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What is this course all about?

• Introduction to digital integrated circuits.
– CMOS devices and manufacturing technology. CMOS 

inverters and gates. Propagation delay, noise margins, 
and power dissipation. Sequential circuits. Arithmetic, 
interconnect, and memories. Design methodologies.

• What will you learn?
– Understanding, designing, and optimizing digital circuits 

with respect to different quality metrics: cost, speed, 
power dissipation, and reliability
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Digital Integrated Circuits

• Introduction: Issues in digital design
• The CMOS inverter
• Combinational logic structures
• Sequential logic gates
• Design methodologies
• Interconnect: R, L and C
• Timing
• Arithmetic building blocks
• Memories and array structures
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Why does it matter?
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A Brief History

• 1947: First Transistor at Bell Lab 
[John Bardeen and Walter Brattain] 

• 1958: First Integrated circuit at Texas Instruments
[Jack Kilby]

• 1965: Moore’s Law, Intel
[Gordon Moore]

• 1994: Integrated circuits became 
$100B/year business

• 2003: Industry manufactured 1018

(one quintillion) transistors 
(200M per human being)
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The First Computer

The Babbage
Difference Engine
(1832)
25,000 parts
cost: £17,470
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ENIAC - The first electronic computer (1946)

• Vacuum tube based 
digital computer

• “The Giant Brain” 
as labeled by the press 

• ENIAC facts
– Occupied 1,800 sq. feet

– Weighted 30 tons

– 18000 vacuum tubes

• Application: calculate firing 
tables for World War II 
artillery guns
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The Transistor Revolution

First transistor
Bell Labs, 1948
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The First Integrated Circuits 

Bipolar logic
1960’s

ECL 3-input Gate
Motorola 1966
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IC Evolution

• SSI – Small Scale Integration (early 1970s)
– contained 1 – 10 logic gates

• MSI – Medium Scale Integration 
– logic functions, counters

• LSI – Large Scale Integration
– first microprocessors on the chip

• VLSI – Very Large Scale Integration
– now offers 64-bit microprocessors, 

complete with cache memory (L1 and often L2), 
floating-point arithmetic unit(s), etc.
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IC Evolution

• Bipolar technology
– TTL (transistor-transistor logic), 1962; higher integration density
– ECL (emitter-coupled logic), 1974; high-performance

• MOS (Metal-oxide-silicon)
– although invented before bipolar transistor (1925, 1935), 

was initially difficult to manufacture
– nMOS (n-channel MOS) technology developed in late 1970s 

required fewer masking steps, was denser, and consumed less 
power than equivalent bipolar ICs => an MOS IC was cheaper than 
a bipolar IC and led to investment and growth of the MOS IC market. 

– aluminum gates for replaced by polysilicon by early 1980
– CMOS (Complementary MOS): n-channel and p-channel MOS 

transistors => lower power consumption, 
simplified fabrication process
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Intel 4004
• Introduction date: 

November 15, 1971
• Clock speed: 108 KHz 
• Number of transistors: 2,300 

(10 microns)
• Bus width: 4 bits
• Addressable memory: 640 bytes
• Typical use: 

calculator, first microcomputer 
chip, arithmetic manipulation
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Pentium 4
• 0.18-micron process technology 

(2, 1.9, 1.8, 1.7, 1.6, 1.5, and 1.4 
GHz)

– Introduction date: August 27, 2001 
(2, 1.9 GHz); ...; November 20, 2000 
(1.5, 1.4 GHz)

– Level Two cache: 256 KB Advanced 
Transfer Cache (Integrated)

– System Bus Speed: 400 MHz
– SSE2 SIMD Extensions
– Transistors: 42 Million 
– Typical Use: Desktops and entry-

level workstations
• 0.13-micron process technology 

(2.53, 2.2, 2 GHz)
– Introduction date: January 7, 2002
– Level Two cache: 512 KB Advanced
– Transistors: 55 Million
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Intel’s McKinley
• Introduction date: Mid 2002
• Caches: 32KB L1, 

256 KB L2, 3MB L3 (on-chip)
• Clock: 1GHz
• Transistors: 221 Million 
• Area: 464mm2

• Typical Use: 
High-end servers

• Future versions:
5GHz, 0.13-micron 
technology
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Moore’s Law

• In 1965, Gordon Moore noted that the number of 
transistors on a chip doubled every 18 to 24 
months. 

