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Networks for Arithmetic Operations

Case Study: Serial Parallel Multiplier

Note: we use unsigned binary numbers

23/07/2003 UAH-CPE/EE 422/522 AM 3

Block Diagram of a Binary Multiplier

Ad – add signal // adder outputs are stored into the ACC
Sh – shift signal // shift all 9 bits to right
Ld – load signal // load multiplier into the 4 lower bits of the ACC
and clear the upper 5 bits
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Multiplication Example
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State Graph for Binary Multiplier
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Behavioral VHDL Model
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Behavioral VHDL Model (cont’d)
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Multiplier Control with Counter

• Current design: control part generates the control 
signals (shift/add) and counts the number of steps

• If the number of bits is large (e.g., 64),
the control network can be divided into
a counter and a shift/add control
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Multiplier Control with Counter (cont’d)

Add-shifts control: tests St and M and generates the proper 
sequence of add and shift signals
Counter control: counter generates a completion signal K 
that stops the multiplier after the proper number of shifts
have been completed
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Multiplier Control with Counter (cont’d)

• Increment counter each time a shift 
signal is generated
• Generate K after n-1 shifts occured
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Operation of a Multiplier Using Counter
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Array Multiplier

• What do we need to realize Array Multiplier?

• AND gates = ?
• FA = ?
• HA = ?
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Array Multiplier (cont’d)
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Array Multiplier (cont’d)

• Complexity of the N-bit array multiplier
– number of AND gates = ?
– number of HA = ?
– number of FA = ?

• Delay
– tg – longest AND gate delay
– tad – longest possible delay through an adder
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Multiplication of Signed Binary Numbers

• How to multiply signed binary numbers?
• Procedure

– Complement the multiplier if negative
– Complement the multiplicand if negative
– Multiply two positive binary numbers
– Complement the product if it should be negative

• Simple but requires more hardware and time
than other available methods
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Multiplication of Signed Binary Numbers

• Four cases
– Multiplicand is positive, multiplier is positive
– Multiplicand is negative, multiplier is positive
– Multiplicand is positive, multiplier is negative
– Multiplier is negative, multiplicand is negative

• Examples
– 0111 x 0101 = ?
– 1101 x 0101 = ?
– 0101 x 1101 = ?
– 1011 x 1101 = ?

• Preserve the sign of the partial product 
at each step

• If multiplier is negative, complement 
the multiplicand before adding it in at 
the last step
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2’s Complement Multiplier
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State Graph for 2’s Complement Multiplier
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Faster Multiplier 

• Move wires from the adder outputs one position to the right =>
add and shift can occur at the same clock cycle
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State Graph for Faster Multiplier
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Behavioral Model for Faster Multiplier
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Behavioral Model for Faster Multiplier
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Command File and Simulation
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Test Bench for Signed Multiplier
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Hardware Testing and 
Design for Testability

• Testing during design process
– use VHDL test benches to verify that 

the overall design and algorithms used are correct
– verify timing and logic after the synthesis

• Post-fabrication testing
– when a digital system is manufactured,

test to verify that it is free from manufacturing defects
– today, cost of testing is major component of the 

manufacturing cost
– efficient techniques are needed to test and

design digital systems so that they are easy to test
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Testing Combinational Logic

• Common types of errors
– short circuit
– open circuit

• If the input to a gate is shorted to ground,
the input acts as if it is stuck at logic 0
– s-a-0 (stuck-at-0) faults

• If the input to a gate is shorted to positive supply 
voltage, the input acts as if it is stuck at logic 1
– s-a-1 (stuck-at-1) faults
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Stuck-at Faults

• How many single stuck-at faults —
– 2 (n + 1) — where n is the number of inputs

• We will assume 
– that there is only one stuck-at-fault active at a time 

in the whole circuit
– “SSF” — single stuck-at fault

s-a-0

s-a-0

s-a-0s-a-1

s-a-1
s-a-1
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Stuck-at Faults for AND and OR gates

Test a
for s-a-0

Test a
for s-a-1

Test a
for s-a-1

Test a
for s-a-0
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Testing an AND-OR Network

BRUTE-FORCE testing:
apply 29=512 different input 
combinations and check the output
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Path Detection & Sensitization: Small 
Example

Test n to s-a-1

We can test a, m, n, or p to s-a-0

n=0 =>
m=0, c = 0 =>
a=0, b=1, c=0

d=1, e=0

Change a to 1 =>

Testing internal faults: 
choose a set of inputs that will excite the fault and
then propagate the fault to the network output 
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An Example

• What is a minimum set of test vectors to test the network 
below for all stuck-at-1 and stuck-at-0 faults?

