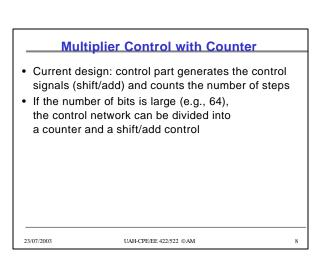
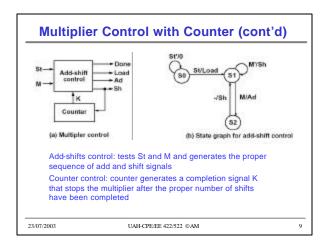
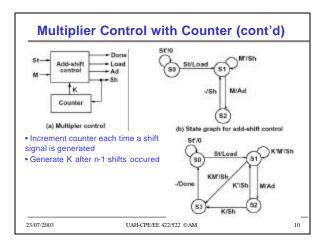
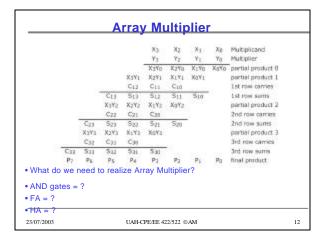
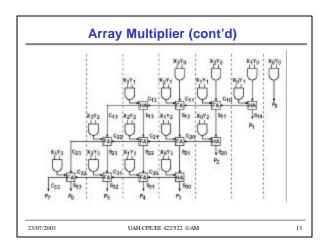

Netv	vorks for Arithmetic Operations	
Ca	se Study: Serial Parallel Multiplier	
Note: N	Mukipikard 1101 (13) Mukipikar 1011 (11) Partial 100111 Products 100111 1001111 (143) we use unsigned binary numbers	
23/07/2003	UAH-CPE/EE 422/522 @AM	2

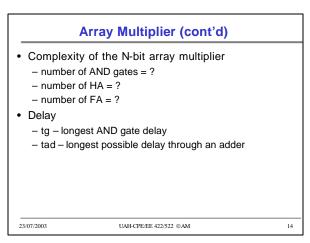












Time	State	Counter	Product Register	8	м	к	Load	Ad	Sh	Done
10	50	00	0000000000	0	0	D	0	- Ô	0	ō
ti	50	00	0000000000	1	0	0	1	0	0	0
£2	51	00	000001011	0	1	0	0	1	0	0
t3	52	00	011011011	0	1	0	0	0	1	0
.b4	51	01	001101101	0	1	0	0	1	σ	0
t5	52	01	100111101	0	1	0	0	0	1	0
- 85	51	10	010011110	0	0	D	0	0	101	0
£7	51	11	001001111	0	1	1	0	1	0	0 0 0
t8	52	11	100011111	0	1	1	0			
19	53	00	010001111	0	1	0	0	0	0	1

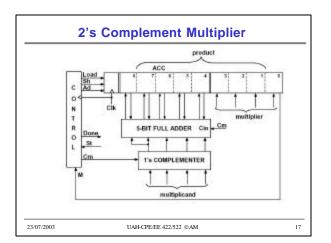
Multiplication of Signed Binary Numbers

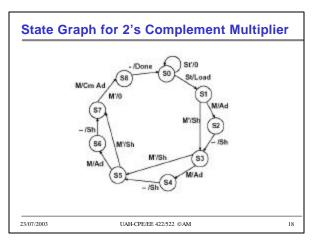
- How to multiply signed binary numbers?
- Procedure
 - Complement the multiplier if negative
 - Complement the multiplicand if negative
 - Multiply two positive binary numbers
 - Complement the product if it should be negative
- Simple but requires more hardware and time than other available methods

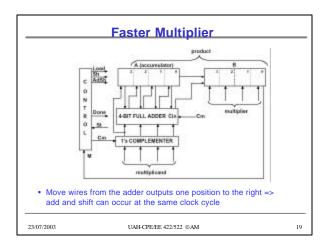
UAH-CPE/EE 422/522 © AM

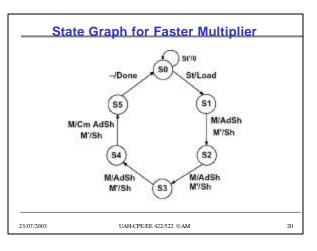
Multiplication of Signed Binary Numbers

- Four cases
 - Multiplicand is positive, multiplier is positive
 - Multiplicand is negative, multiplier is positive
 - Multiplicand is positive, multiplier is negative
 - Multiplier is negative, multiplicand is negative