• He made a prediction that  semiconductor 
technology will double its effectiveness every 18 
months
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Moore’s Law
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Evolution in Complexity
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Transistor Counts
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Moore’s law in Microprocessors
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Die Size Growth
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Frequency
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Power Dissipation
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Power will be a major problem
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Power density
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Technology Directions: SIA Roadmap

Year 1999 2002 2005 2008 2011 2014 
Feature size (nm) 180 130 100 70 50 35 
Logic trans/cm2 6.2M 18M 39M 84M 180M 390M 
Cost/trans (mc) 1.735 .580 .255 .110 .049 .022 
#pads/chip 1867 2553 3492 4776 6532 8935 
Clock (MHz) 1250 2100 3500 6000 10000 16900 
Chip size (mm2) 340 430 520 620 750 900 
Wiring levels 6-7 7 7-8 8-9 9 10 
Power supply (V) 1.8 1.5 1.2 0.9 0.6 0.5 
High-perf pow (W) 90 130 160 170 175 183 
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Not Only Microprocessors

Digital Cellular Market
(Phones Shipped)

1996  1997 1998  1999  2000

Units 48M   86M  162M  260M  435M Analog 
Baseband

Digital Baseband
(DSP + MCU)

Power
Management

Small 
Signal RF

Power
RF

(data from Texas Instruments)(data from Texas Instruments)

Cell
Phone
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Why Scaling?

• Technology shrinks by 0.7/generation
• With every generation can integrate 2x more 

functions per chip; chip cost does not increase 
significantly

• Cost of a function decreases by 2x
• But …

– How to design chips with more and more functions?
– Design engineering population does not double every 

two years…
• Hence, a need for more efficient design methods

– Exploit different levels of abstraction
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Design Abstraction Levels
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Major Design Challenges
• Microscopic issues

– ultra-high speeds
– power dissipation and 

supply rail drop
– growing importance of 

interconnect
– noise, crosstalk
– reliability, 

manufacturability
– clock distribution

• Macroscopic issues
– time-to-market
– design complexity 

(millions of gates)
– high levels of 

abstractions
– design for test
– reuse and IP, portability
– systems on a chip (SoC)
– tool interoperability

$360 M800800 MHz130 M Tr.0.132002

$160 M360600 MHz32 M Tr.0.181999

$120 M270500 MHz20 M Tr.0.251998

$90 M210400 MHz13 M Tr.0.351997

Staff Costs3 Yr. Design 
Staff Size

FrequencyComplexityTech.Year
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Productivity Trends
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Fundamental Design Metrics
• Functionality
• Cost

– NRE (fixed) costs - design effort
– RE (variable) costs - cost of parts, assembly, test

• Reliability, robustness
– Noise margins
– Noise immunity

• Performance
– Speed (delay)
– Power consumption; energy

• Time-to-market
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Cost of Integrated Circuits
• NRE (non-recurring engineering) costs

– Fixed cost to produce the design
• design effort
• design verification effort
• mask generation

– Influenced by the design complexity and designer productivity
– More pronounced for small volume products

• Recurring costs – proportional to product volume
– silicon processing

• also proportional to chip area
– assembly (packaging)
– test

Volume
costFixedICpercostVariableICperCost +=
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NRE Cost is Increasing
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Cost per Transistor
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Silicon Wafer

Single die

Wafer

From http://www.amd.com

Going up to 12” (30cm)
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Recurring Costs

yieldtestFinal
costPackagingcostTestingcostDiecostVariable ++

=

yieldDiewaferperDies
waferofCostdieofCost
×

=
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Dies per Wafer

areaDie2
diameterWaferπ

areaDie
)diameter/2(WaferπwaferperDies

2

×

×
−

×
=
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Yield

α

α
areaDieareaunitperDefects1yieldWaferyieldDie

−

⎟
⎠
⎞

⎜
⎝
⎛ ×
+×=

α is approximately 3 

4area) (die cost  die f=
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Examples of Cost Metrics (1994)

$4179%402961.5$15000.803Pentium

$27213%482561.6$17000.703Super 
SPARC

$14919%532341.2$15000.703DEC 
Alpha

$7327%661961.0$13000.803HP PA 
7100

$5328%1151211.3$17000.804PowerPC 
601

$1254%181811.0$12000.803486DX2
$471%360431.0$9000.902386DX

Die 
cost

YieldDies/
wafer

Area 
(mm2)

Defects
/cm2

Wafer 
cost

Line 
width

Metal 
layers

Chip

9/11/2006 VLSI Design I;  A. Milenkovic 40

Yield Example

• Example #1: 
– 20-cm wafer for a die that is 1.5 cm on a side.
– Solution: Die area = 1.5x1.5 = 2.25cm2. 

