
CPE/EE 427, CPE 527, VLSI Design I:
Tutorial #5, Standard cell design flow
(from vhdl to layout, mu0 processor)

Joel Wilder and Aleksandar Milenkovic, ECE Dept., The University of Alabama in Huntsville

1. INTRODUCTION
This tutorial steps you through the process of taking a vhdl design, simulating it using

NCLaunch, synthesizing it using Build Gates, re-simulating the gate-level netlist, and then

performing auto place-and-route to achieve a finished ASIC. Pads can also be added to your

design as shown in previous tutorials. Thus, the vhdl-to-ASIC work flow is illustrated.

You will perform this work based on the 0.5um AMI nwell process (lambda = 0.30um).

2. PREPARE THE CADENCE TOOLS
From your home directory, change directories into your cadence working directory:

% cd cadence

Make a directory for lab5 and change into that directory:

% mkdir lab5

% cd lab5

3. VHDL SIMULATION USING NCLAUNCH
First, download the vhdl files you will use for this tutorial:

• mu0.vhd -- contains a vhdl description of the mu0 processor

(to learn more about mu0 processor visit
 http://www.ece.uah.edu/%7Elacasa/tutorials/mu0/mu0desc_files/frame.htm)

• tb_mu0.vhd -- testbench for mu0 component

Next, start NCLaunch in a terminal window at the unix prompt:

% nclaunch -new

What is NCLaunch?

NCLaunch is a graphical user interface that helps you manage large design projects and lets
you configure and launch your Cadence simulation tools.

NCLaunch is integrated into the Cadence Interleaved Native Compiled Architecture (INCA) and
is a component of the SimVision analysis environment.

 VLSI Design I, Tutorial 5

Want to learn more? Read the NCLaunch User Guide; it is intended for customers who want to
simulate Verilog, VHDL, or mixed-language designs using the NCLaunch tool. This manual
explains the complete functionality of the tool and gives examples of simulating with NCLaunch.
In addition, it serves as a reference guide for finding specific details on using NCLaunch.

Select Multiple Step in the NCLaunch pop-up window:

The first step in the process of compiling the design units is to associate them with libraries.

Select Create cds.lib File… in the Open Design Window and then select Save:

Page 2 of 17

 VLSI Design I, Tutorial 5

Select Include default libraries and press OK:

Press OK in the Open Design window and you should see:

Page 3 of 17

 VLSI Design I, Tutorial 5

To perform compilation, you should first configure your compiler.

In Tools->VHDL Compiler, enable VHDL 93 features:

Page 4 of 17

 VLSI Design I, Tutorial 5

Next, select the design units in the correct order (from the lowest design units to the top level
units – i.e., select your testbench file last), and in the NCLaunch toolbar click on the VHDL
compile icon (passing over the icon you will see the following text: 'Launch VHDL compiler with
current settings'):

Page 5 of 17

 VLSI Design I, Tutorial 5

The status should indicate the successful completion of the compilation process.

To perform Elaboration, expand worklib and the design units in it. Select the top level design
unit (usually testbench, in our case tb_mu0) and select its entity:

Page 6 of 17

 VLSI Design I, Tutorial 5

Click on the Elaborator icon on the menu.

The status should indicate the successful completion of the elaboration phase.

For simulation, expand the Snapshots directory and select the testbench. Then, click on the
Simulation icon on the menu to get the simulation environment loaded:

The SimVison console and Design Browser windows will appear:

Page 7 of 17

 VLSI Design I, Tutorial 5

In the Design Browser window, select the top level entity:

Page 8 of 17

 VLSI Design I, Tutorial 5

Select the signals you want to inspect:

Page 9 of 17

 VLSI Design I, Tutorial 5

Click on the 'waveform' icon on the menu to bring up the waveform window. In the SimVison
console, type run 10000 ns; as shown:

Page 10 of 17

 VLSI Design I, Tutorial 5

Inspect the waveforms to ensure the design is working properly.

Other cool options:

Click on the 'schematic' icon on the menu to bring up the schematic tracer:

Page 11 of 17

 VLSI Design I, Tutorial 5

4. VHDL SYNTHESIS TO GATE-LEVEL NETLIST

Once you know your design is working properly through simulation, you can synthesize your
vhdl design into a gate-level netlist in a similar fashion as was done for the verilog design work
flow.

1. Create an encounter directory and copy in the technology files (for AMI 0.5um):

% mkdir encounter

% cd encounter

% cp /apps/iit_lib/osu/osu_stdcells/flow/ami05/* .

2. Modify the compile_bgx.scr as shown:

Page 12 of 17

 VLSI Design I, Tutorial 5

2a. If you wish to output a vhdl gate-level net

Point to your vhdl design
Toplevel module of your design
t
Name of your clock ne

Optimization frequency

Change when inputting a VHDL design

list, modify compile_bgx.scr as shown:

Page 13 of 17

 VLSI Design I, Tutorial 5

When you wish to create your gate-level
netlist as a vhdl file.

Two things to note: It’s nice to create a gate-level netlist in a vhdl format so you can
reuse your existing vhdl testbench. However, when you go to do the auto place-and-
route, you will need a verilog gate-level netlist, so you will need to modify your
compile_bgx.scr script to provide a verilog gate-level netlist also.

3. pks_shell -f compile_bgx.scr

Page 14 of 17

 VLSI Design I, Tutorial 5

 -mu0.vh file created (gate-level netlist)

 -mu0.sdc file created (timing constraints file for encounter)

 Pads can be added to the mu0.vh file

3a.For simulation purposes in vhdl, once you have added pads to your design, you will need to
modify the osu05_stdcells.vhdl file to fill in missing pads (PADNC, PADFC, PADGND,
PADVDD) as shown below:

Page 15 of 17

 VLSI Design I, Tutorial 5

One each for PADNC, PADFC,
PADGND, and PADVDD

3b. Resimulate gate-level netlist (vhdl version, so you can use existing vhdl testbench) to
ensure design still operating as you desire. (use above simulation procedure with NCLaunch)

4. **In order to use the existing encounter scripts, they require a verilog gate-level netlist.

This can be easily accomplished by changing the compile_bgx.scr file so that it writes a
verilog netlist (as illustrated above in 2a)

Page 16 of 17

 VLSI Design I, Tutorial 5

 Modify encounter.conf and encounter.tcl files as necessary (see previous labs)

5. Run encounter

 encounter -init encounter.tcl

6. Check timing files to ensure slack time is met, perform checks (convert encounter post-route
design into icfb schematics/layout), perform power analysis. Make any design changes as
necessary. Once specifications have been met, you can send your design to the foundry for
fabrication.

Page 17 of 17

	INTRODUCTION
	PREPARE THE CADENCE TOOLS
	VHDL SIMULATION USING NCLAUNCH
	VHDL SYNTHESIS TO GATE-LEVEL NETLIST

