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Introduction 

Eniac, 1946 
(first stored-program computer)
Occupied 50x30 feet room, 
weighted 30 tonnes, 
contained 18000 electronic valves, 
consumed 25KW of electrical power;
capable to perform 100K calc. per second

CHANGE! It is exciting. It has never been more exciting!
It impacts every aspect of human life. 

PlayStation Portable (PSP)
Approx. 170 mm (L) x 74 mm (W) x 23 mm (D) 
Weight: Approx. 260 g (including battery) 
CPU: PSP CPU (clock frequency 1~333MHz) 
Main Memory: 32MB 
Embedded DRAM: 4MB 
Profile: PSP Game, UMD Audio, UMD Video 
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A short history of computing

Continuous growth in performance due to advances in technology and 
innovations in computer design
First 25 years (1945 – 1970) 

25% yearly growth in performance
Both forces contributed to performance improvement
Mainframes and minicomputers dominated the industry

Late 70s, emergence of the microprocessor
35% yearly growth in performance thanks to integrated circuit technology
Changes in computer marketplace: 
elimination of assembly language programming, 
emergence of Unix easier to develop new architectures

Mid 80s, emergence of RISCs (Reduced Instruction Set Computers)
52% yearly growth in performance 
Performance improvements through instruction level parallelism 
(pipelining, multiple instruction issue), caches 

Since ‘02, end of 16 years of renaissance
20% yearly growth in performance
Limited by 3 hurdles: maximum power dissipation, 
instruction-level parallelism, and so called “memory wall” 
Switch from ILP to TLP and DLP (Thread-, Data-level Parallelism)
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Growth in processor performance
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• VAX : 25%/year 1978 to 1986
• RISC + x86: 52%/year 1986 to 2002
• RISC + x86: 20%/year 2002 to present

From Hennessy and Patterson, Computer 
Architecture: A Quantitative Approach, 4th 
edition, October, 2006
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Effect of this Dramatic Growth

Significant enhancement of the capability 
available to computer user

Example: a today’s $500 PC has more performance, 
more main memory, and more disk storage than a $1 
million computer in 1985

Microprocessor-based computers dominate
Workstations and PCs 
have emerged as major products
Minicomputers - replaced by servers 
Mainframes - replaced by multiprocessors
Supercomputers - replaced by 
large arrays of microprocessors
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Changing Face of Computing

In the 1960s mainframes roamed the planet
Very expensive, operators oversaw operations
Applications: business data processing, 
large scale scientific computing

In the 1970s, minicomputers emerged 
Less expensive, time sharing

In the 1990s, Internet and WWW, handheld devices 
(PDA), high-performance consumer electronics for 
video games and set-top boxes have emerged 
Dramatic changes have led to 
3 different computing markets

Desktop computing, Servers, Embedded Computers
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Computing Classes: A Summary

Price, power consumption, 
application-specific 
performance

Throughput, 
availability, 
scalability

Price-
performance, 
graphics 
performance

Critical system 
design issues

$0.01 - $100$200-$10K$50-$500Price of the 
processor

300M
(only 32-bit and 64-bit)

4M150MSold per year
(estimates for 
2000)

$10-$100K (including network 
routers at high end)

$5K-$5M$500-$5KPrice of the 
system

EmbeddedServerDesktopFeature
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Desktop Computers

Largest market in dollar terms
Spans low-end (<$500) to high-end (≈$5K) systems
Optimize price-performance

Performance measured in the number of calculations 
and graphic operations
Price is what matters to customers

Arena where the newest, highest-performance and 
cost-reduced microprocessors appear
Reasonably well characterized in terms of 
applications and benchmarking
What will a PC of 2011 do?
What will a PC of 2016 do?
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Servers

Provide more reliable file and computing 
services (Web servers)
Key requirements

Availability – effectively provide service 
24/7/365 (Yahoo!, Google, eBay)
Reliability – never fails
Scalability – server systems grow over time, 
so the ability to scale up the computing 
capacity is crucial
Performance – transactions per minute

Related category: clusters / supercomputers 
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Embedded Computers

Fastest growing portion of the market
Computers as parts of other devices where their presence is not 
obviously visible

