
•2/2/2004

•Aleksandar Milenkovich •1

CPE 631 Lecture 06:
Cache Design

Aleksandar Milenkovic, milenka@ece.uah.edu
Electrical and Computer Engineering
University of Alabama in Huntsville

02/02/2004 UAH-CPE631 2

CPE
631
 AM

Outline

n Cache Performance

n How to Improve Cache Performance

02/02/2004 UAH-CPE631 3

CPE
631
 AM

Review: Caches

n The Principle of Locality:
– Program access a relatively small portion of the address space at

any instant of time.
• Temporal Locality: Locality in Time
• Spatial Locality: Locality in Space

n Three Major Categories of Cache Misses:
– Compulsory Misses: sad facts of life. Example: cold start misses.

– Capacity Misses: increase cache size
– Conflict Misses: increase cache size and/or associativity

n Write Policy:
– Write Through: needs a write buffer.
– Write Back: control can be complex

n Today CPU time is a function of (ops, cache misses) vs. just
f(ops): What does this mean to
Compilers, Data structures, Algorithms?

02/02/2004 UAH-CPE631 4

CPE
631
 AM

Review:
The Cache Design Space

n Several interacting dimensions
– cache size
– block size
– associativity
– replacement policy
– write-through vs write-back

n The optimal choice is a compromise
– depends on access characteristics

• workload
• use (I-cache, D-cache, TLB)

– depends on technology / cost
n Simplicity often wins

Associativity

Cache Size

Block Size

Bad

Good

Less More

Factor A Factor B

•2/2/2004

•Aleksandar Milenkovich •2

02/02/2004 UAH-CPE631 5

CPE
631
 AM

AMAT and Processor Performance

n Miss-oriented Approach to Memory Access
– CPIExec includes ALU and Memory instructions

rateClock

yMissPenaltMissRate
Inst

MemAccess
CPIIC

timeCPU
Exec

 ××+×

=

rateClock

yMissPenalt
Inst

MemMissesCPIIC
timeCPU

Exec

 ×+×

=

02/02/2004 UAH-CPE631 6

CPE
631
 AM

AMAT and Processor Performance (cont’d)

n Separating out Memory component entirely
– AMAT = Average Memory Access Time
– CPIALUOps does not include memory instructions

rateClock

AMAT
Inst

MemAccessCPI
Inst

ALUopsIC
timeCPU

ALUops

 ×+××

=

)(%

)(%

DataDataData

InstinstInst

PenaltyMissRateMisstimeHitdata

PenaltyMissRateMisstimeHitnsinstructio

PenaltyMissRateMisstimeHitAMAT

×+×+
×+×=

×+=

02/02/2004 UAH-CPE631 7

CPE
631
 AM

How to Improve Cache Performance?

n Cache optimizations
– 1. Reduce the miss rate
– 2. Reduce the miss penalty
– 3. Reduce the time to hit in the cache

yMissPenaltMissRateHitTimeAMAT ×+=

02/02/2004 UAH-CPE631 8

CPE
631
 AM

Where Misses Come From?

n Classifying Misses: 3 Cs
– Compulsory — The first access to a block is not in the cache,

so the block must be brought into the cache.
Also called cold start misses or first reference misses.
(Misses in even an Infinite Cache)

– Capacity — If the cache cannot contain all the blocks needed during
execution of a program, capacity misses will occur due to blocks
being discarded and later retrieved.
(Misses in Fully Associative Size X Cache)

– Conflict — If block-placement strategy is set associative or direct
mapped, conflict misses (in addition to compulsory & capacity
misses) will occur because a block can be discarded and later
retrieved if too many blocks map to its set. Also called collision
misses or interference misses.
(Misses in N-way Associative, Size X Cache)

n More recent, 4th “C”:
– Coherence — Misses caused by cache coherence.

