Iactive * tRTC /T + IDisplay

= 3mA *200µs/60s + 0.5mA * 10ms/60s + 0.5mA * 0.5ms/60s + 2.1µA

= 10nA + 83nA + 4nA + 2.1µA

IAVG ≅ 2.1µA

The sleep current dominates the current consumption!The sleep current dominates the current consumption!

The currents are related to the sensor and μC system. Additional current consumption of other
system parts should be added for the total system current

Low-Power Concept:
Basic Conditions for Burst Mode

CPE 323 72

Battery Life

Battery Capacity BC – [mAh]
Battery Life

BL = BC / Iave
In the previous example, standard 800
mAh batteries will allow battery life of:

BL = 750 mAh / 2.1 μA ≈ 44 years !!!
Conclusion:

Power efficient modes
Interrupt driven system with processor in idle
mode

CPE 323 73

Power and Related metrics

Peak power
Possible damage

Dynamic power
Non-ideal battery characteristics
Ground bounce, di/dt noise

Energy/operation ratio
MIPS/W
Energy x Delay

CPE 323 74

Reducing power consumption
Logic

Clock tree (up to 30% of power)
Clock gating (turn off branches that are not used)
Half frequency clock (both edges)
Half swing clock (half of Vcc)
Asynchronous logic

completion signals
testing

Architecture
Parallelism (increased area and wiring)
Speculation (branch prediction)
Memory systems

Memory access (dynamic)
Leakage
Memory banks (turn off unused)

Buses
32-64 address/data, (15-20% of power)
Gray Code, Code compression

CPE 323 75

Reducing power consumption #2

Operating System
Finish computation “when necessary”
Scale the voltage

Application driven
Automatic

System Architecture
Power efficient and specialized processing cores
A “convergent” architecture
Trade-off

AMD K6 / 400MHz / 64KB cache – 12W
XScale with the same cache 450 mW @ 600 MHz
(40mW@150MHz)
24 processors? Parallelism?

Other issues
Leakage current – Thermal runaway
Voltage clustering (low Vthreshold for high speed paths)

CPE 323 76

Operating Modes-General

The MSP430 family was developed for ultralow-power applications and uses
different levels of operating modes. The MSP430 operating modes, give advanced
support to various requirements for ultralow power and ultralow energy consumption.
This support is combined with an intelligent management of operations during the
different module and CPU states. An interrupt event wakes the system from each of
the various operating modes and the RETI instruction returns operation to the mode
that was selected before the interrupt event.

The ultra-low power system design which uses complementary metal-oxide
semiconductor (CMOS) technology, takes into account three different needs:

The desire for speed and data throughput despite conflicting needs for ultra-low power
Minimization of individual current consumption
Limitation of the activity state to the minimum required by the use of low power modes

CPE 323 77

Low power mode control

There are four bits that control the CPU and the main parts of the operation of
the system clock generator:

CPUOff,
OscOff,
SCG0, and
SCG1.

These four bits support discontinuous active mode (AM) requests, to limit the
time period of the full operating mode, and are located in the status register. The
major advantage of including the operating mode bits in the status register is
that the present state of the operating condition is saved onto the stack during
an interrupt service request. As long as the stored status register information is
not altered, the processor continues (after RETI) with the same operating mode
as before the interrupt event.

CPE 323 78

Operating Modes-General

Another program flow may be selected by manipulating the data stored on the stack or the
stack pointer. Being able to access the stack and stack pointer with the instruction set
allows the program structures to be individually optimized, as illustrated in the following
program flow:

Enter interrupt routine
The interrupt routine is entered and processed if an enabled interrupt awakens the MSP430:

The SR and PC are stored on the stack, with the content present at the interrupt event.
Subsequently, the operation mode control bits OscOff, SCG1, and CPUOff are cleared
automatically in the status register.

Return from interrupt
Two different modes are available to return from the interrupt service routine and continue the

flow of operation:
Return with low-power mode bits set. When returning from the interrupt, the program
counter points to the next instruction. The instruction pointed to is not executed, since the
restored low power mode stops CPU activity.
Return with low-power mode bits reset. When returning from the interrupt, the program
continues at the address following the instruction that set the OscOff or CPUOff-bit in the
status register. To use this mode, the interrupt service routine must reset the OscOff,
CPUOff, SCGO, and SCG1 bits on the stack. Then, when the SR contents are popped from
the stack upon RETI, the operating mode will be active mode (AM).

CPE 323 79

Operating Modes –
Software configurable

There are six operating modes that the software can configure:
Active mode AM; SCG1=0, SCG0=0, OscOff=0, CPUOff=0: CPU clocks are active
Low power mode 0 (LPM0); SCG1=0, SCG0=0, OscOff=0, CPUOff=1:

CPU is disabled
MCLK is disabled
SMCLK and ACLK remain active

Low power mode 1 (LPM1); SCG1=0, SCG0=1, OscOff=0, CPUOff=1:
CPU is disabled
MCLK is disabled
DCO’s dc generator is disabled if the DCO is not used for MCLK or SMCLK when in active
mode. Otherwise, it remains enabled.
SMCLK and ACLK remain active

Low power mode 2 (LPM2); SCG1=1, SCG0=0, OscOff=0, CPUOff=1:
CPU is disabled
MCLK is disabled
SMCLK is disabled
DCO oscillator automatically disabled because it is not needed for MCLK or SMCLK
DCO’s dc-generator remains enabled
ACLK remains active

CPE 323 80

Operating Modes #2
Low power mode 3 (LPM3); SCG1=1, SCG0=1, OscOff=0, CPUOff=1:

CPU is disabled
MCLK is disabled
SMCLK is disabled
DCO oscillator is disabled
DCO’s dc-generator is disabled
ACLK remains active

Low power mode 4 (LPM4); SCG1=X, SCG0=X, OscOff=1, CPUOff=1:
CPU is disabled
ACLK is disabled
MCLK is disabled
SMCLK is disabled
DCO oscillator is disabled
DCO’s dc-generator is disabled
Crystal oscillator is stopped

CPE 323 81

Operating Modes-Low Power Mode in
details

Low-Power Mode 0 and 1 (LPM0 and LPM1)
Low power mode 0 or 1 is selected if bit CPUOff in the status register is set. Immediately

after the bit is set the CPU stops operation, and the normal operation of the system
core stops. The operation of the CPU halts and all internal bus activities stop until an
interrupt request or reset occurs. The system clock generator continues operation, and
the clock signals MCLK, SMCLK, and ACLK stay active depending on the state of the
other three status register bits, SCG0, SCG1, and OscOff.

