
•1

CPE/EE 422/522
Advanced Logic Design

L17
Electrical and Computer Engineering
University of Alabama in Huntsville

23/07/2003 UAH-CPE/EE 422/522 AM 2

Networks for Arithmetic Operations

Case Study: Serial Parallel Multiplier

Note: we use unsigned binary numbers

23/07/2003 UAH-CPE/EE 422/522 AM 3

Block Diagram of a Binary Multiplier

Ad – add signal // adder outputs are stored into the ACC
Sh – shift signal // shift all 9 bits to right
Ld – load signal // load multiplier into the 4 lower bits of the ACC
and clear the upper 5 bits

23/07/2003 UAH-CPE/EE 422/522 AM 4

Multiplication Example

•2

23/07/2003 UAH-CPE/EE 422/522 AM 5

State Graph for Binary Multiplier

23/07/2003 UAH-CPE/EE 422/522 AM 6

Behavioral VHDL Model

23/07/2003 UAH-CPE/EE 422/522 AM 7

Behavioral VHDL Model (cont’d)

23/07/2003 UAH-CPE/EE 422/522 AM 8

Multiplier Control with Counter

• Current design: control part generates the control
signals (shift/add) and counts the number of steps

• If the number of bits is large (e.g., 64),
the control network can be divided into
a counter and a shift/add control

•3

23/07/2003 UAH-CPE/EE 422/522 AM 9

Multiplier Control with Counter (cont’d)

Add-shifts control: tests St and M and generates the proper
sequence of add and shift signals
Counter control: counter generates a completion signal K
that stops the multiplier after the proper number of shifts
have been completed

23/07/2003 UAH-CPE/EE 422/522 AM 10

Multiplier Control with Counter (cont’d)

• Increment counter each time a shift
signal is generated
• Generate K after n-1 shifts occured

23/07/2003 UAH-CPE/EE 422/522 AM 11

Operation of a Multiplier Using Counter

23/07/2003 UAH-CPE/EE 422/522 AM 12

Array Multiplier

• What do we need to realize Array Multiplier?

• AND gates = ?
• FA = ?
• HA = ?

•4

23/07/2003 UAH-CPE/EE 422/522 AM 13

Array Multiplier (cont’d)

23/07/2003 UAH-CPE/EE 422/522 AM 14

Array Multiplier (cont’d)

• Complexity of the N-bit array multiplier
– number of AND gates = ?
– number of HA = ?
– number of FA = ?

• Delay
– tg – longest AND gate delay
– tad – longest possible delay through an adder

23/07/2003 UAH-CPE/EE 422/522 AM 15

Multiplication of Signed Binary Numbers

• How to multiply signed binary numbers?
• Procedure

– Complement the multiplier if negative
– Complement the multiplicand if negative
– Multiply two positive binary numbers
– Complement the product if it should be negative

• Simple but requires more hardware and time
than other available methods

23/07/2003 UAH-CPE/EE 422/522 AM 16

Multiplication of Signed Binary Numbers

• Four cases
– Multiplicand is positive, multiplier is positive
– Multiplicand is negative, multiplier is positive
– Multiplicand is positive, multiplier is negative
– Multiplier is negative, multiplicand is negative

• Examples
– 0111 x 0101 = ?
– 1101 x 0101 = ?
– 0101 x 1101 = ?
– 1011 x 1101 = ?

• Preserve the sign of the partial product
at each step

• If multiplier is negative, complement
the multiplicand before adding it in at
the last step

•5

23/07/2003 UAH-CPE/EE 422/522 AM 17

2’s Complement Multiplier

23/07/2003 UAH-CPE/EE 422/522 AM 18

State Graph for 2’s Complement Multiplier

23/07/2003 UAH-CPE/EE 422/522 AM 19

Faster Multiplier

• Move wires from the adder outputs one position to the right =>
add and shift can occur at the same clock cycle