• E.g., start with A-a-p- v-f-F path, determine the test vector to test s-a- 0
• determine the list of faults covered
• select an untested fault, determine the required ABCD inputs
• determine the additional faults tested
• repeat the process until all faults are covered

23/07/2003 UAH-CPE/EE 422/522 AM 32

An Example (cont’d)

• Step 1: A- a-p- v-f-F, s-a-0
– ABCD: 1101 (+)

• Step 2: s-a- 0 for c
– C=1, p=0, w=1 => ABCD=1011 (*)

• Step 3: s-a- 0 for q
– C=1, D=1, t=0, s=1 => ABCD=1111 (#)

• Step 4: s-a- 1 for a
– A=0, B=1, C=0, D=1 => ABCD=0101 (&)

• Step 5: s-a- 1 for d (%)
– D=0, C =0, t=1 => ABCD = 1100

#+f

#+w

&+v

#+u

#*t

*#s

#+r

+#q

*+p

%+d

&*c

*+b

&+a

10
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Testing Sequential Logic

• In general, much more difficult than testing combinational 
logic since we must use sequences of inputs
– typically we can observe inputs and outputs, 

not the state of flip-flops
– assume the reset input, 

so we can reset the network to the initial state

• Test procedure
– reset the network to the initial state
– apply a test sequence and observe the output sequence
– if the output is correct, repeat the test for another sequence

• How many test sequences do we have?
– how do we test that the initial state of the network under test is 

equivalent to the initial state of the correct network?
– what is the sequence length?
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Testing Sequential Logic (cont’d)

• In practice, if the network 
has N or fewer states, 
then apply only input 
sequences of length less 
than or equal 2N-1

• Example
– consider a network which 

includes 5 inputs, 1 output, 
and 4 states

– total number of test 
sequences: (25)7 =  235 => 
infeasible (!)

– derive a small set of test 
sequences that will 
adequately test a SN
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Testing Sequential Logic (cont’d)

• Consider input sequence
– X = 0 1 0 1 1 0 0 1 1
– Output sequence

Z = 0 0 1 0 1 1 1 1 0
– If we change the network

S3->S0 => S3->S3,
the output sequence 
will be the same

• Find distinguishing sequence 
– an input sequence that will 

distinguish each state from the 
other states

Input sequence: X=11
• S0: Z = 01
• S1: Z = 11
• S2: Z = 10
• S3: Z = 00
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Testing Sequential Logic (cont’d)

Verify each entry in the table using 
the following sequences:
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Testing Sequential Logic (cont’d)

• Implementation of the FSM
– S0=00, S1=10, S2=01, S3=11

• Test a for s-a-1
– to do this Q1Q2 must be 10 

=> go to the state S1 and 
then set X to 0 (R10)

– in normal operation, 
the next state will be S0;
if a is s-a- 1 then next state is S2

– distinguish the state (S0 or S2);
apply sequence 11

– Final sequence: R1011
Normal output: 0101
Faulty output: 0110
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Scan Testing

• Testing of sequential networks is greatly simplified 
if we can observe the state of all the flip-flops 
instead of just observing the network outputs
– Connect the output of each flip-flop to one of the IC 

pins?
– Arrange flip-flops to form a shift register =>

shift out the state of flip-flops bit by bit using 
a single serial output pin => Scan path testing
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Scan Path Testing

• Sequential network is separated into a combinational logic part 
and a state register composed of flip-flops

• Two ports FFs 
(2 D inputs and 2 clock inputs)

– D1 is stored in the FF on C1 pulse
– D2 is stored in the FF on C2 pulse
– Q of each FF is connected to D2 of the next FF to form a shift register
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Scan Path Testing

• Normal operation
– system clock SCK = C1
– inputs: X1 X2...XN

– outputs: Z1Z2...ZN

• Testing
– FFs are set to a specified 

state using the SDI and TCK
– test vector is applied 

X1X2...XN

– outputs Z1Z2...ZN are verified
– SCK is pulsed to take the 

network to the next state
– next state is verified by 

pulsing the TCK to shift the 
state code out of the scan 
register via SDO
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Scan Path Testing: An Example