The peripherals are enabled or disabled with their individual control register settings, and
with the module enable registers in the SFRs. All I/O port pins and RAM/registers are
unchanged. Wake up is possible through all enabled interrupts.

Low-Power Modes 2 and 3 (LPM2 and LPM3)
Low-power mode 2 or 3 is selected if bits CPUOff and SCG1 in the status register are set.

Immediately after the bits are set, CPU, MCLK, and SMCLK operations halt and all
internal bus activities stop until an interrupt request or reset occurs.

Peripherals that operate with the MCLK or SMCLK signal are inactive because the clock
signals are inactive. Peripherals that operate with the ACLK signal are active or
inactive according with the individual control registers and the module enable bits in
the SFRs. All I/O port pins and the RAM/registers are unchanged. Wake up is possible
by enabled interrupts coming from active peripherals or RST/NMI.

CPE 323 82

Operating Modes -
Low Power Mode in details

Low-Power Mode 4 (LPM4)
System Resets, Interrupts, and Operating Modes In low power mode 4 all

activities cease; only the RAM contents, I/O ports, and registers are
maintained. Wake up is only possible by enabled external interrupts.

Before activating LPM4, the software should consider the system conditions
during the low power mode period . The two most important conditions are
environmental (that is, temperature effect on the DCO), and the clocked
operation conditions.

The environment defines whether the value of the frequency integrator should
be held or corrected. A correction should be made when ambient conditions
are anticipated to change drastically enough to increase or decrease the
system frequency while the device is in LPM4.

CPE 323 83

Operating Modes-Examples

The following example describes entering into low-power mode 0.
;===Main program flow with switch to CPUOff Mode==============

BIS #18h,SR ;Enter LPM0 + enable general interrupt GIE

;(CPUOff=1, GIE=1). The PC is incremented

;during execution of this instruction and

;points to the consecutive program step.

...... ;The program continues here if the CPUOff

;bit is reset during the interrupt service

;routine. Otherwise, the PC retains its

;value and the processor returns to LPM0.

The following example describes clearing low-power mode 0.
;===Interrupt service routine=================================

...... ;CPU is active while handling interrupts

BIC #10h,0(SP) ;Clears the CPUOff bit in the SR contents

;that were stored on the stack.

RETI ;RETI restores the CPU to the active state

;because the SR values that are stored on

;the stack were manipulated. This occurs

;because the SR is pushed onto the stack

;upon an interrupt, then restored from the

;stack after the RETI instruction.

CPE 323 84

Operating Modes C Examples
C – programming msp430x14x.h

/************************
* STATUS REGISTER BITS
************************/

#define C 0x0001
#define Z 0x0002
#define N 0x0004
#define V 0x0100
#define GIE 0x0008
#define CPUOFF 0x0010
#define OSCOFF 0x0020
#define SCG0 0x0040
#define SCG1 0x0080

/* Low Power Modes coded with
Bits 4-7 in SR */

/* Begin #defines for assembler */
#ifndef __IAR_SYSTEMS_ICC
#define LPM0 CPUOFF
#define LPM1 SCG0+CPUOFF
#define LPM2 SCG1+CPUOFF
#define LPM3 SCG1+SCG0+CPUOFF
#define LPM4 SCG1+SCG0+OSCOFF+CPUOFF
/* End #defines for assembler */

#else /* Begin #defines for C */
#define LPM0_bits CPUOFF
#define LPM1_bits SCG0+CPUOFF
#define LPM2_bits SCG1+CPUOFF
#define LPM3_bits SCG1+SCG0+CPUOFF
#define LPM4_bits SCG1+SCG0+OSCOFF+CPUOFF

…

#include "In430.h“

#define LPM0 _BIS_SR(LPM0_bits) /* Enter LP Mode 0 */
#define LPM0_EXIT _BIC_SR(LPM0_bits) /* Exit LP Mode 0 */
#define LPM1 _BIS_SR(LPM1_bits) /* Enter LP Mode 1 */
#define LPM1_EXIT _BIC_SR(LPM1_bits) /* Exit LP Mode 1 */
#define LPM2 _BIS_SR(LPM2_bits) /* Enter LP Mode 2 */
#define LPM2_EXIT _BIC_SR(LPM2_bits) /* Exit LP Mode 2 */
#define LPM3 _BIS_SR(LPM3_bits) /* Enter LP Mode 3 */
#define LPM3_EXIT _BIC_SR(LPM3_bits) /* Exit LP Mode 3 */
#define LPM4 _BIS_SR(LPM4_bits) /* Enter LP Mode 4 */
#define LPM4_EXIT _BIC_SR(LPM4_bits) /* Exit LP Mode 4 */
#endif /* End #defines for C */

/* - in430.h -
Intrinsic functions for the MSP430

*/

unsigned short _BIS_SR(unsigned short);
unsigned short _BIC_SR(unsigned short);

