
•1

CPE 631:
Introduction

Electrical and Computer Engineering
University of Alabama in Huntsville

Aleksandar Milenkovic,
milenka@ece.uah.edu

http://www.ece.uah.edu/~milenka

2

©AM

LaCASA

Lecture Outline

Evolution of Computer Technology
Computing Classes
Task of Computer Designer
Technology Trends
Costs and Trends in Cost
Things to Remember

3

©AM

LaCASA

Introduction

Eniac, 1946
(first stored-program computer)
Occupied 50x30 feet room,
weighted 30 tonnes,
contained 18000 electronic valves,
consumed 25KW of electrical power;
capable to perform 100K calc. per second

CHANGE! It is exciting. It has never been more exciting!
It impacts every aspect of human life.

PlayStation Portable (PSP)
Approx. 170 mm (L) x 74 mm (W) x 23 mm (D)
Weight: Approx. 260 g (including battery)
CPU: PSP CPU (clock frequency 1~333MHz)
Main Memory: 32MB
Embedded DRAM: 4MB
Profile: PSP Game, UMD Audio, UMD Video

4

©AM

LaCASA

A short history of computing

Continuous growth in performance due to advances in technology and
innovations in computer design
First 25 years (1945 – 1970)

25% yearly growth in performance
Both forces contributed to performance improvement
Mainframes and minicomputers dominated the industry

Late 70s, emergence of the microprocessor
35% yearly growth in performance thanks to integrated circuit technology
Changes in computer marketplace:
elimination of assembly language programming,
emergence of Unix easier to develop new architectures

Mid 80s, emergence of RISCs (Reduced Instruction Set Computers)
52% yearly growth in performance
Performance improvements through instruction level parallelism
(pipelining, multiple instruction issue), caches

Since ‘02, end of 16 years of renaissance
20% yearly growth in performance
Limited by 3 hurdles: maximum power dissipation,
instruction-level parallelism, and so called “memory wall”
Switch from ILP to TLP and DLP (Thread-, Data-level Parallelism)

•2

5

©AM

LaCASA

Growth in processor performance

1

10

100

1000

10000

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006

Pe
rfo

rm
an

ce
 (v

s.
 V

AX
-1

1/
78

0)

25%/year

52%/year

20%/year

• VAX : 25%/year 1978 to 1986
• RISC + x86: 52%/year 1986 to 2002
• RISC + x86: 20%/year 2002 to present

From Hennessy and Patterson, Computer
Architecture: A Quantitative Approach, 4th
edition, October, 2006

6

©AM

LaCASA

Effect of this Dramatic Growth

Significant enhancement of the capability
available to computer user

Example: a today’s $500 PC has more performance,
more main memory, and more disk storage than a $1
million computer in 1985

Microprocessor-based computers dominate
Workstations and PCs
have emerged as major products
Minicomputers - replaced by servers
Mainframes - replaced by multiprocessors
Supercomputers - replaced by
large arrays of microprocessors

7

©AM

LaCASA

Changing Face of Computing

In the 1960s mainframes roamed the planet
Very expensive, operators oversaw operations
Applications: business data processing,
large scale scientific computing

In the 1970s, minicomputers emerged
Less expensive, time sharing

In the 1990s, Internet and WWW, handheld devices
(PDA), high-performance consumer electronics for
video games and set-top boxes have emerged
Dramatic changes have led to
3 different computing markets

Desktop computing, Servers, Embedded Computers

8

©AM

LaCASA

Computing Classes: A Summary

Price, power consumption,
application-specific
performance

Throughput,
availability,
scalability

Price-
performance,
graphics
performance

Critical system
design issues

$0.01 - $100$200-$10K$50-$500Price of the
processor

300M
(only 32-bit and 64-bit)

4M150MSold per year
(estimates for
2000)

$10-$100K (including network
routers at high end)

$5K-$5M$500-$5KPrice of the
system

EmbeddedServerDesktopFeature

•3

9

©AM

LaCASA

Desktop Computers

Largest market in dollar terms
Spans low-end (<$500) to high-end (≈$5K) systems
Optimize price-performance

Performance measured in the number of calculations
and graphic operations
Price is what matters to customers

Arena where the newest, highest-performance and
cost-reduced microprocessors appear
Reasonably well characterized in terms of
applications and benchmarking
What will a PC of 2011 do?
What will a PC of 2016 do?

