

	CL018 G	CL018 LP	CL018 ULP	CL018 HS	CL015 HS	CL013 HS
V _{dd}	1.8 V	1.8 V	1.8 V	2 V	1.5 V	1.2 V
T _{ox} (effective)	42 Å	42 Å	42 Å	42 Å	29 Å	24 Å
L _{gate}	0.16 μm	0.16 μm	0.18 μm	0.13 μm	0.11 μm	0.08 μm
I _{DSat} (n/p) (μΑ/μm)	600/260	500/180	320/130	780/360	860/370	920/400
I _{off} (leakage) (ρΑ/μm)	20	1.60	0.15	300	1,800	13,000
V _{Tn}	0.42 V	0.63 V	0.73 V	0.40 V	0.29 V	0.25 V
FET Perf. (GHz)	30	22	14	43	52	80

	Dynamic Power Consumption is Data Dependent						
•	• Switching activity, $P_{0\to1}$, has two components - A static component – function of the logic topology - A dynamic component – function of the timing behavior (glitching Static transition probabilitt $P_{0\to1} = P_{out=0} \times P_{out=1}$						
	A	В	Out	$= P_0 \times (1 - P_0)$			
	0	0	1	With input signal probabilities			
	0	1	0	$P_{A-1} = 1/2$			
	1	0	0	$P_{B=1}^{n-1} = 1/2$			
	1	1	0	NOR static transition probability			
	18/2005		VLS	$= 3/4 \times 1/4 = 3/16$ I Design I; A. Milenkovic 28			

	Consta /Throughput	ant Latency	Variable Throughput/Latency		
Energy	Design Time	Non-active Modules		Run Time	
Active	Logic Design Reduced V _{dd} Sizing Multi-V _{dd}	Clock Gating		DFS, DVS (Dynamic Freq, Voltage Scaling)	
Leakage	+ Multi-V _T	Sleep Transistors Multi-V _{dd} Variable V _T		+ Variable V _T	

	Constant Throughput/Latency Thr			Variable ughput/Latency	
Energy	Design Time	Non-active	Run Time		
Active	Logic Design Reduced V _{dd} Sizing Multi-V _{dd}	Clock Gating		DFS, DVS (Dynamic Freq, Voltage Scaling)	
Leakage	+ Multi-V _T	Sleep Transistors Multi-V _{dd} Variable V _T		+ Variable V _T	

Stack Effect								
 Leakage is a function of the circuit topology and the value of the inputs 								
$V_{T} = V_{T0} + \gamma(\sqrt{ -2\phi_{F} + V_{SB} - \sqrt{ -2\phi_{F} }})$								
where V_{T0} is the threshold voltage at $V_{SB} = 0$; V_{SB} is the source- bulk (substrate) voltage; γ is the body-effect coefficient								
	Α	В	V _x	SUB				
A-d b-B	0	0	$V_T \ln(1+n)$	$V_{GS} = V_{BS} = -V_X$				
Out	0	1	0	V _{GS} =V _{BS} =0				
	1	0	V_{DD} - V_{T}	V _{GS} =V _{BS} =0				
V _x	1	1	0	V _{SG} =V _{SB} =0				
$B \rightarrow \Box \qquad \bullet \text{Leakage is least when } A = B = 0$								
<u>⊥</u> •	 Leakage reduction due to stacked transistors is called the stack effect 							
10/18/2005 VLSI Design I; A. Milenkovic 46								