•2/2/2004

•Aleksandar Milenkovich •3

02/02/2004 UAH-CPE631 9

CPE
631
 AM

3Cs Absolute Miss Rate (SPEC92)

Cache Size (KB)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1 2 4 8

16 32 64

12
8

1-way

2-way

4-way

8-way

Capacity

Compulsory

Conflict

- 8-way: conflict misses due to going from
fully associative to 8 -way assoc.
- 4-way: conflict misses due to going from
8-way to 4-way assoc.
- 2-way: conflict misses due to going from
4-way to 2-way assoc.
- 1-way: conflict misses due to going from
2-way to 1-way assoc. (direct mapped)

02/02/2004 UAH-CPE631 10

CPE
631
 AM

3Cs Relative Miss Rate

Cache Size (KB)

0%

20%

40%

60%

80%

100%

1 2 4 8

16 32 64

12
8

1-way

2-way
4-way

8-way

Capacity

Compulsory

Conflict

02/02/2004 UAH-CPE631 11

CPE
631
 AM

Cache Organization?

n Assume total cache size not changed

n What happens if:
1) Change Block Size

2) Change Cache Size
3) Change Cache Internal Organization

4) Change Associativity
5) Change Compiler

n Which of 3Cs is obviously affected?

02/02/2004 UAH-CPE631 12

CPE
631
 AM

Block Size (bytes)

Miss
Rate

0%

5%

10%

15%

20%

25%

16 32 64

12
8

25
6

1K

4K

16K

64K

256K

1st Miss Rate Reduction Technique:
Larger Block Size

Reduced
compulsory

misses Increased
Conflict
Misses

•2/2/2004

•Aleksandar Milenkovich •4

02/02/2004 UAH-CPE631 13

CPE
631
 AM

1st Miss Rate Reduction Technique:
Larger Block Size (cont’d)

n Example:
– Memory system takes 40 clock cycles of overhead, and then delive rs

16 bytes every 2 clock cycles
– Miss rate vs. block size (see table); hit time is 1 cc
– AMAT? AMAT = Hit Time + Miss Rate x Miss Penalty

n Block size depends on both
latency and bandwidth of lower level memory

n low latency and bandwidth => decrease block size
n high latency and bandwidth => increase block size

1.15

1.02

1.06

1.35

2.04

64K

0.493.299.5122.01256

0.492.777.7816.64128

0.512.647.0013.7664

0.702.877.2413.3432

1.093.948.5715.0516

256K16K4K1KBS

Cache Size

256

128

64

32

16

BS

1.83

1.57

1.51

1.59

1.86

64K

1.353.377.8516.8572

1.272.555.3610.3256

1.252.274.367.6148

1.312.264.196.8744

1.462.664.607.3242

256K16K4K1KMP

Cache Size

02/02/2004 UAH-CPE631 14

CPE
631
 AM

2nd Miss Rate Reduction Technique:
Larger Caches

nReduce Capacity misses

nDrawbacks: Higher cost, Longer hit time

Cache Size (KB)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1 2 4 8

16 32 64

12
8

1-way

2-way

4-way

8-way

Capacity

Compulsory

02/02/2004 UAH-CPE631 15

CPE
631
 AM

3rd Miss Rate Reduction Technique:
Higher Associativity

nMiss rates improve with higher associativity

nTwo rules of thumb
– 8-way set-associative is almost as effective in

reducing misses as fully-associative cache of the
same size

– 2:1 Cache Rule: Miss Rate DM cache size N =
Miss Rate 2-way cache size N/2

nBeware: Execution time is only final measure!
– Will Clock Cycle time increase?
– Hill [1988] suggested hit time for 2-way vs. 1-way

external cache +10%, internal + 2%

02/02/2004 UAH-CPE631 16

CPE
631
 AM

Cache Size (KB)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1 2 4 8

16 32 64

12
8

1-way

2-way

4-way

8-way

Capacity

Compulsory

3rd Miss Rate Reduction Technique:
Higher Associativity (2:1 Cache Rule)

Conflict

Miss rate 1-way associative cache size X
= Miss rate 2-way associative cache size X/2

•2/2/2004

•Aleksandar Milenkovich •5

02/02/2004 UAH-CPE631 17

CPE
631
 AM

3rd Miss Rate Reduction Technique:
Higher Associativity (cont’d)

n Example
– CCT 2-way = 1.10 * CCT 1-way,

CCT 4-way = 1.12 * CCT 1-way, CCT 8-way = 1.14 * CCT 1-way

– Hit time = 1 cc, Miss penalty = 50 cc

– Find AMAT using miss rates from Fig 5.9 (old textbook)