10

©AM

LaCASA

Servers

Provide more reliable file and computing
services (Web servers)
Key requirements

Availability – effectively provide service
24/7/365 (Yahoo!, Google, eBay)
Reliability – never fails
Scalability – server systems grow over time,
so the ability to scale up the computing
capacity is crucial
Performance – transactions per minute

Related category: clusters / supercomputers

11

©AM

LaCASA

Embedded Computers

Fastest growing portion of the market
Computers as parts of other devices where their presence is not
obviously visible

E.g., home appliances, printers, smart cards,
cell phones, palmtops, set-top boxes, gaming consoles, network
routers

Wide range of processing power and cost
≈$0.1 (8-bit, 16-bit processors), $10 (32-bit capable to execute
50M instructions per second), ≈$100-$200 (high-end video
gaming consoles and network switches)

Requirements
Real-time performance requirement
(e.g., time to process a video frame is limited)
Minimize memory requirements, power

SOCs (System-on-a-chip) combine processor cores and
application-specific circuitry, DSP processors, network
processors, ...

12

©AM

LaCASA

Task of Computer Designer

“Determine what attributes are important for
a new machine; then design a machine to
maximize performance while staying within
cost, power, and availability constraints.”
Aspects of this task

Instruction set design
Functional organization
Logic design and implementation
(IC design, packaging, power, cooling...)

•4

13

©AM

LaCASA

What is Computer Architecture?

Instruction Set Architecture
the computer visible to the assembler language
programmer or compiler writer (registers, data types,
instruction set, instruction formats, addressing modes)

Organization
high level aspects of computer’s design such as
the memory system, the bus structure, and
the internal CPU (datapath + control) design

Hardware
detailed logic design, interconnection and packing
technology, external connections

Computer Architecture covers
all three aspects of computer design

14

©AM

LaCASA

Instruction Set Architecture:
Critical Interface

instruction set

software

hardware

Properties of a good abstraction
Lasts through many generations (portability)
Used in many different ways (generality)
Provides convenient functionality to higher levels
Permits an efficient implementation at lower levels

15

©AM

LaCASA

Instruction Set Architecture
“... the attributes of a [computing] system as seen by the programmer,
i.e. the conceptual structure and functional behavior, as distinct from
the organization of the data flows and controls the logic design, and the
physical implementation.”
Amdahl, Blaauw, and Brooks, 1964 SOFTWARESOFTWARE

• Organization of Programmable Storage (GPRs, SPRs)

• Data Types & Data Structures: Encodings & Representations

• Instruction Formats

• Instruction (or Operation Code) Set

• Modes of Addressing and Accessing Data Items and Instructions

• Exceptional Conditions
16

©AM

LaCASA

Example: MIPS64

Registers
32 64-bit general-purpose (integer) registers (R0-R31)
32 64-bit floating-point registers (F0-F31)

Data types
8-bit bytes, 16-bit half-words, 32-bit words, 64-bit
double words for integer data
32-bit single- or 64-bit double-precision numbers

Addressing Modes for MIPS Data Transfers
Load-store architecture: Immediate, Displacement
Memory is byte addressable with a 64-bit address
Mode bit to select Big Endian or Little Endian

•5

17

©AM

LaCASA

Example: MIPS64

MIPS Instruction Formats (R-type, I-type, J-type)

Op
31 26 01516202125

Rs1 Rd immediate

Op
31 26 025

Op
31 26 01516202125

Rs1 Rs2

target

Rd Opx

Register-Register

561011

Register-Immediate

Op
31 26 01516202125

Rs1 Rs2/Opx immediate

Branch

Jump / Call

18

©AM

LaCASA

Example: MIPS64

MIPS Operations
(See Appendix B, Figure B.26)

Data Transfers (LB, LBU, SB, LH, LHU, SH, LW, LWU, SW, LD,
SD, L.S, L.D, S.S, S.D, MFCO, MTCO, MOV.S, MOV.D, MFC1,
MTC1)
Arithmetic/Logical (DADD, DADDI, DADDU, DADDIU, DSUB,
DSUBU, DMUL, DMULU, DDIV, DDIVU, MADD, AND, ANDI,
OR, ORI, XOR, XORI, LUI, DSLL, DSRL, DSRA, DSLLV,
DSRLV, DSRAV, SLT, SLTI, SLTU, SLTIU)
Control (BEQZ, BNEZ, BEQ, BNE, BC1T, BC1F, MOVN, MOVZ,
J, JR, JAL, JALR, TRAP, ERET)
Floating Point (ADD.D, ADD.S, ADD.PS, SUB.D, SUB.S,
SUB.PS, MUL.D, MUL.S, MUL.PS, MADD.D, MADD.S,
MADD.PS, DIV.D, DIV.S, DIV.PS, CVT._._, C._.D, C._.S

