CPE 631 Lecture 24:
Vector Processing

Aleksandar Milenkovié, milenka@ece.uah.edu

Electrical and Computer Engineering
University of Alabamain Huntsville

CPE -
631 Outline

OAM

m Properties of Vector Processing
m Components of a Vector Processor
m Vector Execution Time

m Real-World Problems:
Vector Length and Stride

m Vector Optimizations: Chaining,
Conditional Execution, Sparse Matrices

11/04/2005 UAH-CPE631 2

CP
635 Why Vector Processors?

OAM

= Instruction level parallelism (Ch 3&4)

— Deeper pipeline and wider superscalar machines
to extract more parallelism

» more register file ports, more registers,
more hazard interlock logic

— In dynamically scheduled machines
instruction window, reorder buffer, rename register files
must grow to have enough capacity to keep relevant
information about in-flight instructions

m Difficult to build machines supporting

large number of in-flight instructions =>

limit the issue width and pipeline depths =>

limit the amount parallelism you can extract

m Commercial versions long before ILP machines

11/04/2005 UAH-CPE631

CcP . .
635 Vector Processing Definitions

OAM

m Vector - a set of scalar data items, all of the same
type, stored in memory

m Vector processor - an ensemble of hardware
resources, including vector registers, functional
pipelines, processing elements, and register counters
for performing vector operations

m Vector processing occurs when arithmetic or
logical operations are applied to vectors

VECTOR
(N operations)

SCALAR
(1 operation)

vector
length

add r3, r1, add. vv v3, vl1, v2

11/04/2005 UAH-CPE631

CPE
631
OAM

Properties of Vector Processors

1) Single vector instruction specifies lots of work

— equivalent to executing an entire loop

— fewer instructions to fetch and decode

m 2) Computation of each result in the vector is independent of the
computation of other results in the same vector

— deep pipeline without data hazards; high clock rate

m 3) Hw checks for data hazards only between vector instructions
(once per vector, not per vector element)

m 4) Access memory with known pattern

— elements are all adjacent in memory =>
highly interleaved memory banks provides high bandwidth

— access is initiated for entire vector => high memory latency is
amortised (no data caches are needed)

5) Control hazards from the loop branches are reduced
— nonexistent for one vector instruction

11/04/2005 UAH-CPE631

CPE
631
OAM

Properties of Vector Processors (cont’d)

m Vector operations:
arithmetic (add, sub, mul, div),memory
accesses, effective address calculations

m Multiple vector instructions can be in progress
at the same time => more parallelism
m Applications to benefit

— Large scientific and engineering applications
(car crash simulations, weather forecasting, ...)

— Multimedia applications

11/04/2005 UAH-CPE631

CP . .
635 Basic Vector Architectures

OAM

m Vector processor:
ordinary pipelined scalar unit + vector unit

m Types of vector processors

— Memory-memory processors:
all vector operations are memory-to-memory (CDC)

— Vector-register processors:
all vector operations except load and store
are among the vector registers
(CRAY-1, CRAY-2, X-MP, Y-MP, NEX SX/2(3), Fujitsu)
* VMIPS - Vector processor as
an extension of the 5-stage MIPS processor

11/04/2005 UAH-CPE631 7

CP| .
¢ Components of a vector-register processor

OAM

m Vector Reqisters: each vector register
is a fixed length bank holding a single vector
— has at least 2 read and 1 write ports

— typically 8-32 vector registers, each holding 64-128 64 bit
elements

— VMIPS: 8 vector registers, each holding 64 elements
(16 Rd ports, 8 Wr ports)
m Vector Functional Units (FUs): fully pipelined,
start new operation every clock cycle
— typically 4 to 8 FUs: FP add, FP mult, FP reciprocal (1/X),
integer add, logical, shift;
— may have multiple of same unit

— VMIPS: 5 FUs (FP add/sub, FP mul, FP div, FP integer, FP
logical)

