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Outline

• Skewed Gates
• Pseudo-nMOS Logic
• Dynamic Logic
• Pass Transistor Logic
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Introduction

• What makes a circuit fast?
– I = C dV/dt    ->  tpd ∝ (C/I) ∆V
– low capacitance
– high current
– small swing

• Logical effort is proportional to C/I
• pMOS are the enemy!

– High capacitance for a given current
• Can we take the pMOS capacitance off the input?
• Various circuit families try to do this…
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Pseudo-nMOS

• In the old days, nMOS processes had no pMOS
– Instead, use pull-up transistor that is always ON

• In CMOS, use a pMOS that is always ON
– Ratio issue
– Make pMOS about ¼ effective strength of pulldown
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Asymmetric Gates
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Skewed Gates
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Skewed Gates
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Pseudo-nMOS Gates

• Design for unit current on output
to compare with unit inverter.

• pMOS fights nMOS

Inverter NAND2 NOR2

A
Y

B

A
Y

A B

gu    =
gd    =
gavg  =
pu    =
pd    =
pavg  =

Y

gu    =
gd    =
gavg  =
pu    =
pd    =
pavg  =

gu    =
gd    =
gavg  =
pu    =
pd    =
pavg  =

f
inputs

Y



•VLSI Design I; A. Milenkovic •5

11/1/2006 VLSI Design I;  A. Milenkovic 9

Pseudo-nMOS Gates
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Pseudo-nMOS Gates

• Design for unit current on output
to compare with unit inverter.
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Pseudo-nMOS Gates

• Design for unit current on output
to compare with unit inverter.

• pMOS fights nMOS
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Pseudo-nMOS Design

• Ex: Design a k-input AND gate using pseudo-
nMOS.  Estimate the delay driving a fanout of H

• G = 
• F =
• P =
• N =
• D =
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Pseudo-nMOS Design

• Ex: Design a k-input AND gate using pseudo-
nMOS.  Estimate the delay driving a fanout of H

• G = 1 * 8/9 = 8/9
• F = GBH = 8H/9
• P = 1 + (4+8k)/9 = (8k+13)/9
• N = 2
• D = NF1/N + P = 

In1
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11/1/2006 VLSI Design I;  A. Milenkovic 14

Pseudo-nMOS Power

• Pseudo-nMOS draws power whenever Y = 0
– Called static power     P = I•VDD

– A few mA / gate * 1M gates would be a problem
– This is why nMOS went extinct!

• Use pseudo-nMOS sparingly for wide NORs
• Turn off pMOS when not in use
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Dynamic Logic

• Dynamic gates uses a clocked pMOS pullup
• Two modes: precharge and evaluate
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The Foot

• What if pulldown network is ON during precharge?
• Use series evaluation transistor to prevent fight.
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Logical Effort

Inverter NAND2 NOR2
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Logical Effort
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Monotonicity

• Dynamic gates require monotonically rising inputs 
during evaluation
– 0 -> 0
– 0 -> 1
– 1 -> 1
– But not 1 -> 0

φ Precharge Evaluate

Y

Precharge

A

Output should rise but does not

violates monotonicity
 during evaluation

A

φ
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Monotonicity Woes

• But dynamic gates produce monotonically falling 
outputs during evaluation

• Illegal for one dynamic gate to drive another!

A X

φ Y
φ Precharge Evaluate

X

Precharge
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Monotonicity Woes

• But dynamic gates produce monotonically falling 
outputs during evaluation

• Illegal for one dynamic gate to drive another!
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Domino Gates

• Follow dynamic stage with inverting static gate
– Dynamic / static pair is called domino gate
– Produces monotonic outputs
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Domino Optimizations

• Each domino gate triggers next one, like a string of dominos 
toppling over

• Gates evaluate sequentially but precharge in parallel
• Thus evaluation is more critical than precharge
• HI-skewed static stages can perform logic
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Dual-Rail Domino

• Domino only performs noninverting functions:
– AND, OR but not NAND, NOR, or XOR