19

©AM

LaCASA

Computer Architecture is
Design and Analysis

Design

Analysis

Architecture is an iterative process:
• Searching the space of possible designs
• At all levels of computer systems

Creativity

Good IdeasGood Ideas
Mediocre IdeasBad Ideas

Cost /
Performance
Analysis

20

©AM

LaCASA

Computer Engineering Methodology

Evaluate ExistingEvaluate Existing
Systems for Systems for
BottlenecksBottlenecks

Simulate NewSimulate New
Designs andDesigns and

OrganizationsOrganizations

Implement NextImplement Next
Generation SystemGeneration System

Technology
Trends

Benchmarks

Workloads

Implementation
Complexity

ApplicationsMarket

•6

21

©AM

LaCASA

Technology Trends

Integrated circuit technology – 55% /year
Transistor density – 35% per year
Die size – 10-20% per year

Semiconductor DRAM
Density – 40-60% per year (4x in 3-4 years)
Cycle time – 33% in 10 years
Bandwidth – 66% in 10 years

Magnetic disk technology
Density – 100% per year
Access time – 33% in 10 years

Network technology (depends on switches and transmission
technology)

10Mb-100Mb (10years), 100Mb-1Gb (5 years)
Bandwidth – doubles every year (for USA)

22

©AM

LaCASA

Processor Transistor Count

Intel
4004,
2300tr
(1971)

Intel P4 – 55M tr
(2001)

Intel
McKinley –
221M tr.
(2001)

Intel Core 2 Extreme
Quad-core 2x291M tr.
(2006)

23

©AM

LaCASA

Processor Transistor Count
(from http://en.wikipedia.org/wiki/Transistor_count)

Intel200042 000 000Pentium 4

AMD199922 000 000AMD K7

AMD199921 300 000AMD K6-
III

Intel19999 500 000Pentium III

AMD19978 800 000AMD K6

Intel19977 500 000Pentium II

AMD19964 300 000AMD K5

Intel19933 100 000Pentium

Intel19891 200 000Intel 80486

Intel1985275 000Intel 80386

Intel1982134 000Intel 80286

Intel197829 000Intel 8088

Intel19744500Intel 8080

Intel19722500Intel 8008

Intel19712300Intel 4004

Manufactu
-rer

Date of
intro-
duction

Transistor
count

Processor

Intel20061 700 000 000Dual-Core
Itanium 2

Intel2006582 000 000Core 2 Quadro

Intel2006291 000 000Core 2 Duo

Sony/IBM/
Toshiba

2006241 000 000Cell

Intel2004592 000 000Itanium 2 with
9MB cache

Intel2003220 000 000Itanium 2

AMD2003105 900 000AMD K8

AMD200354 300 000Barton

Intel200125 000 000Itanium

ManufacturerDate of
introdu-
ction

Transistor
count

Processor

24

©AM

LaCASA

Technology Directions: SIA Roadmap
(from 1999)

Year 1999 2002 2005 2008 2011 2014
Feature size (nm) 180 130 100 70 50 35
Logic trans/cm2 6.2M 18M 39M 84M 180M 390M
Cost/trans (mc) 1.735 .580 .255 .110 .049 .022
#pads/chip 1867 2553 3492 4776 6532 8935
Clock (MHz) 1250 2100 3500 6000 10000 16900
Chip size (mm2) 340 430 520 620 750 900
Wiring levels 6-7 7 7-8 8-9 9 10
Power supply (V) 1.8 1.5 1.2 0.9 0.6 0.5
High-perf pow (W) 90 130 160 170 175 183

•7

25

©AM

LaCASA

Technology Directions
(ITRS – Int. Tech. Roadmap for Semicon., 2006 ed.)

