

AN IMPLEMENTATION OF A WIRELESS BODY AREA NETWORK FOR

AMBULATORY HEALTH MONITORING

by

CHRIS OTTO

A THESIS

Submitted in partial fulfillment of the requirements

for the degree of Master of Science in Engineering

in

The Department of Electrical and Computer Engineering

to

The School of Graduate Studies

of

The University of Alabama in Huntsville

HUNTSVILLE, ALABAMA

2006

ii

In presenting this thesis in partial fulfillment of the requirements for a master's degree
from The University of Alabama in Huntsville, I agree that the Library of this University
shall make it freely available for inspection. I further agree that permission for extensive
copying for scholarly purposes may be granted by my advisor or, in his/her absence, by
the Chair of the Department or the Dean of the School of Graduate Studies. It is also
understood that due recognition shall be given to me and to The University of Alabama in
Huntsville in any scholarly use which may be made of any material in this thesis.

____________________________ ___________
(student signature) (date)

iii

THESIS APPROVAL FORM

Submitted by Chris Otto in partial fulfillment of the requirements for the degree of
Master of Science in Engineering and accepted on behalf of the Faculty of the School of
Graduate Studies by the thesis committee.

We, the undersigned members of the Graduate Faculty of The University of Alabama in
Huntsville, certify that we have advised and/or supervised the candidate on the work
described in this thesis. We further certify that we have reviewed the thesis manuscript
and approve it in partial fulfillment of the requirements of the degree of Master of
Science in Engineering.

___ Committee Chair

 (Date)

___ Department Chair

___ College Dean

___ Graduate Dean

iv

ABSTRACT

School of Graduate Studies
The University of Alabama in Huntsville

Degree Master of Science in College/Dept. Engineering/Electrical
 Engineering and Computer Engineering

Name of Candidate

Chris Otto

Title

An Implementation Of A Wireless Body Area Network For Ambulatory Health
Monitoring

Wireless Body Area Networks (WBANs) represent a promising trend in wearable

health monitoring systems. WBANs promise to revolutionize health monitoring and

increase a user’s quality of life by offering continuous and ubiquitous ambulatory health

monitoring at the least level of obtrusiveness. This thesis presents a WBAN

implementation which consists of multiple intelligent physiological sensor nodes, a

personal server, and a network coordinator. The sensor platforms and network

coordinator are built from off-the-shelf wireless sensor platforms. The sensors feature

custom-designed intelligent physiological sensor boards, implemented as daughter cards,

for ECG monitoring and motion sensing. The nodes communicate wirelessly using

standards-based IEEE 802.15.4 and a novel power-efficient TDMA scheme. The thesis

explores practical implementation challenges and presents original solutions for time

synchronization, event management, and for dynamic reallocation of on-chip resources

for maximum efficiency.

Abstract Approval: Committee Chair

Department Chair

Graduate Dean

v

ACKNOWLEDGMENTS

The work described in this thesis would not have been possible without the

assistance of a number of people who deserve special mention. First, I would like to

thank Dr. Emil Jovanov for his suggestion of the research topic and for his guidance

throughout all the stages of the work and collaboration on a number of journal and

conference papers. Second, I would like to thank Dr. Aleksandar Milenković for his

wisdom, moral support, and collaboration on a number of journal and conference papers.

I am also thankful to Dr. Earl Wells who has been very helpful with comments and

suggestions.

A number of students deserve recognition: Corey Sanders for his work on the

personal server as an undergraduate senior design project, Reggie McMurtrey and John

Gober for their hardware design of the ISPM board, Dennis Cox for his initial work on

time synchronization protocol, and Brian Trotter and David Wachira for their help in

collecting and analyzing accelerometer signals during organized tests of the WBAN

system.

Last, but not least, I would like to thank Jennie, my wife, who first encouraged me

to pursue a Master’s degree and then endured all the long hours and late nights along side

me. Without her love and encouragement, I would have never finished.

vi

TABLE OF CONTENTS

 Page

LIST OF FIGURES .. IX

LIST OF TABLES .. XII

Chapter

1. INTRODUCTION... 1

2. AMBULATORY HEALTH MONITORING... 4

2.1 Commercial Devices..4

2.2 Research Projects..9

3. WBAN SYSTEM ARCHITECTURE... 12

3.1 System Overview...12

3.1.1 Medical Server ...14

3.1.2 Personal Server...15

3.1.3 Sensor Nodes..16

3.2 Hardware Architecture ..18

3.2.1 Wireless Sensor Platform - Tmote Sky ...19

3.2.2 Intelligent Signal Processing Modules ...25

3.2.3 Network Coordinator..28

3.3 Software Architecture...28

3.3.1 TinyOS ...29

vii

4. WBAN WIRELESS COMMUNICATIONS .. 35

4.1 IEEE 802.15.4 and ZigBee..36

4.2 Power Efficient TDMA...38

4.3 Message Format ..42

5. EMBEDDED SOFTWARE.. 47

5.1 Network Coordinator ...47

5.1.1 Time Synchronization ..49

5.2 Sensor Software...55

5.2.1 Feature Extraction ..57

5.2.2 Event Message Management..60

5.2.3 Dynamic USART Multiplexing ...61

5.2.3 Buffer Management..64

5.3 ISPM Software ..65

6. PERSONAL SERVER APPLICATION... 68

6.1 Sensor Node Identification and Configuration...69

6.2 Sensor Fusion ..72

6.3 Graphical User Interface..73

7. CONCLUSIONS ... 76

APPENDIX A : WBAN MESSAGE FORMAT... 79

viii

APPENDIX B : WBAN ACTIS APPLICATION MESSAGES 81

APPENDIX C : TINYOS MODIFICATIONS... 101

APPENDIX D : BUILDING AND RUNNING APPLICATIONS IN TINYOS...... 103

REFERENCES.. 107

ix

LIST OF FIGURES

Figure Page

3.1 Health monitoring system network architecture ... 13

3.2 Prototype WBAN sensors. From left to right: eActiS with electrodes, ActiS 19

3.3 Functional block diagram of Tmote Sky platform... 21

3.4 Tmote Sky wireless platform ... 21

3.5 Functional block diagram of the MSP430F1611... 22

3.6 ISPM block diagram ... 26

3.7 ActiS sensor node – Tmote Sky with ISPM motion sensing daughter card................ 27

3.8 ADXL202 PWM description [ADXL202] ... 28

3.9 TinyOS timer interfaces... 31

3.10 TinyOS TimerC configuration diagram.. 32

4.1 Communication super frame and an example of sensor with logical ID=2................ 38

4.2 A wireless sensor power profile with TDMA WBAN communication; super frame

cycle TC = 1s ... 40

4.3 Battery life as a function of channel utilization .. 41

4.4 WBAN protocol stack... 43

4.5 Calibration, configuration, and a detected event .. 45

4.6 A detected event triggering a real-time data stream ... 46

5.1 Network coordinator software architecture .. 48

5.2 FTSP estimates of skew and offset ... 52

5.3 FTSP MAC-layer time stamping .. 54

5.4 GlobalTime interface .. 55

x

5.5 ActiS software architecture ... 56

5.6 Accelerometer based step recognition .. 59

5.7 Event management in TDMA environment... 61

5.8 Dynamic USART multiplexing for ActiS application .. 64

6.1 Data flows in prototype WBAN ... 69

6.2 Node identification using personal server... 70

6.3 Static ID assignments via config.xml ... 71

6.4 Personal Server Control of WBAN... 74

6.5 Real-time display of raw data ... 75

A.1 WBAN protocol stack.. 80

B.1 General WBAN message format including TinyOS header81

B.2 Configure Operating Mode message format .. 83

B.3 Configure Location message format .. 84

B.4 Configure Rate message format ... 86

B.5 Configure Start message format... 87

B.6 Configure Stop message format ... 88

B.7 Calibration message format ... 89

B.8 Event Mask message format... 90

B.9 Inventory message format .. 92

B.10 Time Sync Beacon message format .. 93

B.11 Raw Data / Oscope message format .. 94

B.12 Configure Acknowledgement message format ... 96

B.13 Calibration Acknowledgement message format... 97

xi

B.14 Event message format... 98

B.15 Inventory Response message format .. 100

D.1 ActiS makefile configuration options... 104

xii

LIST OF TABLES

Table Page

3.1 MSP430 microcontrollers used in WBAN ... 24

3.2 WBAN system components and software environment. ... 29

5.1 Cost of WBAN real-time algorithms .. 60

6.1 Personal Server Record Format .. 73

B.1 TinyOS header field descriptions... 81

B.2 ActiS WBAN Active Message Types... 82

B.3 Configure Operating Mode message fields... 83

B.4 ActiS Operation Modes.. 83

B.5 Configure Location message fields ... 84

B.6 ActiS Locations.. 85

B.7 Configure Rate message fields.. 86

B.8 Configure Start message fields ... 87

B.9 Configure Stop message fields ... 88

B.10 Calibration message fields.. 89

B.11 ActiS Calibration Types... 89

B.12 Event Mask message fields.. 90

B.13 ActiS Event Types and Argument in Event Mask message 91

B.14 Inventory message fields ... 92

B.15 Time Sync Beacon message fields ... 93

B.16 Raw Data / Oscope message fields ... 95

B.17 WBAN defined signal IDs (channel field) .. 95

xiii

B.18 Configure Acknowledgement message fields .. 96

B.19 Calibration Acknowledgement message fields... 97

B.20 Event message fields .. 98

B.21 ActiS Event Types and Arguments in Event Message .. 99

B.22 Inventory Response message fields .. 100

C.1 TimeSync library files.. 101

C.2 Changes to existing TinyOS files... 102

1

CHAPTER 1

INTRODUCTION

A number of economic and demographic forces are challenging the long-term

scalability of existing healthcare systems. The United States spent an estimated

$1.8 trillion on healthcare in 2004 – approximately 15% of the GDP [NCHC]. This alone

represents the single largest category of US spending, yet it does not include the

estimated 30 million adults serving as informal caregivers – most of which work full-

time. Lost wages and decreased quality of life to the caregiver are more difficult to

quantify but are estimated at an additional $200 million in healthcare cost. Increased life

expectancy and retiring baby boomers are compounding the problem – causing a

dramatic shift in demographics in the United States and worldwide. In this century, it is

expected that the elderly will outnumber children for the first time in history [UCB].

