
The Verilog Language

Aleksandar Milenkovic
E-mail: milenka@ece.uah.edu
Web: http://www.ece.uah.edu/~milenka

2

Outline
Introduction
Basics of the Verilog Language
Operators
Hierarchy/Modules
Procedures and Assignments
Timing Controls and Delay
Control Statement
Logic-Gate Modeling
Modeling Delay
Other Verilog Features
Summary

3

The Verilog Language
Originally a modeling language
for a very efficient event-driven digital logic simulator
Later pushed into use as a specification language
for logic synthesis
Now, one of the two most commonly-used languages in
digital hardware design (VHDL is the other)
Combines structural and behavioral modeling styles

Introduction

4

Multiplexer Built From Primitives

a

b
sel

f
nsel f1

f2

g1

g2
g3

g4

Verilog programs built
from modules
Each module has
an interface

Module may contain
structure: instances of
primitives and other
modules

module mux(f, a, b, sel);
output f;
input a, b, sel;

and g1(f1, a, nsel),
g2(f2, b, sel);

or g3(f, f1, f2);
not g4(nsel, sel);

endmodule

Introduction

5

Multiplexer Built From Primitives

a

b
sel

f
nsel f1

f2

g1

g2
g3

g4

Identifiers not
explicitly defined
default to wires

module mux(f, a, b, sel);
output f;
input a, b, sel;

and g1(f1, a, nsel),
g2(f2, b, sel);

or g3(f, f1, f2);
not g4(nsel, sel);

endmodule

Introduction

6

Multiplexer Built With Always

a

b
sel

f

Modules may contain one
or more always blocks

Sensitivity list
contains signals
whose change
triggers the
execution of the
block

module mux(f, a, b, sel);
output f;
input a, b, sel;
reg f;

always @(a or b or sel)
if (sel) f = b;
else f = a;

endmodule

Introduction

7

Multiplexer Built With Always

a

b
sel

f

A reg behaves like memory:
holds its value until
imperatively assigned
otherwise

Body of an always
block contains
traditional imperative
code

module mux(f, a, b, sel);
output f;
input a, b, sel;
reg f;

always @(a or b or sel)
if (sel) f = a;
else f = b;

endmodule

Introduction

8

Mux with Continuous Assignment

a

b
sel

f

LHS is always set to the
value on the RHS
Any change on the right
causes reevaluation

module mux(f, a, b, sel);
output f;
input a, b, sel;

assign f = sel ? a : b;

endmodule

Introduction

9

Mux with User-Defined Primitive

a

b
sel

f

Behavior defined using a
truth table that includes
“don’t cares”

This is a less pessimistic
than others: when a & b
match, sel is ignored
(others produce X)

primitive mux(f, a, b, sel);
output f;
input a, b, sel;

table
1?0 : 1;
0?0 : 0;
?11 : 1;
?01 : 0;
11? : 1;
00? : 0;

endtable
endprimitive

Introduction

10

How Are Simulators Used?
Testbench generates stimulus and checks response
Coupled to model of the system
Pair is run simultaneously

Testbench System Model

Stimulus

Response
Result
checker

Introduction

11

Styles
Structural - instantiation of primitives and modules
RTL/Dataflow - continuous assignments
Behavioral - procedural assignments

Introduction

12

Structural Modeling
When Verilog was first developed (1984) most logic
simulators operated on netlists
Netlist: list of gates and how they’re connected
A natural representation of a digital logic circuit
Not the most convenient way to express test benches

Introduction

13

Behavioral Modeling
A much easier way to write testbenches
Also good for more abstract models of circuits

Easier to write
Simulates faster

More flexible
Provides sequencing

Verilog succeeded in part because it allowed both the
model and the testbench to be described together

Introduction

14

Style Example - Structural

module full_add (S, CO, A, B, CI) ;

output S, CO ;
input A, B, CI ;

wire N1, N2, N3;

half_add HA1 (N1, N2, A, B),
HA2 (S, N3, N1, CI);

or P1 (CO, N3, N2);

endmodule

module half_add (S, C, X, Y);

output S, C ;
input X, Y ;

xor (S, X, Y) ;
and (C, X, Y) ;

endmodule

Introduction

15

Style Example – Dataflow/RTL

module fa_rtl (S, CO, A, B, CI) ;

output S, CO ;
input A, B, CI ;

assign S = A ^ B ^ CI; //continuous assignment
assign CO = A & B | A & CI | B & CI; //continuous assignment

endmodule

Introduction

16

Style Example – Behavioral

module fa_bhv (S, CO, A, B, CI) ;

output S, CO ;
input A, B, CI ;

reg S, CO; // required to “hold” values between events.

always@(A or B or CI) //;
begin

S <= A ^ B ^ CI; // procedural assignment
CO <= A & B | A & CI | B & CI; // procedural assignment

end
endmodule

Introduction

17

How Verilog Is Used
Virtually every ASIC is designed using either Verilog or
VHDL (a similar language)
Behavioral modeling with some structural elements
“Synthesis subset”

Can be translated using Synopsys’ Design Compiler or others
into a netlist

Design written in Verilog
Simulated to death to check functionality
Synthesized (netlist generated)
Static timing analysis to check timing

Introduction

18

An Example: Counter
`timescale 1ns/1ns

module counter;
reg clock; // declare reg data type for the clock
integer count; // declare integer data type for the count

initial // initialize things - this executes once at start
begin

clock = 0; count = 0; // initialize signals
#340 $finish; // finish after 340 time ticks

end
/* an always statement to generate the clock, only one statement follows the always
so we don't need a begin and an end */

always
#10 clock = ~ clock; // delay is set to half the clock cycle

/* an always statement to do the counting, runs at the same time (concurrently) as
the other always statement */

always
begin

// wait here until the clock goes from 1 to 0
@ (negedge clock);
// now handle the counting
if (count == 7)

count = 0;
else

count = count + 1;
$display("time = ",$time," count = ", count);

end
endmodule

Introduction

19

An Example: Counter (cont’d)
Verilog using ModelSim

Assume working directory: cpe626/VlogExamples/Counter
Invoke ModelSim
Change Directory to cpe626/VlogExamples/Counter
Copy file counter.v to the working directory
Create a design library: vlib work
Compile counter.v: vlog counter.v
Start the simulator: vsim counter
Run the simulation: e.g., run 200ns
> run 200
time = 20 count = 1
time = 40 count = 2
time = 60 count = 3
time = 80 count = 4
time = 100 count = 5
time = 120 count = 6
time = 140 count = 7
time = 160 count = 0
time = 180 count = 1
time = 200 count = 2

Introduction

20

Outline
Introduction
Basics of the Verilog Language
Operators
Hierarchy/Modules
Procedures and Assignments
Timing Controls and Delay
Control Statement
Logic-Gate Modeling
Modeling Delay
Other Verilog Features
Summary