23/07/2003 UAH-CPE/EE 422/522 AM 20

State Graph for Faster Multiplier

•6

23/07/2003 UAH-CPE/EE 422/522 AM 21

Behavioral Model for Faster Multiplier

23/07/2003 UAH-CPE/EE 422/522 AM 22

Behavioral Model for Faster Multiplier

23/07/2003 UAH-CPE/EE 422/522 AM 23

Command File and Simulation

23/07/2003 UAH-CPE/EE 422/522 AM 24

Test Bench for Signed Multiplier

•7

23/07/2003 UAH-CPE/EE 422/522 AM 25

Hardware Testing and
Design for Testability

• Testing during design process
– use VHDL test benches to verify that

the overall design and algorithms used are correct
– verify timing and logic after the synthesis

• Post-fabrication testing
– when a digital system is manufactured,

test to verify that it is free from manufacturing defects
– today, cost of testing is major component of the

manufacturing cost
– efficient techniques are needed to test and

design digital systems so that they are easy to test

23/07/2003 UAH-CPE/EE 422/522 AM 26

Testing Combinational Logic

• Common types of errors
– short circuit
– open circuit

• If the input to a gate is shorted to ground,
the input acts as if it is stuck at logic 0
– s-a-0 (stuck-at-0) faults

• If the input to a gate is shorted to positive supply
voltage, the input acts as if it is stuck at logic 1
– s-a-1 (stuck-at-1) faults

23/07/2003 UAH-CPE/EE 422/522 AM 27

Stuck-at Faults

• How many single stuck-at faults —
– 2 (n + 1) — where n is the number of inputs

• We will assume
– that there is only one stuck-at-fault active at a time

in the whole circuit
– “SSF” — single stuck-at fault

s-a-0

s-a-0

s-a-0s-a-1

s-a-1
s-a-1

23/07/2003 UAH-CPE/EE 422/522 AM 28

Stuck-at Faults for AND and OR gates

Test a
for s-a-0

Test a
for s-a-1

Test a
for s-a-1

Test a
for s-a-0

•8

23/07/2003 UAH-CPE/EE 422/522 AM 29

Testing an AND-OR Network

BRUTE-FORCE testing:
apply 29=512 different input
combinations and check the output

23/07/2003 UAH-CPE/EE 422/522 AM 30

Path Detection & Sensitization: Small
Example

Test n to s-a-1

We can test a, m, n, or p to s-a-0

n=0 =>
m=0, c = 0 =>
a=0, b=1, c=0

d=1, e=0

Change a to 1 =>

Testing internal faults:
choose a set of inputs that will excite the fault and
then propagate the fault to the network output

23/07/2003 UAH-CPE/EE 422/522 AM 31

An Example

• What is a minimum set of test vectors to test the network
below for all stuck-at-1 and stuck-at-0 faults?

• E.g., start with A-a-p- v-f-F path, determine the test vector to test s-a- 0
• determine the list of faults covered
• select an untested fault, determine the required ABCD inputs
• determine the additional faults tested
• repeat the process until all faults are covered

23/07/2003 UAH-CPE/EE 422/522 AM 32

An Example (cont’d)

• Step 1: A- a-p- v-f-F, s-a-0
– ABCD: 1101 (+)

• Step 2: s-a- 0 for c
– C=1, p=0, w=1 => ABCD=1011 (*)

• Step 3: s-a- 0 for q
– C=1, D=1, t=0, s=1 => ABCD=1111 (#)

• Step 4: s-a- 1 for a
– A=0, B=1, C=0, D=1 => ABCD=0101 (&)

• Step 5: s-a- 1 for d (%)
– D=0, C =0, t=1 => ABCD = 1100

#+f

#+w

&+v

#+u

#*t

*#s

#+r

+#q

*+p

%+d

&*c

*+b

&+a

10

•9

23/07/2003 UAH-CPE/EE 422/522 AM 33

Testing Sequential Logic

• In general, much more difficult than testing combinational
logic since we must use sequences of inputs
– typically we can observe inputs and outputs,

not the state of flip-flops
– assume the reset input,

so we can reset the network to the initial state

• Test procedure
– reset the network to the initial state
– apply a test sequence and observe the output sequence
– if the output is correct, repeat the test for another sequence

• How many test sequences do we have?
– how do we test that the initial state of the network under test is

equivalent to the initial state of the correct network?
– what is the sequence length?