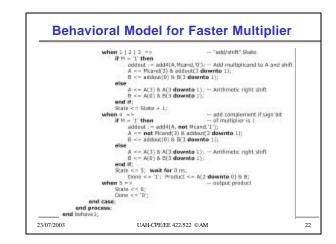

UAH-CPE/EE 422/522 © AM

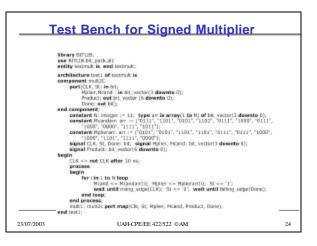

- Examples
 - $-0111 \times 0101 = ?$
 - 1101 x 0101 = ?
 - $-0101 \times 1101 = ?$
 - 1 x 1101 = ?
 - 1011 x 1101 = ?
- Preserve the sign of the partial product at each step
 If multiplier is negative, complement
- the multiplicand before adding it in at the last step


23/07/2003


15

16



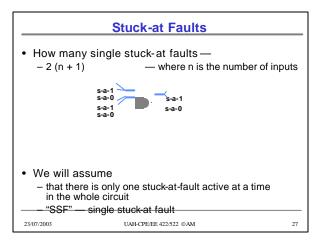


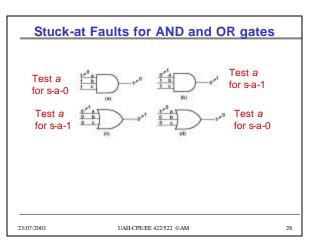
Behavioral Model for F	aster multiplier
ilbrary BITLIB; user BITLIB.ist_pack.eff;	
entity mail2C is pert (CJK, St. in bit; Mplor, Mand : in bit, vector(3 dow Product; out bit, vector (6 downto Done; out bit)/ end mail2C;	
anchitecture behave1 of mult2C is signal State : integer range 0 to 5: signal A, 5: htt. vector(3 downto 0); alias M: bit is 800); beau	
begin process variable addout: bit_vector[4 downto 0 begin	Pic .
wait until CLK = '1'; case State is	and a Picker
when 0=> af St~'1' then	initial State
A <= "0000"; 8 <= Mpler;	Begin cycle load the multiplier
State <= 1; and if	

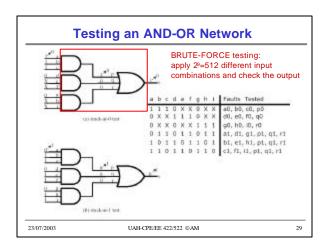
First CLP force to Porce c 	munid file (1 St State 1 1 2, 0 22 k 1 0, 0 1 * -3/6) kand 020 plier 110) 7	A B Des D - tepe I	e Prod					
118	delta	CLK	St	State			Done	Product
0	+1	1	D	D	0000	0000	D	0000000
2	+ D	1	1	D	8000	0000	D	0000000
10	+0	0	- 1	D	8000	0000	D	0000000
25	+1	1	1	1	8000	3303	D	0000000
22	+0	- E	D	- 1	0000	3301	D	0000000
30	+0	- a -	D	1	\$000	3301	D	0000003
45	+1	1	D.	2	0010	3330	D	0000000
50	+0	- a -	D	2	0030	3330	0	0000000
62	+1	÷ î	0	3	0001	0111	D	0000003
70	+0	a a	D	3	0001	0111	D	0000000
89	+1	1 E	0	4	\$011	0011	0	0000000
92	+0	0	D		8011	0011	D	10000003
100	+2	÷.	0	5	1111	5001	1	1110001
110	+0	- a .	0	5	1111	2001	4	1110001
1.20	+1	1. 110	Ú.	0	1111	0001	D	1110001

