
CPE 631 Lecture 24:
Vector Processing

Aleksandar Milenkovi�, milenka@ece.uah.edu
Electrical and Computer Engineering
University of Alabama in Huntsville

11/04/2005 UAH-CPE631 2

����

���

� 	

Outline

� Properties of Vector Processing
� Components of a Vector Processor
� Vector Execution Time
� Real-World Problems:

Vector Length and Stride
� Vector Optimizations: Chaining,

Conditional Execution, Sparse Matrices

11/04/2005 UAH-CPE631 3

����

���

� 	

Why Vector Processors?

� Instruction level parallelism (Ch 3&4)
– Deeper pipeline and wider superscalar machines

to extract more parallelism
• more register file ports, more registers,

more hazard interlock logic

– In dynamically scheduled machines
instruction window, reorder buffer, rename register files
must grow to have enough capacity to keep relevant
information about in-flight instructions

� Difficult to build machines supporting
large number of in-flight instructions =>
limit the issue width and pipeline depths =>
limit the amount parallelism you can extract

� Commercial versions long before ILP machines

11/04/2005 UAH-CPE631 4

����

���

� 	

Vector Processing Definitions

� Vector - a set of scalar data items, all of the same
type, stored in memory

� Vector processor - an ensemble of hardware
resources, including vector registers, functional
pipelines, processing elements, and register counters
for performing vector operations

� Vector processing occurs when arithmetic or
logical operations are applied to vectors

add r 3, r 1, r 2

SCALAR
(1 operation) +

r1 r2

r3 vector
length

add. vv v3, v1, v2

VECTOR
(N operations) +++++

v1 v2

v3

11/04/2005 UAH-CPE631 5

����

���

� 	

Properties of Vector Processors

� 1) Single vector instruction specifies lots of work
– equivalent to executing an entire loop
– fewer instructions to fetch and decode

� 2) Computation of each result in the vector is independent of the
computation of other results in the same vector
– deep pipeline without data hazards; high clock rate

� 3) Hw checks for data hazards only between vector instructions
(once per vector, not per vector element)

� 4) Access memory with known pattern
– elements are all adjacent in memory =>

highly interleaved memory banks provides high bandwidth

– access is initiated for entire vector => high memory latency is
amortised (no data caches are needed)

� 5) Control hazards from the loop branches are reduced
– nonexistent for one vector instruction

11/04/2005 UAH-CPE631 6

����

���

� 	

Properties of Vector Processors (cont’d)

� Vector operations:
arithmetic (add, sub, mul, div),memory
accesses, effective address calculations

� Multiple vector instructions can be in progress
at the same time => more parallelism

� Applications to benefit
– Large scientific and engineering applications

(car crash simulations, weather forecasting, ...)
– Multimedia applications

11/04/2005 UAH-CPE631 7

����

���

� 	

Basic Vector Architectures

� Vector processor:
ordinary pipelined scalar unit + vector unit

� Types of vector processors
– Memory-memory processors:

all vector operations are memory-to-memory (CDC)
– Vector-register processors:

all vector operations except load and store
are among the vector registers
(CRAY-1, CRAY-2, X-MP, Y-MP, NEX SX/2(3), Fujitsu)

• VMIPS – Vector processor as
an extension of the 5-stage MIPS processor

11/04/2005 UAH-CPE631 8

����

���

� 	

Components of a vector-register processor

� Vector Registers: each vector register
is a fixed length bank holding a single vector
– has at least 2 read and 1 write ports

– typically 8-32 vector registers, each holding 64-128 64 bit
elements

– VMIPS: 8 vector registers, each holding 64 elements
(16 Rd ports, 8 Wr ports)

� Vector Functional Units (FUs): fully pipelined,
start new operation every clock cycle
– typically 4 to 8 FUs: FP add, FP mult, FP reciprocal (1/X),

integer add, logical, shift;

– may have multiple of same unit
– VMIPS: 5 FUs (FP add/sub, FP mul, FP div, FP integer, FP

logical)

11/04/2005 UAH-CPE631 9

����

���

� 	

Components of a vector-register
processor (cont’d)

� Vector Load-Store Units (LSUs)
– fully pipelined unit to load or store a vector;

may have multiple LSUs
– VMIPS: 1 VLSU,

bandwidth is 1 word per cycle after initial delay

� Scalar registers
– single element for FP scalar or address
– VMIPS: 32 GPR, 32 FPRs

they are read out and latched at one input of the
FUs

� Cross-bar to connect FUs, LSUs, registers
– cross-bar to connect Rd/Wr ports and FUs

