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Outline

� Properties of Vector Processing
� Components of a Vector Processor
� Vector Execution Time
� Real-World Problems: 

Vector Length and Stride
� Vector Optimizations: Chaining, 

Conditional Execution, Sparse Matrices
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Why Vector Processors?

� Instruction level parallelism (Ch 3&4)
– Deeper pipeline and wider superscalar machines 

to extract more parallelism
• more register file ports, more registers,

more hazard interlock logic

– In dynamically scheduled machines
instruction window, reorder buffer, rename register files
must grow to have enough capacity to keep relevant 
information about in-flight instructions

� Difficult to build machines supporting 
large number of in-flight instructions =>
limit the issue width and pipeline depths =>
limit the amount parallelism you can extract

� Commercial versions long before ILP machines
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Vector Processing Definitions

� Vector - a set of scalar data items, all of the same 
type, stored in memory

� Vector processor - an ensemble of hardware 
resources, including vector registers, functional 
pipelines, processing elements, and register counters 
for performing vector operations

� Vector processing occurs when arithmetic or 
logical operations are applied to vectors

add r 3,  r 1,  r 2

SCALAR
(1 operation) +

r1 r2

r3 vector
length

add. vv v3,  v1,  v2

VECTOR
(N operations) +++++

v1 v2

v3
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Properties of Vector Processors

� 1) Single vector instruction specifies lots of work 
– equivalent to executing an entire loop
– fewer instructions to fetch and decode

� 2) Computation of each result in the vector is independent of the 
computation of other results in the same vector
– deep pipeline without data hazards; high clock rate

� 3) Hw checks for data hazards only between vector instructions 
(once per vector, not per vector element)

� 4) Access memory with known pattern
– elements are all adjacent in memory =>

highly interleaved memory banks provides high bandwidth

– access is initiated for entire vector => high memory latency is 
amortised (no data caches are needed)

� 5) Control hazards from the loop branches are reduced
– nonexistent for one vector instruction
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Properties of Vector Processors (cont’d)

� Vector operations: 
arithmetic (add, sub, mul, div),memory 
accesses, effective address calculations

� Multiple vector instructions can be in progress
at the same time => more parallelism

� Applications to benefit 
– Large scientific and engineering applications

(car crash simulations, weather forecasting, ...)
– Multimedia applications
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Basic Vector Architectures

� Vector processor: 
ordinary pipelined scalar unit + vector unit

� Types of vector processors
– Memory-memory processors: 

all vector operations are memory-to-memory (CDC)
– Vector-register processors: 

all vector operations except load and store 
are among the vector registers
(CRAY-1, CRAY-2, X-MP, Y-MP, NEX SX/2(3), Fujitsu)

• VMIPS – Vector processor as 
an extension of the 5-stage MIPS processor
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Components of a vector-register processor

� Vector Registers: each vector register 
is a fixed length bank holding a single vector
– has at least 2 read and 1 write ports

– typically 8-32 vector registers, each holding 64-128 64 bit 
elements 

– VMIPS: 8 vector registers, each holding 64 elements 
(16 Rd ports, 8 Wr ports)

� Vector Functional Units (FUs): fully pipelined, 
start new operation every clock cycle
– typically 4 to 8 FUs: FP add, FP mult, FP reciprocal (1/X), 

integer add, logical, shift; 

– may have multiple of same unit
– VMIPS: 5 FUs (FP add/sub, FP mul, FP div, FP integer, FP 

logical)
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Components of a vector-register 
processor (cont’d)

� Vector Load-Store Units (LSUs)
– fully pipelined unit to load or store a vector; 

may have multiple LSUs
– VMIPS: 1 VLSU, 

bandwidth is 1 word per cycle after initial delay

� Scalar registers
– single element for FP scalar or address
– VMIPS: 32 GPR, 32 FPRs

they are read out and latched at one input of the 
FUs

� Cross-bar to connect FUs, LSUs, registers
– cross-bar to connect Rd/Wr ports and FUs
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VMIPS: Basic Structure

