

Lecture Outline

- Evolution of Computer Technology
- Computing Classes
- Task of Computer Designer
- Technology Trends
- Costs and Trends in Cost
- Things to Remember

Introduction Change: It is exciting. It has never been more exciting! the impacts every aspect of human life. Impacts every asp

	Changing Face of Computing
	In the 1960s mainframes roamed the planet
	 Very expensive, operators oversaw operations
	 Applications: business data processing, large scale scientific computing
	In the 1970s, minicomputers emerged
	Less expensive, time sharing
1	In the 1990s, Internet and WWW, handheld devices (PDA), high-performance consumer electronics for video games and set-top boxes have emerged
	Dramatic changes have led to
©AM	3 different computing markets
	Desktop computing, Servers, Embedded Computers

Feature	Desktop	Server	Embedded
Price of the system	\$500-\$5K	\$5K-\$5M	\$10-\$100K (including network routers at high end)
Price of the processor	\$50-\$500	\$200-\$10K	\$0.01 - \$100
Sold per year (estimates for 2000)	150M	4M	300M (only 32-bit and 64-bit)
Critical system design issues	Price- performance, graphics performance	Throughput, availability, scalability	Price, power consumption, application-specific performance

Desktop Computers

- Largest market in dollar terms
- Spans low-end (<\$500) to high-end (≈\$5K) systems
- Optimize price-performance
 - Performance measured in the number of calculations and graphic operations
 - Price is what matters to customers
- Arena where the newest, highest-performance and cost-reduced microprocessors appear
- Reasonably well characterized in terms of applications and benchmarking
- What will a PC of 2011 do?
- What will a PC of 2016 do?

Servers

- Provide more reliable file and computing services (Web servers)
- Key requirements
 - Availability effectively provide service 24/7/365 (Yahoo!, Google, eBay)
 - Reliability never fails
 - Scalability server systems grow over time, so the ability to scale up the computing capacity is crucial
 - Performance transactions per minute
 - Related category: clusters / supercomputers

			<u> </u>		1010101_00	,	
Processor	Transistor count	Date of intro- duction	Manufactu -rer	Processor	Transistor count	Date of introdu- ction	Manufacture
Intel 4004	2300	1971	Intel	Itanium	25 000 000	2001	Intel
Intel 8008	2500	1972	Intel	Barton	54 300 000	2003	AMD
Intel 8080	4500	1974	Intel	AMD K8	105 900 000	2003	AMD
Intel 8088	29 000	1978	Intel	Itanium 2	220 000 000	2003	Intel
Intel 80286	134 000	1982	Intel	Itanium 2 with	592 000 000	2004	Intel
Intel 80386	275 000	1985	Intel	9MB cache			
Intel 80486	1 200 000	1989	Intel	Cell	241 000 000	2006	Sony/IBM/ Toshiba
Pentium	3 100 000	1993	Intel	Core 2 Duo	291.000.000	2006	Intel
AMD K5	4 300 000	1996	AMD	Core 2 Quadro	582 000 000	2006	Intel
Pentium II	7 500 000	1997	Intel	Dual-Core	1 700 000 000	2006	Intel
AMD K6	8 800 000	1997	AMD	Itanium 2	1 100 000 000	2000	
Pentium III	9 500 000	1999	Intel				
AMD K6- III	21 300 000	1999	AMD				
AMD K7	22 000 000	1999	AMD				
Pentium 4	42 000 000	2000	Intel	1			

Year	1999	2002	2005	2008	2011	2014
Feature size (nm)	180	130	100	70	50	35
Logic trans/cm ²	6.2M	18M	39M	84M	180M	390N
Cost/trans (mc)	1.735	.580	.255	.110	.049	.022
#pads/chip	1867	2553	3492	4776	6532	8935
Clock (MHz)	1250	2100	3500	6000	10000	1690
Chip size (mm ²)	340	430	520	620	750	900
Wiring levels	6-7	7	7-8	8-9	9	10
Power supply (V)	1.8	1.5	1.2	0.9	0.6	0.5
High-perf pow (W)	90	130	160	170	175	183

Competition among suppliers lower cost

·	WL	Line widt h	Wafer cost	Defect [cm ²]	Area [mm ²]	Dies/ wafer	Yield	Die cos
386DX	2	0.90	\$900	1.0	43	360	71%	
486DX2	3	0.80	\$1200	1.0	81	181	54%	\$
PowerPC 601	4	0.80	\$1700	1.3	121	115	28%	\$
HP PA 7100	3	0.80	\$1300	1.0	196	66	27%	\$
Dec Alpha	3	0.70	\$1500	1.2	234	53	19%	\$1
SuperSPARC	3	0.70	\$1700	1.6	256	48	13%	\$2
Pentium	3	0.70	\$1500	1.5	296	40	9%	\$4

- Service accomplishment vs. service interruption (transitions: failures vs. restorations)
- Module reliability: a measure of the continuous service accomplishment

A measure of reliability: MTTF – Mean Time To Failure (1/[rate of failure]) reported in [failure/1billion hours of operation) MTTR – Mean time to repair (a measure for service

- interruption)
- MTBF Mean time between failures (MTTF+MTTR)
- Module availability a measure of the service accomplishment; = MTTF/(MTTF+MTTR)

Things to Remember Computing classes: desktop, server, embedd. Technology trends Capacity Speed Logic 4x in 3+ years 2x in 3 years DRAM 4x in 3-4 years 33% in 10 years Disk 4x in 3-4 years 33% in 10 years Cost Learning curve: manufacturing costs decrease over time Volume: the number of chips manufactured Commodity

