

Outline

➢ Introduction

- > Basics of the Verilog Language
- Operators
- Hierarchy/Modules
- Procedures and Assignments
- Timing Controls and Delay
- Control Statement
- Logic-Gate Modeling
- Modeling Delay
- > Other Verilog Features
- Summary

Styles

Structural - instantiation of primitives and modules

Introduction

- RTL/Dataflow continuous assignments
- Behavioral procedural assignments

Behavioral Modeling

- > A much easier way to write testbenches
- > Also good for more abstract models of circuits
 - Easier to write
 - Simulates faster
- > More flexible
- Provides sequencing
- Verilog succeeded in part because it allowed both the model and the testbench to be described together

module fa_rtl (S, CO, A, B, CI) ;		
output S, CO ; input A, B, CI ;		
assign S = A ^ B ^ CI; assign CO = A & B A & CI B & CI;	//continuous assignment //continuous assignment	
endmodule		

How Verilog Is Used Virtually every ASIC is designed using either Verilog or VHDL (a similar language) Behavioral modeling with some structural elements "Synthesis subset" Can be translated using Synopsys' Design Compiler or others into a netlist Design written in Verilog Simulated to death to check functionality Synthesized (netlist generated) Static timing analysis to check timing

An I	Example:	Count	er (co	nt'd)	Introduction
	rilog using N Assume working of Invoke <u>ModelSim</u> Change Directory. Copy file counter. Create a design II Compile counter. Start the simulatio Run the simulatio	tirectory: cpe to cpe626/Vie v to the work brary: <i>vlib wc</i> <i>v: vlog counte</i> vr: <i>vsim count</i>	ogExamples/ ing directory ork er. v ter	Counter	r
	<pre>> run 200 # time = # time</pre>	20 40 60 100 120 140 160 180	count = count = count = count = count = count = count = count =	1 2 3 4 5 6 7 0 1 2	
	u da				15

Outline

Introduction

- ➢ Basics of the Verilog Language
- Operators
- Hierarchy/Modules
- Procedures and Assignments
- Timing Controls and Delay
- Control Statement
- ➢ Logic-Gate Modeling
- Modeling Delay
- > Other Verilog Features
- Summary

20

Data Types > nets are further divided into several net types wire, tri, supply0, ... > registers - stores a logic value - reg > integer - supports computation > time - stores time 64-bit unsigned > real - stores values as real num > realtime - stores time values as real numbers > event - an event data type

odule declarations_1;	
wire pwr_good,pwr_on,pw	r_stable; // Explicitly declare wires
integer i;	<pre>// 32-bit, signed (2's complement)</pre>
time t;	<pre>// 64-bit, unsigned, behaves like a 64-bit reg</pre>
event e;	// Declare an event data type
real r;	// Real data type of implementation defined size
// assign statement con	tinuously drives a wire
assign pwr_stable = 1'b	l; assign pwr_on = l; // l or l'bl
assign pwr_good = pwr_o	1 & pwr_stable;
initial begin	
<pre>\$display("pwr_on=",pwr_</pre>	; (nc
i = 123.456;	// There must be a digit on either side
r = 123456e-3;	<pre>// of the decimal point if it is present.</pre>
t = 123456e-3;	// Time is rounded to 1 second by default.
\$display("i=%0g",i," t=	<pre>k6.2f",t," r=%f",r);</pre>
<pre>#2 \$display("TIME=%0d",:</pre>	<pre>\$time," ON=",pwr_on,</pre>
" STABLE=",pwr_stable	e," GOOD=",pwr_good);
end	
ndmodule	
-	
pwr_on=x	
	000

Constants		
parameter A = 2'b00, B = 2'b01,	C = 2'b10;	1
parameter regsize = 8;		
reg [regsize - 1:0]; /* illu	strates use of parameter regsize */	
 Strings No explicit data type 		
No explicit data typeMust be stored in reg (or	5.	7
 No explicit data type Must be stored in reg (or reg [255:0] buffer; 	//stores 32 characters]
No explicit data typeMust be stored in reg (or	5.]