� 8 64-element 
vector registers

� 5 FUs; each unit 
is fully pipelined, 
can start a new 
operation on 
every clock cycle

� Load/store unit -
fully pipelined

� Scalar registers

Main 
Memory

Vector 
Load/Store

FP add/subtract

FP multiply

FP divide

Integer

Logical

Vector 
registers

Scalar 
registers
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VMIPS Vector Instructions

Instr. Operands Operation Comment
ADDV.D V1,V2,V3 V1=V2+V3 vector + vector
ADDSV.D V1,F0,V2 V1=F0+V2 scalar + vector
MULV.D V1,V2,V3 V1=V2xV3 vector x vector
MULSV.D V1,F0,V2 V1=F0xV2 scalar x vector
LV V1,R1 V1=M[R1..R1+63] load, stride=1
LVWS V1,R1,R2 V1=M[R1..R1+63*R2] load, stride=R2
LVI V1,R1,V2 V1=M[R1+V2(i),i=0..63] indir.("gather")
SeqV.D VM,V1,V2 VMASKi = (V1i=V2i)? comp. setmask
MTC1 VLR,R1 Vec. Len. Reg. = R1 set vector length
MFC1 VM,R1 R1 = Vec. Mask set vector mask

See table G3 for the VMIPS vector instructions.
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VMIPS Vector Instructions (cont’d)

Instr. Operands Operation Comment
SUBV.D V1,V2,V3 V1=V2-V3 vector - vector
SUBSV.D V1,F0,V2 V1=F0-V2 scalar – vector
SUBVS.D V1,V2,F0 V1=V2- F0 vector - scalar 
DIVV.D V1,V2,V3 V1=V2/V3 vector / vector
DIVSV.D V1,F0,V2 V1=F0/V2 scalar / vector
DIVVS.D V1,V2,F0 V1=V2/F0 vector / scalar
..
POP R1, M Count the 1s in the VM register
CVM Set the vector-mask register to all 1s

See table G3 for the VMIPS vector instructions.
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DAXPY: Double a××××X + Y

L.D F0,a
DADDIU R4,Rx,#512 ;last address to load 

loop:  L.D F2, 0(Rx)   ;load X(i)
MULT.D F2,F0,F2 ;a*X(i)
L.D F4, 0(Ry) ;load Y(i)
ADD.D F4,F2,F4 ;a*X(i) + Y(i)
S.D F4,0(Ry) ;store into Y(i)
DADDIU Rx,Rx,#8 ;increment index to X
DADDIU Ry,Ry,#8 ;increment index to Y
DSUBU R20,R4,Rx ;compute bound
BNEZ R20,loop ;check if done

L.D     F0,a ;load scalar a

LV     V1,Rx ;load vector X

MULVS V2,V1,F0 ;vector-scalar mult.

LV V3,Ry ;load vector Y

ADDV.D V4,V2,V3 ;add

SV Ry,V4 ;store the result

Assuming vectors X, Y 
are length 64

Scalar vs. Vector

Operations: 578 (2+9*64) 
vs. 321 (1+5*64) (1.8X)

Instructions: 578 (2+9*64) 
vs. 6 instructions (96X) 

Hazards: 64X fewer 
pipeline hazards
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Vector Execution Time

� Time = f(vector length, data dependencies, structural hazards) 

� Initiation rate: rate at which a FU consumes vector elements 
(= number of lanes; usually 1 or 2)

� Convoy: set of vector instructions that can begin execution in 
same clock (no structural or data hazards)

� Chime: approximate time to execute a convoy

� m convoys take m chimes; if each vector length is n, then they 
take approx. m x n clock cycles (ignores overhead; good 
approximation for long vectors)

4 convoys, 1 lane, VL=64
=> 4 x 64 = 256 clocks
(or 4 clocks per result)

1: LV     V1,Rx ;load vector X

2: MULVS.D V2, V1,F0  ;vector-scalar mult.