11/04/2005 UAH-CPE631 8

cce Components of a vector-register
631)
Sam __processor (cont’'d)
m Vector Load-Store Units (LSUS)
— fully pipelined unit to load or store a vector;
may have multiple LSUs
— VMIPS: 1 VLSU,
bandwidth is 1 word per cycle after initial delay
m Scalar reqgisters
— single element for FP scalar or address
— VMIPS: 32 GPR, 32 FPRs
they are read out and latched at one input of the
FUs
m Cross-bar to connect FUs, LSUSs, registers
— cross-bar to connect Rd/Wr ports and FUs
11/04/2005 UAH-CPEG631 9
CPE) .
631 VMIPS: Basic Structure
OAM
Main m 8 64-element
Memory , vector registers
I ' m 5 FUs; each unit
Vector | is fully pipelined,
Load/Store can start a new
Itipl .
Vector —] Frdvie | every clock cycle
registers [integer > = Load/store unit -
C 1> Coaiea fully plpelll’lled
$ m Scalar registers
Scalar
registers

11/04/2005 UAH-CPE631 10

22’5 VMIPS Vector Instructions

OAM

Instr. Operands Operation Comment
ADDV.D V1,V2,V3 V1=V2+V3 vector + vector
ADDSV. D V1, FO, V2 V1=FQ0+V2 scalar + vector
MULV. D V1,V2,V3 V1=V2xV3 vector x vector
MULSV. D V1, FO, V2 V1=FOxV2 scalar x vector

LV Vi, R1 V1=M[R1..R1+63] load, stride=1
LVWS Vl, Rl, R2 V1=M[R1..R1+63*R2] load, stride=R2
LVl V1, R1, V2 V1=M[R1+V2(i),i=0..63] indir.("gather")
Seqv.D VM V1, V2 VMASKI = (V1i=V2i)? comp. setmask
MICl VLR R1 Vec. Len. Reg. = R1 set vector length
MFC1 VM R1 R1 = Vec. Mask set vector mask

See table G3 for the VMIPS vector instructions.

11/04/2005 UAH-CPE631 11

% VMIPS Vector Instructions (cont'd)

OAM

Instr. Operands Operation Comment

SUBV.D V1,V2,V3 V1=V2-V3 vector - vector
SUBSV. D V1, FO, V2 V1=F0-V2 scalar — vector
SUBVS.D V1, V2, FO V1=V2-EFO vector - scalar
DwWwW.D Vi1,V2,V3 V1=V2/V3 vector / vector
DI VSV. D V1, FO, V2 V1=F0/V2 scalar / vector
DIWS. D V1,V2,FO V1=V2/FO vector / scalar

POP R1L, M Count the 1s in the VM register
CVM Set the vector-mask register to all 1s

See table G3 for the VMIPS vector instructions.

11/04/2005 UAH-CPE631 12

DAXPY: Double axX +Y

OAM
Assuming vectors X, Y L.D FO,a :load scalar a
are Iength 64 LV V1,Rx :load vector X
Scalar vs. Vector ——— MULVS V2,V1,FO ;vector-scalar mult.
LV V3,Ry ;load vector Y
ADDV.D V4,V2,V3 ;add
L.D FO,a SV Ry, V4 :store the result
DADDIU R4,Rx,#512 ;last address to load
loop: L.D F2,0(Rx) :load X(i) Operations: 578 (2+9*64)
MULT.D F2F0,E2 a*X(i) vs. 321 (1+5*64) (1.8X)
LD F4,0Ry) ;load Y(i) Instructions: 578 (2+9*64)
ADD.D E4,F2E4 ;a*X(i) + Y(i) vS. 6 instructions (96X)

S.D F4,0(Ry) ;storeinto Y(i)
DADDIU Rx,Rx,#8 ;increment index to X
DADDIU Ry,Ry,#8 ;incrementindextoY
DSUBU R20,R4,Rx ;compute bound
BNEZ R20,loop ;check if done

Hazards: 64X fewer
pipeline hazards

11/04/2005 UAH-CPE631 13
CPE . .
631 Vector Execution Time
DAM

Time = f(vector length, data dependencies, structural hazards)
Initiation rate: rate at which a FU consumes vector elements
(= number of lanes; usually 1 or 2)

m Convoy: set of vector instructions that can begin execution in
same clock (no structural or data hazards)

m Chime: approximate time to execute a convoy

® m convoys take m chimes; if each vector length is n, then they
take approx. m x n clock cycles (ignores overhead; good
approximation for long vectors)

1: LV —VLRx ;load vector X 4 CZanA)f/S, 215|g”e, VL=64
. .) =>4X = clocks
2: MULVSDD V2, V1,FO ;vector-scalar mult. (or 4 clocks per result)
LV 3,Ry ;load vector Y
3: ADDV.D\Aﬂ,Q,V3 ;add
4: SV Ry,V4 ;store the result