With insurance premiums increasing annually at rates above 10% and already 45 million

Americans uninsured [NCHC], the future does not look promising.

Though the United States is the largest spender worldwide on healthcare, the

value of that spending is arguably less than other nations. With an annual spending of

$4178 per capita, the United States spends 50% more per capita than its nearest

competitor (Switzerland), but continues to rank outside of the top ten in life expectancy

[WHO2000]. In a 2004 American Medical Association study on the causes of death in

2

the United States, it was determined that the second leading cause of death (400,000) was

directly attributed to poor diet and physical inactivity [Mokdad00]. It has long been

understood the relationship between wellness and physical activity [Steele03], yet this

continues to be a significant health care problem. Early diagnosis is also well understood

as a means to reduce overall treatment costs and increase life expectancy and quality of

life – especially for cardiovascular disease. Yet, it is estimated that 81% of total health

expenditures is spent on treatments, hospital stays, and rehabilitation measures while only

4% is spent on diagnostic measures. These facts underscore the shortcomings of existing

healthcare systems. We need a dramatic shift from centralized reactive healthcare

systems to distributed and proactive systems focused on managing wellness rather than

illness.

Wearable systems for continuous health monitoring are a key technology in

helping the transition to more proactive and affordable healthcare [Jovanov05a]

[Jovanov05b]. They allow an individual to closely monitor changes in her or his vital

signs and provide feedback to help maintain an optimal health status. If integrated into a

telemedical system, these systems can even alert medical personnel when life-threatening

changes occur. In addition, the wearable systems can be used for health monitoring of

patients in ambulatory settings [Istepanian04]. For example, they can be used as a part of

a diagnostic procedure, optimal maintenance of a chronic condition, a supervised

recovery from an acute event or surgical procedure, to monitor adherence to treatment

guidelines (e.g., regular cardiovascular exercise), or to monitor effects of drug therapy.

One of the most promising approaches in building wearable health monitoring

systems utilizes emerging wireless body area networks (WBANs) [Jovanov05a]. A

3

WBAN consists of multiple sensor nodes, each capable of sampling, processing, and

communicating one or more vital signs (heart rate, blood pressure, oxygen saturation,

activity) or environmental parameters (location, temperature, humidity, light). Typically,

these sensors are placed strategically on the human body as tiny patches or hidden in

users’ clothes allowing ubiquitous health monitoring in their native environment for

extended periods of time. This offers the freedom of mobility and enhances the patient’s

quality of life [Martin00].

This thesis presents the prototype WBAN implementation and the specific design

objectives. Specifically, we present the architecture and environment for our WBAN

development, the power efficient wireless communication system, detail the embedded

software, and describe our personal server application. The thesis is organized as

follows: Chapter 2 details related work in the area of ambulatory health monitoring.

Chapter 3 defines the overall system and component architecture. It begins by briefly

describing the motivating system architecture and long-term vision, and then details the

hardware architecture and the TinyOS environment used for software development.

Chapter 4 describes the WBAN communication scheme and how its design is well suited

for ultra-low power sensors such as the nodes in our WBAN. Chapter 5 describes the

embedded software on the sensor nodes and the network coordinator. We discuss the

details of our implementation for time synchronization, feature extraction, event

management, and software management of constrained resources. Chapter 6 describes

the personal server application and its role in the WBAN sensor network.

4

CHAPTER 2

AMBULATORY HEALTH MONITORING

Wearable systems for health monitoring come in a number of forms and serve a

variety of applications [Raskovic04]. Available systems range from those serving

personal fitness and wellness management to those serving to provide remote monitoring

or diagnostic of cardiovascular problems. A number of research programs are pursuing

development of health monitoring systems as well. This chapter provides a survey of

both commercial systems and university or private research programs.

2.1 Commercial Devices

Holter monitors for ECG and EEG monitoring are among the first and most

frequently used wearable sensors. Existing devices are limited, however, in that they are

strictly data acquisition devices. Cardio Labs based in Franklin, TN was founded in 1995

and offers a slight variation on Holter monitors by introducing event-based monitoring.

Their recorders allow extended ambulatory heart motoring and capture of cardiac

arrhythmias and ischemic episodes [CardioLabs]. The devices are marketed to

physicians with patients who report intermittent symptoms such as palpitations, chest

pain, shortness of breath, etc., but have been unable to provide an in-office diagnosis.

The patient wears the device for extended periods and when experiencing a symptomatic

5

episode, presses the event button. The device will record up to 32 minutes of data

surrounding the event. The data can then be extracted (at the physician’s office) and

analyzed by the physician to assist diagnosis.

CardioNet is perhaps the closest commercial product to our area of research.

CardioNet provides systems for mobile cardiac outpatient telemetry (MCOT). The

system includes a three lead ECG sensor and electrodes, a portable health monitoring

device (in PDA form factor), and a service center for collecting data from various users.

The electrodes are paced on the chest and the sensor (transmitter) is worn around the

neck or on the user’s belt. The monitor can be placed on a desk or table nearby or can be

worn when the user is mobile. The system is unique in that the sensor communicates

wirelessly to the monitoring device and then the monitoring device uploads data to the

service center using existing cellular infrastructure. The user can enter occurring

symptoms so that the service center can correlate the data; however, the monitoring

device also performs some processing of the data and is capable of detecting certain

abnormal heart rhythms. This represents a significant advantage over CardioLabs event-

based heart monitors. In a clinical study, CardioNet demonstrated detection of serious

arrhythmic events in patients that went undetected with standard event recorder and

Holter monitor devices [CardioNet].

Polar Electro (or more commonly Polar), founded in 1977 has come to be one of

the leaders in wireless heart rate monitors for personal health training. Polar has an

extensive line of heart rate monitors primarily targeting fitness applications such as

weight loss and digital personal trainers for athletes. The typical system includes a dry

electrode ECG chest strap and a companion watch with wireless receiver; the watch

6

provides simple heart rate measurement and averaging functions. Polar’s success and

market share is evident with ongoing partnerships with a variety of wellness center-based

gym equipment manufacturers. Many treadmill manufacturers integrate Polar heart

monitor receivers into their equipment for display of real-time measurements or control

of exercise while users are training. Polar has attracted a number of competitors in this

space. Timex, Reebok and CardioSport offer similar products [Polar]. Polar also

markets its heart rate monitors to cardiac rehabilitation patients; however, the systems

only offer a simple heart rate in beats per minute (bpm). While this is certainly important

feedback for a recovering heart attack victim, the system is limited in that it is not

integrated into a telemedical system and it offers no way of sharing data with the

physician nor does it provide detailed heart waveform analysis.

Finnish sports watch company, Suunto, has an impressive line of high end sports

watches or “wrist top computers.” In particular, a line of watches designed for fitness

training includes a heart rate monitor belt. Similar to the Polar heart rate monitors,

Suunto differentiates itself by its recent release of the Suunto team pod and team pack

pro. The system is designed to work with their t6 models and allows coach or trainer to

monitor and collect heart rates from multiple athletes from up to 100 meters away

[Suunto].

Still in the spirit of fitness and wellness-based training, Polar Electro, Timex, and

Suunto all offer high end heart rate monitors that provide multimodal monitoring. These

systems typically include external wireless foot pods utilizing either GPS or

accelerometers for useful real-time feedback of speed and distance (through the watch or

7

wrist-top computer) and also offer the ability for data upload for journal logging, and

some analysis of training sessions.

Advances in MEMS technology and solid state accelerometers have made

wearable motion sensors practical for a number of applications. Pedometers are perhaps

the simplest variety of such systems. Most pedometers are fairly simple devices;

however, Accusplit has developed an extensive line of intelligent pedometers with on-

sensor processing. The sensor clips to the user’s belt or waist line and uses MEMS

accelerometers for motion sensing and on-sensor signal processing to detect steps. They

report 99% step detection accuracy [Accusplit]. In addition, on-sensor processing is

capable of providing useful metrics such as estimates of calorie consumption, distance

traveled, and a speedometer.

Another variety serves the field of actigraphy – the study of human motor activity

primarily for the purposes of analyzing wake-sleep patterns. Cambridge

Neurotechnology offers the Actiwatch family of products. The Actiwatch has been used

for a number of research studies for monitoring sleep and wake patterns, sleep disorders,

and measure estimation of energy expenditure. The Actiwatch uses accelerometers to

measure and record activity levels. The single axis accelerometer is sampled at a rate of

32Hz and the resulting signal is digitally integrated over a user-defined period (typically

1 minute). The measure of activity is reported in arbitrary “activity units” but provides a

useful relative measurement scale for estimating activity. The Actiwatch can also be

worn on the leg to monitor periodic leg movement syndrome (PLMS) or on infants to

monitor infant wake and sleep patterns [CamN]. The Actiwatch offers a full line of

models ranging in memory densities from 16KB to 64KB for activity monitoring

8

between 11 and 44 days in length. In all cases, the watch-like sensor is only a data

recorder. Using an electromagnetic interface, the user or researcher must download the

stored data to a PC for post-session analysis. Cambridge Neurotechnology also offers the

Actiheart device which is a direct extension of their Actiwatch family. The Actiheart

includes an integrated accelerometer and ECG bioamplifier. Worn around the chest, the

Actiheart is capable of recording simple heart rate and estimating activity-induced energy

expenditure [CamN].

Perhaps the most advanced system of this kind is the system offered by

Pittsburgh-based start-up Company, BodyMedia. BodyMedia offers wearable devices for

monitoring of multimodal physiological data. They have a small selection of highly

integrated health monitoring armbands such as the bodybugg, available on their website.

The bodybugg includes a single axis accelerometer for recording body movement, two

temperature sensors for detecting body temperature, and a galvanic-skin-response sensor

to measure changes in skin conductivity due to the sweat gland dilation. The armband

stores data locally and has capacity for up to seven days of continual monitoring. Data is

then uploaded to BodyMedia’s web server using a PC and USB interface. BodyMedia’s

proprietary algorithms utilize data from the four sensors to determine estimates of activity

induced energy expenditure (AEE) and calorie consumption. Web portals allow users to

access weight and calorie management data for two primary applications: clinical

research programs and self weight management. BodyMedia appears well positioned to

capitalize on this growing trend in wearable health monitoring systems. A reported

$28 million in investor funding validates BodyMedia’s business model and serves as a

testament to the market size and emerging trends in this area [Body].