• SQ: X1X2, Q1Q2Q3, Z1Z2
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Scan Chain
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Scan Test with Multiple ICs
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Boundary Scan

• PCB testing has become more difficult
– ICs have become more complex, with more and more pins 
– PCBs have become more denser with multiple layers and fine traces
– Bed-of-nails testing

• use sharp probes to contact the traces on the board
• test data are applied to and read from various ICs 
• => not practical for high -density PCBs with fine traces and complex ICs

• Boundary scan test methodology:
introduced to facilitate the testing of complex PC boards
– developed by JTAG (Joint Task Action Group) 
– adopted as ANSI/IEEE Standard 1149.1 –

“Standard Test Access Port and Boundary Scan Architecture”
– IC manufacturers make ICs that conform the standard
– ICs can be linked together on a PCB, so that they can be tested 

using only a few pins on the PCB edge connector
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Boundary Scan Register

• Boundary Scan Register (BSR) – cells of the BSR are placed between 
input or output pins and the internal core logic

• Four or five pins of the IC are devoted to the test- access-port (TAP)

TAP pins

Boundary 
scan cells

• TDI – Test data input 
(data are shifted serially into the BSR)

• TCK – Test clock
• TMS – Test mode select

• TDO – Test data output (serial output from BSR)

• TRST – Test reset 
(resets the TAP controller and test logic –
optional pin)

23/07/2003 UAH-CPE/EE 422/522 AM 46

PCB with Boundary Scan ICs

• BSRs in the ICs are linked together serially in a single chain 
with input TDI and output TDO. 

• TCK, TMS, TRST are connected in parallel to all of the ICs.
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Boundary Scan Cell 

Capture FF Update FF
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Basic Boundary Scan Architecture

• BSR1 – shift register, which consists of the Q1 flip-flops 
in the boundary scan cells

• BSR2 – represents the Q2 flip-flops; 
can be parallel loaded from BSR1 when an update signal is received

• TDI can be shifted into the BSR1, through a bypass register, or into the ISR
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TAP Controller

TMS is input

Affect ASIC 
core
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TAP Controller: How it Works (I)

• TAP Controller 
– 16 state FSM 
– Change states depending on TMS and TCK
– Output: signals to control the test data registers and 

instruction register (including serial shift clocks and 
update clocks)

• Test-logic-reset is the initial state; 
on a low TMS go to Run-Test/Idle state

• TMS: 1100 => Shift- IR 
• In Shift-IR command is shifted in through TDI port

• …
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Instructions in the IEEE Standard

• BYPASS: allows the TDI serial data to go trough 1- bit bypass register 
on the IC instead of through the BSR1. In this way one or more ICs on 
the PCB may be bypassed.

• SAMPE/RELOAD: used to scan the BSR without interfering with the 
normal operation of the core logic. Data is transferred to or fr om the 
core logic from or to the IC pins without interference. Samples of this 
data can be taken and scanned out through the BSR. Test data can be 
shifted into the BSR. 

• EXTEST: allows board-level interconnect testing and testing of clusters 
of components which do not incorporate the boundary scan test 
features. Test data is shifted into the BSR and then it goes to the output 
pins. Data from the input pins is captured by the BSR.

• INTEST (optional): this instruction allows testing of the core logic by 
shifting test data into the boundary-scan register. Data shifted into the 
BSR takes the place of data from the input pins, and output data from 
the core logic is loaded into the BSR.

• RUNBIST (optional): this instruction causes special built-in self-test 
(BIST) logic within the IC to execute.
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Interconnection Testing using Boundary 
Scan

• Test the connections between two ICs.

• IC1: 2 input pins, 2 output pins.
• IC2: 2 input pins, 2 output pins.

• Test data is shifted into the BSRs via TDI.

• Data from the input pins is parallel-loaded into the BSRs and shifted out via TDO.

Assume:
IR on each IC is 3 bits long with 
EXTEST coded as 000
SAMPLE/PRELOAD as 001

Test PC board traces 
between IC1 and IC2



•14

23/07/2003 UAH-CPE/EE 422/522 AM 53

Steps Required to Test Connections

• 1. Reset the TAP state machine to the Test-Logic-Reset state by 
inputting a sequence of five 1's on TMS. The TAP controller is designed 
so that a sequence of five 1's will always reset it regardless of the 
present state. Alternatively, TRST could be asserted if it is available.