CPE 323 85

C Examples
//***
// MSP-FET430P140 Demo - WDT Toggle P1.0, Interval ISR, 32kHz ACLK
//
// Description; Toggle P1.0 using software timed by WDT ISR.
// Toggle rate is exactly 250ms based on 32kHz ACLK WDT clock source.
// In this example the WDT is configured to divide 32768 watch-crystal(2^15)
// by 2^13 with an ISR triggered @ 4Hz.
// ACLK= LFXT1= 32768, MCLK= SMCLK= DCO~ 800kHz
// //*External watch crystal installed on XIN XOUT is required for ACLK*
//
//
// MSP430F149
// -----------------
// /|\| XIN|-
// | | | 32kHz
// --|RST XOUT|-
// | |
// | P1.0|-->LED
//
// M.Buccini
// Texas Instruments, Inc
// August 2003
// Built with IAR Embedded Workbench Version: 1.26B
// December 2003
// Updated for IAR Embedded Workbench Version: 2.21B
//**

#include <msp430x14x.h>

void main(void)
{
// WDT 250ms, ACLK, interval timer
WDTCTL = WDT_ADLY_250;
IE1 |= WDTIE; // Enable WDT
interrupt

P1DIR |= 0x01; // Set P1.0 to
output direction

// Enter LPM3 w/interrupt
_BIS_SR(LPM3_bits + GIE);

}

// Watchdog Timer interrupt service
routine

interrupt[WDT_TIMER] void
watchdog_timer(void)

{
P1OUT ^= 0x01; // Toggle P1.0
using exclusive-OR

}

CPE 323 86

C Examples
....

_BIS_SR(LPM0_bits + GIE); // Enter LPM0 w/ interrupt

// program stops here

Your program is in LPM0 mode and it is woke up by an interrupt.
What should be done if you do not want to go back to LPM0 after
servicing the interrupt request, but rather you would let the main
program re-enter LMP0, based on current conditions?

QQ?

MSP430: Digital I/O

CPE 323 88

01234567

P1.

P6.

P2.

Input Register PxIN
Output Register PxOUT
Direction Register PxDIR

Interrupt Flag Register PxIFG
Interrupt Enable Register PxIE

Interrupt Edge Select Register PxIES
Function Select Register PxSEL

P3.

P5.

Port1
Port2

Port3
Port6

yes yes
yes no
yes no
yes no

yesyes
yesyes
yesyes

P4.

…

Chapter 9, User’s Manual
pages 9-1 to 9-7

Digital I/O

CPE 323 89

Digital I/O Introduction

MSP430 family – up to 6 digital I/O ports implemented, P1-P6
MSP430F14x – all 6 ports implemented
Ports P1 and P2 have interrupt capability.
Each interrupt for the P1 and P2 I/O lines can be individually
enabled and configured to provide an interrupt on a rising edge or
falling edge of an input signal.

The digital I/O features include:
Independently programmable individual I/Os
Any combination of input or output
Individually configurable P1 and P2 interrupts
Independent input and output data registers

The digital I/O is configured with user software

CPE 323 90

Digital I/O Registers Operation

Input Register PnIN
Each bit in each PnIN register reflects the value of
the input signal at the corresponding I/O pin when the
pin is configured as I/O function.

Bit = 0: The input is low
Bit = 1: The input is high

Output Registers PnOUT
Each bit in each PnOUT register is the value to be
output on the corresponding I/O pin when the pin is
configured as I/O function and output direction.

Bit = 0: The output is low
Bit = 1: The output is high

Do not write to PxIN. It will result
in increased current consumption

CPE 323 91

Digital I/O Operation

Direction Registers PnDIR
Bit = 0: The port pin is switched to input direction
Bit = 1: The port pin is switched to output direction

Function Select Registers PnSEL
Port pins are often multiplexed with other peripheral
module functions.

Bit = 0: I/O Function is selected for the pin
Bit = 1: Peripheral module function is selected for the pin

CPE 323 92

Digital I/O Operation

Interrupt Flag Registers P1IFG, P2IFG
(only for P1 and P2)

Bit = 0: No interrupt is pending
Bit = 1: An interrupt is pending

Only transitions, not static levels, cause interrupts
Interrupt Edge Select Registers P1IES, P2IES

(only for P1 and P2)

Each PnIES bit selects the interrupt edge for the
corresponding I/O pin.

Bit = 0: The PnIFGx flag is set with a low-to-high transition
Bit = 1: The PnIFGx flag is set with a high-to-low transition

MSP430: Timer_A

CPE 323 94

Timer_A MSP430x1xx

16-bit counter with 4 operating modes
Selectable and configurable clock source
Three (or five) independently configurable
capture/compare registers with configurable inputs
Three (or five) individually configurable output modules
with 8 output modes
multiple, simultaneous, timings; multiple
capture/compares; multiple output waveforms such as
PWM signals; and any combination of these.
Interrupt capabilities

each capture/compare block individually configurable

CPE 323 95

Page 11-3, User’s Manual

Timer_A5 - MSP430x1xx
Block Diagram

CPE 323 96

0FFFFh

0h

CCR0

Stop/Halt Mode
Timer is halted with the next +CLK

UP Mode
Timer counts between 0 and CCR0

0FFFFh

0h

CCR0

UP/DOWN Mode

Continuous Mode

0FFFFh

0h

Continuous Mode
Timer continuously counts up

UP/DOWN Mode
Timer counts between 0 and CCR0 and 0

Timer_A Counting Modes

CPE 323 97

Timer_A 16-bit Counter

Stop Mode
Up Mode
Continuous Mode
Up/Down Mode

0 0
0 1
1 0
1 1

CLRDivider
Input

Select
Inputunused un-

used
TAIFGTAIE

015

160h

TACTL

rw-
(0)

rw-
(0)

rw-
(0)

rw-
(0)

rw-
(0)

rw-
(0)

rw-
(0)

rw-
(0)

rw-
(0)

rw-
(0)

rw-
(0)

rw-
(0)

rw-
(0)

rw-
(0)

rw-
(0)

(w)-
(0)