1.441.421.451.50128
1.591.571.601.7064
1.791.771.802.0032
2.042.122.202.4516
2.592.873.003.308

8-way4-way2-way1-way

3.193.573.954.604
4.094.624.905.902
5.446.226.607.651

CSize [KB]

02/02/2004 UAH-CPE631 18

CPE
631
 AM

4th Miss Rate Reduction Technique:
Way Prediction, “Pseudo-Associativity”

n How to combine fast hit time of Direct Mapped and
have the lower conflict misses of 2-way SA cache?

n Way Prediction: extra bits are kept to predict the way
or block within a set
– Mux is set early to select the desired block
– Only a single tag comparison is performed
– What if miss?

=> check the other blocks in the set
– Used in Alpha 21264 (1 bit per block in IC$)

• 1 cc if predictor is correct, 3 cc if not

• Effectiveness: prediction accuracy is 85%

– Used in MIPS 4300 embedded proc. to lower power

02/02/2004 UAH-CPE631 19

CPE
631
 AM

4th Miss Rate Reduction Technique:
Way Prediction, Pseudo-Associativity

n Pseudo-Associative Cache
– Divide cache: on a miss, check other half of cache to see if

there, if so have a pseudo-hit (slow hit)
– Accesses proceed just as in the DM cache for a hit
– On a miss, check the second entry

• Simple way is to invert the MSB bit of the INDEX field to find the
other block in the “pseudo set”

n What if too many hits in the slow part?
– swap contents of the blocks

Hit Time

Pseudo Hit Time Miss Penalty

Time

02/02/2004 UAH-CPE631 20

CPE
631
 AM

Example: Pseudo-Associativity

n Compare 1-way, 2-way, and pseudo associative
organizations for 2KB and 128KB caches

n Hit time = 1cc, Pseudo hit time = 2cc
n Parameters are the same as in the previous Exmp.
n AMATps. = Hit Timeps. + Miss Rateps. x Miss Penaltyps.

n Miss Rateps. = Miss Rate2-way

n Hit timeps. = Hit timeps. + Alternate hit rateps. x 2
n Alternate hit rateps. = Hit rate2-way - Hit rate1-way =

Miss rate1-way - Miss rate2-way

Pseudo2-way1-way

1.3561.451.50128
4.8444.905.902

CSize [KB]

•2/2/2004

•Aleksandar Milenkovich •6

02/02/2004 UAH-CPE631 21

CPE
631
 AM

5th Miss Rate Reduction Technique:
Compiler Optimizations

n Reduction comes from software (no Hw ch.)
n McFarling [1989] reduced caches misses by 75%

(8KB, DM, 4 byte blocks) in software
n Instructions

– Reorder procedures in memory so as to reduce conflict misses

– Profiling to look at conflicts(using tools they developed)

n Data
– Merging Arrays: improve spatial locality by single array of compound

elements vs. 2 arrays

– Loop Interchange: change nesting of loops to access data in order
stored in memory

– Loop Fusion: Combine 2 independent loops that have same looping
and some variables overlap

– Blocking: Improve temporal locality by accessing “blocks” of data
repeatedly vs. going down whole columns or rows

02/02/2004 UAH-CPE631 22

CPE
631
 AM

Loop Interchange

n Motivation: some programs have nested loops
that access data in nonsequential order

n Solution: Simply exchanging the nesting of the
loops can make the code access the data in
the order it is stored =>
reduce misses by improving spatial locality;
reordering maximizes use of data in a cache
block before it is discarded

02/02/2004 UAH-CPE631 23

CPE
631
 AM

Loop Interchange Example

/* Before */
for (k = 0; k < 100; k = k+1)

for (j = 0; j < 100; j = j+1)
for (i = 0; i < 5000; i = i+1)

x[i][j] = 2 * x[i][j];
/* After */
for (k = 0; k < 100; k = k+1)

for (i = 0; i < 5000; i = i+1)
for (j = 0; j < 100; j = j+1)

x[i][j] = 2 * x[i][j];

Sequential accesses instead of striding through memory
every 100 words; improved spatial locality.

Reduces misses if the arrays do not fit in the cache.