E.g., home appliances, printers, smart cards, 
cell phones, palmtops, set-top boxes, gaming consoles, network 
routers

Wide range of processing power and cost
≈$0.1 (8-bit, 16-bit processors), $10 (32-bit capable to execute 
50M instructions per second), ≈$100-$200 (high-end video 
gaming consoles and network switches)

Requirements
Real-time performance requirement 
(e.g., time to process a video frame is limited)
Minimize memory requirements, power

SOCs (System-on-a-chip) combine processor cores and 
application-specific circuitry, DSP processors, network 
processors, ...
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Task of Computer Designer

“Determine what attributes are important for 
a new machine; then design a machine to 
maximize performance while staying within 
cost, power, and availability constraints.”
Aspects of this task

Instruction set design 
Functional organization 
Logic design and implementation 
(IC design, packaging, power, cooling...)



•4

13

©AM

LaCASA

What is Computer Architecture?

Instruction Set Architecture
the computer visible to the assembler language 
programmer or compiler writer (registers, data types, 
instruction set, instruction formats, addressing modes)

Organization
high level aspects of computer’s design such as 
the memory system, the bus structure, and 
the internal CPU (datapath + control) design

Hardware
detailed logic design, interconnection and packing 
technology, external connections

Computer Architecture covers 
all three aspects of computer design
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Instruction Set Architecture: 
Critical Interface

instruction set

software

hardware

Properties of a good abstraction
Lasts through many generations (portability)
Used in many different ways (generality)
Provides convenient functionality to higher levels
Permits an efficient implementation at lower levels
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Instruction Set Architecture
“... the attributes of a [computing] system as seen by the programmer, 
i.e.  the conceptual structure and functional behavior, as distinct from 
the organization of the data flows and controls the logic design, and the 
physical implementation.”    
Amdahl, Blaauw, and Brooks,  1964 SOFTWARESOFTWARE

• Organization of Programmable Storage (GPRs, SPRs)

• Data Types & Data Structures: Encodings & Representations

• Instruction Formats

• Instruction (or Operation Code) Set

• Modes of Addressing and Accessing Data Items and Instructions

• Exceptional Conditions
16
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Example: MIPS64

Registers
32 64-bit general-purpose (integer) registers (R0-R31)  
32 64-bit floating-point registers (F0-F31)

Data types
8-bit bytes, 16-bit half-words, 32-bit words, 64-bit 
double words for integer data
32-bit single- or 64-bit double-precision numbers

Addressing Modes for MIPS Data Transfers
Load-store architecture: Immediate, Displacement
Memory is byte addressable with a 64-bit address
Mode bit to select Big Endian or Little Endian
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Example: MIPS64

MIPS Instruction Formats (R-type, I-type, J-type)

Op
31 26 01516202125

Rs1 Rd immediate

Op
31 26 025

Op
31 26 01516202125

Rs1 Rs2

target

Rd Opx

Register-Register

561011

Register-Immediate

Op
31 26 01516202125

Rs1 Rs2/Opx immediate

Branch

Jump / Call
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Example: MIPS64

MIPS Operations
(See Appendix B, Figure B.26)

Data Transfers (LB, LBU, SB, LH, LHU, SH, LW, LWU, SW, LD, 
SD, L.S, L.D, S.S, S.D, MFCO, MTCO, MOV.S, MOV.D, MFC1, 
MTC1)
Arithmetic/Logical (DADD, DADDI, DADDU, DADDIU, DSUB, 
DSUBU, DMUL, DMULU, DDIV, DDIVU, MADD, AND, ANDI, 
OR, ORI, XOR, XORI, LUI, DSLL, DSRL, DSRA, DSLLV, 
DSRLV, DSRAV, SLT, SLTI, SLTU, SLTIU)
Control (BEQZ, BNEZ, BEQ, BNE, BC1T, BC1F, MOVN, MOVZ, 
J, JR, JAL, JALR, TRAP, ERET)
Floating Point (ADD.D, ADD.S, ADD.PS, SUB.D, SUB.S, 
SUB.PS, MUL.D, MUL.S, MUL.PS, MADD.D, MADD.S, 
MADD.PS, DIV.D, DIV.S, DIV.PS, CVT._._, C._.D, C._.S
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Computer Architecture is 
Design and Analysis