9

2.2 Research Projects

Several university and private research project projects, both past and ongoing are

related to this work. The CodeBlue project, directed by the engineering and applied

science department at Harvard University, is the closest of these to our area of research.

They are developing technology to facilitate real-time triage in disaster relief situations.

By outfitting patients with wireless sensors, they have demonstrated the system’s ability

to form ad-hoc sensor networks, collect vital statistics of each patient, and then use

system software to identify those patients in most critical need of medical attention

[Shnayder05]. Their system includes wireless pulse oximeter sensors, wireless two-lead

ECG sensors, and triaxial accelerometer based motion sensors for health monitoring.

They are using both custom boards and off-the-shelf sensor platforms using the TinyOS

operating system. The real-time triage application and system user interface reside on a

Personal Digital Assistant (PDA) [Lorincz04].

10Blade is a start-up research and development company founded in 2002.

Working closely with the Harvard CodeBlue Project, they promote three products

iRevive, iIncise, and VitalDust; however, these are simply components of the CodeBlue

project. iRevive represents the mobile patient database and iIncise the PocketPC user

application. They are working jointly with Harvard University, Boston University

School of Management, and Boston Medical Center to test and develop the technology

[10Blade].

MIThril is a wearable research platform developed by researchers at MIT’s Media

Lab. They are using wearable sensors to monitor a user’s physiological state and the

10

surrounding environment in order to discover new techniques for human-computer

interaction. The MIThril system is centered about the “MIThril Real-Time Context

Engine,” which samples sensors worn on the body, extracts pertinent features from the

raw data, and then uses this data to model the user’s context [DeVaul03]. MIThril

researchers are using both custom and off-the-shelf sensors in their network. The sensors

communicate via wired interfaces and all reside in a vest. The MIThril includes ECG,

skin temperature, galvanic skin response (GSR) sensors, tiny cameras, and microphones.

In addition, team members demonstrated step and gait analysis using 3-axis

accelerometers, rate gyros, and pressure sensors [Pentland04].

Microsoft researchers in the Adaptive Systems and Interaction (ASI) Group have

developed HealthGear, a system of network of embedded sensors monitoring human

physiological data. Their research is focused on using the system to recognize patterns of

human behaviour when faced with external factors such as workload, stress, traffic

situations, exercise, diet, sleep, etc. They have used the system in a study on sleep apnea.

In particular, they used a combination of motion sensors and oximeter sensors to detect

irregular sleep patterns [Oliver05].

The Advanced telemedical MONitor (AMON) project is the product of a

collaboration of European industry and universities funded by the European Union (EU)

Information Society Technology (IST). The system integrates a number of advanced bio-

sensors on a Wrist-mounted Monitoring Device and includes sensors such as heart rate,

heart rhythm, 2-lead ECG, blood pressure, blood-oxygen saturation, skin perspiration and

body temperature. The system monitors vital signs by collecting data from each sensor,

performing preliminary analysis to determine heart rate for example, and then, using

11

GSM/UMTS, transmits the data to a remote telemedicine system for further analysis and

possible emergency care if needed [Anliker04].

12

CHAPTER 3

WBAN SYSTEM ARCHITECTURE

Our prototype implementation of the WBAN is best understood in the context of

the motivating vision and proposed system architecture of a distributed ubiquitous health

monitoring system. In the first subsection we describe this system architecture and the

benefits it offers in light of the issues discussed in the introduction. In the following

subsections we describe the hardware architecture of the WBAN prototype and the

overview of the software architecture although primarily as a development environment.

3.1 System Overview

The proposed WBAN for ambulatory health monitoring is contained within a

multi-tier telemedicine system as illustrated in Figure 3.1. The telemedicine system

spans a network comprised of individual health monitoring systems that connect through

the Internet to a medical server tier that resides at the top of this hierarchy. The system is

not merely a distributed data logger, which in itself would provide great advantage over

current systems, but provides distributed data processing and analysis functions. Each

tier in the network is intelligent and provides some form of analysis; in some cases it may

be possible for on-the-spot real-time diagnosis of conditions. The top tier, centered on a

medical server, is optimized to service hundreds or thousands of individual users, and

encompasses a complex network of interconnected services, medical personnel, and

13

healthcare professionals. Each user wears a number of sensor nodes that are strategically

placed on the body. The nodes are designed to unobtrusively sample vital signs and

transfer the relevant data to a personal server through a wireless personal network

implemented using ZigBee (802.15.4) or Bluetooth (802.15.1). The personal server,

implemented on a home personal computer, handheld computer, smart phone, or

residential gateway, controls the WBAN, performs sensor fusion, and preliminary

analysis of physiological data. It provides graphical or audio interface to the user, and

transfers captured health information to the medical server through the Internet or mobile

telephone networks (e.g., GPRS, 3G).

User2

nc

InternetInternet

Tier 1:

WBASN

A A

A
E

Tier 2:

PS

Tier 3:

MS

WBAN

(Zigbee, Bluetooth)

WWAN

(GPRS)

Emergency

Informal

caregiver

Healthcare
provider

User1 UserN

Medical
Server

WWAN

WLAN

WLAN

(Wi-Fi)

…

User2User1 UserN
…

User2User2

nc

InternetInternet

Tier 1:

WBASN

A A

A
E

Tier 2:

PS

Tier 3:

MS

WBAN

(Zigbee, Bluetooth)

WWAN

(GPRS)

Emergency

Informal

caregiver

Healthcare
provider

User1User1 UserNUserN

Medical
Server

WWAN

WLAN

WLAN

(Wi-Fi)

…

User2User1 UserN
…User2User1 UserNUserN
…

Figure 3.1 Health monitoring system network architecture

14

3.1.1 Medical Server

The medical server provides a variety of differing functions to WBAN users,

medical personnel, and informal caregivers. The medical server stores electronic patient

records in a database, provides a high availability daemon for authenticating registered

WBAN users and accepting session uploads, summarizes physiological data and

automatically analyzes the data to verify it is inside or outside acceptable health metrics

(heart rate, blood pressure, activity) and identifies known patterns of health risks. It is the

responsibility of the medical server to interface the electronic patient records and insert

new session data, generate alerts to the physician and emergency health care

professionals when abnormal conditions are detected, and provide physician and informal

caregiver portals via the Internet for retrieving health summary reports remotely. This is

especially powerful for the physician who can access the data at a convenient time to

determine whether the patient is responding to a prescribed medication or exercise and

make updates to those prescriptions and forward them electronically back to the patient

where the user’s personal server is responsible for delivering such changes to the user.

The large amount of data collected through these services can also be utilized for

knowledge discovery through data mining. Integration of the collected data into research

databases along with quantitative analysis of conditions and patterns could prove

invaluable to researchers trying to link symptoms and diagnoses with historical changes

in health status, physiological data, or other parameters (e.g., gender, age, weight). In a

similar way this infrastructure could significantly contribute to monitoring and studying

of drug therapy effects.

15

3.1.2 Personal Server

The personal server, at the second tier, is responsible for interfacing with the

medical server via the Internet, interfacing the WBAN sensors and fusing sensor data,

and providing an intuitive graphical and/or audio interface to the end user. The personal

server application can run on a variety of platforms with a variety of wide area network

(WAN) access possibilities for Internet access. Platform selection is system specific and

should be selected to minimize obtrusiveness for a given user. For in-home monitoring

of elderly patients, a stationary residential gateway or personal computer might be the

ideal platform, but for high mobility users, it may be necessary to use a smart phone or

handheld computer with GPRS capabilities [Jovanov06] [Priddy06].

The personal server requires ZigBee or Bluetooth capability for communications

within the WBAN; depending on the platform, this may be integrated in the device or

provided as a separate plug-in network coordinator (NC). The NC is responsible for

coordinating WBAN communications and managing aspects such as time

synchronization, timeslot assignment, and channel sharing. In addition, the personal

server is responsible for sensor configuration including node registration (type and

number of sensors), initialization (e.g., specify sampling frequency and mode of

operation), customization (e.g., run user-specific calibration or user-specific signal

processing procedure upload), and setup of a secure communication (key exchange).

Once the sensor nodes are configured, the personal server fuses sensor data into

personalized session files. Based on synergy of information from the multiple medical

sensors, the PS application should determine the user’s state and his or her health status,

providing user feedback through a friendly and intuitive graphical or audio user interface.

16

For interface to the medical server, the personal server requires some wireless

wide area network (WWAN) or wireless local area network (WLAN) access such as

GPRS or 802.11 respectively. In the case of a static residential gateway or home

personal computer implementation, the personal server may be connected directly to a

broadband Internet link. The personal server holds patient authentication information and

is configured with IP address or domain name of the medical server so that it can access

services over the Internet. The PS schedules upload of health monitoring session files at

periodic intervals or defers transmission in the event an Internet connection is

unavailable. In such cases, the personal server may be unable to propagate indicators of

serious changes in health status. Because processing is performed on the personal server

and on sensor nodes, the system should be capable of recognizing abnormalities and

alerting the user to potential threatening physiological conditions.

3.1.3 Sensor Nodes

For every personal server, a network of intelligent sensor nodes captures various

physiological signals of medical interest. Each node is capable of sensing, sampling,

processing, and communicating physiological signals. For example, an ECG sensor can

be used for monitoring heart activity, an EMG sensor for monitoring muscle activity, an

EEG sensor for monitoring brain electrical activity, a blood pressure sensor for

monitoring blood pressure, a tilt sensor for monitoring trunk position, a breathing sensor

for monitoring respiration, while the motion sensors can be used to discriminate the

user’s status and estimate her or his level of activity.