Dies per wafer = 3.14x(20/2)2/2.25 – 3.14x20/(2x2.5)0.5=110.

• Example #2
– wafer size of 12 inches, die size of 2.5 cm2, 1 defects/cm2,

α = 3 (measure of manufacturing process complexity)
– 252 dies/wafer (remember, wafers round & dies square)
– die yield of 16%
– 252 x 16% = only 40 dies/wafer die yield !

• Die cost is strong function of die area
– proportional to the third or fourth power of the die area
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Functionality and Robustness

• Prime requirement –
IC performs the function it is designed for

• Normal behavior deviates due to 
– variations in the manufacturing process (dimensions and 

device parameters vary between runs and even on a 
single wafer or die)

– presence of disturbing on- or off-chip noise sources
• Noise: Unwanted variation of voltages or currents 

at the logic nodes
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Reliability 
Noise in Digital Integrated Circuits

i(t)

Inductive coupling Capacitive coupling Power and ground
noise

v(t) VDD

• from two wires placed side by side
– inductive coupling

• current change on one wire can
influence signal on the neighboring wire

– capacitive coupling
• voltage change on one wire can 

influence signal on the neighboring wire
• cross talk

• from noise on the power 
and ground supply rails
– can influence signal levels 

in the gate
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Example of Capacitive Coupling

• Signal wire glitches as large as 80% of the supply 
voltage will be common due to crosstalk between 
neighboring wires as feature sizes continue to 
scale Crosstalk vs. Technology

0.16m  CMOS
0.12m  CMOS

0.35m  CMOS

0.25m  CMOS

Pulsed Signal

Black line quiet
Red lines pulsed
Glitches strength vs technology 

From Dunlop, Lucent, 2000
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Static Gate Behavior
• Steady-state parameters of a gate – static behavior –

tell how robust a circuit is with respect to both variations 
in the manufacturing process and to noise disturbances.

• Digital circuits perform operations on Boolean variables  
x ∈{0,1}

• A logical variable is associated with a nominal voltage 
level for each logic state

1 ⇔ VOH and 0 ⇔ VOL

• Difference between VOH and VOL is 
the logic or signal swing Vsw

V(y)V(x)
VOH = ! (VOL)

VOL = ! (VOH)
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DC Operation
Voltage Transfer Characteristic

VOH = f(VOL)
VOL = f(VOH)
VM = f(VM)

V(x)

V(y)

f

V(y)V(x)

VOH = f (VIL)

VIL VIH

V(y)=V(x)

Switching Threshold
VM

VOL = f (VIH)
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Mapping between analog and digital signals
• The regions of acceptable high and low voltages are delimited by

VIH and VIL that represent the points on the VTC curve where the
gain = -1 (dVout/dVin)

V IL V IH V in

Slope = -1

Slope = -1

V OL

V OH

Vout

“ 0” VOL

VIL

VIH

VOH

Undefined
Region

“ 1”
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Definition of Noise Margins

Gate Output Gate Input

Large noise margins are desirable, but not sufficient …

For robust circuits, want the “0” and “1” intervals to be 
as large as possible

Gnd

Undefined
Region

"1"

"0"

VOH

VIL

VOL

VIHNoise Margin High

Noise Margin Low

NMH = VOH - VIH

NML = VIL - VOL

VDD VDD

GndGnd
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The Regenerative Property
• A gate with regenerative property ensure that a disturbed 

signal converges back to a nominal voltage level

v0 v1 v2 v3 v4 v5 v6

-1

1

3

5

0 2 4 6 8 10

t (nsec)

V
 (v

ol
ts

) v0

v2

v1
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Conditions for Regeneration

v1 = f(v0)   ⇒ v1 = finv(v2)

v0 v1 v2 v3 v4 v5 v6

v0

v1

v2

v3 f(v)

finv(v)

Regenerative Gate

v0

v1

v2

v3

f(v)

finv(v)

Nonregenerative Gate

To be regenerative, the VTC must have a transient region with a 
gain greater than 1 (in absolute value) bordered by two valid zones 
where the gain is smaller than 1.  Such a gate has two stable 
operating points.
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Noise Immunity