Design

Analysis

Architecture is an iterative process:
• Searching the space  of possible designs
• At all levels of computer systems

Creativity

Good IdeasGood Ideas
Mediocre IdeasBad Ideas

Cost /
Performance
Analysis
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Computer Engineering Methodology

Evaluate ExistingEvaluate Existing
Systems for Systems for 
BottlenecksBottlenecks

Simulate NewSimulate New
Designs andDesigns and

OrganizationsOrganizations

Implement NextImplement Next
Generation SystemGeneration System

Technology
Trends

Benchmarks

Workloads

Implementation
Complexity

ApplicationsMarket
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Technology Trends

Integrated circuit technology – 55% /year
Transistor density – 35% per year
Die size – 10-20% per year

Semiconductor DRAM
Density – 40-60% per year (4x in 3-4 years)
Cycle time – 33% in 10 years
Bandwidth – 66%  in 10 years

Magnetic disk technology
Density – 100% per year
Access time – 33% in 10 years

Network technology (depends on switches and transmission 
technology)

10Mb-100Mb (10years), 100Mb-1Gb (5 years)
Bandwidth – doubles every year (for USA)
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Processor Transistor Count

Intel 
4004,
2300tr
(1971)

Intel P4 – 55M tr
(2001)

Intel 
McKinley –
221M tr.
(2001)

Intel Core 2 Extreme 
Quad-core 2x291M tr.
(2006)
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Processor Transistor Count 
(from http://en.wikipedia.org/wiki/Transistor_count)

Intel200042 000 000Pentium 4

AMD199922 000 000AMD K7

AMD199921 300 000AMD K6-
III

Intel19999 500 000Pentium III

AMD19978 800 000AMD K6

Intel19977 500 000Pentium II

AMD19964 300 000AMD K5

Intel19933 100 000Pentium

Intel19891 200 000Intel 80486

Intel1985275 000Intel 80386

Intel1982134 000Intel 80286

Intel197829 000Intel 8088

Intel19744500Intel 8080

Intel19722500Intel 8008

Intel19712300Intel 4004

Manufactu
-rer

Date of 
intro-
duction

Transistor 
count

Processor

Intel20061 700 000 000Dual-Core 
Itanium 2

Intel2006582 000 000Core 2 Quadro

Intel2006291 000 000Core 2 Duo

Sony/IBM/
Toshiba

2006241 000 000Cell

Intel2004592 000 000Itanium 2 with 
9MB cache

Intel2003220 000 000Itanium 2

AMD2003105 900 000AMD K8

AMD200354 300 000Barton

Intel200125 000 000Itanium

ManufacturerDate of 
introdu-
ction

Transistor 
count

Processor
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Technology Directions: SIA Roadmap
(from 1999)

Year 1999 2002 2005 2008 2011 2014
Feature size (nm) 180 130 100 70 50 35 
Logic trans/cm2 6.2M 18M 39M 84M 180M 390M
Cost/trans (mc) 1.735 .580 .255 .110 .049 .022 
#pads/chip 1867 2553 3492 4776 6532 8935
Clock (MHz) 1250 2100 3500 6000 10000 16900
Chip size (mm2) 340 430 520 620 750 900 
Wiring levels 6-7 7 7-8 8-9 9 10 
Power supply (V) 1.8 1.5 1.2 0.9 0.6 0.5 
High-perf pow (W) 90 130 160 170 175 183 
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Technology Directions
(ITRS – Int. Tech. Roadmap for Semicon., 2006 ed.)