21

Basics of the Verilog Language
Language Conventions
Logic Values
Data Types
Wire Types
Numbers
Negative Numbers
Strings

22

Language Conventions
Case-sensitivity

Verilog is case-sensitive.
Some simulators are case-insensitive
Advice: - Don’t use case-sensitive feature!
Keywords are lower case

Different names must be used for different items
within the same scope
Identifier alphabet:

Upper and lower case alphabeticals
decimal digits
underscore

Basics of the
Verilog

23

Language Conventions (cont’d)
Maximum of 1024 characters in identifier
First character not a digit
Statement terminated by ;
Free format within statement except for within quotes
Comments:

All characters after // in a line are treated as a
comment
Multi-line comments begin with /* and end with */

Compiler directives begin with // synopsys
Built-in system tasks or functions begin with $
Strings enclosed in double quotes and must be on a single
line

Basics of the
Verilog

24

Four-valued Logic
Verilog’s nets and registers hold four-valued data

0, 1
Logical Zero, Logical One

z
Output of an undriven tri-state driver –
high-impedance value
Models case where nothing is setting a wire’s value

x
Models when the simulator can’t decide the value –
uninitialized or unknown logic value

o Initial state of registers
o When a wire is being driven to 0 and 1 simultaneously
o Output of a gate with z inputs

Basics of the
Verilog

25

Four-valued Logic (cont’d)
Logical operators work on three-valued logic

0 1 X Z

0 0 0 0 0
1 0 1 X X
X 0 X X X
Z 0 X X X

Output 0 if one input
is 0

Output X if both
inputs are gibberish

Basics of the
Verilog

26

Two Main Data Types
Nets represent connections between things

Do not hold their value
Take their value from a driver such as a gate or
other module
Cannot be assigned in an initial or always block

Regs represent data storage
Behave exactly like memory in a computer
Hold their value until explicitly assigned
in an initial or always block
Never connected to something
Can be used to model latches, flip-flops, etc.,
but do not correspond exactly
Shared variables with all their attendant problems

Basics of the
Verilog

27

Data Types
nets are further divided into several net types

wire, tri, supply0, ...
registers - stores a logic value - reg
integer - supports computation
time - stores time 64-bit unsigned
real - stores values as real num
realtime - stores time values as real numbers
event – an event data type

Wires and registers can be bits, vectors, and arrays

Basics of the
Verilog

28

Nets and Registers (cont’d)
Basics of the

Verilog

module declarations_4;
wire Data; // a scalar net of type wire
wire [31:0] ABus, DBus; // two 32-bit wide vector wires...
// DBus[31] = left-most = most-significant bit = msb
// DBus[0] = right-most = least-significant bit = lsb
// Notice the size declaration precedes the names
// wire [31:0] TheBus, [15:0] BigBus; // illegal
reg [3:0] vector; // a 4-bit vector register
reg [4:7] nibble; // msb index < lsb index
integer i;
initial begin
i = 1;
vector = 'b1010; // vector without an index
nibble = vector; // this is OK too
#1; $display("T=%0g",$time," vector=", vector," nibble=", nibble);
#2; $display("T=%0g",$time," Bus=%b",DBus[15:0]);
end
assign DBus [1] = 1; // this is a bit-select
assign DBus [3:0] = 'b1111; // this is a part-select
// assign DBus [0:3] = 'b1111; // illegal - wrong direction
endmodule

29

Nets and Registers (cont’d)
integer imem[0:1023]; // Array of 1024 integers
reg [31:0] dcache[0:63]; // A 64-word by 32-bit wide memory
time time_log[1:1000]; // as an array of regs
// real Illegal[1:10]; // Illegal. There are no real arrays.

Basics of the
Verilog

module declarations_5;
reg [31:0] VideoRam [7:0]; // a 8-word by 32-bit wide memory
initial begin
VideoRam[1] = 'bxz; // must specify an index for a memory
VideoRam[2] = 1;
VideoRam[7] = VideoRam[VideoRam[2]]; // need 2 clock cycles for this
VideoRam[8] = 1; // careful! the compiler won't complain!
// Verify what we entered:
$display("VideoRam[0] is %b",VideoRam[0]);
$display("VideoRam[1] is %b",VideoRam[1]);
$display("VideoRam[2] is %b",VideoRam[2]);
$display("VideoRam[7] is %b",VideoRam[7]);
end
endmodule

30

Net Types
wire - connectivity only
tri - same as wire, but will be 3-stated in hardware
wand - multiple drivers - wired and
wor - multiple drivers - wired or
triand - same as wand, but 3-state
trior - same as wor but 3-state
supply0 - Global net GND
supply1 - Global Net VCC (VDD)
tri0, tri1 – model resistive connections to VSS and VDD
trireg – like wire but associates some capacitance
with the net, so it can model charge storage

Basics of the
Verilog

31

Declarations: An Example
module declarations_1;

wire pwr_good,pwr_on,pwr_stable; // Explicitly declare wires
integer i; // 32-bit, signed (2's complement)
time t; // 64-bit, unsigned, behaves like a 64-bit reg
event e; // Declare an event data type
real r; // Real data type of implementation defined size

// assign statement continuously drives a wire...
assign pwr_stable = 1'b1; assign pwr_on = 1; // 1 or 1'b1
assign pwr_good = pwr_on & pwr_stable;
initial begin
$display("pwr_on=",pwr_on);
i = 123.456; // There must be a digit on either side
r = 123456e-3; // of the decimal point if it is present.
t = 123456e-3; // Time is rounded to 1 second by default.
$display("i=%0g",i," t=%6.2f",t," r=%f",r);
#2 $display("TIME=%0d",$time," ON=",pwr_on,

" STABLE=",pwr_stable," GOOD=",pwr_good);
end
endmodule

pwr_on=x
i=123 t=123.00 r=123.456000
TIME=2 ON=1 STABLE=1 GOOD=1

32

Register Assignment
A register may be assigned value only within:

a procedural statement
a user-defined sequential primitive
a task, or
a function.

A reg object may never be assigned value by:
a primitive gate output or
a continuous assignment

Examples
reg a, b, c;
reg [15:0] counter, shift_reg;
integer sum, difference;

Basics of the
Verilog

33

Constants & Strings

Constants

Strings
No explicit data type
Must be stored in reg (or array)

Basics of the
Verilog

parameter A = 2’b00, B = 2’b01, C = 2’b10;
parameter regsize = 8;

reg [regsize - 1:0]; /* illustrates use of parameter regsize */

reg [255:0] buffer; //stores 32 characters
parameter Tab = "\t"; // tab character
parameter NewLine = "\n"; // newline character
parameter BackSlash = "\\"; // back slash

34

Number Representation
Format: <size><base_format><number>

<size> - decimal specification of number of bits
o default is unsized and machine-dependent but at least 32 bits

<base format> - ' followed by arithmetic base of number
o <d> <D> - decimal - default base if no <base_format> given
o <h> <H> - hexadecimal
o <o> <O> - octal
o - binary

<number> - value given in base of <base_format>
o _ can be used for reading clarity
o If first character of sized, binary number 0, 1, x or z, will

extend 0, 1, x or z (defined later!)