Control
Mode

1/2
1/4
1/8

1/1, Pass0 0
0 1
1 0
1 1

0 0
0 1
1 0
1 1

ACLK
MCLK
INCLK

TACLK

MC0MC1

ID1 ID0

SSEL0SSEL1

Page 11-12, User’s Manual

CPE 323 98

0

162h

CCTLx

rw-

15

un-SCS OUTMODx

(0)
rw-
(0)

CAPINPUT
SELECT

CAPTURE
MODE

rrw-
(0)

rw-
(0)

rw-
(0)

rw-
(0)

rw-
(0)

rw-
(0)

rw-
(0)

rw-
(0)

rw-
(0)

rw-
(0)

rw-
(0)

rw-
(0)

CCIFGCOVOUTCCICCIE

16Eh
to rw-

(0)

SCCI used

015CCRx

rw-
(0)

rw-
(0)

rw-
(0)

rw-
(0)

rw-
(0)

rw-
(0)

rw-
(0)

rw-
(0)

rw-
(0)

rw-
(0)

rw-
(0)

rw-
(0)

rw-
(0)

rw-
(0)

rw-
(0)

rw-
(0)

02152
0172h
to
017Eh

to Port0

15 0
Capture/Compare Register
CCRx

Comparator x

Overflow x
Logic Data Bus Timer Bus

015

EQUx
CAPx

0

COVx

Capture

Disabled
Pos. Edge
Neg. Edge
Both Edges1 1

01
0 1
0 0

CCMx1 CCMx0

CMPx

Timer
Clock

1

0

SCSx

CCISx0

2
3

CCISx1
0
1CCIxB

VCC
GND

CCIxA

CCIx

Capture Path

Compare Path Set_CCIFGx1

SCCIxEN
A Y

Synchronize
Capture

Capture
Mode

Timer_A Capture Compare Blocks

CPE 323 99

1 1 1 PWM Set/Reset EQUx resets Outx signal, set with EQU0, clock synchronous with timer clock

0
0 0

OMx1 OMx0OMx2

0
0

0
0

Set

PWM Toggle/Reset

PWM Set/Reset

1
1

1

1
1

0
0

1

0

1

1

0

0

1 Reset

PWM Toggle/Reset

Output Mode

Toggle

Outx signal is set according to Outx bit

EQUx sets Outx signal clock synchronous with timer clock

EQUx toggles Outx signal, reset with EQU0, clock sync. with timer clock

EQUx sets Outx signal, reset with EQU0, clock synchronous with timer clock

EQUx toggles Outx signal, clock synchronous with timer clock

EQUx resets Outx signal clock synchronous with timer clock

EQUx toggles Outx signal, set with EQU0, clock synchronous with timer clock

Function Operational Conditions

OUTx (CCTLx.2)

OMx2 OMx1 OMx0

EQUx

EQU0
Set

Reset

D Q

OUTx

Timer Clock

POR

TAx

Output Mode 0

Logic

Output
Output Signal Outx

To Output Logic TAx

Timer Clock

Timer_A Output Units

CPE 323 100

Example shows three independent HW event captures.
CCRx “stamps” time of event - Continuous-Mode is ideal.

0h

0FFFh

Capture Mode: Positive Edge

CCR1

CCR0

CCR1 CCR1

CCR0

TA0 Input

CCR1:

CCR1 CCR1

CCR2

TA1 Input

CCR0:

CCR2:
TA2 Input

CCR1

Capture Mode: Both Edges

Capture Mode: Negative Edge

Interrupts can be generated

Px.x

Px.y

Px.z

Timer_A Continuous-Mode Example

CPE 323 101

Output Mode 4: PWM Toggle

Example shows three different asymmetric
PWM-Timings generated with the Up-Mode

Auto
Re-load

0FFFFh

0h

CCR0

CCR1

EQU0 EQU0EQU1 EQU1 EQU0

CCR2

TA1 Output

CCR2: PWM Reset/Set

EQU2 EQU2 EQU2
Interrupts can be generated

TA2 Output

CCR1: PWM Set/Reset

CCR0: PWM Toggle TA0 Output

Px.x

Px.y

Px.z

Timer_A PWM Up-Mode Example

CPE 323 102

Example shows Symmetric PWM Generation -
Digital Motor Control

0FFFFh

0h

CCR0

TIMOV EQU0 TIMOV

CCR1

EQU0

CCR2

Interrupts can be generated

tpw2

tpw3

CCR3

pw1t

0 Degrees

+120 Degrees

-120 Degrees

TIMOV

hlfpert

(0.5xVmotor)

(0.93xVmotor)

(0.07xVmotor)

TA1 Output

TA2 Output

TA0 Output

Px.x

Px.y

Px.z

Timer_A PWM Up/Down Mode Example

CPE 323 103

C Examples, CCR0 Contmode ISR, TA_0 ISR
//***
// MSP-FET430P140 Demo - Timer_A Toggle P1.0,
// CCR0 Contmode ISR, DCO SMCLK
// Description; Toggle P1.0 using software and TA_0 ISR. Toggle rate is
// set at 50000 DCO/SMCLK cycles. Default DCO frequency used for TACLK.
// Durring the TA_0 ISR P0.1 is toggled and 50000 clock cycles are added to
// CCR0. TA_0 ISR is triggered exactly 50000 cycles. CPU is normally off

and
// used only durring TA_ISR.
// ACLK = n/a, MCLK = SMCLK = TACLK = DCO~ 800k
//
//
// MSP430F149
// ---------------
// /|\| XIN|-
// | | |
// --|RST XOUT|-
// | |
// | P1.0|-->LED
//
// M. Buccini
// Texas Instruments, Inc
// September 2003
// Built with IAR Embedded Workbench Version: 1.26B
// December 2003
// Updated for IAR Embedded Workbench Version: 2.21B
//**