ITRS yearly updates
In year 2017 (10 years from now)

Gate length (high-performance MPUs):
13 nm (printed), 8 nm (physical)
Functions per chip at production
(in million of transistors): 3,092

For more info check the
$HOME/docs/00_ExecSum2006Update.pdf

26

©AM

LaCASA

Cost, Price, and Their Trends

Price – what you sell a good for
Cost – what you spent to produce it
Understanding cost

Learning curve principle – manufacturing costs
decrease over time (even without major
improvements in implementation technology)

Best measured by change in yield – the percentage of
manufactured devices that survives the testing procedure

Volume (number of products manufactured)
decreases the time needed to get down the learning curve
decreases cost since it increases
purchasing and manufacturing efficiency

Commodities – products sold by multiple vendors in
large volumes which are essentially identical

Competition among suppliers lower cost

27

©AM

LaCASA

Trends in Cost:
The Price of DRAM and Intel Pentium III

28

©AM

LaCASA

Trends in Cost:
The Price of Pentium4 and PentiumM

•8

29

©AM

LaCASA

Integrated Circuits Variable Costs

yieldtestFinal
costPackagingcostTestingcostDiecostIC ++

=

yieldDiewaferperDies
waferofCostdieofCost
×

=

areaDie
diameterWafer

areaDie
diameterWaferwaferperDies

×
×

−
×

=
2

2 2 ππ)/(

Example: Find the number of dies per 20-cm wafer for a die that is 1.5 cm on a side.
Solution: Die area = 1.5x1.5 = 2.25cm2.
Dies per wafer = 3.14x(20/2)2/2.25 – 3.14x20/(2x2.5)0.5=110.

30

©AM

LaCASA

Integrated Circuits Cost (cont’d)

α

α

−

⎟
⎠
⎞

⎜
⎝
⎛ ×
+×=

areaDieareaunitperDefectsyieldWaferyieldDie 1

• What is the fraction of good dies on a wafer – die yield
• Empirical model

• defects are randomly distributed over the wafer
• yield is inversely proportional to the complexity of the

fabrication process

• Wafer yield accounts for wafers that are completely bad
(no need to test them); We assume the wafer yield is
100%

• Defects per unit area: typically 0.4 – 0.8 per cm2

• α corresponds to the number of masking levels;
for today’s CMOS, a good estimate is α=4.0

31

©AM

LaCASA

Integrated Circuits Cost (cont’d)

α

α

−

⎟
⎠
⎞

⎜
⎝
⎛ ×
+×=

areaDieareaunitperDefectsyieldWaferyieldDie 1

• Example: Find die yield for dies with 1 cm and 0.7 cm
on a side; defect density is 0.6 per square centimeter

• For larger die: (1+0.6x1/4)-4=0.57
• For smaller die: (1+0.6x0.49/4)-4=0.75

• Die costs are proportional
to the fourth power of the die area

• In practice

()4areaDiefcostDie =

()2areaDiefcostDie =

32

©AM

LaCASA

Real World Examples

$4179%402961.5$15000.703Pentium

$27213%482561.6$17000.703SuperSPARC

$14919%532341.2$15000.703Dec Alpha

$7327%661961.0$13000.803HP PA 7100

$5328%1151211.3$17000.804PowerPC 601

$1254%181811.0$12000.803486DX2

$471%360431.0$9000.902386DX

Die
cost

YieldDies/
wafer

Area
[mm2]

Defect
[cm2]

Wafer
cost

Line
widt
h

MLChip

From "Estimating IC Manufacturing Costs,” by Linley Gwennap,
Microprocessor Report, August 2, 1993, p. 15

Typical in 2002:
30cm diameter wafer, 4-6 metal layers, wafer cost $5K-6K

•9

33

©AM

LaCASA

Trends in Power in ICs

Power Issues
How to bring it in and distribute around the chip?
(many pins just for power supply and ground,
interconnection layers for distribution)
How to remove the heat (dissipated power)

Why worry about power?
Battery life in portable and mobile platforms
Power consumption in desktops, server farms

Cooling costs, packaging costs, reliability, timing
Power density: 30 W/cm2 in Alpha 21364
(3x of typical hot plate)

Environment?
IT consumes 10% of energy in the US

Power becomes a first class architectural design constraint

34

©AM

LaCASA

Why worry about power? -- Power
Dissipation

P6
Pentium ®

486
386

2868086

8085
8080

8008
4004

0.1

1

10

100

1971 1974 1978 1985 1992 2000
Year

Po
w

er
 (W

at
ts

)