Each sensor node receives initialization commands and responds to queries from

the personal server. WBAN nodes must satisfy requirements for minimal weight,

17

miniature form-factor, low-power consumption to permit prolonged ubiquitous

monitoring, seamless integration into a WBAN, standards based interface protocols, and

patient-specific calibration, tuning, and customization. With further development of the

technology, the wireless network nodes can be implemented as tiny patches or

incorporated into the user’s clothes. The network nodes continuously collect and process

raw information, store them locally, and send processed event notifications to the

personal server. The type and nature of a healthcare application will determine the

frequency of relevant events (sampling, processing, storing, and communicating).

Ideally, sensors process data on-sensor, minimizing the number of data transmissions,

therefore significantly reducing power consumption and extending battery life. When

local analysis of data is inconclusive or indicates an emergency situation, the node can

transfer raw signals to the next tier of the network for further processing.

Patient privacy, an outstanding issue and a requirement by law, must be addressed

at all tiers in the healthcare system. Data transfers between a user’s personal server and

the medical server require encryption of all sensitive information related to the personal

health [Warren05]. Before possible integration of the data into research databases, all

records must be stripped of all information that can tie it to a particular user. The limited

range of wireless WBAN communications partially addresses security; in addition, the

messages can and should be encrypted using either software or hardware techniques.

Some wireless sensor platforms have already provided a low power hardware encryption

solution for ZigBee communications [CC2420].

18

3.2 Hardware Architecture

We have designed and implemented a prototype WBAN for exploring issues and

implementation details of the complete system proposed in the previous subsection.

Figure 3.2 shows a photograph of two prototype sensors. The fully operational prototype

system includes an integrated ECG and tilt sensor (eActiS), two activity sensors (ActiS),

and a personal server with attached network coordinator (not shown). Each sensor node

includes a custom application specific board and uses the Tmote Sky platform [Otto05]

for processing and for ZigBee wireless communication. The personal server runs either

on a laptop computer or a WLAN/WWAN-enabled handheld PocketPC. The network

coordinator with wireless ZigBee interface is implemented on another Tmote Sky that

connects to the personal server through a USB interface. Alternatively, a custom network

coordinator that features the ZigBee wireless interface, an ARM processor, and a

compact flash interface to the personal server is under development.

19

Figure 3.2 Prototype WBAN sensors. From left to right: eActiS with electrodes, ActiS

3.2.1 Wireless Sensor Platform - Tmote Sky

For the main processing board on the embedded sensor nodes, we used

commercially available wireless sensor platforms from Moteiv [Moteiv]. During the

course of development, we used Moteiv’s original Telos rev A, its successor Telos rev B,

and finally the Tmote Sky platform. Each platform is based on an MSP430 family

microcontroller with integrated RAM and flash memory, a USB interface, and an

integrated wireless ZigBee compliant radio with antenna. The Telos rev A utilizes the

MSP430F149 microcontroller with 2KB RAM and 60KB flash memory, while the Telos

rev B and Tmote Sky utilize the MSP430F1611 with 10KB of RAM and 48KB of flash

memory, representing the largest capacity RAM offered in an MSP430 device. Telos

rev B and Tmote Sky are 100% code compatible and can be used interchangeably

20

[Moteiv]. The Tmote Sky platform is an ideal fit for this application due to small

footprint and out of the box TinyOS support. In addition, the Tmote Sky platform

includes humidity, temperature, and light sensors that might be of interest for some

applications.

The Tmote Sky platform features a 10-pin expansion header that allows one

UART and I2C interface, two general-purpose I/O lines, and three analog inputs to be

connected to a custom daughter card. It is through this expansion header that we were

able to integrate the ActiS and eActiS sensor nodes. The Tmote Sky from Moteiv serves

as the main processing platform of the embedded sensor node as well as the network

coordinator. Each Tmote Sky board utilizes an MSP430F1611 microcontroller and

Chipcon’s CC2420 ZigBee radio interface. Figure 3.3 depicts a functional block diagram

of the Tmote Sky platform and Figure 3.4 shows a photo of a Tmote Sky module.

21

TI MSP430 Microcontroller

1
0
-p

in

h
e
a
d

e
r

6
-p

in

h
e
a

d
e

r

UART[0] 2

I2C[0] 2

GPIO 2

ADC[0-3] 2

ADC[6-7] 2

GPIO 2

UserINT

Reset

SPI[0]

3

ST Flash

1MB

CC2420 Radio
2.4 GHz

IEEE 802.15.4 Compliant

SPI SPI

UART[1]

FT232MB

USB controller

RX/TX

2

CSCS

P4.4P4.2Temperature

Sensor

Humidity

Sensor

Light

Sensor

JTAG 8-pin

IDC header

7JTAG

JTAG

ADC[5]

ADC[4]

I/O

TI MSP430 Microcontroller

1
0
-p

in

h
e
a
d

e
r

1
0
-p

in

h
e
a
d

e
r

6
-p

in

h
e
a

d
e

r

6
-p

in

h
e
a

d
e

r

UART[0] 2

I2C[0] 2

GPIO 2

ADC[0-3] 2

ADC[6-7] 2

GPIO 2

UserINT

Reset

SPI[0]

3

ST Flash

1MB

CC2420 Radio
2.4 GHz

IEEE 802.15.4 Compliant

SPI SPI

UART[1]

FT232MB

USB controller

RX/TX

FT232MB

USB controller

RX/TX

2

CSCS

P4.4P4.2Temperature

Sensor

Humidity

Sensor

Light

Sensor

JTAG 8-pin

IDC header

JTAG 8-pin

IDC header

7JTAG

JTAG

ADC[5]

ADC[4]

I/O

Figure 3.3 Functional block diagram of Tmote Sky platform

Figure 3.4 Tmote Sky wireless platform

Both the embedded Tmote Sky and our custom intelligent daughter cards utilize

Texas Instrument’s MSP430 family microcontrollers. The MSP430 family is a set of

mixed signal ultra-low power microcontrollers targeted for various embedded

applications. Each MSP430 has a 16-bit RISC core, 16 general-purpose integer registers,

22

Harvard architecture with internal program memory and internal SRAM for stack and

data, a flexible clock subsystem, varying number of hardware timers, digital I/O, and

depending on the specific device will have a variety of analog and digital peripherals.

Possible on-chip peripherals include analog to digital converters (ADC), digital to analog

converters (DAC), direct memory access (DMA) module, and universal synchronous /

asynchronous receive transmit (USART) modules supporting SPI, I2C, and standard

UART modes of operation.

Figure 3.5 depicts the functional block diagram of the MSP430F1611 used on the

Tmote Sky platform.

RISC

CPU

16-bit

16 reg

multiply

16-bit bus

48KB

Flash

10KB

RAM

12-bit

ADC

8 channels

12-bit

DAC

2 channels

DMA

Controller

3 Channels

Watchdog

Timer

15/16 bit

Timer A

3 CC Reg

Timer B

7 CC Reg

Comparator

A

ACLK

SMCLK

MCLK

USART0

UART

SPI

I2C

USART1

UART

SPI

I/O Port 1/2

16 I/Os

Interrupts

I/O Port 3-6

24 I/Os

Clock

System

32 KHz

RISC

CPU

16-bit

16 reg

multiply

16-bit bus

48KB

Flash

10KB

RAM

12-bit

ADC

8 channels

12-bit

DAC

2 channels

DMA

Controller

3 Channels

Watchdog

Timer

15/16 bit

Timer A

3 CC Reg

Timer B

7 CC Reg

Comparator

A

ACLK

SMCLK

MCLK

USART0

UART

SPI

I2C

USART1

UART

SPI

I/O Port 1/2

16 I/Os

Interrupts

I/O Port 3-6

24 I/Os

Clock

System

32 KHz

Figure 3.5 Functional block diagram of the MSP430F1611

The MSP430 family microcontroller is especially well-suited for ultra low power

applications and features 250 µA/MIPS in active mode [MSP430x1xx]. Leveraging a

versatile clock subsystem, the MSP430 supports five low-power operating modes.

23

Managing the clock subsystem is at the heart of achieving low power operation. The

MSP430 has three internal clock buses: the CPU system clock (MCLK) and

two peripheral clocks (SMCLK and ACLK). Each bus can be clocked from two basic

clock sources – either an external crystal or an internal digitally controlled oscillator

(DCO). A typical configuration utilizes a low cost / low power 32.768 KHz watch

crystal to source ACLK while the DCO can be programmed up to a reasonable 4 MHz or

8 MHz. The high speed clock can then be used to source MCLK directly and a cascaded

divider can be applied before sourcing SMCLK. This configuration allows a

high performance MCLK to run the CPU when reacting to events, but still utilizing the

deepest possible low power mode when idle. Ideally, as much time as possible would be

spent operating in LPM3 mode where MCLK and SMCLK are both disabled, but ACLK

continues to operate an on-chip timer that can be used for wake-up functions such as

waking the CPU to perform a scheduled sensor reading. The MSP430 consumes less

than 2 µA in LPM3 mode. An interrupt can wake the processor from any low power

mode within a maximum of 6 µs [MSP430x1xx].

The MSP430 USART represents an important peripheral for this application. The

USART facilitates off-chip peripheral communications such as SPI communications to

the Chipcon CC2420 radio, serial EEPROM for mass data storage, or asynchronous

operation for USB or standard EIA-232 interface. Typically, the USART module is

clocked with the SMCLK bus so that higher data rates can be achieved above that offered

by ACLK. One obstacle, however, arises when specific high data rate communications

are required. If SMCLK is sourced by the internal DCO, its frequency is inherently

imprecise. The DCO frequency can vary as a function of multiple environmental factors

24

as well as from chip to chip. We address this issue by runtime tuning of the DCO as

discussed in Section 5.3. Table 3.1 lists features of MSP430 microcontrollers used in the

prototype WBAN system.

Table 3.1 MSP430 microcontrollers used in WBAN

 Flash SRAM I/O USART Hardware
Multiplier

MSP430F1611 48 KB 10240 48 2 YES
MSP430F149 60 KB 2048 48 2 YES
MSP430F1232 8 KB 256 22 1 NO

The Chipcon CC2420 radio controller is used for wireless communication

between our sensor boards and the network coordinator. The CC2420 is a low cost,

single-chip, direct spread spectrum (DSSS) 2.4GHz RF transceiver. The CC2420 is

IEEE 802.15.4 compliant, provides extensive hardware support for data encryption and

authentication, and operates at a maximum data rate of 250 Kbps. It is well suited for

low power, low data rate sensor networks. The CC2420 has programmable output power

between -25dBm and 0dBm with typical transmit mode current consumption between

8.5mA and 17.4mA respectively. In receive mode, the CC2420 operates at a fixed

18.8mA.