Basics of the
Verilog

35

Number Representation
Examples:

6’b010_111 gives 010111
8'b0110 gives 00000110
4'bx01 gives xx01
16'H3AB gives 0000001110101011
24 gives 0…0011000
5'O36 gives 11100
16'Hx gives xxxxxxxxxxxxxxxx
8'hz gives zzzzzzzz

Basics of the
Verilog

36

Outline
Introduction
Basics of the Verilog Language
Operators
Hierarchy/Modules
Procedures and Assignments
Timing Controls and Delay
Control Statement
Logic-Gate Modeling
Modeling Delay
Other Verilog Features
Summary

37

Operators
Arithmetic (pair of operands, binary word)
[binary: +, -,*,/,%*]; [unary: +, -]
Bitwise (pair of operands, binary word)
[~, &,|,^,~^,^~]
Reduction (single operand, bit) [&,~&,|,~|,^,~^,^~]
Logical (pair of operands, boolean value)
[!,&&,||,==,!=,===,!==]
Relational (pair of operands, boolean value) [<,<=,>,>=]
Shift (single operand, binary word) [>>,<<]
Conditional ? : (three operands, expression)
Concatenation and Replications {,} {int{ }}

* unsupported for variables

Operators

38

Operators (cont’d)
Arithmetic

+ (addition),
- (subtraction),
* (multiplication),
/ (division),
% (modulus)

Bitwise
~ (negation), & (and), | (or), ^ (xor), ~^ (xnor)

Reduction
E.g.: &(0101) = 0
& (and), ~& (nand), | (or), ~| (nor), ^ (or), ~^ (xnor)

Logical
! (negation), && (and), || (or), == (equality), != (inequality),
=== (case equality), !== (case inequality)
=== : determines whether two words match identically on a bit-by-bit
basis, including bits that have values “x” and “z”

Operators

module modulo;
reg [2:0] Seven;
initial begin
#1 Seven = 7; #1 $display("Before=", Seven);
#1 Seven = Seven + 1; #1 $display("After =", Seven);
end

endmodule
Before=7
After =0

39

Operators (cont’d)
Relational

< (lt), <= (lte), > (gt), >= (gte)
Shift

<< (left shift), >> (right shift)
Conditional

E.g.: Y = (A==B) ? A: B
wire[15:0] bus_a = drive_bus_a ? data : 16’bz;

Concatenation
{4{a}} = {a, a, a, a}

Operators

40

Operators (cont’d)
Operators

module operators;
parameter A10xz = {1'b1,1'b0,1'bx,1'bz}; // concatenation
parameter A01010101 = {4{2'b01}}; // replication
// arithmetic operators: +, -, *, /, and modulus %
parameter A1 = (3+2) %2; // result of % takes sign of argument #1
// logical shift operators: << (left), >> (right)
parameter A2 = 4 >> 1; parameter A4 = 1 << 2; // zero fill
// relational operators: <, <=, >, >=
initial if (1 > 2) $stop;
// logical operators: ! (negation), && (and), || (or)
parameter B0 = !12; parameter B1 = 1 && 2;
reg [2:0] A00x; initial begin A00x = 'b111; A00x = !2'bx1; end
parameter C1 = 1 || (1/0); /* this may or may not cause an
error: the short-circuit behavior of && and || is undefined. An
evaluation including && or || may stop when an expression is known
to be true or false */
// == (logical equality), != (logical inequality)
parameter Ax = (1==1'bx); parameter Bx = (1'bx!=1'bz);
parameter D0 = (1==0); parameter D1 = (1==1);
...

41

Operators (cont’d)
Operators

...
parameter D0 = (1==0); parameter D1 = (1==1);
// === case equality, !== (case inequality)
// case operators only return true or false
parameter E0 = (1===1'bx); parameter E1 = 4'b01xz === 4'b01xz;
parameter F1 = (4'bxxxx === 4'bxxxx);
// bitwise logical:
// ~ (negation), & (and), | (inclusive or),
// ^ (exclusive or), ~^ or ^~ (equivalence)
parameter A00 = 2'b01 & 2'b10;
// unary logical reduction:
// & (and), ~& (nand), | (or), ~| (nor),
// ^ (xor), ~^ or ^~ (xnor)
parameter G1= & 4'b1111;
// conditional expression x = a ? b : c
// if (a) then x = b else x = c
reg H0, a, b, c; initial begin a=1; b=0; c=1; H0=a?b:c; end
reg[2:0] J01x, Jxxx, J01z, J011;
initial begin Jxxx = 3'bxxx; J01z = 3'b01z; J011 = 3'b011;
J01x = Jxxx ? J01z : J011; end // bitwise result
....

42

Expression Bit Widths
Depends on:

widths of operands and
types of operators

Verilog fills in smaller-width operands
by using zero extension.
Final or intermediate result width
may increase expression width
Unsized constant number - same as integer (usually 32bit)
Sized constant number - as specified
x op y where op is +, -, *, /, %, &, |, ^, ^~:

Arithmetic binary and bitwise
Bit width = max (width(x), width(y))

Operators

43

Expression Bit Widths (continued)
op x where op is +, -

Arithmetic unary
Bit width = width(x)

op x where op is ~
Bitwise negation
Bit width = width(x)

x op y where op is ==, !==, ===, !===, &&, ||, >, >=,
<, <= or op y where op is !, &, |, ^, ~&, ~|, ~^

Logical, relational and reduction
Bit width = 1

x op y where op is <<, >>
Shift
Bit width = width(x)

Operators

44

Expression Bit Widths (continued)
x ? y : z

Conditional
Bit width = max(width(y), width(z))

{x, …, y}
Concatenation
Bit width = width(x) + … + width(y)

{x{y, …, z}}
Replication
Bit width = x * (width(y) + … + width(z))

Operators

45

Expressions with Operands
Containing x or z

Arithmetic
If any bit is x or z, result is all x’s.
Divide by 0 produces all x’s.

Relational
If any bit is x or z, result is x.

Logical
== and != If any bit is x or z, result is x.
=== and !== All bits including x and z values must match
for equality

Operators

46

Expressions with Operands
Containing x or z (cont’d)

Bitwise
Defined by tables for 0, 1, x, z operands.

Reduction
Defined by tables as for bitwise operators.

Shifts
z changed to x. Vacated positions zero filled.