 Examples: 6'b010_111 8'b0110 4'bx01 16'H3AB 24 5'036 	gives 010111 gives 00000110 gives xx01 gives 0000001110101011 gives 00011000 gives 11100	
16'Hx8'hz	gives xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	

Outline Introduction Basics of the Verilog Language Operators Hierarchy/Modules Procedures and Assignments Timing Controls and Delay Control Statement Logic-Gate Modeling Modeling Delay Other Verilog Features Summary

Operators

- Arithmetic (pair of operands, binary word) [binary: +, -,*,/,%*]; [unary: +, -]
- Bitwise (pair of operands, binary word) [~, &, |,^,~^,^~]
- > Reduction (single operand, bit) $[\&, \sim\&, |, \sim|, \land, \sim\land, \land\sim]$

Operators

- Logical (pair of operands, boolean value) [!,&&,||,==,!=,===,!==]
- Relational (pair of operands, boolean value) [<,<=,>,>=]
- > Shift (single operand, binary word) [>>,<<]
- > Conditional ? : (three operands, expression)
- Concatenation and Replications {,} {int{ }}
- * unsupported for variables

Decretors (cont'd)	Operato
Operators (cont'd)	
parameter D0 = (1==0); parameter D1 = (1==1)	;
<pre>// === case equality, !== (case inequality)</pre>	
// case operators only return true or false	
parameter E0 = (1===1'bx); parameter E1 = 4	b01xz === 4'b01xz;
parameter F1 = (4'bxxxx === 4'bxxxx);	
<pre>// bitwise logical:</pre>	
// ~ (negation), & (and), (inclusive or),	
// ^ (exclusive or), ~^ or ^~ (equivalence)	
parameter A00 = 2'b01 & 2'b10;	
<pre>// unary logical reduction:</pre>	
// & (and), ~& (nand), (or), ~ (nor),	
// ^ (xor), ~^ or ^~ (xnor)	
parameter G1= & 4'b1111;	
<pre>// conditional expression x = a ? b : c</pre>	
<pre>// if (a) then x = b else x = c</pre>	
reg H0, a, b, c; initial begin a=1; b=0; c=1	L; H0=a?b:c; end
reg[2:0] J01x, Jxxx, J01z, J011;	
initial begin Jxxx = 3'bxxx; J01z = 3'b01z;	J011 = 3'b011;
J01x = Jxxx ? J01z : J011; end	// bitwise result

Expressions with Operands Containing x or z Arithmetic

0

47

- If any bit is x or z, result is all x's.
- Divide by 0 produces all x's.
- Relational
 - If any bit is x or z, result is x.
- Logical
 - = = and != If any bit is x or z, result is x.
 - === and !== All bits including x and z values must match for equality

Expressions with Operands One Containing x or z (cont'd) Bitwise Defined by tables for 0, 1, x, z operands. Reduction Defined by tables as for bitwise operators. Shifts z changed to x. Vacated positions zero filled.

- Conditional
 - If conditional expression is ambiguous (e.g., x or z), both expressions are evaluated and bitwise combined as follows: f(1,1) = 1, f(0,0) = 0, otherwise x.

46

Modules

Outline

- Introduction
- Basics of the Verilog Language
- > Operators
- Hierarchy/Modules
- Procedures and Assignments
- Timing Controls and Delay
- Control Statement
- Logic-Gate Modeling
- Modeling Delay
- Other Verilog Features
- > Summary

Modules Basic design units Verilog program build from modules with I/O interfaces Modules are: Declared Instantiated > Module interface is defined using ports each port must be explicitly declared as one of o input (wire or other net) o output (reg or wire; can be read inside the module) o inout (wire or other net) Modules declarations cannot be nested > Modules may contain instances of other modules Modules contain local signals, etc. > Module configuration is static and all run concurrently 48

Module Declaration

> Basic structure of a Verilog module:

module mymod(output1, output2, ... input1, input2); output output1; output [3:0] output2; input input1; input [2:0] input2;

endmodule

Modules Module Declaration (cont'd) > Example: /* module_keyword module_identifier (list of ports) */ module C24DecoderWithEnable (A, E, D); // input_declaration input [1:0] A; // input declaration input E; output [3:0] D; // output_declaration assign D = $\{4\{E\}\}$ & ((A == 2'b00) ? 4'b0001 : (A == 2'b01) ? 4'b0010 : (A == 2'b10) ? 4'b0100 : (A == 2'b11) ? 4'b1000 : 4'bxxxx) ; // continuous_assign endmodule 50