11/04/2005 UAH-CPE631 10

����

���

� 	

VMIPS: Basic Structure

� 8 64-element
vector registers

� 5 FUs; each unit
is fully pipelined,
can start a new
operation on
every clock cycle

� Load/store unit -
fully pipelined

� Scalar registers

Main
Memory

Vector
Load/Store

FP add/subtract

FP multiply

FP divide

Integer

Logical

Vector
registers

Scalar
registers

11/04/2005 UAH-CPE631 11

����

���

� 	

VMIPS Vector Instructions

Instr. Operands Operation Comment
ADDV.D V1,V2,V3 V1=V2+V3 vector + vector
ADDSV.D V1,F0,V2 V1=F0+V2 scalar + vector
MULV.D V1,V2,V3 V1=V2xV3 vector x vector
MULSV.D V1,F0,V2 V1=F0xV2 scalar x vector
LV V1,R1 V1=M[R1..R1+63] load, stride=1
LVWS V1,R1,R2 V1=M[R1..R1+63*R2] load, stride=R2
LVI V1,R1,V2 V1=M[R1+V2(i),i=0..63] indir.("gather")
SeqV.D VM,V1,V2 VMASKi = (V1i=V2i)? comp. setmask
MTC1 VLR,R1 Vec. Len. Reg. = R1 set vector length
MFC1 VM,R1 R1 = Vec. Mask set vector mask

See table G3 for the VMIPS vector instructions.

11/04/2005 UAH-CPE631 12

����

���

� 	

VMIPS Vector Instructions (cont’d)

Instr. Operands Operation Comment
SUBV.D V1,V2,V3 V1=V2-V3 vector - vector
SUBSV.D V1,F0,V2 V1=F0-V2 scalar – vector
SUBVS.D V1,V2,F0 V1=V2- F0 vector - scalar
DIVV.D V1,V2,V3 V1=V2/V3 vector / vector
DIVSV.D V1,F0,V2 V1=F0/V2 scalar / vector
DIVVS.D V1,V2,F0 V1=V2/F0 vector / scalar
..
POP R1, M Count the 1s in the VM register
CVM Set the vector-mask register to all 1s

See table G3 for the VMIPS vector instructions.

11/04/2005 UAH-CPE631 13

����

���

� 	

DAXPY: Double a××××X + Y

L.D F0,a
DADDIU R4,Rx,#512 ;last address to load

loop: L.D F2, 0(Rx) ;load X(i)
MULT.D F2,F0,F2 ;a*X(i)
L.D F4, 0(Ry) ;load Y(i)
ADD.D F4,F2,F4 ;a*X(i) + Y(i)
S.D F4,0(Ry) ;store into Y(i)
DADDIU Rx,Rx,#8 ;increment index to X
DADDIU Ry,Ry,#8 ;increment index to Y
DSUBU R20,R4,Rx ;compute bound
BNEZ R20,loop ;check if done

L.D F0,a ;load scalar a

LV V1,Rx ;load vector X

MULVS V2,V1,F0 ;vector-scalar mult.

LV V3,Ry ;load vector Y

ADDV.D V4,V2,V3 ;add

SV Ry,V4 ;store the result

Assuming vectors X, Y
are length 64

Scalar vs. Vector

Operations: 578 (2+9*64)
vs. 321 (1+5*64) (1.8X)

Instructions: 578 (2+9*64)
vs. 6 instructions (96X)

Hazards: 64X fewer
pipeline hazards

11/04/2005 UAH-CPE631 14

����

���

� 	

Vector Execution Time

� Time = f(vector length, data dependencies, structural hazards)

� Initiation rate: rate at which a FU consumes vector elements
(= number of lanes; usually 1 or 2)

� Convoy: set of vector instructions that can begin execution in
same clock (no structural or data hazards)

� Chime: approximate time to execute a convoy

� m convoys take m chimes; if each vector length is n, then they
take approx. m x n clock cycles (ignores overhead; good
approximation for long vectors)

4 convoys, 1 lane, VL=64
=> 4 x 64 = 256 clocks
(or 4 clocks per result)

1: LV V1,Rx ;load vector X

2: MULVS.D V2, V1,F0 ;vector-scalar mult.