• Dual-rail domino solves this problem
– Takes true and complementary inputs 
– Produces true and complementary outputs

invalid11
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‘0’10
Precharged00
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Example: AND/NAND

• Given A_h, A_l, B_h, B_l
• Compute Y_h = A * B, Y_l = ~(A * B)
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Example: AND/NAND

• Given A_h, A_l, B_h, B_l
• Compute Y_h = A * B, Y_l = ~(A * B)
• Pulldown networks are conduction complements

Y_hφ

φ

Y_l
A_h

B_hB_lA_l

= A*B= A*B
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Example: XOR/XNOR

• Sometimes possible to share transistors

Y_hφ

φ

Y_l
A_l

B_h

= A xor B

B_l

A_hA_lA_h= A xnor B
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Leakage

• Dynamic node floats high during evaluation
– Transistors are leaky (IOFF ≠ 0)
– Dynamic value will leak away over time
– Formerly miliseconds, now nanoseconds!

• Use keeper to hold dynamic node
– Must be weak enough not to fight evaluation

A

φ
H

2

2

1 k
X Y

weak keeper
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Charge Sharing

• Dynamic gates suffer from charge sharing

B = 0
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Charge Sharing

• Dynamic gates suffer from charge sharing

B = 0

A
Y

φ

x

Cx

CY

A

φ

x

Y

Charge sharing noise

x YV V= =



•VLSI Design I; A. Milenkovic •16

11/1/2006 VLSI Design I;  A. Milenkovic 31

Charge Sharing

• Dynamic gates suffer from charge sharing
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Secondary Precharge

• Solution: add secondary precharge transistors
– Typically need to precharge every other node

• Big load capacitance CY helps as well

B

A
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φ

x

secondary
precharge
transistor
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Noise Sensitivity

• Dynamic gates are very sensitive to noise
– Inputs: VIH ≈ Vtn

– Outputs: floating output susceptible noise
• Noise sources

– Capacitive crosstalk
– Charge sharing
– Power supply noise
– Feedthrough noise
– And more!
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Domino Summary

• Domino logic is attractive for high-speed circuits
– 1.5 – 2x faster than static CMOS
– But many challenges:

• Monotonicity
• Leakage
• Charge sharing
• Noise

• Widely used in high-performance microprocessors
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NMOS Transistors in Series/Parallel

• Primary inputs drive both gate and source/drain 
terminals

• NMOS switch closes when the gate input is high

• Remember –
NMOS transistors pass a strong 0 but a weak 1

A B

X Y
X = Y if A and B

X Y

A

B X = Y if A or B
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PMOS Transistors in Series/Parallel

• Primary inputs drive both gate and source/drain 
terminals

• PMOS switch closes when the gate input is low

• Remember –
PMOS transistors pass a strong 1 but a weak 0

A B

X Y
X = Y if A and B = A + B

X Y

A

B X = Y if A or B = A • B
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Pass Transistor (PT) Logic

A
B

FB
0

A

0

B

B= A • B
F = A • B

• Gate is static – a low-impedance path exists to both 
supply rails under all circumstances
• N transistors instead of 2N
• No static power consumption
• Ratioless
• Bidirectional (versus undirectional)
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VTC of PT AND Gate
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Pure PT logic is not regenerative - the signal gradually 
degrades after passing through a number of PTs 
(can fix with static CMOS inverter insertion)
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NMOS Only PT Driving an Inverter

• Vx does not pull up to VDD, but VDD – VTn

In = VDD

A = VDD

Vx = 
VDD-VTn

M1

M2

B
SD

• Threshold voltage drop causes static power 
consumption (M2 may be weakly conducting forming a 
path from VDD to GND)

• Notice VTn increases of pass transistor due to body 
effect (VSB)

VGS
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Voltage Swing of PT Driving an Inverter

• Body effect – large VSB at x - when pulling high (B is 
tied to GND and S charged up close to VDD)

• So the voltage drop is even worse
Vx = VDD - (VTn0 +  γ(√(|2φf| + Vx) - √|2φf|))