Modules

Array of Instances	Outline
{ , } is concatenate	Introduction
> Example	 Basics of the Verilog Language Operators
<pre>module add_array (A, B, CIN, S, COUT) ;</pre>	Hierarchy/Modules
<pre>input [7:0] A, B ; input CIN ; output [7:0] S ; output COUT ; wire [7:1] carry; full_add FA[7:0] (A,B,{carry, CIN},S,{COUT, carry}); // full_add is a module</pre>	 Procedures and Assignments Timing Controls and Delay Control Statement Logic-Gate Modeling Modeling Delay Other Verilog Features
endmodule	> Summary

Sequential block may appea initial statement	r in an always or
initial	always
begin	begin
imperative statements	imperative statements
end	end
Runs when simulation starts	Runs when simulation starts
Terminates when control reaches the end (one time sequential activity flow)	Restarts when control reaches the end (cycle sequential activity flow)
Good for providing stimulus (testbenches); not synthesizable	Good for modeling/specifying hardware

Initial and Always (cont'd)			ocedures
<pre>module always_1; reg Y, Clk; always // Statements in an always statement execute repeatedly: begin: my_block // Start of sequential block. @(poesdge Clk) #5 Y = 1; // At +ve edge set Y=1, @(poesdge Clk) #5 Y = 0; // at the NEXT +ve edge set Y=0. end // End of sequential block. always #10 Clk = - Clk; // We need a clock. initial Y = 0; // These initial statements execute initial Clk = 0; // only once, but first. initial #0; finish; endmodule</pre>	T=10 T=15 T=20 T=30 T=35 T=40 T=50 T=55	Clk=0 Clk=1 Clk=1 Clk=0 Clk=1 Clk=1 Clk=1 Clk=1 Clk=0	Y=0 Y=1 Y=1 Y=1 Y=0 Y=0 Y=0 Y=1

Outline

- Introduction
- Basics of the Verilog Language
- > Operators
- Hierarchy/Modules
- Procedures and Assignments
- Timing Control and Delay
- Control Statement
- Logic-Gate Modeling
- Modeling Delay
- > Other Verilog Features
- Summary

Timing Control Statements within a sequential block are executed in order In absence of any delay they will execute at the same simulation time – the current time stamp Timing control Delay control Event control Delay control – delays an assignment by a specified amount of time Event control – delays an assignment until a specified event occur

Timing Control

Delay control	Timing Contro
Timescale compiler directive	
<pre>`timescale lns/l0ps // Units of time are ns. Round times to // Allowed unit/precision values: {1 10 100, s ms us</pre>	-
Intra-assignment delay vs. delayed assignment	
<pre>x = #1 y; // intra-assignment delay // Equivalent to intra-assignment delay. begin hold = y; // Sample and hold y immediately. #1; // Delay. x = hold; // Assignment to x. Overall same as x = #1 y. end</pre>	
<pre>#1 x = y; // delayed assignment // Equivalent to delayed assignment. begin #1; // Delay. x = y; // Assign y to x. Overall same as #1 x = y. end</pre>	

nodule delay_controls; reg X, Y, Clk, Dummy;				
always #1 Dummy=!Dummy; // Dummy clock, just for graphic	в. Т	Clk	хч	
<pre>// Examples of delay controls:</pre>	0	0	хх	
always begin #25 X=1;#10 X=0;#5; end	10	1	хx	
// An event control:	20	0	хх	
always @(posedge Clk) Y=X; // Wait for +ve clock edge.	25	0	1 x	
always #10 Clk = !Clk; // The real clock.	30	1	11	
initial begin Clk = 0;	35	1	0 1	
<pre>\$display("T Clk X Y");</pre>	40	0	0 1	
<pre>\$monitor("%2g",\$time,,,Clk,,,,X,,Y);</pre>	50	1	0 0	
<pre>\$dumpvars;#100 \$finish; end</pre>	60	0	0 0	
endmodule	65	0	1 0	
	70	1	11	
	75	1	0 1	
	80	0	0 1	
	90	1	0 0	