ITRS yearly updates
In year 2017 (10 years from now)

Gate length (high-performance MPUs): 
13 nm (printed), 8 nm (physical)
Functions per chip at production 
(in million of transistors): 3,092

For more info check the 
$HOME/docs/00_ExecSum2006Update.pdf
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Cost, Price, and Their Trends

Price – what you sell a good for
Cost – what you spent to produce it 
Understanding cost

Learning curve principle – manufacturing costs 
decrease over time (even without major 
improvements in implementation technology)

Best measured by change in yield – the percentage of 
manufactured devices that survives the testing procedure

Volume (number of products manufactured)
decreases the time needed to get down the learning curve
decreases cost since it increases 
purchasing and manufacturing efficiency

Commodities – products sold by multiple vendors in 
large volumes which are essentially identical

Competition among suppliers lower cost
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Trends in Cost:
The Price of DRAM and Intel Pentium III
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Trends in Cost:
The Price of Pentium4 and PentiumM
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Integrated Circuits Variable Costs

yieldtestFinal
costPackagingcostTestingcostDiecostIC ++

=

yieldDiewaferperDies
waferofCostdieofCost
×

=

areaDie
diameterWafer

areaDie
diameterWaferwaferperDies

×
×

−
×

=
2

2 2 ππ )/(

Example: Find the number of dies per 20-cm wafer for a die that is 1.5 cm on a side.
Solution: Die area = 1.5x1.5 = 2.25cm2. 
Dies per wafer = 3.14x(20/2)2/2.25 – 3.14x20/(2x2.5)0.5=110.
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Integrated Circuits Cost (cont’d)

α

α

−

⎟
⎠
⎞

⎜
⎝
⎛ ×
+×=

areaDieareaunitperDefectsyieldWaferyieldDie 1

• What is the fraction of good dies on a wafer – die yield
• Empirical model

• defects are randomly distributed over the wafer
• yield is inversely proportional to the complexity of the 

fabrication process 

• Wafer yield accounts for wafers that are completely bad 
(no need to test them); We assume the wafer yield is 
100%

• Defects per unit area: typically 0.4 – 0.8 per cm2

• α corresponds to the number of masking levels; 
for today’s CMOS, a good estimate is α=4.0

31

©AM

LaCASA

Integrated Circuits Cost (cont’d)

α

α

−

⎟
⎠
⎞

⎜
⎝
⎛ ×
+×=

areaDieareaunitperDefectsyieldWaferyieldDie 1

• Example: Find die yield for dies with 1 cm and 0.7 cm 
on a side; defect density is 0.6 per square centimeter

• For larger die: (1+0.6x1/4)-4=0.57
• For smaller die: (1+0.6x0.49/4)-4=0.75

• Die costs are proportional 
to the fourth power of the die area

• In practice

( )4areaDiefcostDie =

( )2areaDiefcostDie =
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Real World Examples

$4179%402961.5$15000.703Pentium

$27213%482561.6$17000.703SuperSPARC

$14919%532341.2$15000.703Dec Alpha

$7327%661961.0$13000.803HP PA 7100

$5328%1151211.3$17000.804PowerPC 601

$1254%181811.0$12000.803486DX2

$471%360431.0$9000.902386DX

Die 
cost

YieldDies/
wafer

Area 
[mm2]

Defect 
[cm2]

Wafer 
cost

Line
widt
h

MLChip

From "Estimating IC Manufacturing Costs,” by Linley Gwennap, 
Microprocessor Report, August 2, 1993, p. 15

Typical in 2002: 
30cm diameter wafer, 4-6 metal layers, wafer cost $5K-6K 
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Trends in Power in ICs

Power Issues
How to bring it in and distribute around the chip?
(many pins just for power supply and ground, 
interconnection layers for distribution) 
How to remove the heat (dissipated power)

Why worry about power?
Battery life in portable and mobile platforms
Power consumption in desktops, server farms 

Cooling costs, packaging costs, reliability, timing
Power density: 30 W/cm2 in Alpha 21364 
(3x of typical hot plate)

Environment?
IT consumes 10% of energy in the US

Power becomes a first class architectural design constraint
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Why worry about power? -- Power 
Dissipation

P6
Pentium ®

486
386

2868086

8085
8080

8008
4004

0.1

1

10

100

1971 1974 1978 1985 1992 2000
Year

Po
w

er
 (W

at
ts

)

Lead microprocessors power continues to increaseLead microprocessors power continues to increase