#include <msp430x14x.h>

void main(void)
{
WDTCTL = WDTPW + WDTHOLD; // Stop WDT
P1DIR |= 0x01; // P1.0 output
CCTL0 = CCIE; // CCR0 interrupt enabled
CCR0 = 50000;
TACTL = TASSEL_2 + MC_2; // SMCLK, contmode

_BIS_SR(LPM0_bits + GIE); // Enter LPM0 w/ interrupt
}

// Timer A0 interrupt service routine
interrupt[TIMERA0_VECTOR] void TimerA(void)
{
P1OUT ^= 0x01; // Toggle P1.0
CCR0 += 50000; // Add Offset to CCR0

}

CPE 323 104

C Examples, CCR0 Upmode ISR, TA_0
//**
// MSP-FET430P140 Demo - Timer_A Toggle P1.0, CCR0 upmode ISR, 32kHz ACLK
//
// Description; Toggle P1.0 using software and the TA_0 ISR. Timer_A is
// configured in an upmode, thus the the timer will overflow when TAR

counts
// to CCR0. In this example, CCR0 is loaded with 1000-1.
// Toggle rate = 32768/(2*1000) = 16.384
// ACLK = TACLK = 32768, MCLK = SMCLK = DCO~ 800k
// //*An external watch crystal on XIN XOUT is required for ACLK*//

//
// MSP430F149
// ---------------
// /|\| XIN|-
// | | | 32kHz
// --|RST XOUT|-
// | |
// | P1.0|-->LED
//
// M. Buccini
// Texas Instruments, Inc
// October 2003
// Built with IAR Embedded Workbench Version: 1.26B
// December 2003
// Updated for IAR Embedded Workbench Version: 2.21B
//**

#include <msp430x14x.h>

void main(void)
{
WDTCTL = WDTPW + WDTHOLD; // Stop WDT
P1DIR |= 0x01; // P1.0 output
CCTL0 = CCIE; // CCR0 interrupt enabled
CCR0 = 1000-1;
TACTL = TASSEL_1 + MC_1; // ACLK, upmode

_BIS_SR(LPM3_bits + GIE); // Enter LPM3 w/
interrupt

}

// Timer A0 interrupt service routine
#pragma vector=TIMERA0_VECTOR
Interrupt[TIMERA0_VECTOR] void Timer_A (void)
{
P1OUT ^= 0x01; // Toggle P1.0

}

CPE 323 105

C Examples, CCR1 Contmode ISR, TA_1
//***
// MSP-FET430P140 Demo –
// Timer_A Toggle P1.0, CCR1 Contmode ISR, CO SMCLK
// Description; Toggle P1.0 using using software and TA_1 ISR.
// Toggle rate is set at 50000 DCO/SMCLK cycles.
// Default DCO frequency used for TACLK.
// Durring the TA_1 ISR P0.1 is toggled and
// 50000 clock cycles are added to CCR1.
// TA_1 ISR is triggered exactly 50000 cycles.
// CPU is normally off and used only durring TA_ISR.
// ACLK = n/a, MCLK = SMCLK = TACLK = DCO ~ 800k
// Proper use of TAIV interrupt vector generator demonstrated.
//
// MSP430F149
// ---------------
// /|\| XIN|-
// | | |
// --|RST XOUT|-
// | |
// | P1.0|-->LED
//
// M. Buccini
// Texas Instruments, Inc
// September 2003
// Built with IAR Embedded Workbench Version: 1.26B
// December 2003
// Updated for IAR Embedded Workbench Version: 2.21B
//**

#include <msp430x14x.h>

void main(void)
{

WDTCTL = WDTPW + WDTHOLD; // Stop WDT
P1DIR |= 0x01; // P1.0 output
CCTL1 = CCIE; // CCR1 interrupt enabled
CCR1 = 50000;
TACTL = TASSEL_2 + MC_2; // SMCLK, Contmode

_BIS_SR(LPM0_bits + GIE); // Enter LPM0 w/
interrupt

}
// Timer_A3 Interrupt Vector (TAIV) handler
#pragma vector=TIMERA1_VECTOR
__interrupt void Timer_A(void)
{

switch(TAIV)
{
case 2: // CCR1

{
P1OUT ^= 0x01; // Toggle P1.0
CCR1 += 50000; // Add Offset to CCR1
}

break;
case 4: break; // CCR2 not used
case 10: break; // overflow not used

}
}

CPE 323 106

C Examples, PWM, TA1-2 upmode
//***
// MSP-FET430P140 Demo - Timer_a PWM TA1-2 upmode, DCO SMCLK
//
// Description; This program will generate a two PWM outputs on P1.2/1.3 using
// Timer_A in an upmode. The value in CCR0, defines the period and the
// values in CCR1 and CCR2 the duty PWM cycles. Using ~ 800kHz SMCLK as TACLK,
// the timer period is ~ 640us with a 75% duty cycle on P1.2 and 25% on P1.3.
// ACLK = na, SMCLK = MCLK = TACLK = default DCO ~ 800kHz.
//
// MSP430F149
// -----------------
// /|\| XIN|-
// | | |
// --|RST XOUT|-
// | |
// | P1.2|--> CCR1 - 75% PWM
// | P1.3|--> CCR2 - 25% PWM
//
// M.Buccini
// Texas Instruments, Inc
// September 2003
// Built with IAR Embedded Workbench Version: 1.26B
// January 2004
// Updated for IAR Embedded Workbench Version: 2.21B
//***

void main(void)
{

WDTCTL = WDTPW + WDTHOLD; // Stop WDT
P1DIR |= 0x0C; // P1.2 and P1.3 output
P1SEL |= 0x0C; // P1.2 and P1.3 TA1/2 options
CCR0 = 512-1; // PWM Period
CCTL1 = OUTMOD_7; // CCR1 reset/set
CCR1 = 384; // CCR1 PWM duty cycle
CCTL2 = OUTMOD_7; // CCR2 reset/set
CCR2 = 128; // CCR2 PWM duty cycle
TACTL = TASSEL_2 + MC_1; // SMCLK, up mode