23/07/2003 UAH-CPE/EE 422/522 AM 34

Testing Sequential Logic (cont’d)

• In practice, if the network
has N or fewer states,
then apply only input
sequences of length less
than or equal 2N-1

• Example
– consider a network which

includes 5 inputs, 1 output,
and 4 states

– total number of test
sequences: (25)7 = 235 =>
infeasible (!)

– derive a small set of test
sequences that will
adequately test a SN

23/07/2003 UAH-CPE/EE 422/522 AM 35

Testing Sequential Logic (cont’d)

• Consider input sequence
– X = 0 1 0 1 1 0 0 1 1
– Output sequence

Z = 0 0 1 0 1 1 1 1 0
– If we change the network

S3->S0 => S3->S3,
the output sequence
will be the same

• Find distinguishing sequence
– an input sequence that will

distinguish each state from the
other states

Input sequence: X=11
• S0: Z = 01
• S1: Z = 11
• S2: Z = 10
• S3: Z = 00

23/07/2003 UAH-CPE/EE 422/522 AM 36

Testing Sequential Logic (cont’d)

Verify each entry in the table using
the following sequences:

•10

23/07/2003 UAH-CPE/EE 422/522 AM 37

Testing Sequential Logic (cont’d)

• Implementation of the FSM
– S0=00, S1=10, S2=01, S3=11

• Test a for s-a-1
– to do this Q1Q2 must be 10

=> go to the state S1 and
then set X to 0 (R10)

– in normal operation,
the next state will be S0;
if a is s-a- 1 then next state is S2

– distinguish the state (S0 or S2);
apply sequence 11

– Final sequence: R1011
Normal output: 0101
Faulty output: 0110

23/07/2003 UAH-CPE/EE 422/522 AM 38

Scan Testing

• Testing of sequential networks is greatly simplified
if we can observe the state of all the flip-flops
instead of just observing the network outputs
– Connect the output of each flip-flop to one of the IC

pins?
– Arrange flip-flops to form a shift register =>

shift out the state of flip-flops bit by bit using
a single serial output pin => Scan path testing

23/07/2003 UAH-CPE/EE 422/522 AM 39

Scan Path Testing

• Sequential network is separated into a combinational logic part
and a state register composed of flip-flops

• Two ports FFs
(2 D inputs and 2 clock inputs)

– D1 is stored in the FF on C1 pulse
– D2 is stored in the FF on C2 pulse
– Q of each FF is connected to D2 of the next FF to form a shift register

23/07/2003 UAH-CPE/EE 422/522 AM 40

Scan Path Testing

• Normal operation
– system clock SCK = C1
– inputs: X1 X2...XN

– outputs: Z1Z2...ZN

• Testing
– FFs are set to a specified

state using the SDI and TCK
– test vector is applied

X1X2...XN

– outputs Z1Z2...ZN are verified
– SCK is pulsed to take the

network to the next state
– next state is verified by

pulsing the TCK to shift the
state code out of the scan
register via SDO

•11

23/07/2003 UAH-CPE/EE 422/522 AM 41

Scan Path Testing: An Example

• SQ: X1X2, Q1Q2Q3, Z1Z2

23/07/2003 UAH-CPE/EE 422/522 AM 42

Scan Chain

23/07/2003 UAH-CPE/EE 422/522 AM 43

Scan Test with Multiple ICs

23/07/2003 UAH-CPE/EE 422/522 AM 44

Boundary Scan

• PCB testing has become more difficult
– ICs have become more complex, with more and more pins
– PCBs have become more denser with multiple layers and fine traces
– Bed-of-nails testing

• use sharp probes to contact the traces on the board
• test data are applied to and read from various ICs
• => not practical for high -density PCBs with fine traces and complex ICs

• Boundary scan test methodology:
introduced to facilitate the testing of complex PC boards
– developed by JTAG (Joint Task Action Group)
– adopted as ANSI/IEEE Standard 1149.1 –

“Standard Test Access Port and Boundary Scan Architecture”
– IC manufacturers make ICs that conform the standard
– ICs can be linked together on a PCB, so that they can be tested

using only a few pins on the PCB edge connector

•12

23/07/2003 UAH-CPE/EE 422/522 AM 45

Boundary Scan Register

• Boundary Scan Register (BSR) – cells of the BSR are placed between
input or output pins and the internal core logic