02/02/2004 UAH-CPE631 24

CPE
631
 AM

Blocking

n Motivation: multiple arrays, some accessed by
rows and some by columns

n Storing the arrays row by row (row major
order) or column by column (column major
order) does not help: both rows and columns
are used in every iteration of the loop
(Loop Interchange cannot help)

n Solution: instead of operating on entire rows
and columns of an array, blocked algorithms
operate on submatrices or blocks =>
maximize accesses to the data loaded into the
cache before the data is replaced

•2/2/2004

•Aleksandar Milenkovich •7

02/02/2004 UAH-CPE631 25

CPE
631
 AM

Blocking Example

/* Before */
for (i = 0; i < N; i = i+1)
for (j = 0; j < N; j = j+1)

{r = 0;
for (k = 0; k < N; k = k+1){
r = r + y[i][k]*z[k][j];};

x[i][j] = r;
};

§ Two Inner Loops:
§ Read all NxN elements of z[]
§ Read N elements of 1 row of y[] repeatedly
§ Write N elements of 1 row of x[]

§ Capacity Misses - a function of N & Cache Size:
§ 2N3 + N2 => (assuming no conflict; otherwise …)

§ Idea: compute on BxB submatrix that fits

02/02/2004 UAH-CPE631 26

CPE
631
 AM

Blocking Example (cont’d)

/* After */
for (jj = 0; jj < N; jj = jj+B)
for (kk = 0; kk < N; kk = kk+B)
for (i = 0; i < N; i = i+1)

for (j = jj; j < min(jj+B-1,N); j = j+1)
{r = 0;
for (k = kk; k < min(kk+B-1,N); k = k+1) {

r = r + y[i][k]*z[k][j];};
x[i][j] = x[i][j] + r;
};

§ B called Blocking Factor
§ Capacity Misses from 2N3 + N2 to N3/B+2N2

§ Conflict Misses Too?

02/02/2004 UAH-CPE631 27

CPE
631
 AM

Merging Arrays

n Motivation: some programs reference multiple
arrays in the same dimension with the same
indices at the same time =>
these accesses can interfere with each
other,leading to conflict misses

n Solution: combine these independent matrices
into a single compound array, so that a single
cache block can contain the desired elements

02/02/2004 UAH-CPE631 28

CPE
631
 AM

Merging Arrays Example

/* Before: 2 sequential arrays */
int val[SIZE];
int key[SIZE];

/* After: 1 array of stuctures */
struct merge {

int val;
int key;

};
struct merge merged_array[SIZE];

•2/2/2004

•Aleksandar Milenkovich •8

02/02/2004 UAH-CPE631 29

CPE
631
 AM

Loop Fusion

n Some programs have separate sections of
code that access with the same loops,
performing different computations on the
common data

n Solution:
“Fuse” the code into a single loop =>
the data that are fetched into the cache can be
used repeatedly before being swapped out =>
reducing misses via improved temporal
locality

02/02/2004 UAH-CPE631 30

CPE
631
 AM

Loop Fusion Example

/* Before */
for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)
a[i][j] = 1/b[i][j] * c[i][j];

for (i = 0; i < N; i = i+1)
for (j = 0; j < N; j = j+1)

d[i][j] = a[i][j] + c[i][j];
/* After */
for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)
{ a[i][j] = 1/b[i][j] * c[i][j];

d[i][j] = a[i][j] + c[i][j];}

2 misses per access to a & c vs. one miss per access;
improve temporal locality

02/02/2004 UAH-CPE631 31

CPE
631
 AM

Summary of Compiler Optimizations to
Reduce Cache Misses (by hand)