Lead microprocessors power continues to increaseLead microprocessors power continues to increase

Power delivery and dissipation will be prohibitivePower delivery and dissipation will be prohibitive
Source: Borkar, De Intel®

35

©AM

LaCASA

CMOS Power Equations

leakshort
2 VIfAVIfACVP ++= τ

V
)VV(f
2

t
max

−
∝

Reduce the
supply voltage, V

)
kT
qVexp(I t

leak −∝

Reduce
threshold Vt

Dynamic power
consumption

Power due to
short-circuit
current during
transition

Power due to
leakage current

36

©AM

LaCASA

Dependability: Some Definitions

Computer system dependability is
the quality of delivered service
The service delivered by a system is its
observed actual behavior
Each module has an ideal specified behavior,
where a service specification is an agreed
description of the expected behavior
A failure occurs when the actual behavior

deviated from the specified behavior
The failure occurred because of an error
The cause of an error is a fault

•10

37

©AM

LaCASA

Dependability: Measures

Service accomplishment vs. service interruption
(transitions: failures vs. restorations)
Module reliability: a measure of the continuous
service accomplishment
A measure of reliability:
MTTF – Mean Time To Failure
(1/[rate of failure]) reported in [failure/1billion hours
of operation)
MTTR – Mean time to repair (a measure for service
interruption)
MTBF – Mean time between failures (MTTF+MTTR)
Module availability – a measure of the service
accomplishment; = MTTF/(MTTF+MTTR)

38

©AM

LaCASA

Things to Remember

Computing classes: desktop, server, embedd.
Technology trends

Cost
Learning curve:
manufacturing costs decrease over time
Volume: the number of chips manufactured
Commodity

33% in 10 years4x in 3-4 yearsDisk
33% in 10 years4x in 3-4 yearsDRAM

2x in 3 years4x in 3+ yearsLogic
SpeedCapacity

39

©AM

LaCASA

Things to Remember (cont’d)

Cost of an integrated circuit

yieldtestFinal
costPackagingcostTestingcostDiecostIC ++

=

yieldDiewaferperDies
waferofCostdieofCost
×

=

areaDie
diameterWafer

areaDie
diameterWaferwaferperDies

×
×

−
×

=
2

2 2 ππ)/(

α

α

−

⎟
⎠
⎞

⎜
⎝
⎛ ×
+×=

areaDieareaunitperDefectsyieldWaferyieldDie 1

40

©AM

LaCASA

Design Space

Performance
Cost
Power
Dependability

•11

Measuring, Reporting,
Summarizing Performance

42

©AM

LaCASA

Cost-Performance

Purchasing perspective: from a collection of
machines, choose one which has

best performance?
least cost?
best performance/cost?

Computer designer perspective:
faced with design options, select one which has

best performance improvement?
least cost?
best performance/cost?

Both require: basis for comparison and
metric for evaluation

43

©AM

LaCASA

Two “notions” of performance

Which computer has better performance?
User: one which runs a program in less time
Computer centre manager:
one which completes more jobs in a given time

Users are interested in reducing
Response time or Execution time

the time between the start and
the completion of an event

Managers are interested in increasing
Throughput or Bandwidth

total amount of work done in a given time

44

©AM

LaCASA

An Example

Which has higher performance?
Time to deliver 1 passenger?

Concord is 6.5/3 = 2.2 times faster (120%)
Time to deliver 400 passengers?

Boeing is 72/44 = 1.6 times faster (60%)

44 (=132/3)13213503Concorde

72
(=470/6.5)

4706106.5Boeing 747

Throughput
[p/h]

Passe
-ngers

Top Speed
[mph]

DC to Paris
[hour]

Plane

•12

45

©AM

LaCASA

Definition of Performance

We are primarily concerned with Response Time
Performance [things/sec]

“X is n times faster than Y”

As faster means both increased performance and
decreased execution time, to reduce confusion will
use “improve performance” or
“improve execution time”

)(_
)(

xtimeExecution
xePerformanc 1

=

)(
)(

)(_
)(_

yePerformanc
xePerformanc

xtimeExecution
ytimeExecutionn ==

46

©AM

LaCASA

Execution Time and Its Components

Wall-clock time, response time, elapsed time
the latency to complete a task, including disk
accesses, memory accesses, input/output activities,
operating system overhead,...