LV V3,Ry ;load vector Y

3: ADDV.D   V4,V2,V3 ;add

4: SV Ry,V4 ;store the result
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VMIPS Start-up Time

� Start-up time: pipeline latency time (depth of 
FU pipeline); another sources of overhead

wait convoy 3

wait convoy 2

load start-up

41+4n30+3n+1230+3n4. SV

29+3n24+2n+624+2n3. ADDV.D

23+2n12+n+1212+n2. MULVS.D, LV

11+n (12-1+n)1201. LV

last result1st resultStartConvoy

6Vector add

7Vector multiply

12Vector load/store

Start-up penalty (from CRAY-1)Operation

Assume convoys don't overlap; vector length = n:
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VMIPS Execution Time

1: LV     V1,Rx

2: MULV V2,F0,V1

LV V3,Ry

3: ADDV V4,V2,V3

4: SV Ry,V4

Time

12 n

12

6

12

n

n

n
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Vector Load/Store Units & Memories

� Start-up overheads usually longer for LSUs
� Memory system must sustain 

(# lanes x word) /clock cycle
� Many Vector Processors use banks (vs. simple 

interleaving):
– support multiple loads/stores per cycle 

=> multiple banks & address banks independently
– support non-sequential accesses

� Note: No. memory banks > memory latency to avoid 
stalls
– m banks => m words per memory latency l clocks
– if m <  l, then gap in memory pipeline
– may have 1024 banks in SRAM
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Real-World Issues: Vector Length

� What to do when vector length is not exactly 64?   

� Value of n can be unknown at compile time?
� Vector-Length Register (VLR): controls the length 

of any vector operation, including a vector load or 
store (cannot be > the length of vector registers)

� What if n > Maximum Vector Length (MVL)?
=> Strip mining

for(i=0; i<n, i++) 

{Y(i)=a*X(i)+Y(i)}
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Strip Mining

� Strip mining: generation of code such that each vector 
operation is done for a size less than or equal to the MVL

� 1st loop: do short piece (n mod MVL), 
rest VL = MVL

� Overhead of executing strip-mined loop?

i = 0;

VL = n mod MVL;

for (j=0; j<n/MVL; j++){

for(i<VL; i++)

{Y(i)=a*X(i)+Y(i)}

VL = MVL;
}
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Vector Stride

� Suppose adjacent elements not sequential in memory 
(e.g., matrix multiplication)

� Matrix C accesses are not adjacent (800 bytes between)
� Stride: distance separating elements that are to be merged 

into a single vector 
=> LVWS (load vector with stride) instruction

� Strides can cause bank conflicts 
(e.g., stride=32 and 16 banks)

f or ( i =0;  i <100;  i ++)

f or ( j =0;  j <100;  j ++)  {

A( i , j ) =0. 0;

f or ( k=0;  k<100;  k++)

A( i , j ) =A( i , j ) +B( i , k) * C( k, j ) ;

}

:

:

(1,1)
(1,2)

(1,100)
(2,1)

(2,100)
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Vector Opt #1: Chaining

� Suppose:
MULV.D V1,V2,V3
ADDV.D V4,V1,V5 ; separate convoy?

� Chaining: if vector register (V1) is not treated 
as a single entity but as a group of individual 
registers, then pipeline forwarding can work 
on individual elements of a vector

� Flexible chaining: allow vector to chain to any 
other active vector operation => more 
read/write ports

� As long as enough HW, increases convoy size
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DAXPY Chaining: CRAY-1

� CRAY-1 has one memory access pipe either for load 
or store (not for both at the same time)

� 3 chains
– Chain 1: LV V3
– Chain 2: LV V1 + MULV V2,F0,V1 + ADDV V4,V2,V3

– Chain 3: SV V4

Chain 1:

Chain 2:

Chain 3:

Time

12 n

25

12

n

n
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3 Chains DAXPY for CRAY-1

:

:

Memory

Access 
pipeV3

:

:

Memory

Access 
pipe

V1

F0

:

:

V2Multiply 
pipe

:

V3

:

Add pipe

:

V4

:

V4

:

Memory

R/W port

R/W port

Access 
pipe

R/W port
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DAXPY Chaining: CRAY X-MP