The CC2420 provides a simple four-wire SPI interface for configuration and data

transfer. In addition, it provides several digital output pins for augmenting the

microcontroller interface. In particular it provides a start of frame delimiter (SFD) for

hardware signalization of the start of 802.15.4 packet transmission. This is especially

25

useful for employing wireless time synchronization protocols which we will discuss in

Section 5.1.1.

3.2.2 Intelligent Signal Processing Modules

The activity sensor, ActiS, consists of the Tmote Sky platform and an Intelligent

Signal Processing Module (ISPM), implemented as a daughter card. The ISPM utilizes

an on-board MSP430F1232 microcontroller for pre-processing and filtering of sampled

data. The ISPM is connected via the 10-pin Tmote Sky expansion header. A general

purpose digital output is connected from the Tmote Sky to the ISPM interrupt request

input (connected to the MSP430F1232 microcontroller). This allows the main platform

to request samples periodically by interrupting the ISPM. Raw data or partially

processed data can then be transmitted using the USART configured as a UART and

simple serial communication protocol. Figure 3.6 shows a block diagram of the ISPM

daughter card.

26

TI MSP430 Microcontroller

1
0
-p

in

h
e
a
d
e

r
UART[0] 2

IRQ
ADXL202

Accelerometer

JTAG 8-pin

IDC header
7JTAG

ADXL202

Accelerometer

2PWM

2PWM

ECG /EMG
bioamplifier

ECG

ELECTRODES
3

ISPM

TI MSP430 Microcontroller

1
0
-p

in

h
e
a
d
e

r

1
0
-p

in

h
e
a
d
e

r
UART[0] 2

IRQ
ADXL202

Accelerometer

JTAG 8-pin

IDC header

JTAG 8-pin

IDC header
7JTAG

ADXL202

Accelerometer

2PWM

2PWM

ECG /EMG
bioamplifier

ECG

ELECTRODES
3

ISPM

Figure 3.6 ISPM block diagram

The integrated ECG and tilt sensor (eActiS) consists of the Tmote Sky platform

and an ISPM with a single-channel bio-amplifier for three-lead ECG/EMG. Electrodes

are connected and placed on the chest for monitoring heart activity. The bioamplifier

output (ECG signal) is connected directly to the expansion header for Tmote Sky

processing as well as to the on-board MSP4301232 for optional pre-processing directly

on the ISPM. When the ISPM is used as an ECG heart monitor and worn on the chest,

the integrated accelerometers serve as an upper body tilt sensor.

The ISPM monitors motion using two dual-axis ADXL202 accelerometers from

Analog Devices. The ADXL202 is a low cost, low power MEMS accelerometer capable

of measuring both dynamic acceleration (e.g., vibration) and static acceleration (e.g.,

gravity) at magnitudes up to ±2g [ADXL202]. We measure motion in three axes by

mounting the accelerometers orthogonally. One ADXL202 is mounted directly on the

ISPM board and collects data for the X and Y axes as represented in Figure 3.7; the

27

second ADXL202 is mounted vertically to measure motion in the Z axis. Figure 3.7

shows the ISPM used on an ActiS sensor node with the axes of motion sensing drawn.

x

y

z

x

y

z

Figure 3.7 ActiS sensor node – Tmote Sky with ISPM motion sensing daughter card

The ADXL202 provides one digital PWM accelerometer output per axis

[ADXL202] for a total of three axes presented to the ISPM microcontroller

(MSP4301232). Each PWM output is connected to a MSP430 timer/capture input pin.

This allows hardware time stamping of each edge transition and high precision duty cycle

calculation without processor generated latency. The PWM waveforms and the

relationship between duty cycle and acceleration (in g) are depicted in Figure 3.8. The

period (T2) ranges from 0.5ms to 10ms and is set by an external resistor [ADXL202]. On

the ISPM, this period is roughly 5ms yielding a 200Hz sampling rate for each axis. This

higher sampling rate allows for on-board pre-processing. We employ a low pass filter to

remove high frequency content and output a 40 Hz data stream to the wireless sensor

28

platform. The 40Hz sampling rate was determined adequate based on earlier research

indicating that the majority of frequency content for human motion is focused between

0.3 – 3.5Hz [Mathie04] and in the case of estimating activity induced energy expenditure

(AEE) is limited to upper frequencies of 18Hz [Bouten97].

Figure 3.8 ADXL202 PWM description [ADXL202]

3.2.3 Network Coordinator

The network coordinator (NC) is an unmodified Tmote Sky platform. The USB

interface allows connection to a laptop or desktop-based personal server, while the on-

board ZigBee radio allows communication to other WBAN sensor nodes. The network

coordinator is the only Tmote Sky platform in the network which uses the USB interface.

3.3 Software Architecture

This section provides an overview of the software tools, operating systems, and

development environment employed for WBAN component development. Table 3.2

29

itemizes the operating system, language, and development tools employed for application

development on each platform.

Table 3.2 WBAN system components and software environment.

Platform Operating System Language Compiler / IDE

Sensor board

(Tmote Sky)

TinyOS 1.1.15 nesC gcc, cygwin

IAS board -none- C IAR Embedded
Workbench (3.30A)

Network Coordinator
(Tmote Sky)

TinyOS 1.1.15 nesC gcc, cygwin

Personal Server (PC) Windows XP Visual Basic Visual Studio 2003
.NET

Personal Server
(PockePC)

Windows CE Visual Basic Visual Studio 2003
.NET

3.3.1 TinyOS

TinyOS, the operating system used on each embedded sensor in the WBAN, is of

special interest. TinyOS is a lightweight open source operating system specifically

designed for networked embedded sensors [Gay03]. It preserves resources by using a

modular component architecture. TinyOS applications are created by “wiring” together

user defined components with existing TinyOS library components, resulting in a custom

instantiation of operating system features and compilation of used functions only. This

component framework approach minimizes application footprints and supports the spirit

of small, low cost sensor development. The core TinyOS footprint is only 400 Bytes

[TinyOS] and the ActiS application instantiation of TinyOS (including all radio drivers) is

2700 Bytes. TinyOS is implemented in the nesC programming language, a subset of C

30

enriched with several significant language features facilitating the TinyOS programming

model.

Through the use of nesC, developers realize native language support for the

TinyOS component model. New keywords such as components and interface, as well as

descriptive operator overloading (-> and =) allow developers to create applications using

an object oriented / component model. Developers can create two types of components:

configurations and implementations. By defining an implementation, a component writer

is defining a module’s functionality in terms of source code. Alternately, a configuration

can be used to create a component from other components. An interface serves as a

contract between components, defining the mechanisms for issuing commands and

transferring data between components. Software components are then connected along

matching interfaces in a fashion analogous to how ICs are connected in hardware design.

Figure 3.9 demonstrates the TinyOS interface construct for two different timer interfaces

and Figure 3.10 shows how this is used in TinyOS TimerC configuration.

31

interface Timer {

command result_t start(char type, uint32_t interval);

command result_t stop();

event result_t fired();

}

interface TimerJiffy

{

command result_t setPeriodic(int32_t jiffy);

command result_t setOneShot(int32_t jiffy);

command result_t stop();

command bool isSet();

command bool isPeriodic();

command bool isOneShot();

command int32_t getPeriod();

event result_t fired();

}

Figure 3.9 TinyOS timer interfaces

32

Figure 3.10 TinyOS TimerC configuration diagram

TinyOS supports two forms of concurrency: tasks and events – both with direct

language support from nesC. The nesC keywords task and post allow users a deferred

computation mechanism, while still keeping a system responsive to external events.

Tasks are scheduled by calling post and supplying the task name as an argument. The

post will return immediately and the task will run later as determined by the scheduler.

For example, in response to completing a sensor sample, the application can post a task to

process the data and prepare a radio message for transmission. TinyOS tasks are unique

in both implementation and concept compared to threads in other operating systems.

33

Threads do not share context and have individual stacks which are memory intensive and

not well suited for extremely resource constrained embedded sensors. Tasks, on the other

hand, must run to completion, cannot preempt other tasks, and all run from the same

context. TinyOS tasks offer an extremely lightweight method for implementing

concurrency in user applications. Application designers are, however, encouraged to

keep tasks short in execution time to maintain the reactive nature of the concurrency

model.

Events offer another mechanism for concurrency in TinyOS. Events are really

nothing more than a nesC supported callback mechanism, but come in two primary

varieties: a) events representing hardware interrupts and b) software events invoked by

signalling. Hardware interrupt events will run from the context of an interrupt service

routine and are presented asynchronously to TinyOS applications. For example, the

timer.fired() event provides notification to the application that a scheduled timer has

expired. Software events execute from the context they are signalled. If signalled from a

hardware interrupt event, it too will execute in this context. However, it is not good

practice to cascade event handlers in this fashion. Each cascaded event will contribute to

the total interrupt service routine execution time and contribute to the maximum interrupt

latency and reactiveness of the system. More typically, software events will be signalled

from the context of a deferred task and run synchronously to offer some notification that

an operation is complete. For example, the ECG processing task can signal the

SensorECG.ECGRpeak() event when the algorithms detect an R Peak event. This

embodies the TinyOS split-phase operation model.

34

The split-phase model facilitates the small, short execution operations that are

highly valued in the TinyOS environment. Components publish an interface to the

module. Each routine in the interface must be of type command or event. Commands are

typically requests to execute an operation such as send a message, acquire a sensor

reading, or store data to flash. When a command has some measurable work to complete,

it should post a task and return immediately. Such operations are split-phase and are

non-blocking. A corresponding event handler is called when the operation is complete.

When the task completes later, it should signal the corresponding event to notify the

requested operation is complete. This design avoids complexity of the operating system

and provides the majority of functionality needed by responsive, pervasive, embedded

sensors.