Power delivery and dissipation will be prohibitivePower delivery and dissipation will be prohibitive
Source: Borkar, De Intel®
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CMOS Power Equations

leakshort
2 VIfAVIfACVP ++= τ

V
)VV(f
2

t
max

−
∝

Reduce the 
supply voltage, V

)
kT
qVexp(I t

leak −∝

Reduce 
threshold Vt

Dynamic power 
consumption

Power due to 
short-circuit 
current during 
transition

Power due to 
leakage current
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Dependability: Some Definitions

Computer system dependability is 
the quality of delivered service
The service delivered by a system is its 
observed actual behavior
Each module has an ideal specified behavior, 
where a service specification is an agreed 
description of the expected behavior
A failure occurs when the actual behavior 

deviated from the specified behavior
The failure occurred because of an error
The cause of an error is a fault
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Dependability: Measures

Service accomplishment vs. service interruption 
(transitions: failures vs. restorations)
Module reliability: a measure of the continuous 
service accomplishment
A measure of reliability: 
MTTF – Mean Time To Failure
(1/[rate of failure]) reported in [failure/1billion hours 
of operation)
MTTR – Mean time to repair (a measure for service 
interruption)
MTBF – Mean time between failures (MTTF+MTTR)
Module availability – a measure of the service 
accomplishment; = MTTF/(MTTF+MTTR)
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Things to Remember

Computing classes: desktop, server, embedd.
Technology trends

Cost
Learning curve: 
manufacturing costs decrease over time
Volume: the number of chips manufactured
Commodity

33% in 10 years4x in 3-4 yearsDisk
33% in 10 years4x in 3-4 yearsDRAM

2x in 3 years4x in 3+ yearsLogic
SpeedCapacity
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Things to Remember (cont’d)

Cost of an integrated circuit

yieldtestFinal
costPackagingcostTestingcostDiecostIC ++

=

yieldDiewaferperDies
waferofCostdieofCost
×

=

areaDie
diameterWafer

areaDie
diameterWaferwaferperDies

×
×

−
×

=
2

2 2 ππ )/(

α

α

−

⎟
⎠
⎞

⎜
⎝
⎛ ×
+×=

areaDieareaunitperDefectsyieldWaferyieldDie 1
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Design Space

Performance
Cost
Power
Dependability
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Measuring, Reporting, 
Summarizing Performance
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Cost-Performance 

Purchasing perspective: from a collection of 
machines, choose one which has

best performance?
least cost?
best performance/cost?

Computer designer perspective: 
faced with design options, select one which has 

best performance improvement?
least cost?
best performance/cost?

Both require: basis for comparison and 
metric for evaluation
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Two “notions” of performance 

Which computer has better performance?
User: one which runs a program in less time
Computer centre manager: 
one which completes more jobs in a given time

Users are interested in reducing 
Response time or Execution time 

the time between the start and 
the completion of an event 

Managers are interested in increasing 
Throughput  or Bandwidth 

total amount of work done in a given time
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An Example

Which has higher performance?
Time to deliver 1 passenger?

Concord is 6.5/3 = 2.2 times faster (120%)
Time to deliver 400 passengers?

Boeing is 72/44 = 1.6 times faster (60%)

44 (=132/3)13213503Concorde

72 
(=470/6.5)

4706106.5Boeing 747

Throughput
[p/h]

Passe
-ngers

Top Speed
[mph]

DC to Paris
[hour]

Plane
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Definition of Performance 

We are primarily concerned with Response Time
Performance [things/sec]

“X is n times faster than Y”

As faster means both increased performance and 
decreased execution time, to reduce confusion will 
use “improve performance” or 
“improve execution time”

)(_
)(

xtimeExecution
xePerformanc 1

=

)(
)(

)(_
)(_

yePerformanc
xePerformanc

xtimeExecution
ytimeExecutionn ==
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Execution Time and Its Components

Wall-clock time, response time, elapsed time
the latency to complete a task, including disk 
accesses, memory accesses, input/output activities, 
operating system overhead,...