Data Slip Problem module data_slip_1 (); reg Clk, D, Ql, Q2; /************************************			т	îmir	ng C	ontro
<pre>/************************************</pre>	Data Slip Problem					
<pre>always @(posedge Clk) Q1 = D; always @(posedge Clk) Q2 = Q1; // Data slips here! // initial begin Clk = 0; D = 1; end always #50 Clk = -Clk; initial begin Clk = 0; D = 1; end always #50 Clk = -Clk; initial begin %; \$time, (Clk D Q1 Q2"); \$monitor("%]%; \$time, (Clk, D, D1 Q2"); initial \$400 \$finish; // Run for 8 cycles. initial \$40mgvars; endmodule lways @(posedge Clk) Q1 = #1 D; // The delays in the assgn. lways @(posedge Clk) Q2 = #1 Q1;// fix the data slip.</pre>	wodule data slip 1 (); reg Clk, D, Q1, Q2;	t	Clk	D	Q1	Q2
<pre>always @(posedge Clk) Q2 = Q1; // Data slips here! /************************************</pre>	**************************************	c	0	1	x	x
<pre>/************************************</pre>	lways @(posedge Clk) Q1 = D;	50	1	1	1	1
<pre>initial begin Clk = 0; D = 1; end always #50 Clk = -Clk; initial begin \$display("t Clk D Q1 Q2"); smonitor("\$32",\$time,.(bx,,D,,Q1,r,Q1); end initial \$400 \$finish; // Run for 8 cycles. initial \$dumpvars; endmodule lways @(posedge Clk) Q1 = #1 D; // The delays in the assgn. lways @(posedge Clk) Q2 = #1 Q1;// fix the data slip.</pre>	lways @(posedge Clk) Q2 = Q1; // Data slips here!	100	0	1	1	1
<pre>initial begin \$display("t Clk D Q1 Q2"); \$monitor("%3g",\$time,,Clk,,,D,,Ql,,.Q2); end initial \$dumpvars; endmodule</pre> 250 1 1 1 2 300 0 1 1 1 t Clk D Q1 Q 0 0 1 x 2 50 1 1 2 50 1 1 1 10 0 1 x 2 51 1 1 2 10 0 1 1 2 51 1 1 1 51 1 1 51 1 1 1	***************** bad sequential logic above ***************/	150	1	1	1	1
<pre>\$monitor("%3g*,\$time,,Clk,,,D,,Ql,,Q2); end initial #400 \$finish; // Run for 8 cycles. initial \$400 pvars; endmodule lways @(posedge Clk) Q1 = #1 D; // The delays in the assgn. lways @(posedge Clk) Q2 = #1 Q1;// fix the data slip.</pre>	nitial begin Clk = 0; D = 1; end always #50 Clk = ~Clk;	200	0	1	1	1
<pre>initial #400 \$finish; // Run for 8 cycles. initial \$dumpvars; endmodule lvays @(posedge Clk) Q1 = #1 D; // The delays in the assgn. lvays @(posedge Clk) Q2 = #1 Q1;// fix the data slip.</pre>	nitial begin \$display("t Clk D Q1 Q2");	250	1	1	1	1
<pre>initial \$dumpvars; endmodule</pre>	monitor("%3g",\$time,,Clk,,,,D,,Q1,,,Q2); end	300	0	1	1	1
endmodule t Clk p Q1 (lways @(posedge Clk) Q1 = #1 D; // The delays in the assign. 51 1 1 2 lways @(posedge Clk) Q2 = #1 Q1;// fix the data slip. 100 1	nitial #400 \$finish; // Run for 8 cycles.	350	1	1	1	1
endmodule 0 0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		+	Clk		01	02
<pre>llways @(posedge Clk) Q1 = #1 b; // The delays in the assgn. llways @(posedge Clk) Q2 = #1 Q1;// fix the data slip. 50 1 1 2 51 1 1 1 50 1 1 1 55 1 1 1 55 1 1 1 55 1 1 1 55 1 1 1 55 1 1 1 55 1 1 1 55 1 1 1 55 1 1 1 55 1 1 1 55 1 1 1 55 1 1 1 55 1 1 1 55 1 1 1 55 1 1 1 55 1 1 1 55 1 1 1 55 1 1 1 55 1 1 1 55 1 55 1 1 55 1</pre>	endmodule				~	~
<pre>lways @(posedge Clk) Q1 = #1 b; // The delays in the asgr s1 1 1 1 100 0 11 2 151 1 1 150 1 1 150 1 1 150 1 1 150 1 150 1 1 150 150 1 1 1 151 1 1 1 15 15 10 0 1 1 1 15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</pre>		- 50	-	-		
lways @(posedge Clk) 02 = #1 01;// fix the data slip. 100 0 1 1 2 150 1 1 1 2 151 1 1 1 2 200 0 1 1 2 250 1 1 1 1						
151 1 1 1 200 0 1 1 1 250 1 1 1 1	ways @(posedge Clk) Q2 = #1 Q1;// fix the data slip.			-	-	
200 0 1 1 1 250 1 1 1 1		150	1	1	1	x
250 1 1 1 1		151	1	1	1	1
		200	0	1	1	1
300 0 1 1 1		250	1	1	1	1
		300	0	1	1	1
350 1 1 1 1		350	1	1	1	1.

