

 Introduction date: Mid 2002 Caches: 32KB L1, 256 KB L2, 3MB L3 (on-chip) Clock: 1GHz Transistors: 221 Million Area: 464mm² Typical Use: High-end servers Future versions: 5GHz, 0.13-micron technology 	S DCKIDLOS
9/11/2006 VLSI Desig	gn I; A. Milenkovic 14

Year	1999	2002	2005	2008	2011	2014
Feature size (nm)	180	130	100	70	50	35
Logic trans/cm ²	6.2M	18M	39M	84M	180M	390M
Cost/trans (mc)	1.735	.580	.255	.110	.049	.022
#pads/chip	1867	2553	3492	4776	6532	8935
Clock (MHz)	1250	2100	3500	6000	10000	16900
Chip size (mm ²)	340	430	520	620	750	900
Wiring levels	6-7	7	7-8	8-9	9	10
Power supply (V)	1.8	1.5	1.2	0.9	0.6	0.5
High-perf pow (W)	90	130	160	170	175	183

Chip	Metal layers	Line width	Wafer cost	Defects /cm ²	Area (mm²)	Dies/ wafer	Yield	Die cost
386DX	2	0.90	\$900	1.0	43	360	71%	\$4
486DX2	3	0.80	\$1200	1.0	81	181	54%	\$12
PowerPC 601	4	0.80	\$1700	1.3	121	115	28%	\$53
HP PA 7100	3	0.80	\$1300	1.0	196	66	27%	\$73
DEC Alpha	3	0.70	\$1500	1.2	234	53	19%	\$149
Super SPARC	3	0.70	\$1700	1.6	256	48	13%	\$272
Pentium	3	0.80	\$1500	1.5	296	40	9%	\$417

	Yield Example	
 Example # 20-cm wa Solution: Dies per v Example # 	1: Ifer for a die that is 1.5 cm on a side. Die area = 1.5x1.5 = 2.25cm2. wafer = 3.14x(20/2)2/2.25 – 3.14x20/(2x2.5)0.5=110. 2	
 wafer size α = 3 (me) 252 dies/v die yield c 252 x 16% 	e of 12 inches, die size of 2.5 cm2, 1 defects/cm2, easure of manufacturing process complexity) wafer (remember, wafers round & dies square) of 16% % = only 40 dies/wafer die yield !	
 Die cost is proportior 	strong function of die area nal to the third or fourth power of the die area	
9/11/2006	VLSI Design I; A. Milenkovic	40