_BIS_SR(LPM0_bits); // Enter LPM0
}

Serial Communication

CPE 323 108

Serial I/O Interface
Functional Units

Translates data between
the internal computer
form and the form in
which it is transmitted
over the data link

Translates the TTL-
level signals processed
by the ACIA into a form
suitable for the
transmission path

CPE 323 109

Asynchronous Serial Interface

Asynchronous
Transmitted and received data are not synchronized over any
extended period
No synchronization between receiver and transmitter clocks

Serial
Usually character oriented
Data stream divided into individual bits at the transmitter side
Individual bits are grouped into characters at the receiving side

Information is usually transmitted as ASCII-encoded
characters

7 or 8 bits of information plus control bits

CPE 323 110

Asynchronous Serial Interface, cont’d

MARK level (or OFF, or 1-state, or 1-level)
This is also the idle state (before the transfer begins)

SPACE level (or ON, or 0-state, or 0-level)
One character:

Start bit: space level
Data bits
Optional parity bit
Optional stop bit

CPE 323 111

Asynchronous Serial Interface, cont’d

12 possible basic formats:
7 or 8 bits of data
Odd, even, or no parity
1 or 2 stop bits
Others exist also: no stop bits, 4/5/6 data bits, 1.5
stop bits, etc.

Least significant bit

CPE 323 112

Receiver Clock Timing

For N=9 bits (7 data + parity + stop) maximum tolerable error is 5%
(assume that the receiver clock is slow -- [T + δt] instead of T)

T/2 > (2N+1)δt/2
δt/2 < 1/(2N+1)
δt/T < 100/(2N+1) as a percentage

CPE 323 113

RS-232 Interface Standard

Bi-polar:
+3 to +12V (ON, 0-state, or SPACE condition)
-3 to –12V (OFF, 1-state, or MARK condition)

Modern computers accept 0V as MARK
“Dead area” between –3V and 3V is designed to absorb
line noise
Originally developed as a standard for communication
between computer equipment and modems
From the point of view of this standard:

MODEM: data communications equipment (DCE)
Computer equipment: data terminal equipment (DTE)

Therefore, RS-232C was intended for DTE-DCE links
(not for DTE-DTE links, as it is frequently used now)

CPE 323 114

RS-232 Interface Standard

Each manufacturer may choose to implement only a
subset of functions defined by this standard
Two widely used connectors: DB-9 and DB-25
Three types of link

Simplex
Half-duplex
Full-duplex

Basic control signals
RTS (Request to send):

DTE indicates to the DCE that it wants to send data
CTS (Clear to send):

DCE indicates that it is ready to receive data
DSR (Data set ready):

indication from the DCE (i.e., the modem) that it is on
DTR (Data terminal ready):

indication from the DTE that it is on

CPE 323 115

RS-232 Interface Standard, another
example

DTR (Data terminal ready): indication from the DTE that it is on

CPE 323 116

RS-232 Interface Standard

DB-25 connector is described in the book;
let’s take a look at DB-9

CPE 323 117

RS-232 Interface Standard
Example: 9 to 25 pin cable layout for asynchronous data

Description Signal 9-pin
DTE

25-pin
DCE Source DTE or DEC

Carrier Detect CD 1 8 from Modem

Receive Data RD 2 3 from Modem

Transmit Data TD 3 2 from Terminal/Computer

Data Terminal Ready DTR 4 20 from Terminal/Computer

Signal Ground SG 5 7 from Modem

Data Set Ready DSR 6 6 from Modem

Request to Send RTS 7 4 from Terminal/Computer

Clear to Send CTS 8 5 from Modem

Ring Indicator RI 9 22 from Modem

CPE 323 118

The Minimal RS-232 Function

7

2

7

2
DTE DCEDTE to DCE in simplex mode

7

2

7

3
DTE DTEDTE to DTE in simplex mode

CPE 323 119

The Minimal RS-232 Function

7

2

7

2
DTE DCEDTE to DCE in full-duplex mode

3 3

7

2

7

3
DTE DTEDTE to DTE in full-duplex mode

3 2

CPE 323 120

The Minimal RS-232 Function

7

2

DTE DCEDTE to DCE with remote control

3

4
5

TxD
RxD

RTS
CTS

7

2
3

4
5

RxD
TxD

CTS
RTS

7

2

DTE DTEDTE to DTE with remote control

3

4
5

TxD
RxD

RTS
CTS

7

2
3

4
5

TxD
RxD

RTS
CTS

CPE 323 121

Handshaking Between RTS and CTS

CPE 323 122

Null Modem

Null-modem simulates a DTE-DCE-DCE-DTE circuit

CPE 323 123

USART Peripheral Interface

Universal Synchronous/Asynchronous
Receive/Transmit (USART) peripheral interface
supports two modes

Asynchronous UART mode (User manual, Ch. 13)
Synchronous Peripheral Interface, SPI mode
(User manual, Ch. 14)

UART mode:
Transmit/receive characters at a bit rate
asynchronous to another device
Connects to an external system via two external pins
URXD and UTXD (P3.4, P3.5)
Timing is based on selected baud rate
(both transmit and receive use the same baud rate)

CPE 323 124

UART Features

7- or 8-bit data width; odd, even, or non-parity
Independent transmit and receive shift reg.
Separate transmit and receive buffer registers
LSB-first data transmit and receive
Built-in idle-line and address-bit communication
protocols for multiprocessor systems
Receiver start-edge detection for auto-wake up from
LPMx modes
Programmable baud rate with modulation for fractional
baud rate support
Status flags for error detection
Independent interrupt capability for transmit and receive

CPE 323 125

USART Block Diagram: UART mode

CPE 323 126

Initialization Sequence &
Character Format

Initialization Sequence
1) Set SWRST (BIS.B #SWRST,&UxCTL)
2) Initialize all USART registers with SWRST = 1 (including UxCTL)
3) Enable USART module via the MEx SFRs (URXEx and/or UTXEx)
4) Clear SWRST via software (BIC.B #SWRST,&UxCTL)
5) Enable interrupts (optional) via the IEx SFRs (URXIEx and/or
UTXIEx)
Note: Failure to follow this process may result in unpredictable USART
behavior.