• Four or five pins of the IC are devoted to the test- access-port (TAP)

TAP pins

Boundary
scan cells

• TDI – Test data input
(data are shifted serially into the BSR)

• TCK – Test clock
• TMS – Test mode select

• TDO – Test data output (serial output from BSR)

• TRST – Test reset
(resets the TAP controller and test logic –
optional pin)

23/07/2003 UAH-CPE/EE 422/522 AM 46

PCB with Boundary Scan ICs

• BSRs in the ICs are linked together serially in a single chain
with input TDI and output TDO.

• TCK, TMS, TRST are connected in parallel to all of the ICs.

23/07/2003 UAH-CPE/EE 422/522 AM 47

Boundary Scan Cell

Capture FF Update FF

23/07/2003 UAH-CPE/EE 422/522 AM 48

Basic Boundary Scan Architecture

• BSR1 – shift register, which consists of the Q1 flip-flops
in the boundary scan cells

• BSR2 – represents the Q2 flip-flops;
can be parallel loaded from BSR1 when an update signal is received

• TDI can be shifted into the BSR1, through a bypass register, or into the ISR

•13

23/07/2003 UAH-CPE/EE 422/522 AM 49

TAP Controller

TMS is input

Affect ASIC
core

23/07/2003 UAH-CPE/EE 422/522 AM 50

TAP Controller: How it Works (I)

• TAP Controller
– 16 state FSM
– Change states depending on TMS and TCK
– Output: signals to control the test data registers and

instruction register (including serial shift clocks and
update clocks)

• Test-logic-reset is the initial state;
on a low TMS go to Run-Test/Idle state

• TMS: 1100 => Shift- IR
• In Shift-IR command is shifted in through TDI port

• …

23/07/2003 UAH-CPE/EE 422/522 AM 51

Instructions in the IEEE Standard

• BYPASS: allows the TDI serial data to go trough 1- bit bypass register
on the IC instead of through the BSR1. In this way one or more ICs on
the PCB may be bypassed.

• SAMPE/RELOAD: used to scan the BSR without interfering with the
normal operation of the core logic. Data is transferred to or fr om the
core logic from or to the IC pins without interference. Samples of this
data can be taken and scanned out through the BSR. Test data can be
shifted into the BSR.

• EXTEST: allows board-level interconnect testing and testing of clusters
of components which do not incorporate the boundary scan test
features. Test data is shifted into the BSR and then it goes to the output
pins. Data from the input pins is captured by the BSR.

• INTEST (optional): this instruction allows testing of the core logic by
shifting test data into the boundary-scan register. Data shifted into the
BSR takes the place of data from the input pins, and output data from
the core logic is loaded into the BSR.

• RUNBIST (optional): this instruction causes special built-in self-test
(BIST) logic within the IC to execute.

23/07/2003 UAH-CPE/EE 422/522 AM 52

Interconnection Testing using Boundary
Scan

• Test the connections between two ICs.

• IC1: 2 input pins, 2 output pins.
• IC2: 2 input pins, 2 output pins.

• Test data is shifted into the BSRs via TDI.

• Data from the input pins is parallel-loaded into the BSRs and shifted out via TDO.

Assume:
IR on each IC is 3 bits long with
EXTEST coded as 000
SAMPLE/PRELOAD as 001

Test PC board traces
between IC1 and IC2

•14

23/07/2003 UAH-CPE/EE 422/522 AM 53

Steps Required to Test Connections

• 1. Reset the TAP state machine to the Test-Logic-Reset state by
inputting a sequence of five 1's on TMS. The TAP controller is designed
so that a sequence of five 1's will always reset it regardless of the
present state. Alternatively, TRST could be asserted if it is available.

• 2. Scan in the SAMPLE/PRELOAD instruction to both ICs using the
sequences for TMS and TDI given below.