The TinyOS concurrency model introduces a need for synchronization. Although

tasks cannot preempt other tasks, events can preempt tasks (if executing from the context

of an interrupt service routine) and events can preempt other events. TinyOS solves

synchronization through the nesC atomic keyword. Developers declare code blocks

atomic which guarantees the block will not be preempted. Implementing this support in

the language allows optimal implementation due to compile time realization; however,

this behavior is limited in functionality – typically implemented by disabling interrupts.

For this reason, atomic sections should be kept short. Complex applications could benefit

from a more sophisticated implementation so that completely independent events are not

needlessly stalled. For most application specific embedded sensor implementation,

however, this lightweight simple mechanism is ideal.

.

35

CHAPTER 4

WBAN WIRELESS COMMUNICATIONS

Long-life, persistent sensor nodes require efficient power management. With

highly integrated electronics, the sensor size and weight becomes dominated by battery

selection. An implementation must address conflicting requirements for small size and

infrequent battery maintenance, striving for a balance that will maximize user

compliance. It is our challenge as designers to minimize sensor power consumption and

thus maximize battery life for a given size. In designing our prototype we have held low

power consumption as a primary design goal in every component of the system – in

processor and technology selection, in managing sensor data, in network organization,

and in efficient communications.

Power consumption of the sensor node is dominated by the wireless radio. Nearly

85% can be attributed to CC2420 controller – even when not actively transmitting. The

CC2420, although the lowest power of its kind, still draws 17.4mA when transmitting

and 19.7mA when receiving. In contrast, the MSP430 utilizes 250µA/MIPS – typically

just over 1mA when active. As an example, the MSP430 can execute

100,000 instructions for the same cost of transmitting a single 40 byte message. With

that in mind, power savings can be realized by disabling the radio when not in use as well

as reducing the total quantity of transmission – even if extensive computation is required.

36

Besides power efficiency, we were motivated to implement simple and scaleable

communications, to use standards-based protocols, and to support multiple simultaneous

WBANs within close proximity of one another. The resulting solution spans multiple

layers, is IEEE 802.15.4 compliant and upholds the ZigBee star network topology. It

leverages existing communication framework within TinyOS and addresses practical

WBAN implementation issues.

4.1 IEEE 802.15.4 and ZigBee

Our prototype WBAN utilizes the IEEE 802.15.4 compliant CC2420 radio for

wireless communications. The IEEE 802.15.4 standard defines communications for

nodes in a low-rate wireless personal area network (LR-WPAN) and is well suited for our

prototype WBAN. The standard specifies the physical (PHY) layer and data link / media

access control (MAC) layer. At the physical layer, IEEE 802.15.4 defines

three frequency bands, spread spectrum chip rate, and data encoding [IEEE802.15.4].

The CC2420 radio is fully compliant and hides these details from the system designer.

The CC2420 operates at the highest frequency band – 2450 MHz (2.4 GHz). The

standard specifies 16 channels in the 2.4 GHz ISM band. Channel selection is exposed to

the application developer through the TinyOS-based CC2420 software driver. By

exploiting different 802.15.4 channels, we have been able to operate

multiple simultaneous WBANs in close proximity without interference. At present this

feature is statically assigned, but satisfies proof of concept. IEEE 802.15.4 employs a

carrier sense multiple access with collision avoidance (CSMA-CA) scheme for peer-to-

peer communications. In the simplest form, communications are asynchronous and

37

random access can occur. IEEE 802.1.5.4 includes specification for an optional super

frame structure utilizing device timeslots which we exploit in the next section.

ZigBee and IEEE 802.15.4 are cooperating protocol stacks. ZigBee is tightly

coupled to 802.15.4 in that the PHY and MAC layers are specified to be IEEE 802.15.4;

however, the ZigBee specification details the upper protocol layers – network,

application and application sublayer, and security. It specifies network topologies,

routing mechanisms and dynamic discovery and registration of nodes as they enter and

exit the network. ZigBee defines three network topologies: star, tree, and mesh. In the

star topology a single node serves as the network coordinator; nodes communicate

directly to the network coordinator, but not peer-to-peer. In a tree topology, nodes are

arranged hierarchically so that each node communicates to a designated router node.

Traffic propagates through the network by visiting router nodes. A mesh network

topology allows full peer-to-peer communications [ZigBee]. Based on the human-centric

WBAN model, we are able to exploit the simplified star topology.

Whenever possible we upheld the spirit of the ZigBee specification, but did not

restrict ourselves to conform to the ZigBee specification. At the time of writing, TinyOS

does not include a ZigBee protocol implementation nor did any open source ZigBee stack

exist. With price tags over $5000 this did not seem like a viable option. Instead of

developing this functionality, we chose to maintain the spirit of ZigBee, but allow for a

simpler implementation. By doing so, our efforts could be focused on exploring more

general challenges in WBAN implementation and maintaining flexibility for future

implementations that may not use ZigBee – a Bluetooth WBAN for example.

38

Compared to Bluetooth which is primarily designed for wireless cable

replacement for electronic devices, 802.15.4 / ZigBee offers lower data rates and lower

power consumption. Bluetooth is limited to a relatively small number of network

participants while 802.15.4 scales upward to 65,536 nodes. In addition,

802.15.4 implementations have smaller memory footprints [Bluetooth] [ZigBee].

4.2 Power Efficient TDMA

Exploiting the ZigBee star network topology [ZigBee] and an 802.15.4 like super

frame, we employed a collision-free Time Division Multiple Access (TDMA) scheme.

Figure 4.1 shows our communication super frame. All communications are between a

sensor node and the network coordinator. Each communication super frame is divided

into 50ms timeslots used for message transmissions. Each sensor uses its corresponding

timeslot to transmit sensor data, command acknowledgements, and event messages. The

first timeslot, however, belongs to the network coordinator and is used for transmitting

configuration commands from the personal server and sending periodic beacon messages

to synchronize other sensors and mark the start of super frames.

Super Cycle

Beacon ……Slot#3Slot#2Slot#1Beacon Beacon ……Slot#3Slot#2Slot#1Beacon

Listen Tr. Listen

Time
50 ms 100 ms 150 ms 1000 ms

Figure 4.1 Communication super frame and an example of sensor with logical ID=2

39

This organization has several advantages. Rather than receiving and transmitting

asynchronously, transmissions are scheduled for predetermined time instances, which

make communication more deterministic. This approach serves as practical collision

avoidance – making more efficient use of the available bandwidth when compared to

using only the CC2420 Collision Sense Multiple Access (CSMA) scheme. Most

importantly, this allows the sensor node radio to be disabled during inactive timeslots.

Super frame period and timeslot size are application-specific and must be chosen to

balance a tolerable event latency and sensor data bandwidth requirements with low power

consumption. Based on a one second super frame and 50 ms timeslots, the radio on each

sensor is active at most 10% of the time. By disabling the radio during inactive timeslots,

an average current consumption of just 3.1mA can be realized, which achieves 7 times

longer battery life compared to a radio that is never disabled [Otto06]. Figure 4.2 shows

the recorded power profiles for a motion sensor using an environment for real time power

monitoring [Milenkovic05]

40

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

5

10

15

20

25

Time [sec]

I
[m

A
]

0.65 0.7 0.75 0.8 0.85 0.9

0

5

10

15

20

Time [sec]

I
[m

A
]

Listen Transmit

Idle

superframe

Figure 4.2 A wireless sensor power profile with TDMA WBAN communication; super frame cycle TC = 1s

It should be noted that the super frame period and timeslot length directly affect

power consumption and battery life. Extending the period between beacons allows the

radio to stay in low power mode longer. This is not without cost, however. Extending

the super frame period also increases the maximum latency between sensor

communications and increases the event reporting latency. Every application will have a

practical limit of the tolerable event detection latency. Detecting a heart attack may be of

little use if the sensor delays notification for up to one hour. For an application specific

41

maximum latency, system designers can make trade offs between battery capacity

(weight) and battery life. Figure 4.3 shows how sensor battery life can now be estimated

as a function of effective channel utilization and battery chemistry / size.

5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

40

45

50
Battery life [days]

Channel utilization [%]

2xAA Alkaline batteries (50gr)

Li-Ion battery (22gr)
Li-Ion iPod mini battery (6gr)

Actis
Processed ACC Signals

Actis
Raw ACC Signals

Figure 4.3 Battery life as a function of channel utilization

 For our prototype WBAN, a one second super frame period and 50ms timeslots

were selected, defining a one second maximum event latency and support for 20 nodes in

the network (19 sensors and one network coordinator). Of course, these selections

assume the maximum sensor bandwidth is within the constraints – which they are for our

WBAN. Our chosen timeslot and super frame length will effectively create a

10% wireless channel utilization for individual sensors. Smart implementation, however,

allows the radio to be disabled as soon as communications are complete – even if the

42

entire timeslot has not expired. In this sense, the timeslot length defines the peak channel

utilization for a sensor in the network. The width of the second peak in Figure 4.2

indicates the timeslot asymmetry due to early timeslot disabling.

It should be noted that for the dynamic control of the radio, some form of time

synchronization is required. During time slots where the radio is disabled, it is not

possible to listen to the incoming beacon frame which is used to delimit the super frame.

With time synchronization, the radio can be disabled during idle time slots. Immediately

before the beacon arrival time, a scheduled timer can wake the processor in order to

enable the radio. The beacon is received and then the radio is returned to a disabled state.

When a sensor’s scheduled timeslot and events or data are queued waiting for

transmission, the radio can once again be enabled for transmission.

4.3 Message Format

Figure 4.4 depicts a dissected WBAN message and the format of the TinyOS

message. As the figure indicates, several fields of the TinyOS message header are

directly shared with the 802.15.4 frame (length, frame control field, data link sequence

number, and address). The 802.15.4 addressing supports 4 – 20 bytes in the address

field; however, this is fixed to four bytes in the TinyOS implementation. It should be

noted that the mote ID address refers to the destination address. Applications that require

the source address of the node should include this in the TOSH_DATA field (application

message).