• 2. Scan in the SAMPLE/PRELOAD instruction to both ICs using the 
sequences for TMS and TDI given below. 

– State: 0 1 2 9 10 11 11 11 11 11 11 12 15 2
TMS: 0 1 1 0   0   0   0   0   0   0   1   1   1
TDI: – – – – – 1    0   0 1   0  0 – –

• The TMS sequence 01100 takes the TAP controller to the Shift-IR state. 
In this state, copies of the SAMPLE/PRELOAD instruction (code 001) 
are shifted into the instruction registers on both ICs. In the U pdate-IR 
state, the instructions are loaded into the instruction decode registers. 
Then the TAP controller goes back to the Select DR-scan state.
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Steps Required to Test Connections 
(cont’d)

• 3. Preload the first set of test data into the ICs using the 
sequences for TMS and TDI given below.
State: 2 3 4 4 4 4 4 4 4 4 5 8 2
TMS: 0 0 0 0 0 0 0 0 0 1 1 1
TDI: – – 0 1 0 0 0 1 0 0 – –

Data is shifted into BSR1 in the Shift-DR state, and it is 
transferred to BSR2 in the Update-DR state. The result is 
as follows:
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Steps Required to Test Connections 
(cont’d)

• 4. Scan in the EXTEST instruction to both ICs using the 
following sequences:
State: 2 9 10 11 11 11 11 11 11 12 15 2
TMS: 1 0  0   0   0   0   0   0   1   1   1
TDI: – – – 0   0   0   0   0   0   – –

The EXTEST instruction (000) is scanned into the 
instruction register in state Shift-IR and loaded into the 
instruction decode register in state Update-IR. At this point, 
the preloaded test data goes to the output pins, and it is 
transmitted to the adjacent IC input pins via the printed 
circuit board traces.
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Steps Required to Test Connections 
(cont’d)

• 5. Capture the test results from the IC inputs. Scan this data out to TDO and 
scan the second set of test data in using the following sequences:
State: 2 3 4 4 4 4 4 4 4 4 5 8 2
TMS: 0 0 0 0 0 0 0 0 0 1 1 1
TDI: – – 1 0 0 0 1 0 0 0 – –
TDO: – – x x 1 0 x x 1 0 – –

The data from the input pins is loaded into BSR1 in state Capture -DR. At this 
time, if no faults have been detected, the BSRs should be configured as shown 
below, where the X's indicate captured data which is not relevant to the test.

The test results are then shifted out of BSR1 in state Shift -DR as the 
new test data is shifted in. The new data is loaded into BSR2 in the 
Update-IR state.
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Steps Required to Test Connections 
(cont’d)

• 6. Capture the test results from the IC inputs. Scan this data 
out to TDO and scan all 0's in using the following 
sequences:
State: 2 3 4 4 4 4 4 4 4 4 5 8 2 9 0
TMS: 0 0 0 0 0 0 0 0 0 1 1 1 1 1
TDI: – – 0 0 0 0 0 0 0 0 – – – –
TDO: – – x x 0 1 x x 0 1 – – – –

The data from the input pins is loaded into BSR1 in state 
Capture-DR. Then it is shifted out in state Shift-DR as all 0's 
are shifted in. The 0's are loaded into BSR2 in the Update-
IR state. The controller then returns to the Test-Logic-Reset 
state and normal operation of the ICs can then occur. The 
interconnection test passes if the observed TDO sequences 
match the ones given above.
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Built-In Self-Test

• Add logic to the IC so that it can test itself
– Built-In Self-Test – BIST

• Using BIST
– when test mode is selected by the test-select signal,

an on-chip test generator applies test patterns 
to the circuit under test

– the resulting outputs are observed by the response monitor,
which produces an error signal if an incorrect output is detected

Generic BIST Scheme
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Self-Test Circuit for RAM
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Linear Feedback Shift Registers (LFSR)
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Self-Test Circuit for RAM with Signature 
Regs

MISR – Multiple Input 
Signature Register

E.g. for MISR –form a check-
sum by adding up all data bytes 
stored in the RAM