CPU time
the time the CPU is computing, excluding I/O or 
running other programs with multiprogramming
often further divided into user and system CPU times

User CPU time
the CPU time spent in the program

System CPU time
the CPU time spent in the operating system
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UNIX time command

90.7u  12.9s  2:39  65%
90.7 - seconds of user CPU time
12.9 - seconds of system CPU time
2:39 - elapsed time (159 seconds)
65% - percentage of elapsed time that is CPU 
time
(90.7 + 12.9)/159
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CPU Execution Time

Instruction count (IC) = Number of 
instructions executed 
Clock cycles per instruction (CPI)

timecycleClockprogramaforcyclesclockCPUtimeCPU ×=

rateClock
programaforcyclesclockCPUCPUtime =

IC
programaforcyclesclockCPUCPI =

CPI - one way to compare two machines with same instruction set, 
since Instruction Count would be the same
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CPU Execution Time (cont’d)
timecycleClockCPIICtimeCPU ××=

rateClock
CPIICtimeCPU ×

=

XTechnology
X

Clock rate

XOrganisation
XXISA

(X)XCompiler
XProgram

CPIIC

Program
Seconds

cycleClock
Seconds

nInstructio
cyclesClock

Program
nsInstructiotimeCPU =××=
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How to Calculate 3 Components? 

Clock Cycle Time 
in specification of computer 
(Clock Rate in advertisements)

Instruction count 
Count instructions in loop of small program
Use simulator to count instructions
Hardware counter in special register (Pentium II)

CPI
Calculate: 
Execution Time / Clock cycle time / Instruction Count
Hardware counter in special register (Pentium II)
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Another Way to Calculate CPI 

First calculate CPI for each individual instruction 
(add, sub, and, etc.): CPIi
Next calculate frequency of each individual instr.: 
Freqi = ICi/IC 
Finally multiply these two for each instruction and 
add them up to get final CPI

2.2
18%
14%

45%

23%
% Time

0.4220%Bran.
0.3310%Store

1.0520%Load

0.5150%ALU
Prod.CPIiFreqiOp

i

n

i

i CPI
IC
ICCPI ∑

=

×=
1
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Choosing Programs to Evaluate Per.

Ideally run typical programs with typical input before 
purchase, or before even build machine

Engineer uses compiler, spreadsheet
Author uses word processor, drawing program, 
compression software

Workload – mixture of programs and OS commands 
that users run on a machine
Few can do this

Don’t have access to machine to “benchmark” 
before purchase
Don’t know workload in future
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Benchmarks

Different types of benchmarks 
Real programs (Ex. MSWord, Excel, Photoshop,...)
Kernels - small pieces from real programs (Linpack,...) 
Toy Benchmarks - short, easy to type and run 
(Sieve of Erathosthenes, Quicksort, Puzzle,...)
Synthetic benchmarks - code that matches frequency 
of key instructions and operations to real programs 
(Whetstone, Dhrystone) 

Need industry standards so that different processors 
can be fairly compared
Companies exist that create these benchmarks: 
“typical” code used to evaluate systems
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Benchmark Suites

SPEC - Standard Performance Evaluation 
Corporation (www.spec.org)

originally focusing on CPU performance 
SPEC89|92|95, SPEC CPU2000 (11 Int + 13 FP)
graphics benchmarks: SPECviewperf, SPECapc
server benchmark: SPECSFS, SPECWEB

PC benchmarks (Winbench 99, Business Winstone 
99, High-end Winstone 99, CC Winstone 99) 
(www.zdnet.com/etestinglabs/filters/benchmarks)
Transaction processing benchmarks (www.tpc.org)
Embedded benchmarks (www.eembc.org)
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Comparing and Summarising Per. 

An Example

What we can learn from these statements?
We know nothing about 
relative performance of computers A, B, C!
One approach to summarise relative performance:
use total execution times of programs

401101001Total (sec)
201001000P2 (sec)

20101P1 (sec)
Com. CCom. BCom. AProgram

– A is 20 times faster than C for 
program P1
– C is 50 times faster than A for 
program P2
– B is 2 times faster than C for 
program P1
– C is 5 times faster than B for 
program P2
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Comparing and Sum. Per. (cont’d)

Arithmetic mean (AM) or weighted AM to track time

Harmonic mean or weighted harmonic mean of rates 
tracks execution time

Normalized execution time to a reference machine
do not take arithmetic mean of normalized execution 
times, use geometric mean 