CPU time
the time the CPU is computing, excluding I/O or
running other programs with multiprogramming
often further divided into user and system CPU times

User CPU time
the CPU time spent in the program

System CPU time
the CPU time spent in the operating system

47

©AM

LaCASA

UNIX time command

90.7u 12.9s 2:39 65%
90.7 - seconds of user CPU time
12.9 - seconds of system CPU time
2:39 - elapsed time (159 seconds)
65% - percentage of elapsed time that is CPU
time
(90.7 + 12.9)/159

48

©AM

LaCASA

CPU Execution Time

Instruction count (IC) = Number of
instructions executed
Clock cycles per instruction (CPI)

timecycleClockprogramaforcyclesclockCPUtimeCPU ×=

rateClock
programaforcyclesclockCPUCPUtime =

IC
programaforcyclesclockCPUCPI =

CPI - one way to compare two machines with same instruction set,
since Instruction Count would be the same

•13

49

©AM

LaCASA

CPU Execution Time (cont’d)
timecycleClockCPIICtimeCPU ××=

rateClock
CPIICtimeCPU ×

=

XTechnology
X

Clock rate

XOrganisation
XXISA

(X)XCompiler
XProgram

CPIIC

Program
Seconds

cycleClock
Seconds

nInstructio
cyclesClock

Program
nsInstructiotimeCPU =××=

50

©AM

LaCASA

How to Calculate 3 Components?

Clock Cycle Time
in specification of computer
(Clock Rate in advertisements)

Instruction count
Count instructions in loop of small program
Use simulator to count instructions
Hardware counter in special register (Pentium II)

CPI
Calculate:
Execution Time / Clock cycle time / Instruction Count
Hardware counter in special register (Pentium II)

51

©AM

LaCASA

Another Way to Calculate CPI

First calculate CPI for each individual instruction
(add, sub, and, etc.): CPIi
Next calculate frequency of each individual instr.:
Freqi = ICi/IC
Finally multiply these two for each instruction and
add them up to get final CPI

2.2
18%
14%

45%

23%
% Time

0.4220%Bran.
0.3310%Store

1.0520%Load

0.5150%ALU
Prod.CPIiFreqiOp

i

n

i

i CPI
IC
ICCPI ∑

=

×=
1

52

©AM

LaCASA

Choosing Programs to Evaluate Per.

Ideally run typical programs with typical input before
purchase, or before even build machine

Engineer uses compiler, spreadsheet
Author uses word processor, drawing program,
compression software

Workload – mixture of programs and OS commands
that users run on a machine
Few can do this

Don’t have access to machine to “benchmark”
before purchase
Don’t know workload in future

•14

53

©AM

LaCASA

Benchmarks

Different types of benchmarks
Real programs (Ex. MSWord, Excel, Photoshop,...)
Kernels - small pieces from real programs (Linpack,...)
Toy Benchmarks - short, easy to type and run
(Sieve of Erathosthenes, Quicksort, Puzzle,...)
Synthetic benchmarks - code that matches frequency
of key instructions and operations to real programs
(Whetstone, Dhrystone)

Need industry standards so that different processors
can be fairly compared
Companies exist that create these benchmarks:
“typical” code used to evaluate systems

54

©AM

LaCASA

Benchmark Suites

SPEC - Standard Performance Evaluation
Corporation (www.spec.org)

originally focusing on CPU performance
SPEC89|92|95, SPEC CPU2000 (11 Int + 13 FP)
graphics benchmarks: SPECviewperf, SPECapc
server benchmark: SPECSFS, SPECWEB

PC benchmarks (Winbench 99, Business Winstone
99, High-end Winstone 99, CC Winstone 99)
(www.zdnet.com/etestinglabs/filters/benchmarks)
Transaction processing benchmarks (www.tpc.org)
Embedded benchmarks (www.eembc.org)

55

©AM

LaCASA

Comparing and Summarising Per.