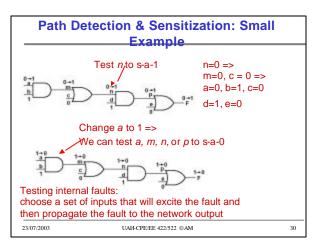
Hardware Testing and Design for Testability

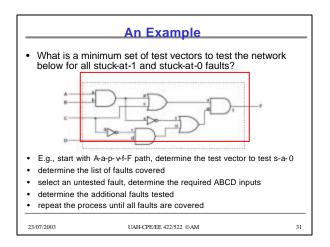
 Testing during design process

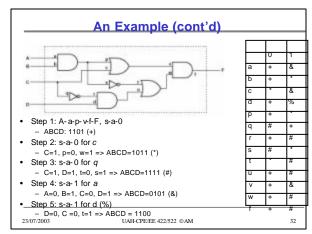

 use VHDL test benches to verify that the overall design and algorithms used are correct
 verify timing and logic after the synthesis

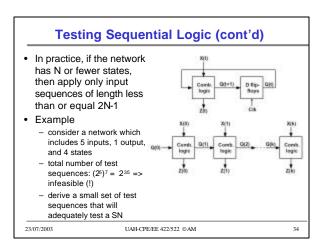

- · Post-fabrication testing
 - when a digital system is manufactured, test to verify that it is free from manufacturing defects
 - today, cost of testing is major component of the manufacturing cost
 - efficient techniques are needed to test and design digital systems so that they are easy to test

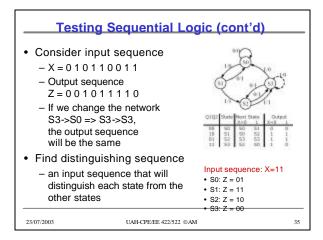

23/07/2003

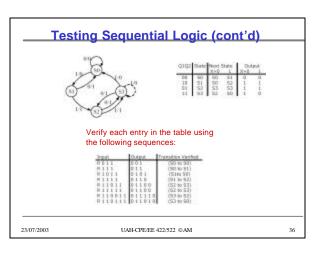

UAH-CPE/EE 422/522 © AM


Testing Combinational Logic Common types of errors short circuit open circuit If the input to a gate is shorted to ground, the input acts as if it is stuck at logic 0 sa-0 (stuck-at-0) faults If the input to a gate is shorted to positive supply voltage, the input acts as if it is stuck at logic 1 sa-1 (stuck-at-1) faults

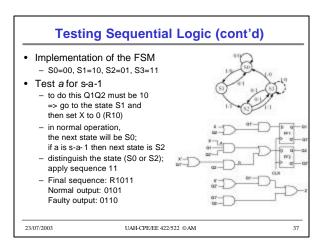


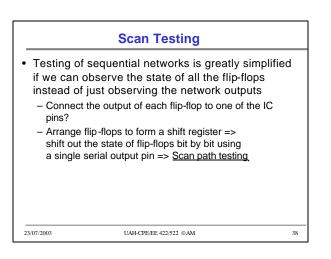

- In general, much more difficult than testing combinational logic since we must use sequences of inputs
 - typically we can observe inputs and outputs,
 - not the state of flip-flops
 - assume the reset input,
 - so we can reset the network to the initial state
- Test procedure
 - reset the network to the initial state
 - apply a test sequence and observe the output sequence
 - if the output is correct, repeat the test for another sequence
- How many test sequences do we have?
- how do we test that the initial state of the network under test is equivalent to the initial state of the correct network?

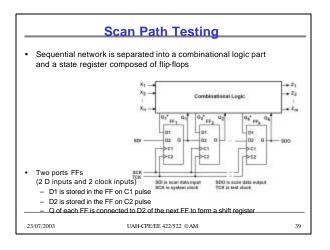

UAH-CPE/EE 422/522 @AM

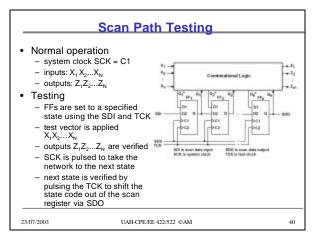

– what is the sequence length?