∑
=

n

i
iTime

n 0

1 ∑
=

×
n

i
ii Timew

0

Timei – execution time for ith program
wi – frequency of that program in workload

i
in

i i

Time
Rate

Rate

n 1,
1

0

=
∑
=

∑
=

n

i i

i

Rate
w

0

1

⎟
⎠
⎞

⎜
⎝
⎛
∏
=

n

i
iratioExTime

n

1

1 Problem: GM rewards equally the 
following improvements:
Program A: from 2s to 1s, and
Program B: from 2000s to 1000s
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Quantitative Principles of Design

Where to spend time making improvements?
⇒ Make the Common Case Fast

Most important principle of computer design: 
Spend your time on improvements where those 
improvements will do the most good
Example

Instruction A represents 5% of execution
Instruction B represents 20% of execution
Even if you can drive the time for A to 0, the CPU will only be 
5% faster

Key questions
What the frequent case is?
How much performance can be improved by making 
that case faster?
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Amdahl’s Law

Suppose that we make an enhancement to a 
machine that will improve its performance; Speedup 
is ratio:

Amdahl’s Law states that the performance 
improvement that can be gained by a particular 
enhancement is limited by the amount of time that 
enhancement can be used

tenhancemenusingtaskentireforExTime
tenhancemenwithouttaskentireforExTimeSpeedup =

tenhancemenwithouttaskentireforePerformanc
tenhancemenusingtaskentireforePerformancSpeedup =
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Computing Speedup

Fractionenhanced = fraction of execution time in the 
original machine that can be converted to take 
advantage of enhancement (E.g., 10/30)
Speedupenhanced = how much faster the enhanced 
code will run (E.g., 10/2=5)
Execution time of enhanced program will be sum of 
old execution time of the unenhanced part of 
program and new execution time of the enhanced 
part of program:

enhanced

enhanced
unenhancednew Speedup

ExTimeExTimeExTime +=

20 10 20 2
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Computing Speedup (cont’d)

Enhanced part of program is Fractionenhanced, 
so times are:

Factor out Timeold and divide by 
Speedupenhanced:

Overall speedup is ratio of Timeold to Timenew:

( )enhancedoldunenhanced FractionExTimeExTime −×= 1

enhancedoldenhanced FractionExTimeExTime ×=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−×=

enhanced

enhanced
enhancedoldnew Speedup

FractionFractionExTimeExTime 1

enhanced

enhanced
enhanced Speedup

FractionFraction
Speedup

+−
=

1

1
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An Example

Enhancement runs 10 times faster and it 
affects 40% of the execution time 
Fractionenhanced = 0.40 
Speedupenhanced = 10 
Speedupoverall = ?

561
640
1

10
40401

1 .
...

≈=
+−

=Speedup
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“Law of Diminishing Returns”

Suppose that same piece of code can now be 
enhanced another 10 times 
Fractionenhanced = 0.04/(0.60 + 0.04) = 
0.0625 
Speedupenhanced = 10

059.1

10
06.094.0

1

1

1

≈
+

=

+−
=

overall

enhanced

enhanced
enhanced

overall

Speedup

Speedup
FractionFraction

Speedup
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Using CPU Performance Equations 

Example #1: consider 2 alternatives 
for conditional branch instructions

CPU A: a condition code (CC) is set by a compare instruction 
and followed by a branch instruction that test CC
CPU B: a compare is included in the branch
Assumptions:

on both CPUs, the conditional branch takes 2 clock cycles
all other instructions take 1 clock cycle
on CPU A, 20% of all instructions executed are cond. branches;
since every branch needs a compare, another 20% are compares
because CPU A does not have a compare included in the branch,
assume its clock cycle time is 1.25 times faster than that of CPU B

Which CPU is faster?
Answer the question when CPU A clock cycle time is only 1.1 
times faster than that of CPU B
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Using CPU Performance Eq. (cont’d)

Example #1 Solution: 
CPU A

CPI(A) = 0.2 x 2 + 0.8 x 1 = 1.2 
CPU_time(A) = IC(A) x CPI(A) x Clock_cycle_time(A)
= IC(A) x 1.2 x Clock_cycle_time(A)