An Example

What we can learn from these statements?
We know nothing about
relative performance of computers A, B, C!
One approach to summarise relative performance:
use total execution times of programs

401101001Total (sec)
201001000P2 (sec)

20101P1 (sec)
Com. CCom. BCom. AProgram

– A is 20 times faster than C for
program P1
– C is 50 times faster than A for
program P2
– B is 2 times faster than C for
program P1
– C is 5 times faster than B for
program P2

56

©AM

LaCASA

Comparing and Sum. Per. (cont’d)

Arithmetic mean (AM) or weighted AM to track time

Harmonic mean or weighted harmonic mean of rates
tracks execution time

Normalized execution time to a reference machine
do not take arithmetic mean of normalized execution
times, use geometric mean

∑
=

n

i
iTime

n 0

1 ∑
=

×
n

i
ii Timew

0

Timei – execution time for ith program
wi – frequency of that program in workload

i
in

i i

Time
Rate

Rate

n 1,
1

0

=
∑
=

∑
=

n

i i

i

Rate
w

0

1

⎟
⎠
⎞

⎜
⎝
⎛
∏
=

n

i
iratioExTime

n

1

1 Problem: GM rewards equally the
following improvements:
Program A: from 2s to 1s, and
Program B: from 2000s to 1000s

•15

57

©AM

LaCASA

Quantitative Principles of Design

Where to spend time making improvements?
⇒ Make the Common Case Fast

Most important principle of computer design:
Spend your time on improvements where those
improvements will do the most good
Example

Instruction A represents 5% of execution
Instruction B represents 20% of execution
Even if you can drive the time for A to 0, the CPU will only be
5% faster

Key questions
What the frequent case is?
How much performance can be improved by making
that case faster?

58

©AM

LaCASA

Amdahl’s Law

Suppose that we make an enhancement to a
machine that will improve its performance; Speedup
is ratio:

Amdahl’s Law states that the performance
improvement that can be gained by a particular
enhancement is limited by the amount of time that
enhancement can be used

tenhancemenusingtaskentireforExTime
tenhancemenwithouttaskentireforExTimeSpeedup =

tenhancemenwithouttaskentireforePerformanc
tenhancemenusingtaskentireforePerformancSpeedup =

59

©AM

LaCASA

Computing Speedup

Fractionenhanced = fraction of execution time in the
original machine that can be converted to take
advantage of enhancement (E.g., 10/30)
Speedupenhanced = how much faster the enhanced
code will run (E.g., 10/2=5)
Execution time of enhanced program will be sum of
old execution time of the unenhanced part of
program and new execution time of the enhanced
part of program:

enhanced

enhanced
unenhancednew Speedup

ExTimeExTimeExTime +=

20 10 20 2

60

©AM

LaCASA

Computing Speedup (cont’d)

Enhanced part of program is Fractionenhanced,
so times are:

Factor out Timeold and divide by
Speedupenhanced:

Overall speedup is ratio of Timeold to Timenew:

()enhancedoldunenhanced FractionExTimeExTime −×= 1

enhancedoldenhanced FractionExTimeExTime ×=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−×=

enhanced

enhanced
enhancedoldnew Speedup

FractionFractionExTimeExTime 1

enhanced

enhanced
enhanced Speedup

FractionFraction
Speedup

+−
=

1

1

•16

61

©AM

LaCASA

An Example

Enhancement runs 10 times faster and it
affects 40% of the execution time
Fractionenhanced = 0.40
Speedupenhanced = 10
Speedupoverall = ?

561
640
1

10
40401

1 .
...

≈=
+−

=Speedup

62

©AM

LaCASA

“Law of Diminishing Returns”

Suppose that same piece of code can now be
enhanced another 10 times
Fractionenhanced = 0.04/(0.60 + 0.04) =
0.0625
Speedupenhanced = 10

059.1

10
06.094.0

1

1

1

≈
+

=

+−
=

overall

enhanced

enhanced
enhanced

overall

Speedup

Speedup
FractionFraction

Speedup

63

©AM

LaCASA

Using CPU Performance Equations

Example #1: consider 2 alternatives
for conditional branch instructions

CPU A: a condition code (CC) is set by a compare instruction
and followed by a branch instruction that test CC
CPU B: a compare is included in the branch
Assumptions:

on both CPUs, the conditional branch takes 2 clock cycles
all other instructions take 1 clock cycle
on CPU A, 20% of all instructions executed are cond. branches;
since every branch needs a compare, another 20% are compares
because CPU A does not have a compare included in the branch,
assume its clock cycle time is 1.25 times faster than that of CPU B

Which CPU is faster?
Answer the question when CPU A clock cycle time is only 1.1
times faster than that of CPU B

64

©AM

LaCASA

Using CPU Performance Eq. (cont’d)