• Noise immunity expresses the ability of the system to 
process and transmit information correctly in the 
presence of noise

• For good noise immunity, the signal swing (i.e., the 
difference between VOH and VOL) and the noise margin 
have to be large enough to overpower the impact of 
fixed sources of noise

• Noise margin expresses the ability of a circuit to 
overpower a noise source
– noise sources:  supply noise, cross talk, interference, offset

• Absolute noise margin values are deceptive
– a floating node is more easily disturbed than a node driven by a

low impedance (in terms of voltage)
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Directivity

• A gate must be undirectional:  changes in an output 
level should not appear at any unchanging input of the 
same circuit
– In real circuits full directivity is an illusion (e.g., due to capacitive 

coupling between inputs and outputs)

• Key metrics: output impedance of the driver and
input impedance of the receiver
– ideally, the output impedance of the driver should be zero
– input impedance of the receiver should be infinity
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Fan-In and Fan-Out

Fan-out – number of load gates 
connected to the output of the 
driving gate

gates with large fan-out are slower
N

M

Fan-in – the number of inputs to 
the gate

gates with large fan-in are bigger 
and slower
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The Ideal Inverter
• The ideal gate should have

– infinite gain in the transition region
– a gate threshold located in the middle of the logic swing
– high and low noise margins equal to half the swing
– input and output impedances of infinity and zero, resp.

g = - ∞

Vout

Vin

Ri = ∞

Ro = 0

Fanout = ∞

NMH = NML = VDD/2
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An Old-time Inverter

NM H

V in (V)

V

o u t

( V )

NM L

V M

0.0

1.0

2.0

3.0

4.0

5.0

1.0 2.0 3.0 4.0 5.0
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Delay Definitions

t

Vout

Vin

input
waveform

output
waveform

t

Vin Vout

Propagation delay?

signal slopes?
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Delay Definitions

t

Vout

Vin

input
waveform

output
waveform

tp = (tpHL + tpLH)/2
Propagation delay

t

50%

tpHL

50%

tpLH

tf

90%

10%
tr

signal slopes

Vin Vout



•VLSI Design I; A. Milenkovic •29

9/11/2006 VLSI Design I;  A. Milenkovic 57

Modeling Propagation Delay

• Model circuit as first-order RC network

R

C

vin

vout

vout (t)  =  (1 – e–t/τ)V

where τ = RC

Time to reach 50% point is
t = ln(2) τ = 0.69 τ

Time to reach 90% point is
t = ln(9) τ = 2.2 τ

• Matches the delay of an inverter gate
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Power and Energy Dissipation
• Power consumption: how much energy is consumed 

per operation and how much heat the circuit dissipates
– supply line sizing (determined by peak power)

Ppeak = Vddipeak
– battery lifetime (determined by average power dissipation)

p(t) = v(t)i(t) = Vddi(t)             Pavg= 1/T ∫ p(t) dt = Vdd/T ∫ idd(t) dt
– packaging and cooling requirements

• Two important components:  static and dynamic

E (joules) = CL Vdd
2 P0→1 + tsc Vdd Ipeak P0→1 + Vdd Ileakage

P (watts) = CL Vdd
2 f0→1 + tscVdd Ipeak f0→1 + Vdd Ileakage

f0→1 = P0→1 * fclock 



•VLSI Design I; A. Milenkovic •30

9/11/2006 VLSI Design I;  A. Milenkovic 59

Power and Energy Dissipation
• Propagation delay and the power consumption of a gate 

are related 
• Propagation delay is (mostly) determined by the speed 

at which a given amount of energy can be stored on the 
gate capacitors
– the faster the energy transfer (higher power dissipation) the 

faster the gate

• For a given technology and gate topology, the product of the power 
consumption and the propagation delay is a constant
– Power-delay product (PDP) –

energy consumed by the gate per switching event
• An ideal gate is one that is fast and consumes little energy, so the 

ultimate quality metric is
– Energy-delay product (EDP) = power-delay 2
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• Digital integrated circuits have come a long 
way and still have quite some potential left for 
the coming decades

• Some interesting challenges ahead
– Getting a clear perspective on the challenges and 

potential solutions is the purpose of this course
• Understanding the design metrics that govern 

digital design is crucial
– Cost, reliability, speed, power and energy 

dissipation

Summary