Cost-Performance Purchasing perspective: from a collection of machines, choose one which has best performance? least cost? best performance/cost? Computer designer perspective: . faced with design options, select one which has best performance improvement? least cost? best performance/cost? ©AM Both require: basis for comparison and . metric for evaluation

An Example									
	Plane	DC to Paris [hour]	Top Speed [mph]	Passe -ngers	Throughput [p/h]				
	Boeing 747	6.5	610	470	72 (=470/6.5)				
	Concorde	3	1350	132	44 (=132/3)				
	Which ha Time to Conc Time to Boeir	as higher p deliver 1 ord is 6.5/3 : deliver 40 og is 72/44 =	berforman passenger = 2.2 times f 00 passeng = 1.6 times fa	ce? ? aster (12 gers? aster (60%					

We are primarily concerned with Response Time

Performance [things/sec]

 $Performance(x) = \frac{1}{Execution_time(x)}$

- "X is n times faster than Y"
 n = Execution_time(y) = Performance(x)
 Performance(y)
- As faster means both increased performance and decreased execution time, to reduce confusion will use "improve performance" or

"improve execution time"

CPU Execution Time (cont'd) $CPU \ time = IC \times CPI \times Clock \ cycle \ time$ $CPU \ time = \frac{IC \times CPI}{Clock \ rate}$								
CPU time =	= Instructions	< Clock	cycles	$\times \frac{Seconds}{Clock evelo$	$=\frac{Seconds}{Broomers}$			
	Frogram	Instruction		Сюск сусие	rogram			
		IC	CPI	Clock rate				
	Program	X						
	Compiler	Х	(X)					
OAM	ISA	X	Х					
$\mathbf{\hat{\mathbf{A}}}$	Organisation		Х	Х				
	Technology			X				
aCASA					49			

Ор	Freqi	CPI _i	Prod.	% Time
ALU	50%	1	0.5	23%
Load	20%	5	1.0	45%
Store	10%	3	0.3	14%
Bran.	20%	2	0.4	18%
			2.2	

Benchmarks

©AM

L

Different types of benchmarks

- Real programs (Ex. MSWord, Excel, Photoshop,...)
- Kernels small pieces from real programs (Linpack,...)
- Toy Benchmarks short, easy to type and run (Sieve of Erathosthenes, Quicksort, Puzzle,...)
- Synthetic benchmarks code that matches frequency of key instructions and operations to real programs (Whetstone, Dhrystone)
- Need industry standards so that different processors can be fairly compared
 - Companies exist that create these benchmarks:
- "typical" code used to evaluate systems

Benchmark Suites

- SPEC Standard Performance Evaluation Corporation (www.spec.org)
 - originally focusing on CPU performance SPEC89|92|95, SPEC CPU2000 (11 Int + 13 FP)
 - graphics benchmarks: SPECviewperf, SPECapc
 - server benchmark: SPECSFS, SPECWEB
- PC benchmarks (Winbench 99, Business Winstone 99, High-end Winstone 99, CC Winstone 99) (www.zdnet.com/etestinglabs/filters/benchmarks)

Transaction processing benchmarks (www.tpc.org)

Embedded benchmarks (<u>www.eembc.org</u>)

Com	paring	and S	umma	arising Per.				
An Exa	ample	 A is 20 times faster than C for program P1 C is 50 times faster than A for 						
Program	m Com. A Com. B		Com. C	program P2				
P1 (sec)	1	10	20	 B is 2 times faster than C for program P1 				
P2 (sec)	1000	100	20	- C is 5 times faster than B for				
Total (sec)	1001	110	40	program P2				
 What w We kn relative One apuse tot 	we can le ow nothin e perform oproach t tal execu	arn from ng about hance of to summa tion time	these s comput arise re s of pro	statements? ers A, B, C! lative performance: grams				

CPU_time(B)/CPU_time(A) = 1.25/1.2 = 1.04167 = CPU A is faster for 4.2%

Ass loa	IPS as a Merformance	leasure e among building op ine with fol	for Compa y Compute otimizing comp lowing measu	ers (cont'd) biler for the grements						
	Ins. Type	Freq.	Clock cycle count							
	ALU ops	43%	1							
	Loads	21%	2]						
	Stores	12%	2							
	Branches	24%	2							
Branches 24% 2 eAM • Compiler discards 50% of ALU ops • Clock rate: 500MHz • Find the MIPS rating for optimized vs. unoptimized										

Things to Remember

- Execution, Latency, Res. time: time to run the task
- Throughput, bandwidth: tasks per day, hour, sec
- User Time
 - time user needs to wait for program to execute: depends heavily on how OS switches between tasks
- CPU Time

 time spent executing a single program: depends solely on design of processor (datapath, pipelining

effectiveness, caches, etc.)

Appe Why ne Norma	Appendix #1 Why not Arithmetic Mean of Normalized Execution Times									
Program	Ref. Com.	Com. A	Com. B	Com. C	A/Ref	B/Ref	C/Ref			
P1 (sec)	100	10	20	5	0.1	0.2	0.05			
P2(sec)	10 000	1000	500	2000	0.1	0.05	0.2			
Total (sec)	10100	1010	520	2005						
AM (w1=w2=0.5)	5050	505	260	1002.5	0.1	0.125	0.125			
GM					0.1	0.1	0.1			
	AM of no times; do	rmalized ex not use it!	ecution	Probl execu equal	em: GM ution time ly all 3 c	of normates reward	llized ds s? 71			