11/04/2005 UAH-CPE631 14

CPE

VMIPS Start-up Time

631
O0AM
m Start-up time: pipeline latency time (depth of
FU pipeline); another sources of overhead

Operation Start-up penalty (from CRAY-1)

Vector load/store 12

Vector multiply 7

Vector add 6

Assume convoys don't overlap; vector length = n:

Convoy Start 1st result last result
1. LV 0 12 11+n (12-1+n)
2. MULVS.D, LV 12+n 12+n+12 23+2n load start-up
3. ADDV.D 24+2n 24+2n+6 29+3n wait convoy 2
4. SV 30+3n 30+3n+12 41+4n wait convoy 3
11/04/2005 UAH-CPE631 15
CPE . .
631 VMIPS Execution Time
OAM
Time >
1: LV ViRx ~—_ O\
12 |
2: MULV V2,FO,V1 E
LV V3Ry 12 i
3: ADDV V4,V2,V3 N~—_ N
6 n
4: SV Ry,V4 E
12 n

11/04/2005

UAH-CPE631

16

22’5 Vector Load/Store Units & Memories

OAM

m Start-up overheads usually longer for LSUs

= Memory system must sustain
(# lanes x word) /clock cycle

m Many Vector Processors use banks (vs. simple
interleaving):

— support multiple loads/stores per cycle
=> multiple banks & address banks independently
— support non-sequential accesses

= Note: No. memory banks > memory latency to avoid
stalls

— m banks => m words per memory latency | clocks
— if m < [, then gap in memory pipeline
— may have 1024 banks in SRAM

11/04/2005 UAH-CPE631 17

22’5 Real-World Issues: Vector Length

OAM

m What to do when vector length is not exactly 647?

for(i=0; i<n, i++)
{Y(i)=a*X(i)+Y(i)}

m Value of n can be unknown at compile time?

m Vector-Length Reqgister (VLR): controls the length
of any vector operation, including a vector load or
store (cannot be > the length of vector registers)

m What if n > Maximum Vector Length (MVL)?
=> Strip mining

11/04/2005 UAH-CPE631 18

g;f Strip Mining

OAM

m Strip mining: generation of code such that each vector
operation is done for a size less than or equal to the MVL

m 1st loop: do short piece (n mod MVL),
rest VL = MVL

i =0

VL = n nod MVL;

for (j=0; j<n/ML; j++){
for(i<VL; i++)

{Y(i)=a*X(i)+Y(i)}

VL = ML;

}
m Overhead of executing strip-mined loop?

11/04/2005 UAH-CPE631 19
CP .
635 Vector Stride
DAM

m Suppose adjacent elements not sequential in memory
(e.g., matrix multiplication)

(11

for(i=0; i<100; i++) 12)
for(j=0; j<100; j++) { (1,100)
A(i,j)=0.0; @1

for(k=0; k<100; k++)
ACi,j)=A(i,j)+B(i, k)*C(k,j);

(2,100 [

}

m Matrix C accesses are not adjacent (800 bytes between)

m Stride: distance separating elements that are to be merged
into a single vector
=> LVWS (load vector with stride) instruction

m Strides can cause bank conflicts
(e.g., stride=32 and 16 banks)

11/04/2005 UAH-CPE631 20

CPE
631
OAM

Vector Opt #1: Chaining

m Suppose:
MULV.D V1,v2,V3
ADDV.D V4,V1,V5 ; separate convoy?

m Chaining: if vector register (V1) is not treated
as a single entity but as a group of individual
registers, then pipeline forwarding can work
on individual elements of a vector

m Flexible chaining: allow vector to chain to any
other active vector operation => more
read/write ports

m As long as enough HW, increases convoy size

11/04/2005 UAH-CPE631 21

CPE
631
OAM

DAXPY Chaining: CRAY-1

Chain 1 ~—
Chain 2: ~—.