Performance Improvement

1 1.5 2 2.5 3

compress

cholesky
(nasa7)

spice

mxm (nasa7)

btrix (nasa7)

tomcatv

gmty (nasa7)

vpenta (nasa7)

merged
arrays

loop
interchange

loop fusion blocking

02/02/2004 UAH-CPE631 32

CPE
631
 AM

Summary: Miss Rate Reduction

n 3 Cs: Compulsory, Capacity, Conflict
– 1. Larger Cache => Reduce Capacity
– 2. Larger Block Size => Reduce Compulsory
– 3. Higher Associativity => Reduce Confilcts
– 4. Way Prediction & Pseudo-Associativity
– 5. Compiler Optimizations

rateClock

yMissPenaltMissRate
Inst

MemAccess
CPIIC

timeCPU
Exec

 ××+×

=

•2/2/2004

•Aleksandar Milenkovich •9

02/02/2004 UAH-CPE631 33

CPE
631
 AM

Reducing Miss Penalty

n Motivation
– AMAT = Hit Time + Miss Rate x Miss Penalty
– Technology trends =>

relative cost of miss penalties increases over time

n Techniques that address miss penalties
– 1. Multilevel Caches
– 2. Critical Word First and Early Restart
– 3. Giving Priority to Read Misses over Writes
– 4. Merging Write Buffer
– 5. Victim Caches

02/02/2004 UAH-CPE631 34

CPE
631
 AM

1st Miss Penalty Reduction Technique:
Multilevel Caches

n Architect’s dilemma
– Should I make the cache faster to keep pace with the speed of CPUs

– Should I make the cache larger to overcome the widening gap between
CPU and main memory

n L2 Equations
– AMAT = Hit TimeL1 + Miss RateL1 x Miss PenaltyL1

– Miss PenaltyL1 = Hit TimeL2 + Miss RateL2 x Miss PenaltyL2

– AMAT = Hit TimeL1 +
Miss RateL1 x (Hit TimeL2 + Miss RateL2 + Miss PenaltyL2)

n Definitions:
– Local miss rate— misses in this cache divided by the total number of

memory accesses to this cache (Miss rateL2)
– Global miss rate —misses in this cache divided by the total number of

memory accesses generated by the CPU
(Miss RateL1 x Miss RateL2)

– Global Miss Rate is what matters

02/02/2004 UAH-CPE631 35

CPE
631
 AM

1st Miss Penalty Reduction Technique:
Multilevel Caches

n Global vs. Local Miss
Rate

n Relative Execution Time
– 1.0 is 8MB L2, 1cc hit

02/02/2004 UAH-CPE631 36

CPE
631
 AM

Reducing Misses:
Which apply to L2 Cache?

n Reducing Miss Rate
– 1. Reduce Capacity Misses via Larger Cache
– 2. Reduce Compulsory Misses via Larger Block Size
– 3. Reduce Conflict Misses via Higher Associativity
– 4. Reduce Conflict Misses via Way Prediction & Pseudo-

Associativity
– 5. Reduce Conflict/Capac. Misses via Compiler Optimizations

•2/2/2004

•Aleksandar Milenkovich •10

02/02/2004 UAH-CPE631 37

CPE
631
 AM

Relative CPU Time

Block Size

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

2

16 32 64 128 256 512

1.36
1.28 1.27

1.34

1.54

1.95

L2 cache block size & A.M.A.T.

n 32KB L1, 8 byte path to memory

02/02/2004 UAH-CPE631 38

CPE
631
 AM

Multilevel Inclusion: Yes or No?

n Inclusion property:
L1 data are always present in L2
– Good for I/O & caches consistency

(L1 is usually WT, so valid data are in L2)

n Drawback: What if measurements suggest smaller
cache blocks for smaller L1 caches and larger blocks
for larger L2 caches?
– E.g., Pentium4: 64B L1 blocks, 128B L2 blocks
– Add complexity: when replace a block in L2 should discard 2

blocks in the L1 cache => increase L1 miss rate

n What if the budget for a L2 cache is slightly bigger
than the L1 cache => L2 keeps redundant copy of L1
– Multilevel Exclusion: L1 data is never found in a L2 cache
– E.g., AMD Athlon uses this:

64KB L1I$ + 64KB L1D$ vs. 256KB L2U$

02/02/2004 UAH-CPE631 39

CPE
631
 AM

2nd Miss Penalty Reduction Technique: Early
Restart and Critical Word First

n Don’t wait for full block to be loaded before restarting
CPU
– Early restart—As soon as the requested word of the block

arrives, send it to the CPU and let the CPU continue
execution

– Critical Word First—Request the missed word first from
memory and send it to the CPU as soon as it arrives; let the
CPU continue execution while filling the rest of the words in
the block. Also called wrapped fetch and requested word first

n Generally useful only in large blocks
n Problem of spatial locality: tend to want next

sequential word, so not clear if benefit by early restart
and CWF

block

02/02/2004 UAH-CPE631 40

CPE
631
 AM

3rd Miss Penalty Reduction Technique:
Giving Read Misses Priority over Writes

Tag

=?