Example #1 Solution:
CPU A

CPI(A) = 0.2 x 2 + 0.8 x 1 = 1.2
CPU_time(A) = IC(A) x CPI(A) x Clock_cycle_time(A)
= IC(A) x 1.2 x Clock_cycle_time(A)

CPU B
CPU_time(B) = IC(B) x CPI(B) x Clock_cycle_time(B)
Clock_cycle_time(B) = 1.25 x Clock_cycle_time(A)
IC(B) = 0.8 x IC(A)
CPI(B) = ? compares are not executed in CPU B,
so 20%/80%, or 25% of the instructions are now branches
CPI(B) = 0.25 x 2 + 0.75 x 1 = 1.25
CPU_time(B) = 0.8 x IC(A) x 1.25 x 1.25 x Clock_cycle_time(A)
= 1.25 x IC(A) x Clock_cycle_time(A)

CPU_time(B)/CPU_time(A) = 1.25/1.2 = 1.04167 =>
CPU A is faster for 4.2%

•17

65

©AM

LaCASA

MIPS as a Measure for Comparing
Performance among Computers

MIPS – Million Instructions Per Second

610×
=

timeCPU
ICMIPS

rateClock
CPIICtimeCPU ×

=

6
6 1010 ×
=

××
=

CPI
rateClock

rateClock
CPIIC
ICMIPS

66

©AM

LaCASA

MIPS as a Measure for Comparing
Performance among Computers (cont’d)

Problems with using MIPS
as a measure for comparison

MIPS is dependent on the instruction set,
making it difficult to compare MIPS of
computers with different instruction sets
MIPS varies between programs on the same
computer
Most importantly, MIPS can vary inversely to
performance

Example: MIPS rating of a machine with optional
FP hardware
Example: Code optimization

67

©AM

LaCASA

MIPS as a Measure for Comparing
Performance among Computers (cont’d)

Assume we are building optimizing compiler for the
load-store machine with following measurements

Compiler discards 50% of ALU ops
Clock rate: 500MHz
Find the MIPS rating for optimized vs. unoptimized
code? Discuss it

224%Branches
212%Stores
221%Loads
143%ALU ops

Clock cycle
count

Freq.Ins. Type

68

©AM

LaCASA

MIPS as a Measure for Comparing
Performance among Computers (cont’d)

Unoptimized
CPI(u) = 0.43 x 1 + 0.57 x 2 = 1.57
MIPS(u) = 500MHz/(1.57 x 106)=318.5
CPU_time(u) = IC(u) x CPI(u) x Clock_cycle_time
= IC(u) x 1.57 x 2 x 10-9 = 3.14 x 10-9 x IC(u)

Optimized
CPI(o) = [(0.43/2) x 1 + 0.57 x 2]/(1 – 0.43/2) = 1.73
MIPS(o) = 500MHz/(1.73 x 106)=289.0
CPU_time(o) = IC(o) x CPI(o) x Clock_cycle_time
= 0.785 x IC(u) x 1.73 x 2 x 10-9 = 2.72 x 10-9 x IC(u)

•18

69

©AM

LaCASA

Things to Remember

Execution, Latency, Res. time:
time to run the task
Throughput, bandwidth:
tasks per day, hour, sec
User Time

time user needs to wait for program to execute:
depends heavily on how OS switches between tasks

CPU Time
time spent executing a single program: depends
solely on design of processor (datapath, pipelining
effectiveness, caches, etc.)

70

©AM

LaCASA

Things to Remember (cont’d)

Benchmarks: good products created when
have good benchmarks
CPI Law

Amdahl’s Law

enhanced

enhanced
enhanced Speedup

FractionFraction
Speedup

+−
=

1

1

Program
Seconds

cycleClock
Seconds

nInstructio
cyclesClock

Program
nsInstructiotimeCPU =××=

71

©AM

LaCASA

Appendix #1

Why not Arithmetic Mean of
Normalized Execution Times

0.1

0.125

0.2

0.05

C/Ref

0.1

0.125

0.05

0.2

B/Ref

0.1

0.1

0.1

0.1

A/Ref

GM

1002.52605055050AM
(w1=w2=0.5)

2005

2000

5

Com. C

520101010100Total (sec)

500100010 000P2(sec)

2010100P1 (sec)

Com. BCom. ARef. Com.Program

Problem: GM of normalized
execution times rewards
equally all 3 computers?

AM of normalized execution
times; do not use it!