Chain 3:

m CRAY-1 has one memory access pipe either for load
or store (not for both at the same time)
m 3 chains
— Chain 1: LV V3
— Chain 2: LV V1 + MULV V2,FO,V1 + ADDV V4,V2,V3
— Chain 3: SV V4

Time

12 n

25 n

2 n

11/04/2005 UAH-CPE631 22

Pt 3 Chains DAXPY for CRAY-1

OAM

R/W port

Access Access :
ipe V1 pipe
V3 pip : Access
— < pipe

7]

Multiply V2 R/W port
pipe :
V3

|

Add pipe
V4
11/04/2005 UAH-CPE631 3
Pt DAXPY Chaining: CRAY X-MP
OAM

m CRAY X-MP has 3 memory access pipes,
two for vector load and one for vector store

m 1 chain: LV V3, LV V1 + MULV V2,FO,V1 +
ADDV V4 V2V3 + SV V4
Time

Chain 1: ~—\ g

11/04/2005 12 umH-cPE63L 24

€ One Chain DAXPY for CRAY X-MP

OAM
V3 Vi
Access Access
pipe pipe
FO
Multiply V2
pipe
!
V4
Add pipe
[emary fo—tr
W port
11/04/2005 UAH-CPE631 25
CPE

631 Vector Opt #2: Conditional Execution
DAM

m Consider:

do 100 i =1, 64

if (A(i) .ne. 0) then
A(i) = A(i) — B(i)

endi f

100 conti nue

m Vector-mask control takes a Boolean vector: when vector-
mask register is loaded from vector test, vector instructions
operate only on vector elements whose corresponding
entries in the vector-mask register are 1

®m Requires clock even for the elements where the mask is 0

m Some VP use vector mask only to disable the storing of the
result and the operation still occurs;
zero division exception is possible? => mask operation

11/04/2005 UAH-CPE631 26

g;‘f Vector Mask Control

OAM
LV V1, Ra :load Ainto V1
LV V2, Rb :load B into V2
L. D FO, #O :load FP zero to FO
SNESV. D FO, V1 ;sets VMregister if V1(i)<>0
SUBV. D V1, V1, V2 ;subtract under VM
CVM :set VMto all 1s
SV Ra, V1 :store results in A
11/04/2005 UAH-CPE631 27
¢t Vector Opt #3: S Matri
631 ector pt . Oparse atrices
OAM

m Sparse matrix: elements of a vector are usually stored in
some compacted form and then accessed indirectly

m Suppose: do 100 i = 1, n
100 A(K(i))=A(K(i))+C(Mi))

m Mechanism to support sparse matrices:
scatter-gather operations

m Gather (LVI) operation takes an index vector and fetches the
vector whose elements are at the addresses given by adding
a base address to the offsets given in the index vector => a
nonsparse vector in a vector register

m After these elements are operated on in dense form, the
sparse vector can be stored in expanded form by a scatter
store (SVI), using the same index vector

11/04/2005 UAH-CPE631 28

CPE

Sparse Matrices Example

631
OAM
do 100i =1, n

100 A(K(i))=A(K(i))+C(Mi))

LV Vk, Rk ; load K

LVI Va, (Ra+Vk) : load A(K(i))

LV Vm Rm : load M

LVI Ve, (Rc+Vm ; load C(Mi))

ADDV. D Va, Va, Vc ; add them

SVI (Ra+Vk),Va ; store A(K(i))

m Can't be done by compiler since

can't know Ki elements distinct

11/04/2005 UAH-CPE631 29
e g Matrices E | 'd
631 parse Matrices Example (cont’d)
OAM

LV Vl,Ra ;load Ainto V1

L.D FO,#0 ;load FP zero into FO

SNESV.D FO, V1 ;sets VWMto 1 if V1(i)<>FO
CVI V2,#8 ;generates indices in V2

POP R1, VM ;find the nunber of 1s

MICl VLR Rl ;| oad vector-length reg.

CVM ;clears the mask
LVI V3, (Rat+V2) ;load the nonzero As
LVI V4, (Rb+V2) ;1 oad the nonzero Bs

SUBV. D V3,V3,V4 ;do the subtract

SVI (Ra+V2),V3 ;store A back

m Use CVI to create index 0, 1xm, ..., 63xm

(compressed index vector whose entries correspond to

the positions with a 1 in the mask register
11/04/2005 UAH-CPEG631

30

gg‘f Things to Remember

OAM

m Properties of vector processing
— Each result independent of previous result
— Vector instructions access memory with known pattern
— Reduces branches and branch problems in pipelines
— Single vector instruction implies lots of work (- loop)

[| Components of a vector processor: vector
registers, functional units, load/store, crossbar....

m Strip mining technique for long vectors

m Optimisation techniques: chaining, conditional
execution, sparse matrices

11/04/2005 UAH-CPE631 31