Character format

CPE 323 127

Automatic Error Detection

CPE 323 128

UART Receive Enable
The receive enable bit, URXEx, enables or disables
data reception on URXDx
Disabling the USART receiver stops the receive
operation following completion of any character
currently being received or immediately if no receive
operation is active
The receive-data buffer, UxRXBUF, contains the
character moved from the RX shift register after the
character is received

CPE 323 129

UART Transmit Enable
When UTXEx is set (UTXEx=1), the UART transmitter is enabled

Transmission is initiated by writing data to UxTXBUF
Data is then moved to the transmit shift register (TX shift) on the next
BITCLK after the TX shift register is empty, and transmission begins
Data should not be written to UxTXBUF unless it is ready for new data
indicated by UTXIFGx = 1. Violation can result in an erroneous
transmission if data in UxTXBUF is modified as it is being moved into
the TX shift register.

When the UTXEx bit is reset the transmitter is stopped
Any data in UxTXBUF and any active transmission prior to clearing
UTXEx will continue until all data transmission is completed
It is recommended to disable transmitter (UTXEx = 0) only after
completion of any active transmission. This is indicated by a set
transmitter empty bit (TXEPT = 1).
Any data written to UxTXBUF while the transmitter is disabled will be
held in the buffer but won’t be moved to the TX shift register. Once
UTXEx=1, the data in is immediately loaded into the TX shift and
character transmission resumes

CPE 323 130

UART Transmit Enable: State Diagram

CPE 323 131

UART Baud Rate Generation

CPE 323 132

USART Interrupt Vectors
The USART has one interrupt vector for transmission
and one interrupt vector for reception
Transmit:

The UTXIFGx interrupt flag is set by the transmitter to indicate
that UxTXBUF is ready to accept another character. An interrupt
request is generated if UTXIEx and GIE are also set. UTXIFGx
is automatically reset if the interrupt request is serviced or if a
character is written to UxTXBUF.
UTXIFGx is set after a PUC or when SWRST = 1. UTXIEx is
reset after a PUC or when SWRST = 1.

Receive:
The URXIFGx interrupt flag is set each time a character is
received and loaded into UxRXBUF. An interrupt request is
generated if URXIEx and GIE are also set. URXIFGx and
URXIEx are reset by a system reset PUC signal or when
SWRST = 1. URXIFGx is automatically reset if the pending
interrupt is served (when URXSE = 0) or when UxRXBUF is
read.

CPE 323 133

Control Registers

CPE 323 134

C Examples, UART 2400
//**
// MSP-FET430P140 Demo - USART1 UART 2400 Ultra-low Power Echo ISR, 32kHz ACLK
//
// Description; Echo a received character, RX ISR used. In the Mainloop UART1
// is made ready to receive one character with interrupt active. The Mainloop
// waits in LPM3. The UART1 ISR forces the Mainloop to exit LPM3 after
// receiving one character which echo's back the received character.
// ACLK = UCLK1 = LFXT1 = 32768, MCLK = SMCLK = DCO~ 800k
// Baud rate divider with 32768hz XTAL @2400 = 32768Hz/2400 = 13.65 (000Dh)
// //*An external watch crystal is required on XIN XOUT for ACLK*//
//
// MSP430F149
// -----------------
// /|\| XIN|-
// | | | 32kHz
// --|RST XOUT|-
// | |
// | P3.6|----------->
// | | 2400 - 8N1
// | P3.7|<-----------
//
//
// M. Buccini
// Texas Instruments, Inc
// October 2003
// Built with IAR Embedded Workbench Version: 1.26B
// January 2004
// Updated for IAR Embedded Workbench Version: 2.21B
//**

#include <msp430x14x.h>

void main(void)
{
WDTCTL = WDTPW + WDTHOLD; // Stop WDT
P3SEL |= 0xC0; // P3.6,7 = USART1 option select
ME2 |= UTXE1 + URXE1; // Enable USART1 TXD/RXD
UCTL1 |= CHAR; // 8-bit character
UTCTL1 |= SSEL0; // UCLK = ACLK
UBR01 = 0x0D; // 32k/2400 - 13.65
UBR11 = 0x00;
UMCTL1 = 0x6B; // Modulation
UCTL1 &= ~SWRST; // Initialize USART state

machine
IE2 |= URXIE1; // Enable USART1 RX interrupt

// Mainloop
for (;;)
{
_BIS_SR(LPM3_bits + GIE); // Enter LPM3

w/interrupt
while (!(IFG2 & UTXIFG1)); // USART1 TX buffer

ready?
TXBUF1 = RXBUF1; // RXBUF1 to TXBUF1
}

}
// UART1 RX ISR will for exit from LPM3 in

Mainloop
interrupt[UART1RX_VECTOR] void usart1_rx (void)
{
_BIC_SR_IRQ(LPM3_bits);// Clear LPM3 bits from

0(SR)
}

CPE 323 135

Serial Peripheral Interface
Serial Peripheral Interface – SPI

It is a synchronous serial data link standard named by
Motorola that operates in full duplex mode
Devices communicate in master/slave mode where the master
device initiates the data frame. Multiple slave devices are
allowed with individual slave select (chip select) lines.

The SPI bus specifies four logic signals.
SCLK — Serial Clock (output from master)
MOSI/SIMO — Master Output, Slave Input (output from
master)
MISO/SOMI — Master Input, Slave Output (output from slave)
SS — Slave Select (active low; output from master)

CPE 323 136

SPI Mode: Signal Definition

SIMO Slave in, master out
Master mode: SIMO is the data output line.
Slave mode: SIMO is the data input line.