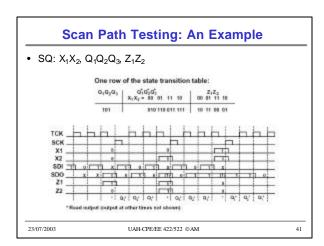
23/07/2003

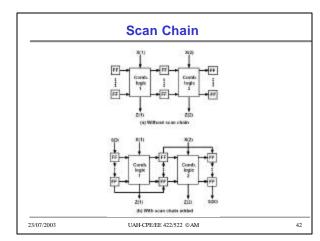

33

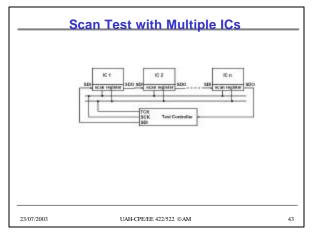


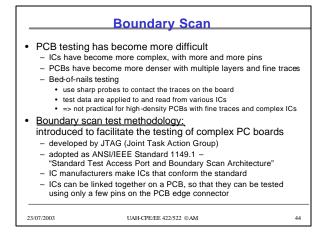


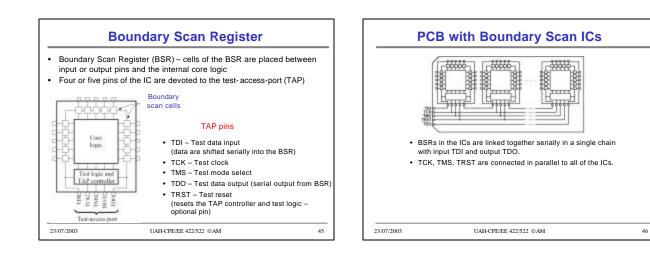


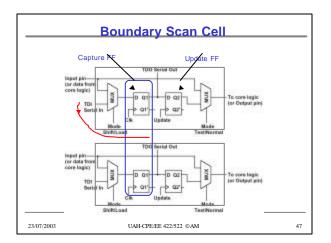

•9

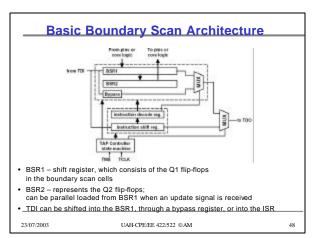


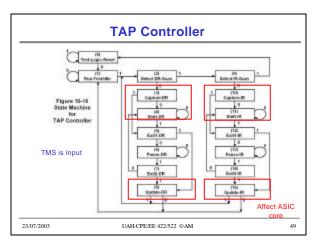


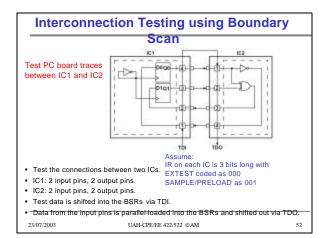






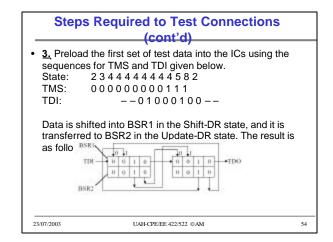




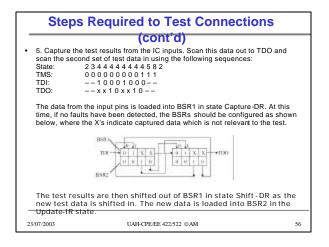


TAP Contro	ller	
 – 16 state F 	SM	
 Change st 	ates depending on TMS and T	CK
	gnals to control the test data reg register (including serial shift c cks)	
• Test-logic-re	eset is the initial state;	
on a low TN	IS go to Run-Test/Idle stat	e
• TMS: 1100	=> Shift-IR	
• In Shift-IR c	command is shifted in throu	gh TDI port
•		