LV V3,Ry ;load vector Y

3: ADDV.D V4,V2,V3 ;add

4: SV Ry,V4 ;store the result

11/04/2005 UAH-CPE631 15

����

���

� 	

VMIPS Start-up Time

� Start-up time: pipeline latency time (depth of
FU pipeline); another sources of overhead

wait convoy 3

wait convoy 2

load start-up

41+4n30+3n+1230+3n4. SV

29+3n24+2n+624+2n3. ADDV.D

23+2n12+n+1212+n2. MULVS.D, LV

11+n (12-1+n)1201. LV

last result1st resultStartConvoy

6Vector add

7Vector multiply

12Vector load/store

Start-up penalty (from CRAY-1)Operation

Assume convoys don't overlap; vector length = n:

11/04/2005 UAH-CPE631 16

����

���

� 	

VMIPS Execution Time

1: LV V1,Rx

2: MULV V2,F0,V1

LV V3,Ry

3: ADDV V4,V2,V3

4: SV Ry,V4

Time

12 n

12

6

12

n

n

n

11/04/2005 UAH-CPE631 17

����

���

� 	

Vector Load/Store Units & Memories

� Start-up overheads usually longer for LSUs
� Memory system must sustain

(# lanes x word) /clock cycle
� Many Vector Processors use banks (vs. simple

interleaving):
– support multiple loads/stores per cycle

=> multiple banks & address banks independently
– support non-sequential accesses

� Note: No. memory banks > memory latency to avoid
stalls
– m banks => m words per memory latency l clocks
– if m < l, then gap in memory pipeline
– may have 1024 banks in SRAM

11/04/2005 UAH-CPE631 18

����

���

� 	

Real-World Issues: Vector Length

� What to do when vector length is not exactly 64?

� Value of n can be unknown at compile time?
� Vector-Length Register (VLR): controls the length

of any vector operation, including a vector load or
store (cannot be > the length of vector registers)

� What if n > Maximum Vector Length (MVL)?
=> Strip mining

for(i=0; i<n, i++)

{Y(i)=a*X(i)+Y(i)}

11/04/2005 UAH-CPE631 19

����

���

� 	

Strip Mining

� Strip mining: generation of code such that each vector
operation is done for a size less than or equal to the MVL

� 1st loop: do short piece (n mod MVL),
rest VL = MVL

� Overhead of executing strip-mined loop?

i = 0;

VL = n mod MVL;

for (j=0; j<n/MVL; j++){

for(i<VL; i++)

{Y(i)=a*X(i)+Y(i)}

VL = MVL;
}

11/04/2005 UAH-CPE631 20

����

���

� 	

Vector Stride

� Suppose adjacent elements not sequential in memory
(e.g., matrix multiplication)

� Matrix C accesses are not adjacent (800 bytes between)
� Stride: distance separating elements that are to be merged

into a single vector
=> LVWS (load vector with stride) instruction

� Strides can cause bank conflicts
(e.g., stride=32 and 16 banks)

f or (i =0; i <100; i ++)

f or (j =0; j <100; j ++) {

A(i , j) =0. 0;

f or (k=0; k<100; k++)

A(i , j) =A(i , j) +B(i , k) * C(k, j) ;

}

:

:

(1,1)
(1,2)

(1,100)
(2,1)

(2,100)

11/04/2005 UAH-CPE631 21

����

���

� 	

Vector Opt #1: Chaining

� Suppose:
MULV.D V1,V2,V3
ADDV.D V4,V1,V5 ; separate convoy?

� Chaining: if vector register (V1) is not treated
as a single entity but as a group of individual
registers, then pipeline forwarding can work
on individual elements of a vector

� Flexible chaining: allow vector to chain to any
other active vector operation => more
read/write ports

� As long as enough HW, increases convoy size

11/04/2005 UAH-CPE631 22

����

���

� 	

DAXPY Chaining: CRAY-1

� CRAY-1 has one memory access pipe either for load
or store (not for both at the same time)

� 3 chains
– Chain 1: LV V3
– Chain 2: LV V1 + MULV V2,F0,V1 + ADDV V4,V2,V3

– Chain 3: SV V4

Chain 1:

Chain 2:

Chain 3:

Time

12 n

25

12

n

n

11/04/2005 UAH-CPE631 23

����

���

� 	

3 Chains DAXPY for CRAY-1

:

:

Memory

Access
pipeV3

:

:

Memory

Access
pipe

V1

F0

:

:

V2Multiply
pipe

:

V3

:

Add pipe

:

V4

:

V4

:

Memory

R/W port

R/W port

Access
pipe

R/W port

11/04/2005 UAH-CPE631 24

����

���

� 	

DAXPY Chaining: CRAY X-MP

� CRAY X-MP has 3 memory access pipes,
two for vector load and one for vector store

� 1 chain: LV V3, LV V1 + MULV V2,F0,V1 +
ADDV V4,V2,V3 + SV V4

Chain 1:

Time

12 n

25

12

n

n

12 n

11/04/2005 UAH-CPE631 25

����

���

� 	

One Chain DAXPY for CRAY X-MP

:
:

Memory

Access
pipe

V3

:

:

Memory

V1

F0

:

:

V2
Multiply

pipe

:

Add pipe

:

V4

R port

W port

Access
pipe

R port

11/04/2005 UAH-CPE631 26

����

���

� 	

Vector Opt #2: Conditional Execution

� Consider:

� Vector-mask control takes a Boolean vector: when vector-
mask register is loaded from vector test, vector instructions
operate only on vector elements whose corresponding
entries in the vector-mask register are 1

� Requires clock even for the elements where the mask is 0
� Some VP use vector mask only to disable the storing of the

result and the operation still occurs;
zero division exception is possible? => mask operation

do 100 i = 1, 64
i f (A(i) . ne. 0) t hen

A(i) = A(i) – B(i)
endi f

100 cont i nue

11/04/2005 UAH-CPE631 27

����

���

� 	

Vector Mask Control

LV V1, Ra ;load A into V1

LV V2, Rb ;load B into V2

L.D F0, #0 ;load FP zero to F0

SNESV.D F0,V1 ;sets VM register if V1(i)<>0

SUBV.D V1,V1,V2 ;subtract under VM

CVM ;set VM to all 1s

SV Ra,V1 ;store results in A

11/04/2005 UAH-CPE631 28

����

���

� 	

Vector Opt #3: Sparse Matrices

� Sparse matrix: elements of a vector are usually stored in
some compacted form and then accessed indirectly

� Suppose:

� Mechanism to support sparse matrices:
scatter-gather operations

� Gather (LVI) operation takes an index vector and fetches the
vector whose elements are at the addresses given by adding
a base address to the offsets given in the index vector => a
nonsparse vector in a vector register

� After these elements are operated on in dense form, the
sparse vector can be stored in expanded form by a scatter
store (SVI), using the same index vector

do 100 i = 1, n
100 A(K(i))=A(K(i))+C(M(i))

11/04/2005 UAH-CPE631 29

����

���

� 	

Sparse Matrices Example

� Can't be done by compiler since
can't know Ki elements distinct

LV Vk, Rk ; l oad K

LVI Va, (Ra+Vk) ; l oad A(K(i))

LV Vm, Rm ; l oad M

LVI Vc, (Rc+Vm) ; l oad C(M(i))

ADDV. D Va, Va, Vc ; add t hem

SVI (Ra+Vk) , Va ; st or e A(K(i))

do 100 i = 1, n
100 A(K(i)) =A(K(i)) +C(M(i))

11/04/2005 UAH-CPE631 30

����

���

� 	

Sparse Matrices Example (cont’d)

� Use CVI to create index 0, 1xm, ..., 63xm
(compressed index vector whose entries correspond to
the positions with a 1 in the mask register

LV V1, Ra ; l oad A i nt o V1

L. D F0, #0 ; l oad FP zer o i nt o F0

SNESV. D F0, V1 ; set s VM t o 1 i f V1(i) <>F0

CVI V2, #8 ; gener at es i ndi ces i n V2

POP R1, VM ; f i nd t he number of 1s

MTC1 VLR, R1 ; l oad vect or - l engt h r eg.

CVM ; cl ear s t he mask

LVI V3, (Ra+V2) ; l oad t he nonzer o As

LVI V4, (Rb+V2) ; l oad t he nonzer o Bs

SUBV. D V3, V3, V4 ; do t he subt r act

SVI (Ra+V2) , V3 ; st or e A back

11/04/2005 UAH-CPE631 31

����

���

� 	

Things to Remember

� Properties of vector processing
– Each result independent of previous result
– Vector instructions access memory with known pattern
– Reduces branches and branch problems in pipelines
– Single vector instruction implies lots of work (- loop)

� Components of a vector processor: vector
registers, functional units, load/store, crossbar....

� Strip mining technique for long vectors
� Optimisation techniques: chaining, conditional

execution, sparse matrices