SOMI Slave out, master in
Master mode: SOMI is the data input line.
Slave mode: SOMI is the data output line.

UCLK USART SPI clock
Master mode: UCLK is an output.
Slave mode: UCLK is an input.

STE Slave transmit enable. Used in 4-pin mode to allow multiple masters
on a single bus. Not used in 3-pin mode.

4-Pin master mode:
When STE is high, SIMO and UCLK operate normally.
When STE is low, SIMO and UCLK are set to the input direction.

4-pin slave mode:
When STE is high, RX/TX operation of the slave is disabled and SOMI is forced to the
input direction.
When STE is low, RX/TX operation of the slave is enabled and SOMI operates
normally.

CPE 323 137

USART: SPI Mode

CPE 323 138

SPI Mode: Initialization Sequence

1) Set SWRST (BIS.B #SWRST,&UxCTL)
2) Initialize all USART registers with SWRST=1
(including UxCTL)
3) Enable USART module via the MEx SFRs (USPIEx)
4) Clear SWRST via software (BIC.B
#SWRST,&UxCTL)
5) Enable interrupts (optional) via the IEx SFRs
(URXIEx and/or UTXIEx)
Note: Failure to follow this process may result in
unpredictable USART behavior.

CPE 323 139

SPI Master Mode
The USART initiates data transfer when data is moved to the UxTXBUF. The UxTXBUF
data is moved to the TX shift register when the TX shift register is empty, initiating data
transfer on SIMO starting with the MSB. Data on SOMI is shifted into the receive shift
register on the opposite clock edge, starting with the most-significant bit.
When the character is received, the receive data is moved from the RX shift register to the
UxRXBUF and the receive interrupt flag, URXIFGx, is set, indicating the RX/TX operation is
complete.
A set transmit interrupt flag, UTXIFGx, indicates that data has moved from UxTXBUF to the
TX shift register and UxTXBUF is ready for new data. It does not indicate RX/TX completion.
To receive data into the USART in master mode, data must be written to UxTXBUF because
receive and transmit operations operate concurrently.
In 4-pin master mode, STE is used to prevent conflicts with another master. The master
operates normally when STE is high. When STE is low:

SIMO and UCLK are set to inputs and no longer drive the bus
The error bit FE is set indicating a communication integrity violation to be handled by the user

CPE 323 140

SPI Slave Mode
UCLK is used as the input for the SPI clock and must be supplied by the external
master. The data-transfer rate is determined by this clock and not by the internal
baud rate generator.
Data written to UxTXBUF and moved to the TX shift register before the start of UCLK
is transmitted on SOMI. Data on SIMO is shifted into the receive shift register on the
opposite edge of UCLK and moved to UxRXBUF when the set number of bits are
received
When data is moved from the RX shift register to UxRXBUF, the URXIFGx interrupt
flag is set, indicating that data has been received. The overrun error bit, OE, is set
when the previously received data is not read from UxRXBUF before new data is
moved to UxRXBUF.
In 4-pin slave mode, STE is used by the slave to enable the transmit and receive
operations and is provided by the SPI master. When STE is low, the slave operates
normally. When STE is high:

Any receive operation in progress on SIMO is halted
SOMI is set to the input direction

CPE 323 141

C Examples, SPI Full-Duplex
//**
// MSP-FET430P140 Demo - USART0, SPI Full-Duplex 3-Wire Slave P1.x Exchange
//
// Description: SPI Master communicates at fast as possible, full-duplex with
// SPI Slave using 3-wire mode. The level on P1.4/5 is TX'ed and RX'ed to P1.0
// and P1.1. Master will pulse slave Reset on init to insure synch start.
// Slave normal mode is LPM4.
// ACLK = n/a, MCLK = SMCLK = DCO ~ 800kHz, ULCK = external
//
// fet140_slav0 fet140_mstr0
// MSP430F169 Slave MSP430F169 Master
// ----------------- -----------------
// | XIN|- /|\| XIN|-
// | | | | |
// | XOUT|- --|RST XOUT|-
// | | /|\ | |
// | RST|--+<----|P3.0 |
// LED <-|P1.0 | | P1.4|<-
// LED <-|P1.1 | | P1.5|<-
// ->|P1.4 | | P1.0|-> LED
// ->|P1.5 | | P1.1|-> LED
// | SIMO0/P3.1|<-------|P3.1 |
// | SOMI0/P3.2|------->|P3.2 |
// | UCLK/P3.3|<-------|P3.3 |
//
// M. Buccini
// Texas Instruments Inc.
// Feb 2005
// Built with IAR Embedded Workbench Version: 3.21A
//**

#include <msp430x14x.h>

void main(void)
{

WDTCTL = WDTPW + WDTHOLD; // Stop watchdog
P1OUT = 0x00; // P1.0 setup for LED output
P1DIR |= 0x03;
P3SEL |= 0x0E; // P3.1,2,3 SPI option select
U0CTL = CHAR + SYNC + SWRST; // 8-bit, SPI
U0TCTL = CKPL + STC; // Polarity, 3-wire
U0BR0 = 0x02; // SPICLK = SMCLK/2
U0BR1 = 0x00;
U0MCTL = 0x00;
ME1 |= USPIE0; // Module enable
U0CTL &= ~SWRST; // SPI enable
IE1 |= URXIE0 + UTXIE0; // RX and TX int. enable
_BIS_SR(LPM4_bits + GIE); // Enter LPM4 w/ int.

}
#pragma vector=USART0RX_VECTOR
__interrupt void SPI0_rx (void) {
P1OUT = RXBUF0; // RXBUF0 to TXBUF0

}
#pragma vector=USART0TX_VECTOR
__interrupt void SPI0_tx (void) {
unsigned int i;

i = P1IN;
i = i >> 4;
TXBUF0 = i; // Transmit character

}