– State: 0 1 2 9 10 11 11 11 11 11 11 12 15 2
TMS: 0 1 1 0 0 0 0 0 0 0 1 1 1
TDI: – – – – – 1 0 0 1 0 0 – –

• The TMS sequence 01100 takes the TAP controller to the Shift-IR state.
In this state, copies of the SAMPLE/PRELOAD instruction (code 001)
are shifted into the instruction registers on both ICs. In the U pdate-IR
state, the instructions are loaded into the instruction decode registers.
Then the TAP controller goes back to the Select DR-scan state.

23/07/2003 UAH-CPE/EE 422/522 AM 54

Steps Required to Test Connections
(cont’d)

• 3. Preload the first set of test data into the ICs using the
sequences for TMS and TDI given below.
State: 2 3 4 4 4 4 4 4 4 4 5 8 2
TMS: 0 0 0 0 0 0 0 0 0 1 1 1
TDI: – – 0 1 0 0 0 1 0 0 – –

Data is shifted into BSR1 in the Shift-DR state, and it is
transferred to BSR2 in the Update-DR state. The result is
as follows:

23/07/2003 UAH-CPE/EE 422/522 AM 55

Steps Required to Test Connections
(cont’d)

• 4. Scan in the EXTEST instruction to both ICs using the
following sequences:
State: 2 9 10 11 11 11 11 11 11 12 15 2
TMS: 1 0 0 0 0 0 0 0 1 1 1
TDI: – – – 0 0 0 0 0 0 – –

The EXTEST instruction (000) is scanned into the
instruction register in state Shift-IR and loaded into the
instruction decode register in state Update-IR. At this point,
the preloaded test data goes to the output pins, and it is
transmitted to the adjacent IC input pins via the printed
circuit board traces.

23/07/2003 UAH-CPE/EE 422/522 AM 56

Steps Required to Test Connections
(cont’d)

• 5. Capture the test results from the IC inputs. Scan this data out to TDO and
scan the second set of test data in using the following sequences:
State: 2 3 4 4 4 4 4 4 4 4 5 8 2
TMS: 0 0 0 0 0 0 0 0 0 1 1 1
TDI: – – 1 0 0 0 1 0 0 0 – –
TDO: – – x x 1 0 x x 1 0 – –

The data from the input pins is loaded into BSR1 in state Capture -DR. At this
time, if no faults have been detected, the BSRs should be configured as shown
below, where the X's indicate captured data which is not relevant to the test.

The test results are then shifted out of BSR1 in state Shift -DR as the
new test data is shifted in. The new data is loaded into BSR2 in the
Update-IR state.

•15

23/07/2003 UAH-CPE/EE 422/522 AM 57

Steps Required to Test Connections
(cont’d)

• 6. Capture the test results from the IC inputs. Scan this data
out to TDO and scan all 0's in using the following
sequences:
State: 2 3 4 4 4 4 4 4 4 4 5 8 2 9 0
TMS: 0 0 0 0 0 0 0 0 0 1 1 1 1 1
TDI: – – 0 0 0 0 0 0 0 0 – – – –
TDO: – – x x 0 1 x x 0 1 – – – –

The data from the input pins is loaded into BSR1 in state
Capture-DR. Then it is shifted out in state Shift-DR as all 0's
are shifted in. The 0's are loaded into BSR2 in the Update-
IR state. The controller then returns to the Test-Logic-Reset
state and normal operation of the ICs can then occur. The
interconnection test passes if the observed TDO sequences
match the ones given above.

23/07/2003 UAH-CPE/EE 422/522 AM 58

Built-In Self-Test

• Add logic to the IC so that it can test itself
– Built-In Self-Test – BIST

• Using BIST
– when test mode is selected by the test-select signal,

an on-chip test generator applies test patterns
to the circuit under test

– the resulting outputs are observed by the response monitor,
which produces an error signal if an incorrect output is detected

Generic BIST Scheme

23/07/2003 UAH-CPE/EE 422/522 AM 59

Self-Test Circuit for RAM

23/07/2003 UAH-CPE/EE 422/522 AM 60

Linear Feedback Shift Registers (LFSR)

•16

23/07/2003 UAH-CPE/EE 422/522 AM 61

Self-Test Circuit for RAM with Signature
Regs

MISR – Multiple Input
Signature Register

E.g. for MISR –form a check-
sum by adding up all data bytes
stored in the RAM

