* Verilog Tutorial

Aleksandar Milenkovié

The LaCASA Laboratory
Electrical and Computer Engineering Department
The University of Alabama in Huntsville
Email: milenka@ece.uah.edu
Web: http://www.ece.uah.edu/~milenka
http://www.ece.uah.edu/~lacasa

CASA

Outline

= Introduction
= Verilog (with focus on synthesis)
= Continuous Assignments (assign)

= Hierarchy
= Always Blocks

UAH™

Introduction

= Verilog is a Hardware Description Language (HDL)
= Developed by Phil Moorby at Gateway Design

Automation in 1984; acquired by Cadence in 1989
= Allow description of a digital system at

= Behavioral Level — describes how the outputs are
computed as functions of the inputs

= Structural Level — describes how a module is
composed of simpler modules of basic primitives
(gates or transistors)

= Design styles: Top-Down vs. Bottom-Up

UAH™

Continuous Assignments

module adder (a, b, y);
= Describe inputs & outputs e
= Assign statement eutput [SEE01 s
= Left-hand side is updated
any time the right-hand side
changes (a or b) module invA4 (input [3:0] a,

X . . i output [3:0] y);
= Implies combinational logic

assign y = a + b;
endmodule

assign y = ~a;
module mux2_4 (input [3:0] dO, di, endmodule

input s,

output [3:0] y);

_ module fa (input a, b, cin,
assign y = s ? dl : dO; output s, cout);

endmodule

assign s = a ™ b ~ cin;
assign cout = (a & b) | (cin & (a | b));

module and8 (input [7:0] a,
output y); endmodule

assign y = & a;

E endmodule

UAH™

Hierarchy

W

aCASA

= Structural design style
= Mux4 out of Mux2s
= Try Dec4tol16 using Dec2to4s?

UAH™]

... and more

aCASA

Always Blocks

= Always blocks are reevaluated only when signals in
the header (called a sensitivity list) change

= Depending on the form, can imply either
sequential or combinational circuits

Combinational Logic

Warning: All the signals on the left side of assignments in always
blocks must be declared as reg. However, declaring a signal as
reg does not mean the signal is actually a register.

UAH~]

Tri-State

aCASA

BUFT

UAH™]

Registers

D-FF with
Positive Clock

FD

o

D |
c |

aCASA

D-FF with Negative-edge
Clock and Async. Clear

FDC 1

o

& P

DFFs

D-FF with Positive-Edge D-FF with Positive-Edge
Clock and Synchronous Set Clock and Clock Enable

S—I
D FDE
FDS —
o — cE | o
c c |
= T
aCASA Um
Latches
Latch with Positive Gate and
Latch with Positive Gate Asynchronous Clear
p | W |a p [wc |a
G | G

aCASA

4-bit Latch

4-bit Latch with Positive Gate Inverted
Gate and Asynchronous Preset

PRE

o]

LDP_1

|I:I
o

éﬂ

aCASA

4-bit Register

4-bit Register Positive-Edge Clock,
Asynchronous Set and Clock Enable

PRE

LDP_1

‘I:I
o

éﬂ

UAHT]

aCASA

aCASA

* Counters

?

??

UAHT]

!aCASA

* Memories

UAHT

Blocking and Non-blocking

Assignments

= Blocking assignments (use =)

= A group of blocking assignments
inside a begin-end block is evaluated sequentially

= Non-blocking assignments (use <=)

= A group of non-blocking assignments are evaluated in
parallel; all of the statements are evaluated before any

of the left sides are updated.

5
UAH")
module shiftreg (input clk, // this is incorrect shift register
L[A1, module shiftreg (input clk
tput 3:0 5 - -7
output reg [3:01 a) input sin,
always @(posedge clk) output reg [3:0] q);
begin
0] <= sin: always @(posedge clk)
arel sin begin
q[1] <= q[0]; q[0] = sin;
q[2] <= q[1]; q[1] = q[o0];
q[3]1 <= ql21; qr2] = q[11;
// could be replaced by ql31 = al2];
// q <= {q[2:0], sin} end
end endmodule
endmodule
UAH™

State Machine

= Identify 3 portions
= State register
= Next state logic
= Output logic alx

= State register

= Resets asynchronously to the
initial state

= Otherwise advances to the
next state

= Next logic
= Computes the next state as a
function of the current state
and inputs
= Output logic

= Computes the output as a

function of the current state - TR,
En and the inputs {[*W.%M History FSM state transition diagram

ACASA Um

alx=1,y=0

alx=1,y=1 alx=1,y=1

State Machine Description

10