Conditional
If conditional expression is ambiguous (e.g., x or z), both
expressions are evaluated and bitwise combined as follows:
f(1,1) = 1, f(0,0) = 0, otherwise x.

Operators

47

Outline
Introduction
Basics of the Verilog Language
Operators
Hierarchy/Modules
Procedures and Assignments
Timing Controls and Delay
Control Statement
Logic-Gate Modeling
Modeling Delay
Other Verilog Features
Summary

48

Modules
Basic design units

Verilog program build from modules with I/O interfaces
Modules are:

Declared
Instantiated

Module interface is defined using ports

each port must be explicitly declared as one of
o input (wire or other net)
o output (reg or wire; can be read inside the module)
o inout (wire or other net)

Modules declarations cannot be nested
Modules may contain instances of other modules
Modules contain local signals, etc.
Module configuration is static and all run concurrently

Modules

49

Module Declaration
Basic structure of a Verilog module:

module mymod(output1, output2, … input1, input2);
output output1;
output [3:0] output2;
input input1;
input [2:0] input2;
…
endmodule

Modules

50

Module Declaration (cont’d)
Example:

/* module_keyword module_identifier (list of ports) */
module C24DecoderWithEnable (A, E, D);
input [1:0] A; // input_declaration
input E; // input_declaration
output [3:0] D; // output_declaration

assign D = {4{E}} & ((A == 2'b00) ? 4'b0001 :
(A == 2'b01) ? 4'b0010 :
(A == 2'b10) ? 4'b0100 :
(A == 2'b11) ? 4'b1000 :
4'bxxxx) ; // continuous_assign

endmodule

Modules

51

Module Declaration (cont’d)
Identifiers - must not be keywords!
Ports

First example of signals
Scalar: e. g., E
Vector: e. g., A[1:0], A[0:1], D[3:0], and D[0:3]

o Range is MSB to LSB
o Can refer to partial ranges - D[2:1]

Type: defined by keywords
o input
o output
o inout (bi-directional)

Modules

52

Module Instantiation
Instances of

look like

module mymod(y, a, b);

mymod mm1(y1, a1, b1); // Connect-by-position
mymod (y2, a1, b1),

(y3, a2, b2); // Instance names omitted
mymod mm2(.a(a2), .b(b2), .y(c2)); // Connect-by-name

Modules

53

Module Instantiation (cont’d)
Example: 4/16 decoder using 2/4 decoders

module C416DecoderWithEnable (A, E, D);
input [3:0] A ;
input E;
output [15:0] D ;

wire [3:0] S;

C24DecoderWithEnable DE (A[3:2], E, S);
C24DecoderWithEnable D0 (A[1:0], S[0], D[3:0]);
C24DecoderWithEnable D1 (A[1:0], S[1], D[7:4]);
C24DecoderWithEnable D2 (A[1:0], S[2], D[11:8]);
C24DecoderWithEnable D3 (A[1:0], S[3], D[15:12]);

endmodule

Modules

54

Module Instantiation (cont’d)
Example:

Single module instantiation for five module instances
...
C24DecoderWithEnable DE (A[3:2], E, S),

D0 (A[1:0], S_n[0], D[3:0]),
D1 (A[1:0], S_n[1], D[7:4]),
D2 (A[1:0], S_n[2], D[11:8]),
D3 (A[1:0], S_n[3], D[15:12]);

...

Modules

55

Connections
Position association

C24DecoderWithEnable DE (A[3:2], E, S);

Name association
C24DecoderWithEnable DE (.E(E), .A(A[3:2]), .D(S));

...
C24DecoderWithEnable DE (.E (E), .A (A[3:2]) .D (S));
// Note order in list no longer important
// (E and A interchanged).
// A = A[3:2], E = E, D = S
...

...
C24DecoderWithEnable DE (A[3:2], E, S);
// A = A[3:2], E = E, S = S
...

Modules

56

Connections (cont’d)
Empty Port Connections

...
// E is at high impedance state (z)
C24DecoderWithEnable DE (A[3:2],,S);
// Outputs S[3:0] are unused
C24DecoderWithEnable DE (A[3:2],E,);

Modules

57

Array of Instances

{ , } is concatenate
Example

module add_array (A, B, CIN, S, COUT) ;

input [7:0] A, B ;
input CIN ;
output [7:0] S ;
output COUT ;

wire [7:1] carry;

full_add FA[7:0] (A,B,{carry, CIN},S,{COUT, carry});
// full_add is a module

endmodule

Modules

58

Outline
Introduction
Basics of the Verilog Language
Operators
Hierarchy/Modules
Procedures and Assignments
Timing Controls and Delay
Control Statement
Logic-Gate Modeling
Modeling Delay
Other Verilog Features
Summary

59

Procedures and Assignments
Verilog procedures

initial and always statements
tasks
functions

Sequential block: a group of statements
that appear between a begin and an end

executed sequentially
considered as a statement – can be nested

Procedures execute concurrently with other procedures
Assignment statements

continuous assignments: appear outside procedures
procedural assignments: appear inside procedures

Procedures

60

Assignments
Continuous assignment

Procedural assignment

module holiday_1(sat, sun, weekend);
input sat, sun; output weekend;
assign weekend = sat | sun; // outside a procedure

endmodule

module holiday_2(sat, sun, weekend);
input sat, sun; output weekend; reg weekend;
always #1 weekend = sat | sun; // inside a procedure

endmodule

module assignments
// continuous assignments go here

always begin
// procedural assignments go here

end
endmodule

Procedures

61

Continuous Assignments
Convenient for logical or datapath specifications

Define bus widths

Continuous
assignment:
permanently sets the
value of sum to be
a+b+carryin
Recomputed when a,
b, or carryin changes

wire [8:0] sum;
wire [7:0] a, b;
wire carryin;

assign sum = a + b + carryin;

Procedures

62

Continuous Assignment (cont’d)
module assignment_1();
wire pwr_good, pwr_on, pwr_stable; reg Ok, Fire;
assign pwr_stable = Ok & (!Fire);
assign pwr_on = 1;
assign pwr_good = pwr_on & pwr_stable;
initial begin Ok = 0; Fire = 0; #1 Ok = 1; #5 Fire = 1; end
initial begin $monitor("TIME=%0d",$time," ON=",pwr_on, " STABLE=",

pwr_stable," OK=",Ok," FIRE=",Fire," GOOD=",pwr_good);
#10 $finish; end

endmodule
>>>
TIME=0 ON=1 STABLE=0 OK=0 FIRE=0 GOOD=0
TIME=1 ON=1 STABLE=1 OK=1 FIRE=0 GOOD=1
TIME=6 ON=1 STABLE=0 OK=1 FIRE=1 GOOD=0