2:1 M
u

x

CPUAddress
Data in

Data out

Write
buffer

Lower level
memory

Data

Delayed Write Buffer

•2/2/2004

•Aleksandar Milenkovich •11

02/02/2004 UAH-CPE631 41

CPE
631
 AM

3rd Miss Penalty Reduction Technique: Read
Priority over Write on Miss (2)

n Write-through with write buffers offer RAW conflicts with main
memory reads on cache misses

– If simply wait for write buffer to empty,
might increase read miss penalty (old MIPS 1000 by 50%)

– Check write buffer contents before read;
if no conflicts, let the memory access continue

n Write- back also want buffer to hold misplaced blocks
– Read miss replacing dirty block

– Normal: Write dirty block to memory, and then do the read
– Instead copy the dirty block to a write buffer, then do the read, and

then do the write

– CPU stall less since restarts as soon as do read

Example: DM, WT, 512 & 1024 map to the same block:
SW 512(R0), R3 ; cache index 0
LW R1, 1024(R0) ; cache index 0
LW R2, 512(R0) ; cache index 0

02/02/2004 UAH-CPE631 42

CPE
631
 AM

4th Miss Penalty Reduction Technique:
Merging Write Buffer

n Write Through caches relay
on write-buffers
– on write, data and full address

are written into the buffer; write
is finished from the CPU’s
perspective

– Problem: WB full stalls

n Write merging
– multiword writes are faster than

a single word writes => reduce
write-buffer stalls

n Is this applicable to I/O
addresses?

02/02/2004 UAH-CPE631 43

CPE
631
 AM

5th Miss Penalty Reduction Technique: Victim
Caches

n How to combine fast hit time of
direct mapped
yet still avoid conflict misses?

n Idea: Add buffer to place
data discarded from cache in
the case it is needed again

n Jouppi [1990]:
4-entry victim cache
removed 20% to 95% of
conflicts for a 4 KB
direct mapped data cache

n Used in Alpha, HP machines,
AMD Athlon (8 entries)

To Next Lower Level In
Hierarchy

DATATAGS

One Cache line of DataTag and Comparator

One Cache line of DataTag and Comparator

One Cache line of DataTag and Comparator

One Cache line of DataTag and Comparator

02/02/2004 UAH-CPE631 44

CPE
631
 AM

Summary of Miss Penalty Reducing Tec.

n 1. Multilevel Caches

n 2. Critical Word First and Early Restart
n 3. Giving Priority to Read Misses over Writes

n 4. Merging Write Buffer
n 5. Victim Caches

•2/2/2004

•Aleksandar Milenkovich •12

02/02/2004 UAH-CPE631 45

CPE
631
 AM

Reducing Cache Miss Penalty or Miss Rate
via Parallelism

n Idea: overlap the execution of instructions with
activity in memory hierarchy

n Miss Rate/Penalty reduction techniques
– 1. Nonblocking caches

• reduce stalls on cache misses
in CPUs with out-of- order completion

– 2. Hardware prefetching of instructions and data
• reduce miss penalty

– 3. Compiler controlled prefetching

02/02/2004 UAH-CPE631 46

CPE
631
 AM

Reduce Misses/Penalty: Non-blocking
Caches to reduce stalls on misses

n Non-blocking cache or lockup-free cache allow data
cache to continue to supply cache hits during a miss
– requires F/E bits on registers or out-of-order execution
– requires multi-bank memories

n “hit under miss” reduces the effective miss penalty by
working during miss vs. ignoring CPU requests

n “hit under multiple miss” or “miss under miss” may
further lower the effective miss penalty by overlapping
multiple misses
– Significantly increases the complexity of the cache controller

as there can be multiple outstanding memory accesses
– Requires muliple memory banks (otherwise cannot support)
– Pentium Pro allows 4 outstanding memory misses

