CPE/EE 427, CPE 527 VLSI Design I: Homework 1

1. (15 points) Draw a **detailed layout, cross-section and circuit diagram** of a CMOS inverter assuming:

a. (5) Twin-tub process;

b. (5) N-well process;

c. (5) P-well process.

Label all relevant regions (n-well, p-well, n+, p+, metal1, poly, ...) and draw connections to Vdd and Gnd. Show transistors as 4-terminal devices.

2. (10 points) Justify the following design rules. Be specific.

a. (2.5) 2λ poly-poly separation;

b. (2.5) no required poly-metal spacing;

c. (2.5) 1λ of diffusion and metal surrounding a cut;

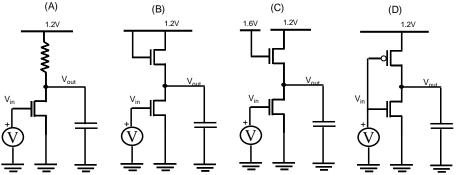
d. (2.5) 2λ overhang of poly at transistor gate;

3. (20 points) An NMOS device is plugged into the test configuration shown below. The input Vin =2V. The current source draws a constant current of 50 μ A. R is a variable resistor that can assume values between 10k Ω and 30 k Ω . Transistor M1 experiences short channel effects and has following transistor parameters: k' = 110*10⁻⁶ V/A², V_T = 0.4, and V_{DSAT} = 0.6V. The transistor has a W/L = 2.5 μ /0.25 μ . For simplicity body effect and channel length modulation can be neglected. i.e λ =0, γ =0.

a. (10) When R= 30k Ω again determine the operation region V_D, V_S **b.** (10) For the case of R = 10k Ω , would V_S increase or decrease if $\lambda \neq 0$. Explain qualitatively.

$$V_{DD} = 2.5V$$

 R
 V_{D}
 $W/L = 2.5\mu/0.25\mu$
 V_S
 $I = 50\mu A$


4. (**10 points**) The circuits below show different implementations of an inverter whose output is connected to a capacitor.

a. (2) Which one of the circuits consumes static power when the input is high?

b. (2) Which one of the above circuits consumes static power when the input is low?

- **c.** (2) V_{OH} of which circuit(s) is 1.2V?
- **d.** (2) V_{OL} of which circuit(s) is 0V?

e. (2) The proper functionality of which circuit(s) depends on the size of devices.

- 5. (10 points) Textbook: Exercise 2.1.
- 6. (15 points) Textbook: Exercise 2.2.
- 7. (10 points) Textbook: Exercise 2.5.
- 8. (10 points) Textbook: Exercise 2.6.