Procedures

63

Sequential Block
Sequential block may appear in an always or
initial statement

initial

begin

… imperative statements …

end

Runs when simulation starts
Terminates when control
reaches the end
(one time sequential activity flow)
Good for providing stimulus
(testbenches); not synthesizable

always

begin

… imperative statements …

end

Runs when simulation starts
Restarts when control
reaches the end
(cycle sequential activity flow)
Good for modeling/specifying
hardware

Procedures

64

Initial and Always
Run until they encounter a delay

or a wait for an event

initial begin
#10 a = 1; b = 0;
#10 a = 0; b = 1;

end

always @(posedge clk) q = d; // edge-sensitive ff
always

begin
wait(i); a = 0;
wait(~i); a = 1;

end

Procedures

65

Initial and Always (cont’d)
module always_1; reg Y, Clk;
always // Statements in an always statement execute repeatedly:
begin: my_block // Start of sequential block.
@(posedge Clk) #5 Y = 1; // At +ve edge set Y=1,
@(posedge Clk) #5 Y = 0; // at the NEXT +ve edge set Y=0.

end // End of sequential block.
always #10 Clk = ~ Clk; // We need a clock.
initial Y = 0; // These initial statements execute
initial Clk = 0; // only once, but first.
initial $monitor("T=%2g",$time," Clk=",Clk," Y=",Y);
initial #70 $finish;
endmodule

Procedures

>>>>
T= 0 Clk=0 Y=0
T=10 Clk=1 Y=0
T=15 Clk=1 Y=1
T=20 Clk=0 Y=1
T=30 Clk=1 Y=1
T=35 Clk=1 Y=0
T=40 Clk=0 Y=0
T=50 Clk=1 Y=0
T=55 Clk=1 Y=1
T=60 Clk=0 Y=1

66

Procedural Assignment
Inside an initial or always block:

sum = a + b + cin;

Just like in C: RHS evaluated and assigned to LHS
before next statement executes

RHS may contain wires and regs
Two possible sources for data

LHS must be a reg
Primitives or cont. assignment may set wire values

Procedures

67

Outline
Introduction
Basics of the Verilog Language
Operators
Hierarchy/Modules
Procedures and Assignments
Timing Control and Delay
Control Statement
Logic-Gate Modeling
Modeling Delay
Other Verilog Features
Summary

68

Timing Control
Statements within a sequential block are executed in order
In absence of any delay they will execute at the same
simulation time – the current time stamp
Timing control

Delay control
Event control

Delay control –
delays an assignment by a specified amount of time
Event control –
delays an assignment until a specified event occur

Timing Control

69

Delay control
Timescale compiler directive

Intra-assignment delay vs. delayed assignment

`timescale 1ns/10ps // Units of time are ns. Round times to 10 ps.
// Allowed unit/precision values: {1 | 10 | 100, s | ms | us | ns | ps}

x = #1 y; // intra-assignment delay
// Equivalent to intra-assignment delay.
begin
hold = y; // Sample and hold y immediately.
#1; // Delay.
x = hold; // Assignment to x. Overall same as x = #1 y.
end

#1 x = y; // delayed assignment
// Equivalent to delayed assignment.
begin
#1; // Delay.
x = y; // Assign y to x. Overall same as #1 x = y.
end

Timing Control

70

Event control
posedge – 0 => 1, 0 => x, x => 1
negedge – 1 => 0, 1 => x, x => 0

Timing Control

event_control ::= @ event_identifier | @ (event_expression)
event_expression ::= expression | event_identifier
| posedge expression | negedge expression
| event_expression or event_expression

module show_event;
reg clock;
event event_1, event_2; // Declare two named events.
always @(posedge clock) -> event_1; // Trigger event_1.
always @ event_1
begin $display("Strike 1!!"); -> event_2; end // Trigger event_2.
always @ event_2 begin $display("Strike 2!!");
$finish; end // Stop on detection of event_2.
always #10 clock = ~ clock; // We need a clock.
initial clock = 0;
endmodule
Strike 1!!
Strike 2!!

71

Event control (cont’d)
Timing Control

module delay_controls; reg X, Y, Clk, Dummy;
always #1 Dummy=!Dummy; // Dummy clock, just for graphics.
// Examples of delay controls:
always begin #25 X=1;#10 X=0;#5; end
// An event control:
always @(posedge Clk) Y=X; // Wait for +ve clock edge.
always #10 Clk = !Clk; // The real clock.
initial begin Clk = 0;
$display("T Clk X Y");
$monitor("%2g",$time,,,Clk,,,,X,,Y);
$dumpvars;#100 $finish; end

endmodule

T Clk X Y
0 0 x x
10 1 x x
20 0 x x
25 0 1 x
30 1 1 1
35 1 0 1
40 0 0 1
50 1 0 0
60 0 0 0
65 0 1 0
70 1 1 1
75 1 0 1
80 0 0 1
90 1 0 0

72

Data Slip Problem
module data_slip_1 (); reg Clk, D, Q1, Q2;
/************* bad sequential logic below ***************/
always @(posedge Clk) Q1 = D;
always @(posedge Clk) Q2 = Q1; // Data slips here!
/************* bad sequential logic above ***************/
initial begin Clk = 0; D = 1; end always #50 Clk = ~Clk;
initial begin $display("t Clk D Q1 Q2");
$monitor("%3g",$time,,Clk,,,,D,,Q1,,,Q2); end
initial #400 $finish; // Run for 8 cycles.
initial $dumpvars;
endmodule

t Clk D Q1 Q2
0 0 1 x x
50 1 1 1 1
100 0 1 1 1
150 1 1 1 1
200 0 1 1 1
250 1 1 1 1
300 0 1 1 1
350 1 1 1 1

always @(posedge Clk) Q1 = #1 D; // The delays in the assgn.
always @(posedge Clk) Q2 = #1 Q1;// fix the data slip.

t Clk D Q1 Q2
0 0 1 x x
50 1 1 x x
51 1 1 1 x
100 0 1 1 x
150 1 1 1 x
151 1 1 1 1
200 0 1 1 1
250 1 1 1 1
300 0 1 1 1
350 1 1 1 1

Timing Control

73

Wait Statement
Suspends a procedure until a condition becomes true

there must be another concurrent procedure that alters the
condition – otherwise we have an “infinite hold”

module test_dff_wait;
reg D, Clock, Reset; dff_wait u1(D, Q, Clock, Reset);
initial begin D=1; Clock=0;Reset=1'b1; #15 Reset=1'b0; #20
D=0; end
always #10 Clock = !Clock;
initial begin $display("T Clk D Q Reset");
$monitor("%2g",$time,,Clock,,,,D,,Q,,Reset); #50 $finish;

end
endmodule

module dff_wait(D, Q, Clock, Reset);
output Q; input D, Clock, Reset; reg Q; wire D;
always @(posedge Clock) if (Reset !== 1) Q = D;
always begin wait (Reset == 1) Q = 0; wait (Reset !== 1);
end
endmodule