� CRAY X-MP has 3 memory access pipes, 
two for vector load and one for vector store

� 1 chain: LV V3, LV V1 + MULV V2,F0,V1 + 
ADDV V4,V2,V3 + SV V4

Chain 1:

Time

12 n

25

12

n

n

12 n
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One Chain DAXPY for CRAY X-MP

:
:

Memory

Access 
pipe

V3

:

:

Memory

V1

F0

:

:

V2
Multiply 

pipe

:

Add pipe

:

V4

R port

W port

Access 
pipe

R port
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Vector Opt #2: Conditional Execution

� Consider:

� Vector-mask control takes a Boolean vector: when vector-
mask register is loaded from vector test, vector instructions 
operate only on vector elements whose corresponding 
entries in the vector-mask register are 1

� Requires clock even for the elements where the mask is 0
� Some VP use vector mask only to disable the storing of the 

result and the operation still occurs; 
zero division exception is possible? => mask operation 

do 100 i  = 1,  64
i f  ( A( i )  . ne.  0)  t hen

A( i )  = A( i )  – B( i )
endi f

100 cont i nue



11/04/2005 UAH-CPE631 27

����

���

� 	

Vector Mask Control

LV V1, Ra ;load A into V1

LV V2, Rb ;load B into V2

L.D F0, #0 ;load FP zero to F0

SNESV.D F0,V1 ;sets VM register if V1(i)<>0

SUBV.D V1,V1,V2 ;subtract under VM

CVM ;set VM to all 1s

SV Ra,V1 ;store results in A 
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Vector Opt #3: Sparse Matrices

� Sparse matrix: elements of a vector are usually stored in 
some compacted form and then accessed indirectly

� Suppose:

� Mechanism to support sparse matrices: 
scatter-gather operations

� Gather (LVI) operation takes an index vector and fetches the 
vector whose elements are at the addresses given by adding 
a base address to the offsets given in the index vector => a
nonsparse vector in a vector register 

� After these elements are operated on in dense form, the 
sparse vector can be stored in expanded form by a scatter 
store (SVI), using the same index vector

do 100 i = 1, n
100 A(K(i))=A(K(i))+C(M(i))
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Sparse Matrices Example

� Can't be done by compiler since 
can't know Ki elements distinct

LV Vk,  Rk ;  l oad K

LVI  Va, ( Ra+Vk) ;  l oad A( K( i ) )

LV Vm, Rm ;  l oad M

LVI  Vc, ( Rc+Vm) ;  l oad C( M( i ) )

ADDV. D Va, Va, Vc ;  add t hem

SVI  ( Ra+Vk) , Va ;  st or e A( K( i ) )

do 100 i  = 1,  n
100 A( K( i ) ) =A( K( i ) ) +C( M( i ) )
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Sparse Matrices Example (cont’d)

� Use CVI to create index 0, 1xm, ..., 63xm
(compressed index vector whose entries correspond to 
the positions with a 1 in the mask register

LV V1, Ra ; l oad A i nt o V1

L. D F0, #0 ; l oad FP zer o i nt o F0

SNESV. D F0, V1 ; set s VM t o 1 i f  V1( i ) <>F0

CVI  V2, #8 ; gener at es i ndi ces i n V2

POP R1, VM ; f i nd t he number  of  1s

MTC1 VLR, R1 ; l oad vect or - l engt h r eg.

CVM ; cl ear s t he mask

LVI  V3, ( Ra+V2) ; l oad t he nonzer o As

LVI  V4, ( Rb+V2) ; l oad t he nonzer o Bs

SUBV. D V3, V3, V4 ; do t he subt r act

SVI  ( Ra+V2) , V3 ; st or e A back
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Things to Remember

� Properties of vector processing
– Each result independent of previous result
– Vector instructions access memory with known pattern
– Reduces branches and branch problems in pipelines
– Single vector instruction implies lots of work (- loop)

� Components of a vector processor: vector 
registers, functional units, load/store, crossbar....

� Strip mining technique for long vectors
� Optimisation techniques: chaining, conditional 

execution, sparse matrices