CPU B
CPU_time(B) = IC(B) x CPI(B) x Clock_cycle_time(B)
Clock_cycle_time(B) = 1.25 x Clock_cycle_time(A)
IC(B) = 0.8 x IC(A)
CPI(B) = ? compares are not executed in CPU B, 
so 20%/80%, or 25% of the instructions are now branches
CPI(B) = 0.25 x 2 + 0.75 x 1 = 1.25
CPU_time(B) = 0.8 x IC(A) x 1.25 x 1.25 x Clock_cycle_time(A)
= 1.25 x IC(A) x Clock_cycle_time(A)

CPU_time(B)/CPU_time(A) = 1.25/1.2 = 1.04167 =>
CPU A is faster for 4.2%
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MIPS as a Measure for Comparing 
Performance among Computers

MIPS – Million Instructions Per Second

610×
=

timeCPU
ICMIPS

rateClock
CPIICtimeCPU ×

=

6
6 1010 ×
=

××
=

CPI
rateClock

rateClock
CPIIC
ICMIPS

66

©AM

LaCASA

MIPS as a Measure for Comparing 
Performance among Computers (cont’d)

Problems with using MIPS 
as a measure for comparison

MIPS is dependent on the instruction set, 
making it difficult to compare MIPS of 
computers with different instruction sets
MIPS varies between programs on the same 
computer
Most importantly, MIPS can vary inversely to 
performance

Example: MIPS rating of a machine with optional 
FP hardware
Example: Code optimization
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MIPS as a Measure for Comparing 
Performance among Computers (cont’d)

Assume we are building optimizing compiler for the 
load-store machine with following measurements

Compiler discards 50% of ALU ops
Clock rate: 500MHz
Find the MIPS rating for optimized vs. unoptimized
code? Discuss it

224%Branches
212%Stores
221%Loads
143%ALU ops

Clock cycle 
count

Freq.Ins. Type
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MIPS as a Measure for Comparing 
Performance among Computers (cont’d)

Unoptimized
CPI(u) = 0.43 x 1 + 0.57 x 2 = 1.57
MIPS(u) = 500MHz/(1.57 x 106)=318.5
CPU_time(u) = IC(u) x CPI(u) x Clock_cycle_time 
= IC(u) x 1.57 x 2 x 10-9 = 3.14 x 10-9 x IC(u)

Optimized
CPI(o) = [(0.43/2) x 1 + 0.57 x 2]/(1 – 0.43/2) = 1.73
MIPS(o) = 500MHz/(1.73 x 106)=289.0
CPU_time(o) = IC(o) x CPI(o) x Clock_cycle_time 
= 0.785 x IC(u) x 1.73 x 2 x 10-9 = 2.72 x 10-9 x IC(u)
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Things to Remember

Execution, Latency, Res. time: 
time to run the task 
Throughput, bandwidth: 
tasks per day, hour, sec
User Time 

time user needs to wait for program to execute: 
depends heavily on how OS switches between tasks

CPU Time 
time spent executing a single program: depends 
solely on design of processor (datapath, pipelining 
effectiveness, caches, etc.)
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Things to Remember (cont’d)

Benchmarks: good products created when 
have good benchmarks 
CPI Law

Amdahl’s Law

enhanced

enhanced
enhanced Speedup

FractionFraction
Speedup

+−
=

1

1

Program
Seconds

cycleClock
Seconds

nInstructio
cyclesClock

Program
nsInstructiotimeCPU =××=
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Appendix #1

Why not Arithmetic Mean of 
Normalized Execution Times

0.1

0.125

0.2

0.05

C/Ref

0.1

0.125

0.05

0.2

B/Ref

0.1

0.1

0.1

0.1

A/Ref

GM

1002.52605055050AM 
(w1=w2=0.5)

2005

2000

5

Com. C

520101010100Total (sec)

500100010 000P2(sec)

2010100P1 (sec)

Com. BCom. ARef. Com.Program

Problem: GM of normalized 
execution times rewards 
equally all 3 computers?

AM of normalized execution 
times; do not use it!