T Clk D Q Reset
0 0 1 0 1
10 1 1 0 1
15 1 1 0 0
20 0 1 0 0
30 1 1 1 0
35 1 0 1 0
40 0 0 1 0

Timing Control

74

Blocking and Nonblocking Assignments
Fundamental problem:

In a synchronous system, all flip-flops sample simultaneously
In Verilog, always @(posedge clk) blocks run in some
undefined sequence

reg d1, d2, d3, d4;

always @(posedge clk) d2 = d1;
always @(posedge clk) d3 = d2;
always @(posedge clk) d4 = d3;

reg d1, d2, d3, d4;

always @(posedge clk) d2 <= d1;
always @(posedge clk) d3 <= d2;
always @(posedge clk) d4 <= d3;

Nonblocking: RHS evaluated
when assignment runs

LHS updated only after all
events for the current
instant have run

Blocking: assignments are
evaluated in some order, but we
do not know in what

Timing Control

75

Blocking and Nonblocking Assignments
A sequence of nonblocking assignments don’t
communicate

a = 1;
b = a;
c = b;

Blocking assignment:
a = b = c = 1

a <= 1;
b <= a;
c <= b;

Nonblocking assignment:
a = 1
b = old value of a
c = old value of b

Timing Control

76

Nonblocking Looks Like Latches
RHS of nonblocking taken from latches
RHS of blocking taken from wires

a = 1;
b = a;
c = b;

a <= 1;
b <= a;
c <= b;

1
a b c“ ”

a

b

c

1

“ ”

Timing Control

77

Task and Functions
Task – type of a procedure called from another procedure

has inputs and outputs but does not return a value
may call other tasks and functions
may contain timing controls

Function – procedure used in any expression
has at least one input, no outputs, and return a single value
may not call a task
may not contain timing controls

Tasks and
functions

78

Control Statements
If statement

Case statement

Casex statement –
handles x and z as don’t care

Casez statement –
handles only z bits as don’t care

if (select == 1) y = a;
else y = b;

case (op)
2’b00: y = a + b;
2’b01: y = a – b;
2’b10: y = a ^ b;
default: y = ‘hxxxx;

endcase

casex (opcode)
3’b??1: y = a + b;
3’b?1?: y = a - b;

endcase

Control statements

79

Control Statements (cont’d)
Loop statements:
for, while, repeat, forever

integer i; reg [15:0] Dbus;
initial Dbus = 0;
// for loop
for (i = 0 ; i <= 15 ; i = i + 1)
begin
Dbus[i] = 1;

end
// while loop
i = 0;
while (i <= 15)
begin

Dbus[i] = 1;
i = i + 1;

end

...
// repeat loop
i = 0;
repeat (16)
begin
Dbus[i] = 1;
i = i + 1;

end
// forever loop
i = 0;
forever
begin: my_loop
Dbus[i] = 1;
if (i == 15) #1 disable my_loop
// let time advance to exit
i = i + 1;

end

Control statements

80

Control Statements (cont’d)
Disable statement - stops the
execution of a labeled
sequential block and skips to
the end of the block

Fork statement and
join statement – allows
execution of two or more
parallel threads in a parallel
block

forever
begin: cpu_block
// Labeled sequential block.
@(posedge clock)
if (reset) disable cpu_block;

// Skip to end of block.
else Execute_code;

end

module fork_1
event eat_breakfast, read_paper;
initial begin
fork
@eat_breakfast; @read_paper;
join

end
endmodule

Control statements

81

Gate Level Modeling
Verilog provides the following primitives:

and, nand - logical AND/NAND
or, nor - logical OR/NOR
xor, xnor - logical XOR/XNOR
buf, not - buffer/inverter
bufif0, notif0 - Tristate with low enable
bifif1, notif1 - Tristate with high enable

No declaration; can only be instantiated
All output ports appear in list before any input ports
Optional drive strength, delay, name of instance

Gate level modeling

82

Gate-level Modeling (cont’d)
Example:

and N25(Z, A, B, C); //instance name

and #10 (Z, A, B, X); // delay

(X, C, D, E); //delay

/*Usually better to provide instance name for debugging.*/

or N30(SET, Q1, AB, N5),

N41(N25, ABC, R1);

buf b1(a, b); // Zero delay

buf #3 b2(c, d); // Delay of 3

buf #(4,5) b3(e, f); // Rise=4, fall=5

buf #(3:4:5) b4(g, h); // Min-typ-max

Gate level modeling

83

User-Defined Primitives (UDPs)
Way to define gates and sequential elements
using a truth table
Often simulate faster than using expressions,
collections of primitive gates, etc.
Gives more control over behavior with x inputs
Most often used for specifying custom gate libraries

Gate level modeling

84

A Carry Primitive

Always have exactly
one output

Truth table may
include don’t-care (?)
entries

primitive carry(out, a, b, c);
output out;
input a, b, c;
table

00? : 0;
0?0 : 0;
?00 : 0;
11? : 1;
1?1 : 1;
?11 : 1;

endtable
endprimitive

Gate level modeling

85

A Sequential Primitive
Primitive dff(q, clk, data);
output q; reg q;
input clk, data;
table
// clk data q new-q
(01) 0 : ? : 0; // Latch a 0
(01) 1 : ? : 1; // Latch a 1
(0x) 1 : 1 : 1; // Hold when d and q both 1
(0x) 0 : 0 : 0; // Hold when d and q both 0
(?0) ? : ? : -; // Hold when clk falls
? (??) : ? : -; // Hold when clk stable

endtable
endprimitive

Shorthand notations:

- * is (??) - r is (01) - f is (10)

- p is (01), (0x), or (x1) - n is (10), (1x), (x0)

Gate level modeling

86

Switch-level Primitives (FIO)
Verilog also provides mechanisms for modeling CMOS transistors
that behave like switches
A more detailed modeling scheme that can catch some additional
electrical problems when transistors are used in this way
Now, little-used because circuits generally aren’t built this way
More seriously, model is not detailed enough to
catch many of the problems
These circuits are usually simulated using SPICE-like simulators
based on nonlinear differential equation solvers
Switch Level

*mos where * is p, c, rn, rp, rc; pullup, pulldown;
*tran+ where * is (null), r and + (null), if0, if1 with both
* and + not (null)

Gate level modeling

87

Delay Uses and Types
Ignored by synthesizers;
may be useful for simulation
Uses

Behavioral (Pre-synthesis) Timing Simulation
Testbenches
Gate Level (Post-synthesis and Pre-Layout)
Timing Simulation
Post-Layout Timing Simulation

Types
Gate Delay (Inertial Delay)
Net Delay (Transport Delay)
Module Path Delay

Modeling delay

88

Transport and Inertial Delay
Transport delay - pure time delay
Inertial delay

Multiple events cannot occur on the output in a time less
than the delay.