43

Preamble

802.15.4 Data Frame

SFD

4 1 9 +10 + 30

MPDU
Frame
Length

1

PHY
Layer

FCSMSDU
Frame

Control

Seq

Num
Address

TinyOS

3011 2 2

TOSH
DATA

12

length fcf dsn destpan
Mote

ID

AM
type group

1

12 4 2

MAC
Layer

10 + 30

App Msg Not Used

*

* TOSH_DATA size was modified from 28 to 30 bytes for the WBAN application

n 30 - n

WBAN APP
Layer

Preamble

802.15.4 Data Frame

SFD

4 1 9 +10 + 30

MPDU
Frame
Length

1

PHY
Layer

FCSMSDU
Frame

Control

Seq

Num
Address

TinyOS

3011 2 2

TOSH
DATA

12

lengthlength fcf dsn destpan
Mote

ID

AM
type
AM
type group

1

12 4 2

MAC
Layer

10 + 30

App Msg Not Used

*

* TOSH_DATA size was modified from 28 to 30 bytes for the WBAN application

n 30 - n

WBAN APP
Layer

Figure 4.4 WBAN protocol stack

 The default installation of TinyOS uses a fixed 28 byte message payload

(TOSH_DATA) for all transmissions. During our WBAN implementation we extended

this from 28 bytes to 30 bytes to accommodate a 32-bit timestamp on raw data messages

and oscilloscope messages (see Appendix B). This payload is fixed in size so that unused

portions are simply not used. Application developers benefit from a simple

implementation and avoid the woes of dynamic memory allocation on extremely resource

constrained systems. The Active Message Type (AM Type) field is analogous to a

UDP port number. It facilitates transport functionality and multiplexing of multiple

application sessions over the physical link. Application endpoints agree on the AM Type

for a given application and then the representation of the data within the payload. The

one byte group ID can be used for upper layer multiplexing techniques – partitioning

wireless networks into multiple groups.

44

 Using TinyOS native formats facilitated rapid development. It opened a suite of

open source tools for development and testing. For example, the TinyOS oscilloscope

and Listen utilities provide a mechanism for debugging, capturing session traffic, and

graphically plotting sensor values. Before our personal server application reached

maturity, or for occasional validation, this proved invaluable. In addition, this simplified

software implementation and avoided a write-from-scratch protocol for these

intermediate layers.

With 802.15.4 and TinyOS, we could quickly focus on design and implementation

of the WBAN command and message protocol. This was hatched from the plan to

facilitate common WBAN operations such as node discovery, sensor configuration,

sensor calibration, the ability to receive events and sensor data in real-time, and the

ability to display this data in real-time. Any control or feedback capability provided to

the user interface must be implemented using the WBAN communication protocol. We

strived for a simple set of WBAN commands that were flexible enough to still implement

complex user interface functions. As an example, Figure 4.5 illustrates the use of WBAN

messages to calibrate and configure an ECG senor which consequently sends notification

of a detected heartbeat event.

45

NC

ACTIS_CFG_STARTMSG

ACK

ACTIS_EVENT_MASKMSG
event = HRV, R Peak

ACTIS_CALMSG

ACK

Calibration
Time

ACK

Session Started

eActiS (ECG)

Sensor

Personal
Server

ACTIS_EVENT_MSG

event = R Peak
Heartbeat (R peak)
Detected

TIME

Figure 4.5 Calibration, configuration, and a detected event

Even in a deployed system where intelligent sensors process raw data and

transmit application event messages, there may be cases where it is necessary to transmit

raw physiological data samples. Such cases become apparent when considering a

deployed ECG monitor. When embedded signal processing routines detect an arrhythmic

event, the node should send an event message to the personal server which will then be

relayed to the appropriate medical server. The medical server, in turn, will provide an

alert to the emergency service if the user subscribes to this service. However, a missed

heart beat can also be caused by electrode movement. Therefore, it would be useful to

augment this event with actual recording of the fragment of unprocessed ECG sensor

data. The recording can be used by a physician to evaluate the type and exact nature of

46

the event or to dismiss it as a recording artifact. In this case, the embedded sensor will

begin streaming the real-time data to the personal server during a predefined time period.

Figure 4.6 illustrates how a detected event can trigger a real-time data stream. The

complete working protocol and details of each message is outlined in entirety in

Appendix B.

NC

eActiS (ECG)

Sensor

Personal

Server

ACTIS_EVENT_MSG
event = R Peak Heartbeat (R peak)

Detected

ACTIS_EVENT_MSG
event = R Peak Heartbeat (R peak)

Detected

ACTIS_EVENT_MSG
event = Arrhythmia Arrhythmic event

Detected

.

.

.

.

.

.

.

Stream

Raw DataEvent Log
augmented with

contextual raw data

ACTIS_CFG_STOPMSG

Session stopped

ACK

TIME

NC

eActiS (ECG)

Sensor

Personal

Server

ACTIS_EVENT_MSG
event = R Peak Heartbeat (R peak)

Detected

ACTIS_EVENT_MSG
event = R Peak Heartbeat (R peak)

Detected

ACTIS_EVENT_MSG
event = Arrhythmia Arrhythmic event

Detected

.

.

.

.

.

.

.

Stream

Raw DataEvent Log
augmented with

contextual raw data

ACTIS_CFG_STOPMSG

Session stopped

ACK

TIME

Figure 4.6 A detected event triggering a real-time data stream

47

CHAPTER 5

EMBEDDED SOFTWARE

The majority of the development, and of particular interest for this thesis, is the

embedded software executing on the MSP430-based sensor boards. This software is

developed either in the TinyOS development environment, as is the case of the Tmote Sky

platforms, or without an operating system in the case of the intelligent signal processing

modules. The software implementation must contend with extremely resource

constrained microcontrollers and must make efficient use of available power. In this

chapter we discuss the network coordinator, ActiS and eActiS sensor platforms, and the

intelligent daughter cards. We present our techniques for time synchronization, feature

extraction, event management, and USART multiplexing.

5.1 Network Coordinator

The network coordinator software runs within the TinyOS framework on a Tmote

Sky platform and serves two major functions. First, it acts as a USB to radio gateway,

and second, it provides a network time reference for synchronization of other sensors in

the WBAN. In its gateway capacity, it handles traffic in each direction. As session

management commands arrive from the Personal Server via the USB interface, the

messages are appropriately formatted and transmitted from the radio interface. In the

48

opposite direction, it must handle wireless reception of traffic from various sensor nodes

in the network. Messages are received on the wireless interface and reformatted for USB

transmission. In this role, the network coordinator does not terminate any of the active

sessions – this is handled by the USB-connected personal server. The network

coordinator also serves as the network time reference, managing physical access to the

network. It transmits global time beacons once a second that serve to synchronize system

clocks on all nodes, as well as delimit communication frames and provide a point of

reference for a sensor node’s timeslot (offset) calculation. Figure 5.1 illustrates the

software architecture of the network coordinator software (ActisGway).

Figure 5.1 Network coordinator software architecture

The gateway functionality is based in part on TOSBase, a sample application

included in the TinyOS installation. TOSBase is a straightforward application which

49

receives packets on the USB and retransmits these on the wireless interface, and vice

versa. Because it strictly provides transport only and does not terminate any of the

application layer sessions, it relies on lower layer communication interfaces – the

ReceiveMsg and BareSendMsg interfaces connected directly to the FramerM module (for

USB communications) and RadioCRCPacket component for wireless communications.

For our network coordinator, the one exception is the transmission of time

synchronization beacons which originate at the TimeSyncM module on the network

coordinator. The beacons distribute the network coordinator’s local time exposed

through the TinyOS TimerC component and the LocalTime interface. As we will see, the

network coordinator’s local time becomes global time for the rest of the network. Client

nodes (sensor nodes) can then include the TimeSyncM component and access this

global time via the GlobalTime interface.

5.1.1 Time Synchronization

Time synchronization is crucial for providing TDMA timeslot recognition and

efficiently sharing the communication channel; it is also critical for intra-WBAN event

correlation. Although each sensor node has a local time reference, it is not sufficient due

to clock offset and skew (drift). Offset refers to the instantaneous difference in clock

times based on when the system clock was started. Offset can be partially addressed by

synchronizing session start times. A start session message, for example, could cause

every node to reset the system clock to zero. Skew, on the other hand, refers to small

differences in crystal frequency which cause clocks to count at different rates and drift

over time. This error is cumulative. Consider two 32.768 KHz crystals differing by a

typical 10-20 ppm (parts per million). Over the course of a few hours, the sensor clocks

50

can differ by more than several hundred milliseconds. For correlating physiological

events among WBAN sensors, this is unacceptable. This could be partially improved by

using more expensive crystals, but this conflicts with our requirements for low system

cost and does not solve the problem completely.

A better solution is to employ a time synchronization protocol that gives attention

to the issue of clock skew as well as offset. The Flooding Time Synchronization Protocol

(FTSP) developed at Vanderbilt University addresses these issues [Maróti04]. In FTSP,

nodes in the network agree on a master node. The master node’s local time reference

becomes the global time reference for the network. The master node transmits periodic

beacons containing global time stamps. FTSP features MAC layer time stamping for

increased precision and skew compensation with linear regression to account for clock

drift. Our modified version exploits the WBAN’s star network topology, integrated

directly with our TDMA scheme by allowing the beacon messages to also delimit super

frame boundaries. We also made changes to balance fast convergence and accuracy.

By using FTSP, we introduce a 32-bit WBAN “jiffy” timestamp based on the

master node (network coordinator) 32.768 KHz clock. One “jiffy” is approximately

30.5 µs; this provides adequate resolution and up to 36 hours of health monitoring before

rollover. Our sessions are not longer than 24 hours. We handle the rollover by

periodically restarting health monitoring sessions from the personal server. It is worth

noting that the global “jiffy” timestamp is not an absolute time; however, it is intra-

WBAN synchronization that is most important for determining a node’s timeslot and for

correlating the occurrence of physiological events. We are also interested in time-of-day

(wall clock) time stamping, but this can tolerate seconds of errors. For example, suppose

51

an ECG sensor detects an abnormal heart rhythm at the same time a motion sensor

detects a body tremor. Precise correlation of these events may be beneficial for a number

of reasons; knowing the wall clock time is more informative than anything else. We

achieve time of day time stamping through session start times assigned by the personal

server assigned. When a new health monitoring session is started, a time of day is written

to the session record. The wall clock time stamp of an event within the file is calculated

by adding the jiffy time to the session start time.