Wait Statement	Timing Control
Suspends a procedure until a condition becor	nes true
 there must be another concurrent procedure t condition – otherwise we have an "infinite hole 	
<pre>module test_dff_wait;</pre>]
<pre>reg D, Clock, Reset; dff_wait ul(D, Q, Clock, Reset);</pre>	T Clk D Q Reset
<pre>initial begin D=1; Clock=0;Reset=1'b1; #15 Reset=1'b0; #20 D=0; end</pre>	0 0 1 0 1
always #10 Clock = !Clock;	10 1 1 0 1
initial begin \$display("T Clk D Q Reset");	15 1 1 0 0
<pre>\$monitor("%2g",\$time,,Clock,,,D,,Q,,Reset); #50 \$finish;</pre>	30 1 1 1 0
end	35 1 0 1 0
endmodule	40 0 0 1 0
	40 0 0 1 0
<pre>module dff_wait(D, Q, Clock, Reset);</pre>	
output Q; input D, Clock, Reset; reg Q; wire D;	
always @(posedge Clock) if (Reset !== 1) Q = D;	
always begin wait (Reset == 1) $Q = 0$; wait (Reset !== 1); end	
endmodule	1

Blocking and Nonblocking Assignments A sequence of nonblocking assignments don't communicate

ing Control

communicate		
a = 1;	a <= 1;	
b = a;	b <= a;	
c = b;	c <= b;	
Blocking assignment:	Nonblocking assignment:	
a = b = c = 1	a = 1	
	b = old value of a	
	c = old value of b	
		7

Control Statements (co	Control statements
Loop statements:	
for, while, repeat, forever	// repeat loop
	i = 0;
integer i; reg [15:0] Dbus;	repeat (16)
initial Dbus = 0;	begin
// for loop	Dbus[i] = 1;
for $(i = 0; i \le 15; i = i + 1)$	i = i + 1;
begin	end
Dbus[i] = 1;	// forever loop
end	i = 0;
// while loop	forever
i = 0;	begin: my_loop
while (i <= 15)	Dbus[i] = 1;
begin	if (i == 15) #1 disable my_loop
Dbus[i] = 1;	<pre>// let time advance to exit</pre>
i = i + 1;	i = i + 1;
end	end

Verilog provides	the f	ollowing primitives:
and, nand	-	logical AND/NAND
or, nor	-	logical OR/NOR
xor, xnor	-	logical XOR/XNOR
buf, not	-	buffer/inverter
 bufif0, notif0 	-	Tristate with low enable
 bifif1, notif1 	-	Tristate with high enable
No declaration;	can o	nly be instantiated
All output ports	appea	ar in list before any input ports
Optional drive s	trenat	h, delay, name of instance

Gate level modeling Gate-level Modeling (cont'd) > Example: and N25(Z, A, B, C); //instance name and #10 (Z, A, B, X); // delay (X, C, D, E); //delay /*Usually better to provide instance name for debugging.*/ N30(SET, Q1, AB, N5), or N41(N25, ABC, R1); buf bl(a, b); // Zero delay **buf** #3 b2(c, d); // Delay of 3 **buf** #(4,5) // Rise=4, fall=5 b3(e, f); **buf** #(3:4:5) b4(g, h); // Min-typ-max

Module Delay

> Example: norf201 – 3-input nor gate from a 1.2um CMOS

module norf201(o, a1, b1);
output o;

output o; input al, bl;

nor(o, al, bl);
magifu // madula r

specify // module paths
 (al, bl *> o) = (0.179:0.349:0.883, 0:084:0.169:0.466);
endspecify;
endmodule;