Example AND with delay = 2

A

B

C
C

Transport Delay
Inertial Delay

1 ns

Modeling delay

89

Gate Delay - Examples

nd01 has a delay of 3 ns (assuming ns timescale)
for both falling and rising delays
nd02 has a triplet for the delay
(min is 2.6 ns, typ is 3.0 ns, max is 3.4)
nd03 has two triplets for the delay

first triplet specifies min/typ/max for rising delay
second triplet specifies min/typ/max for falling delay

For primitives which can produce high-impedance output
we can specify turn-off triplet

Modeling delay

nand #3.0 nd01(c, a, b);
nand #(2.6:3.0:3.4) nd02(d, a, b); // min:typ:max
nand #(2.8:3.2:3.4, 2.6:2.8:2.9) nd03(e, a, b);
// #(rising, falling) delay

90

Net Delay (Transport)

Example - Continuous Assignment
For rising output from x1 to N25, 200 + 40 = 240 ps

Example - Implicit Continuous Assignment
For rising output from x1 to N25, 240 ps

Modeling delay

#(1.1:1.3:1.7) assign delay_a = a; // min:typ:max
wire #(1.1:1.3:1.7) a_delay; // min:typ:max
wire #(1.1:1.3:1.7) a_delay = a; // min:typ:max

`timescale 10ps /1ps
wire #4 N25;// transport delay
assign #(20,30) N25 = ~ (x1 | x2); // inertial delay

timescale 10ps /1ps
wire #(24,34) N25 = ~ (x1 | x2);//inertial delay only

91

Module Delay
Example: norf201 – 3-input nor gate from a 1.2um CMOS

Modeling delay

module norf201(o, a1, b1);
output o;
input a1, b1;

nor(o, a1, b1);
specify // module paths

(a1, b1 *> o) = (0.179:0.349:0.883, 0:084:0.169:0.466);
endspecify;

endmodule;

92

Outline
Introduction
Basics of the Verilog Language
Operators
Hierarchy/Modules
Procedures and Assignments
Timing Controls and Delay
Control Statement
Logic-Gate Modeling
Modeling Delay
Other Verilog Features
Summary

93

Altering Parameters
Use parameter

Override the parameter in instantiation

Or using defparam

module Vector_And(Z, A, B);
parameter CARDINALITY = 1;
input [CARDINALITY-1:0] A, B;
output [CARDINALITY-1:0] Z;
wire [CARDINALITY-1:0] Z = A & B;

endmodule

module Four_And_Gates(OutBus, InBusA, InBusB);
input [3:0] InBusA, InBusB; output [3:0] OutBus;
Vector_And #(4) My_AND(OutBus, InBusA, InBusB); // 4 AND gates

endmodule

module And_Gates(OutBus, InBusA, InBusB);
parameter WIDTH = 1;
input [WIDTH-1:0] InBusA, InBusB; output [WIDTH-1:0] OutBus;
Vector_And #(WIDTH) My_And(OutBus, InBusA, InBusB);

endmodule
module Super_Size; defparam And_Gates.WIDTH = 4; endmodule

Other Verilog
features

94

Modeling FSMs Behaviorally
There are many ways to do it:

Define the next-state logic combinationally
and define the state-holding latches explicitly

Define the behavior in a single always @(posedge clk)
block

Variations on these themes

Other Verilog
features

95

FSM with Combinational Logic

Combinational block
must be sensitive to
any change on any of
its inputs
(Implies state-holding
elements otherwise)

Output o is declared a reg
because it is assigned
procedurally, not because
it holds state

module FSM(o, a, b, reset);
output o;
reg o;
input a, b, reset;
reg [1:0] state, nextState;

always @(a or b or state)
case (state)

2’b00: begin
nextState = a ? 2’b00 : 2’b01;
o = a & b;

end
2’b01: begin nextState = 2’b10; o = 0; end

endcase

Other Verilog
features

96

FSM with Combinational Logic

Latch implied by
sensitivity to the clock
or reset only

module FSM(o, a, b, reset);
…

always @(posedge clk or reset)
if (reset)
state <= 2’b00;

else
state <= nextState;

Other Verilog
features

97

FSM from Combinational Logic

This is a Mealy machine
because the output is
directly affected by any
change on the input

always @(a or b or state)
case (state)

2’b00: begin
nextState = a ? 2’b00 : 2’b01;
o = a & b;

end
2’b01: begin nextState = 2’b10; o = 0; end

endcase

always @(posedge clk or reset)
if (reset)
state <= 2’b00;

else
state <= nextState;

Other Verilog
features

98

FSM from a Single Always Block
Expresses Moore
machine behavior:
Outputs are latched
Inputs only sampled at
clock edges

Nonblocking
assignments used
throughout to ensure
coherency.
RHS refers to values
calculated in previous
clock cycle

module FSM(o, a, b);
output o; reg o;
input a, b;
reg [1:0] state;

always @(posedge clk or reset)
if (reset) state <= 2’b00;
else case (state)
2’b00: begin

state <= a ? 2’b00 : 2’b01;
o <= a & b;

end
2’b01: begin state <= 2’b10; o <= 0; end

endcase

Other Verilog
features

99

Writing Testbenches

Inputs to device under test

Device under test
$monitor is a built-in event
driven “printf”

Stimulus generated by
sequence of assignments
and delays

module test;
reg a, b, sel;

mux m(y, a, b, sel);

initial begin
$monitor($time,, “a = %b b=%b sel=%b y=%b”,

a, b, sel, y);
a = 0; b= 0; sel = 0;
#10 a = 1;
#10 sel = 1;
#10 b = 1;

end

Other Verilog
features

100

Simulation Behavior
Scheduled using an event queue
Non-preemptive, no priorities
A process must explicitly request a context switch
Events at a particular time unordered

Scheduler runs each event at the current time,
possibly scheduling more as a result

Other Verilog
features

101

Two Types of Events
Evaluation events compute functions of inputs
Update events change outputs
Split necessary for delays, nonblocking assignments, etc.