In = 0 → VDD

VDD
x Out
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Cascaded NMOS Only PTs

B = VDD

Out

M1

yM2

Swing on y = VDD - VTn1 - VTn2

xM1

B = VDD

OutyM2

Swing on y = VDD - VTn1

C = VDD

A = VDD

C = VDD

A = VDD

• Pass transistor gates should never be cascaded as on 
the left

• Logic on the right suffers from static power dissipation 
and reduced noise margins

x = VDD - VTn1
G

S

G

S
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Solution 1: Level Restorer

• For correct operation Mr must be sized correctly (ratioed)

Level Restorer

M1

M2

A=0 Mn

Mr

x

B

Out =1

off

= 0A=1 Out=0

on

1

• Full swing on x (due to Level Restorer) so no static 
power consumption by inverter

• No static backward current path through Level Restorer 
and PT since Restorer is only active when A is high
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Transient Level Restorer Circuit Response
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node x never goes below VM
of inverter so output never 
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• Restorer has speed and power impacts:  increases the capacitance at 
x, slowing down the gate; increases tr (but decreases tf)
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Solution 2:  Multiple VT Transistors

• Technology solution:  Use (near) zero VT devices for the NMOS 
PTs to eliminate most of the threshold drop (body effect still in force 
preventing full swing to VDD)

• Impacts static power consumption due to subthreshold currents 
flowing through the PTs (even if VGS is below VT)

Out

In2 = 0V

In1 = 2.5V

A = 2.5V

B = 0V

low VT transistors

sneak path

on

off but 
leaking
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Solution 3: Transmission Gates (TGs)

• Full swing bidirectional switch controlled by the gate 
signal C, A = B if C = 1

A B

C

C

A B

C

C

B

C = VDD

C = GND

A = VDD B

C = VDD

C = GND

A = GND

• Most widely used 
solution
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Solution 3: Transmission Gates (TGs)

• Full swing bidirectional switch controlled by the gate 
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Resistance of TG
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Pass Transistor Circuits

• Use pass transistors like switches to do logic
• Inputs drive diffusion terminals as well as gates

• CMOS + Transmission Gates:
– 2-input multiplexer
– Gates should be restoring
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TG Multiplexer

GND

VDD

In1 In2S S

S S

S

S

S

In2

In1

F

F

F = !(In1 • S + In2 • S) 
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Transmission Gate XOR

B

A A ⊕ B
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Transmission Gate XOR

B

A A ⊕ B

1

off

off

an inverter

B • !A

0

on

on

weak 0 if !A

weak 1 if A

A • !B
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TG Full Adder

Sum

Cout

A

B

Cin
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Differential TG Logic (DPL)

A

A

B

B

B

AND/NAND

F=A⊕B

F=A⊕B

XOR/XNOR
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A
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B A B A

GND
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VDD

VDD

B
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CPL

• Complementary Pass-transistor Logic
– Dual-rail form of pass transistor logic
– Avoids need for ratioed feedback
– Optional cross-coupling for rail-to-rail swing
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S
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B

A
Y

YL

L
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Differential PT Logic (CPL)
A

B

A
B

PT Network F

A

B

A
B

Inverse PT 
Network F

F

F

F=AB

A

A

B F=AB

B

B B

AND/NAND

A

A

B F=A+B

B
F=A+B

BB

OR/NOR

A

A F=A⊕B

F=A⊕B

BB

XOR/XNOR

A

A
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CPL Properties

• Differential so complementary data inputs and outputs 
are always available (so don’t need extra inverters)

• Still static, since the output defining nodes are always 
tied to VDD or GND through a low resistance path

• Design is modular; all gates use the same topology, only 
the inputs are permuted.

• Simple XOR makes it attractive for structures like adders
• Fast (assuming number of transistors in series is small)
• Additional routing overhead for complementary signals
• Still have static power dissipation problems
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CPL Full Adder

A

A

BB CinCin

!Sum

Sum

Cout

!CoutA

A

B

B

B

B Cin Cin

Cin

Cin
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CPL Full Adder
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