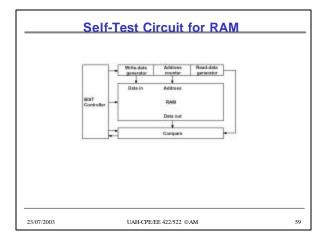
Instructions in the IEEE Standard	_
 BYPASS: allows the TDI serial data to go trough 1- bit bypass register on the IC instead of through the BSR1. In this way one or more ICs on the PCB may be bypassed. SAMPE/RELOAD: used to scan the BSR without interfering with the normal operation of the core logic. Data is transferred to or from the core logic from or to the IC pins without interference. Samples of this data can be taken and scanned out through the BSR. Test data can be shifted into the BSR. 	
 EXTEST: allows board-level interconnect testing and testing of clusters of components which do not incorporate the boundary scan test features. Test data is shifted into the BSR and then it goes to the outpu pins. Data from the input pins is captured by the BSR. INTEST (optional): this instruction allows testing of the core logic by 	
 shifting test data into the boundaryscan register. Data shifted into the BSR takes the place of data from the input pins, and output data from the core logic is loaded into the BSR. RUNBIST (optional): this instruction causes special built-in self-test (BIST) logic within the IC to execute. 	
	51

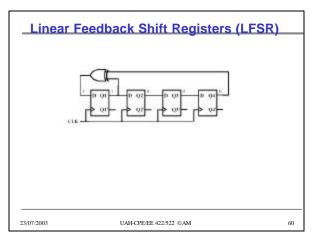


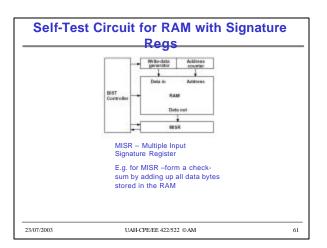
- 1. Reset the TAP state machine to the Test-Logic-Reset state by inputting a sequence of five 1's on TMS. The TAP controller is designed so that a sequence of five 1's will always reset it regardless of the present state. Alternatively, TRST could be asserted if it is available.
- 2. Scan in the SAMPLE/PRELOAD instruction to both ICs using the sequences for TMS and TDI given below. State: 0 1 2 9 10 11 11 11 11 11 11 12 15 2
 - 0110 0 0 0 0 0 0 1 1 1 ---- <u>1 0 0</u> 1 0 0 -TMS: TDI:
- The TMS sequence 01100 takes the TAP controller to the Shift-IR state. In this state, copies of the SAMPLE/PRELOAD instruction (code 001) are shifted into the instruction registers on both ICs. In the Update-IR state, the instructions are loaded into the instruction decode registers. Then the TAP controller goes back to the Select DR-scan state.


23/07/2003

UAH-CPE/EE 422/522 © AM


53




	(cont'd)
4. Scan in	the EXTEST instruction to both ICs using the
following s	equences:
State:	2 9 10 11 11 11 11 11 11 12 15 2
TMS:	10000000111
TDI:	0 0 0 0 0 0
instruction instruction the preload	ST instruction (000) is scanned into the register in state Shift-IR and loaded into the decode register in state Update-IR. At this point ded test data goes to the output pins, and it is d to the adjacent IC input pins via the printed rd traces.

Steps Required t	o Test Connecti ont'd)	ons		Built-In Self-Test	
 6. Capture the test results out to TDO and scan all 0' sequences: State: 2 3 4 4 4 4 4 4 4 4 5 TMS: 0 0 0 0 0 0 0 0 0 1 1 TDI: 0 0 0 0 0 0 0 0 0 - TDO: x x 0 1 x x 0 1 - The data from the input pir Capture-DR. Then it is shi are shifted in. The 0's are IR state. The controller the state and normal operatior interconnection test passe match the ones given abor 	s in using the following 8 2 9 0 1 1 1 hs is loaded into BSR1 fted out in state Shift- loaded into BSR2 in th n returns to the Test-L o of the ICs can then or s if the observed TDO	in state DR as all 0's le Update- .ogic-Reset ccur. The	 Built-In S Using BIS when tes an on-chi to the circ the result 	th mode is selected by the test-select signal, ip test generator applies test patterns cuit under test ting outputs are observed by the response monitor, oduces an error signal if an incorrect output is detected Generic BIST Scheme	
23/07/2003 UAH-CPE	EE 422/522 ©AM	57	23/07/2003	UAH-CPE/EE 422/522 ©AM	58