Outline

Modeling delay

91

Introduction

- > Basics of the Verilog Language
- Operators
- Hierarchy/Modules
- Procedures and Assignments
- Timing Controls and Delay
- Control Statement
- Logic-Gate Modeling
- Modeling Delay
- > Other Verilog Features
- Summary

Compiled-Code Discrete-Event Sim. Most modern simulators use this approach Verilog program compiled into C Each concurrent process (e.g., continuous assignment, always block) becomes one or more C functions Initial and always blocks split into multiple functions, one per segment of code between a delay, a wait, or event control (@) Central, dynamic event queue invokes these functions and advances simulation time

<text><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

Contervention Logic Synthesis Takes place in two stages: Translation of Verilog (or VHDL) source to a netlist Register inference Optimization of the resulting netlist to improve speed and area Most critical part of the process Algorithms very complicated and beyond the scope of this

107

class

Parts of the language easy to translate Structural descriptions with primitives Already a netlist Continuous assignment Expressions turn into little datapaths Behavioral statements the bigger challenge

109

What Can Be Translated Structural definitions Everything Behavioral blocks Depends on sensitivity list Only when they have reasonable interpretation as combinational logic, edge, or level-sensitive latches Blocks sensitive to both edges of the clock, changes on unrelated signals, changing sensitivity lists, etc. cannot be synthesized User-defined primitives Primitives defined with truth tables

 Some sequential UDPs can't be translated (not latches or flip-flops)

What Isn't Translated Initial blocks Used to set up initial state or describe finite testbench stimuli Don't have obvious hardware component Delays May be in the Verilog source, but are simply ignored A variety of other obscure language features In general, things heavily dependent on discrete-event simulation semantics Certain "disable" statements Pure events

Register Inference > The main trick • reg does not always equal latch > Rule: Combinational if outputs always depend exclusively on sensitivity list > Sequential if outputs may also depend on previous values

Simulation-synthesis Mismatches Many possible sources of conflict Synthesis ignores delays (e.g., #10), but simulation behavior can be affected by them Simulator models X explicitly, synthesis doesn't Behaviors resulting from shared-variable-like behavior of regs is not synthesized always @(posedge clk) a = 1; New value of a may be seen by other @(posedge clk) statements in simulation, never in synthesis

Outime

- Introduction
- Basics of the Verilog Language
- Operators
- > Hierarchy/Modules
- Procedures and Assignments
- Timing Controls and Delay
- Control Statement
- Logic-Gate Modeling
- Modeling Delay
- Other Verilog Features
- Summary

Summary of Verilog

- > Systems described hierarchically
 - Modules with interfaces
 - Modules contain instances of primitives, other modules
 - Modules contain initial and always blocks
- Based on discrete-event simulation semantics
 - Concurrent processes with sensitivity lists
 - Scheduler runs parts of these processes in response to changes

118

Language Features

- > Nets (wires) for modeling interconnection
 - Non state-holding
 - Values set continuously
- Regs for behavioral modeling
 - Behave exactly like memory for imperative modeling
 - Do not always correspond to memory elements in synthesized netlist

> Blocking vs. nonblocking assignment

- Blocking behaves like normal "C-like" assignment
- Nonblocking updates later for modeling synchronous behavior

Language Uses

Event-driven simulation

- Event queue containing things to do at particular simulated times
- Evaluate and update events
- Compiled-code event-driven simulation for speed

Logic synthesis

Translating Verilog (structural and behavioral) into netlists

122

124

- Register inference: whether output is always updated
- Logic optimization for cleaning up the result

Little-used Language Features

Switch-level modeling

- Much slower than gate or behavioral-level models
- Insufficient detail for modeling most electrical problems
- Delicate electrical problems simulated with a SPICE-like differential equation simulator

Delays

- Simulating circuits with delays does not improve confidence enough
- · Hard to get timing models accurate enough
- Never sure you've simulated the worst case
- Static timing analysis has taken its place

123

121

Compared to VHDL

- Verilog and VHDL are comparable languages
- VHDL has a slightly wider scope
 - System-level modeling
 - Exposes even more discrete-event machinery
- > VHDL is better-behaved
 - Fewer sources of nondeterminism (e.g., no shared variables ???)
- > VHDL is harder to simulate quickly
- > VHDL has fewer built-in facilities for hardware modeling
- VHDL is a much more verbose language
 - Most examples don't fit on slides