Evaluation event reads
values of b and c, adds
them, and schedules
an update event

a <= b + cUpdate event writes
new value of a and
schedules any
evaluation events
that are sensitive to
a change on a

Other Verilog
features

102

Simulation Behavior
Concurrent processes (initial, always) run until they stop
at one of the following

#42
Schedule process to resume 42 time units from now

wait(cf & of)
Resume when expression “cf & of” becomes true

@(a or b or y)
Resume when a, b, or y changes

@(posedge clk)
Resume when clk changes from 0 to 1

Other Verilog
features

103

Simulation Behavior (cont’d)
Infinite loops are possible and
the simulator does not check for them
This runs forever: no context switch allowed,
so ready can never change

while (~ready)
count = count + 1;

Instead, use

wait(ready);

Other Verilog
features

104

Simulation Behavior (cont’d)
Race conditions abound in Verilog

These can execute in either order -
final value of a undefined:

always @(posedge clk) a = 0;
always @(posedge clk) a = 1;

Other Verilog
features

105

Compiled-Code Discrete-Event Sim.
Most modern simulators use this approach
Verilog program compiled into C
Each concurrent process (e.g., continuous assignment,
always block) becomes one or more C functions
Initial and always blocks split into multiple functions, one
per segment of code between a delay, a wait, or event
control (@)
Central, dynamic event queue invokes these functions and
advances simulation time

Other Verilog
features

106

Verilog and Logic Synthesis
Verilog is used in two ways

Model for discrete-event simulation
Specification for a logic synthesis system

Logic synthesis converts a subset of the Verilog language
into an efficient netlist
One of the major breakthroughs in designing logic chips in
the last 20 years
Most chips are designed using at least some logic
synthesis

Other Verilog
features

107

Logic Synthesis
Takes place in two stages:

Translation of Verilog (or VHDL) source to a netlist
Register inference

Optimization of the resulting netlist to improve
speed and area

Most critical part of the process
Algorithms very complicated and beyond the scope of this
class

Other Verilog
features

108

Logic Optimization
Netlist optimization the critical enabling technology
Takes a slow or large netlist and transforms it into one
that implements the same function more cheaply

Typical operations
Constant propagation
Common subexpression elimination
Function factoring

Time-consuming operation
Can take hours for large chips

Other Verilog
features

109

Translating Verilog into Gates
Parts of the language easy to translate

Structural descriptions with primitives
o Already a netlist

Continuous assignment
o Expressions turn into little datapaths

Behavioral statements the bigger challenge

Other Verilog
features

110

What Can Be Translated
Structural definitions

Everything
Behavioral blocks

Depends on sensitivity list
Only when they have reasonable interpretation as
combinational logic, edge, or level-sensitive latches
Blocks sensitive to both edges of the clock, changes on
unrelated signals, changing sensitivity lists, etc. cannot be
synthesized

User-defined primitives
Primitives defined with truth tables
Some sequential UDPs can’t be translated (not latches or
flip-flops)

Other Verilog
features

111

What Isn’t Translated
Initial blocks

Used to set up initial state or describe finite testbench stimuli
Don’t have obvious hardware component

Delays
May be in the Verilog source, but are simply ignored

A variety of other obscure language features
In general, things heavily dependent on discrete-event
simulation semantics
Certain “disable” statements
Pure events

Other Verilog
features

112

Register Inference
The main trick

reg does not always equal latch

Rule: Combinational if outputs always depend exclusively
on sensitivity list
Sequential if outputs may also depend on previous values

Other Verilog
features

113

Register Inference
Combinational:

Sequential

Sensitive to changes on
all of the variables it
reads

Y is always assigned

q only assigned when clk is 1

reg y;
always @(a or b or sel)
if (sel) y = a;
else y = b;

reg q;
always @(d or clk)
if (clk) q = d;

Other Verilog
features

114

Register Inference
A common mistake is not completely specifying a case
statement
This implies a latch:

f is not assigned when
{a,b} = 2b’11always @(a or b)

case ({a, b})
2’b00 : f = 0;
2’b01 : f = 1;
2’b10 : f = 1;

endcase

Other Verilog
features

115

Register Inference
The solution is to always have a default case

f is always assigned

always @(a or b)
case ({a, b})

2’b00: f = 0;
2’b01: f = 1;
2’b10: f = 1;
default: f = 0;

endcase

Other Verilog
features

116

Inferring Latches with Reset
Latches and Flip-flops often have reset inputs
Can be synchronous or asynchronous

Asynchronous positive reset:

always @(posedge clk or posedge reset)
if (reset)
q <= 0;

else q <= d;

Other Verilog
features

117

Simulation-synthesis Mismatches
Many possible sources of conflict

Synthesis ignores delays (e.g., #10), but simulation
behavior can be affected by them
Simulator models X explicitly, synthesis doesn’t
Behaviors resulting from shared-variable-like behavior of
regs is not synthesized

always @(posedge clk) a = 1;
New value of a may be seen by other @(posedge clk)
statements in simulation, never in synthesis

Other Verilog
features

118

Outline
Introduction
Basics of the Verilog Language
Operators
Hierarchy/Modules
Procedures and Assignments
Timing Controls and Delay
Control Statement
Logic-Gate Modeling
Modeling Delay
Other Verilog Features
Summary

119

Summary of Verilog
Systems described hierarchically

Modules with interfaces
Modules contain instances of primitives, other modules
Modules contain initial and always blocks

Based on discrete-event simulation semantics
Concurrent processes with sensitivity lists
Scheduler runs parts of these processes in response to
changes

Summary

120

Modeling Tools
Switch-level primitives

CMOS transistors as switches that move around charge
Gate-level primitives

Boolean logic gates
User-defined primitives

Gates and sequential elements defined with truth tables
Continuous assignment

Modeling combinational logic with expressions
Initial and always blocks

Procedural modeling of behavior

Summary

121

Language Features
Nets (wires) for modeling interconnection

Non state-holding
Values set continuously

Regs for behavioral modeling
Behave exactly like memory for imperative modeling
Do not always correspond to memory elements in
synthesized netlist

Blocking vs. nonblocking assignment
Blocking behaves like normal “C-like” assignment
Nonblocking updates later for modeling synchronous
behavior

Summary

122

Language Uses
Event-driven simulation

Event queue containing things to do at particular simulated
times
Evaluate and update events
Compiled-code event-driven simulation for speed

Logic synthesis
Translating Verilog (structural and behavioral) into netlists
Register inference: whether output is always updated
Logic optimization for cleaning up the result

Summary

123

Little-used Language Features
Switch-level modeling

Much slower than gate or behavioral-level models
Insufficient detail for modeling most electrical problems
Delicate electrical problems simulated with a SPICE-like
differential equation simulator

Delays
Simulating circuits with delays does not improve confidence
enough
Hard to get timing models accurate enough
Never sure you’ve simulated the worst case
Static timing analysis has taken its place

Summary

124

Compared to VHDL
Verilog and VHDL are comparable languages
VHDL has a slightly wider scope

System-level modeling
Exposes even more discrete-event machinery

VHDL is better-behaved
Fewer sources of nondeterminism
(e.g., no shared variables ???)

VHDL is harder to simulate quickly
VHDL has fewer built-in facilities for hardware modeling
VHDL is a much more verbose language

Most examples don’t fit on slides

Summary