02/02/2004 UAH-CPE631 47

CPE
631
 AM

Value of Hit Under Miss for SPEC

02/02/2004 UAH-CPE631 48

CPE
631
 AM

Reducing Misses/Penalty by Hardware
Prefetching of Instructions & Data

n E.g., Instruction Prefetching
– Alpha 21064 fetches 2 blocks on a miss
– Extra block placed in “stream buffer”
– On miss check stream buffer

n Works with data blocks too:
– Jouppi [1990] 1 data stream buffer got 25% misses

from 4KB cache; 4 streams got 43%
– Palacharla & Kessler [1994] for scientific programs

for 8 streams got 50% to 70% of misses from
2 64KB, 4-way set associative caches

n Prefetching relies on having extra memory
bandwidth that can be used without penalty

•2/2/2004

•Aleksandar Milenkovich •13

02/02/2004 UAH-CPE631 49

CPE
631
 AM

Reducing Misses/Penalty by
Software Prefetching Data

n Data Prefetch
– Load data into register (HP PA-RISC loads)
– Cache Prefetch : load into cache (MIPS IV, PowerPC, SPARC

v. 9)
– Special prefetching instructions cannot cause faults; a form of

speculative execution

n Prefetching comes in two flavors:
– Binding prefetch : Requests load directly into register.

• Must be correct address and register!

– Non- Binding prefetch : Load into cache.
• Can be incorrect. Faults?

n Issuing Prefetch Instructions takes time
– Is cost of prefetch issues < savings in reduced misses?
– Higher superscalar reduces difficulty of issue bandwidth

02/02/2004 UAH-CPE631 50

CPE
631
 AM

Review: Improving Cache Performance

n 1. Reduce the miss rate,

n 2. Reduce the miss penalty, or
n 3. Reduce the time to hit in the cache.

yMissPenaltMissRateHitTimeAMAT ⋅+=

02/02/2004 UAH-CPE631 51

CPE
631
 AM

1st Hit Time Reduction Technique:
Small and Simple Caches

n Smaller hardware is faster =>
small cache helps the hit time

n Keep the cache small enough to fit on the
same chip as the processor (avoid the time
penalty of going off-chip)

n Keep the cache simple
– Use Direct Mapped cache:

it overlaps the tag check
with the transmission of data

02/02/2004 UAH-CPE631 52

CPE
631
 AM

2nd Hit Time Reduction Technique:
Avoiding Address Translation

CPU

TB

$

MEM

VA

PA

PA

Conventional
Organization

CPU

$

TB

MEM

VA

VA

PA

Virtually Addressed Cache
Translate only on miss

Synonym Problem

CPU

$ TB

MEM

VA

PA
Tags

PA

Overlap $ access
with VA translation:
requires $ index to

remain invariant
across translation

VA
Tags

L2 $

•2/2/2004

•Aleksandar Milenkovich •14

02/02/2004 UAH-CPE631 53

CPE
631
 AM

2nd Hit Time Reduction Technique:
Avoiding Address Translation (cont’d)

n Send virtual address to cache? Called Virtually Addressed Cache
or just Virtual Cache vs. Physical Cache

– Every time process is switched logically must flush the cache;
otherwise get false hits

• Cost is time to flush + “compulsory” misses from empty cache
– Dealing with aliases (sometimes called synonyms);

Two different virtual addresses map to same physical address =>
multiple copies of the same data in a a virtual cache

– I/O typically uses physical addresses; if I/O must interact with cache,
mapping to virtual addresses is needed

n Solution to aliases
– HW solutions guarantee every cache block a unique physical

address

n Solution to cache flush
– Add process identifier tag that identifies process as well as address

within process: can’t get a hit if wrong process

02/02/2004 UAH-CPE631 54

CPE
631
 AM

Cache Optimization Summary

2+Pipelining Caches

2+Avoiding Address Translation

0+-Small & Simple Caches

3+Better memory system

2+Second Level Caches

3+Non-Blocking Caches

2+Early Restart & Critical Word 1st

1+Priority to Read Misses

0Compiler Reduce Misses

3++Compiler Controlled Prefetching

2++HW Prefetching of Instr/Data

2+Pseudo-Associative Caches

2+Victim Caches

1-+Higher Associativity

0-+Larger Block Size

ComplexityHTMPMRTechnique