FTSP works by assigning a timestamp to a globally detected event – the beacon

transmission. When the network coordinator sends the message, it inserts the global

timestamp. When a receiving node receives the message, it appends a local timestamp.

The difference in timestamps represents offset. FTSP estimates skew by storing a

number of previous offsets and using linear regression to estimate the change in offset

over time. Figure 5.2 illustrates the effect of skew on beacon times. The difference in

offset at beacon 4 compared to offset at beacon 2 is attributed to relative clock skew. By

estimating skew locally, we benefit from an accurate global time – even if some time has

elapsed since the last beacon received. This is not possible by using offset alone.

52

Clock Offset, Skew

1 2 3 4

Beacons

J
if

fy
 T

im
e

Local Time

Global Time
Offset2

Skew

Offset2

Sending Time

Receiving Time

Clock Offset, Skew

1 2 3 4

Beacons

J
if

fy
 T

im
e

Local Time

Global Time
Offset2

Skew

Offset2

Clock Offset, Skew

1 2 3 4

Beacons

J
if

fy
 T

im
e

Local Time

Global Time
Offset2

Skew

Offset2

Sending Time

Receiving Time

Figure 5.2 FTSP estimates of skew and offset

FTSP keeps a table of the last eight offsets and the corresponding local

timestamps. At system start-up, the TimeSyncM module clears the table and places the

module in a non-converged state. During this state, global time is unavailable to user

applications. Once at least three valid beacons have been received and sufficient error

tolerances are satisfied, the module enters a converged state and it is able to provide

global time to TinyOS applications. The convergence latency is proportional to the

beacon interval period; however, the linear regression skew estimates are better served by

longer intervals. That is, the technique is more accurate when a larger time span is used

in the linear regression. Consequently, we implemented a hybrid scheme where

messages are sent more often. During convergence, nodes will process every beacon.

After a coarse convergence is achieved, nodes will begin to process every 10th beacon,

allowing for a more precise skew estimation.

53

The accuracy of assessing timestamps directly affects the success of this

technique. Message preparation time, asynchronous event handling, and channel access

time all introduce non-deterministic latencies in the transmit path. On the receiving node,

interrupt latency and software processing overhead can introduce more errors in assessing

the receive timestamp. FTSP overcomes this by assigning MAC-layer timestamps. The

Chipcon radio provides a Start of Frame Delimiter (SFD) digital output that allows highly

deterministic time stamping of the beacon message [Cox05]. Figure 5.3 demonstrates

how this works. During beacon transmission, SFD is asserted following transmission of

the 802.15.14 SFD field. At the receiving node SFD is asserted when the

802.15.4 SFD field is received (see Figure 5.3). On the Tmote Sky boards, this

SFD signal is connected to an MSP430 timer capture input pin allowing precise hardware

time stamping of the signal edge. Once the timestamp is captured, the network

coordinator can insert the timestamp in the beacon after transmission has already begun,

but before this field has been transmitted to the radio. On the receive side, the

SFD timestamp can be compared to the sending time and used by the FTSP algorithm for

offset and skew calculation. This MAC-layer time stamping eliminates all significant

non-deterministic latency, leaving only the (highly deterministic) air propagation time.

54

Propagation

MAC Protocol DataLengthSFDPreamble

SFD � Capture Timer

Timestamp

MAC Protocol DataLengthSFDPreamble Timestamp
Beacon

Reception

SFD � Capture Timer

TimeSyncM

(FTSP Algorithm)

Process Send

Beacon
Transmission

Propagation

MAC Protocol DataLengthSFDPreamble MAC Protocol DataLengthSFDPreamble

SFD � Capture Timer

TimestampTimestamp

MAC Protocol DataLengthSFDPreamble MAC Protocol DataLengthSFDPreamble TimestampTimestamp
Beacon

Reception

SFD � Capture Timer

TimeSyncM

(FTSP Algorithm)

Process Send

Beacon
Transmission

Figure 5.3 FTSP MAC-layer time stamping

The TimeSyncM module implements the FTSP algorithms, but due to the MAC-

layer time stamping, some code is distributed in the CC2420 software driver

(SFD capture). Through the addition of a The GlobalTime interface as shown in

Figure 5.4, TinyOS applications at the client side (sensor node) can access global time for

the purposes of assigning event time stamps and calculating time slot occurrence.

55

interface GlobalTime

{

/* Gets the current global time */

command result_t getGlobalTime(uint32_t *time);

/* Converts given local time to global time */

/* globalTime = local + offset + skew *(local-syncPoint) */

command result_t local2Global(uint32_t *time);

/* Determines how long (in local time) */

/* until the given global time occurs. */

command result_t localTilGlobal(uint32_t globalTime, int32_t *time);

/* Returns Next Beacon time (in global time) */

command uint32_t getGlobalNextBeacon();

/* Returns Next Beacon time (in global time) */

command uint32_t getGlobalLastBeacon();

command int32_t getOffset();

command float getSkew();

command uint32_t getSyncPoint();

command void resetGlobal();

}

Figure 5.4 GlobalTime interface

For testing of the time synchronization protocol, we developed a test bed where

the network coordinator and WBAN sensor nodes are all connected to a common wired

signal. Sensors detect the signal change and transmit a (locally estimated) global

timestamp. WBAN event messages including this timestamp were generated and

captured at the personal server. By comparing the timestamps we could determine the

difference in the global time estimates. In most cases the node’s error was within ±1 jiffy

and the average error was approximately 0.1*Tjiffy or 3 µs [Milenkovic06] [Cox05].

5.2 Sensor Software

The sensor node software runs within the TinyOS framework on a Tmote Sky

platform and is responsible for communicating with the ISPM daughter card to collect

physiological data, processing the signals in real-time, and transmitting the results

56

wirelessly to the personal server. Figure 5.5 depicts the ActiS software architecture inside

the TinyOS component model. Those components with solid edges are component

implementations and those with dashed edges are configuration components and contain

one ore more sub-components; GenericComm, CC2420RadioC, TimerC and

BusArbitrationC are in a lighter shade to denote a TinyOS library component. All other

components are specific to the ActiS software.

Figure 5.5 ActiS software architecture

57

5.2.1 Feature Extraction

The TDMA scheme presented in Section 4.2 addresses power savings by

disabling the radio when it is not in use; however, timeslot length and the total bandwidth

requirements are application driven. Additional power savings can be realized by

performing on-sensor processing to reduce total transmission bandwidth. A small

investment in computational power results in large power savings by minimizing radio

communications. Given the high efficiency of MSP430 microcontroller family

(250 µA/MIPS) and the relatively expensive 17.4mA / 250Kbps radio, we can perform

over 100,000 instructions for the same energy cost of each 55 byte WBAN message.

Consequently, we process raw data for the purposes of extracting pertinent features and

sending descriptive event messages rather than sending all data over the wireless

network. For example, a motion sensor analyzes forces to determine the occurrence of a

step or a force exceeding a predefined force threshold; a heart rate sensor monitors ECG

data to identify an R-Peak (heartbeat) event or the presence of an abnormal heartbeat. In

addition, it may be necessary to extract other features such as estimates of activity

induced energy expenditure (AEE) [Bouten97] which result in compilation and summary

of data over some period of time, or to classify user activity (running, walking, sitting,

etc.).

Consider a motion sensor with tri-axis accelerometer operating at a 200Hz

sampling frequency per axis and 16-bit samples. A raw data transmission requires

9600 bps, not considering any compression techniques. Our raw data message format

(see Appendix B) packs 10 samples per message. Including overhead, this yields an

effective required bandwidth of 26.4 Kbps. Assuming we are interested in step detection,

58

this can be performed on the embedded sensor node and avoid the transmission of raw

data. Suppose in the worst case, we can expect to detect four steps per second. Each step

results in a unique event message yielding an effective bandwidth of only 1760 bps – a

93% bandwidth savings which helps achieve low channel utilization. Of course this

requires real-time signal processing and developers must contend with extremely

constrained resources such as low MIPS rate, no hardware floating point support, and

small memory capacity.

During development, we used raw data messages to remotely acquire raw data

and partially processed data from the sensor nodes. Algorithms were developed off-line

by examining session files for various users during walking, standing, sitting, and

running. Once the algorithms were working in this controlled environment, we ported

these to a nesC environment. Incremental testing of the algorithms was performed. For

example, Figure 5.6 illustrates the signal from a mechanical footswitch alongside raw

acceleration and calculated velocity from the sensor’s Y axis, as well as calculated angle

(alpha), representing the tilt of the activity sensor.

59

46 46.5 47 47.5 48 48.5 49 49.5 50 50.5 51

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Time[s]

Vy[m/s]

Alpha[rad]

accY[g]

Step

Foot switch

Step detected

Figure 5.6 Accelerometer based step recognition

The current implementation of the prototype supports R-peak detection using a

modified version of the algorithm presented by Pan, et al. [Pan85], user activity (AEE)

events based on an algorithm proposed by Bouten, et al. [Bouten97], and a novel step

detection algorithm. ST segment processing can be implemented using an approach as

presented by Maglaveras [Maglaveras98] and Wheelock [Wheelock99]; however, when

running the algorithms, experimental results indicate a reliability problem due to

complete processor utilization. Table 5.1 shows the resource requirements of the average

real-time processing per data sample for step recognition and R peak detection. For

R peak detection, the minimum sampling rate is 100Hz (10ms) yielding 44% CPU

utilization; however, communication and ADC sampling overhead will push utilization

much higher.

60

Table 5.1 Cost of WBAN real-time algorithms

Algorithm Execution Time Code Size Data Size

Step recognition 6.2 ms 2858 B 264 B
ECG R peak detection 4.4 ms 6092 B 642 B

Employing intelligent sensor nodes, capable of real-time feature extraction,

provide the greatest benefit to WBAN users. Each sensor analyzes the physiological data

and determines whether the sampled data constitutes an event of interest. On-sensor

feature extraction requires sufficient computational power on each node to run the

necessary algorithms in real time. This drives the CPU speed and memory requirements

both of which affect power consumption; however, wireless communications remain a

dominant factor in power consumption.

5.2.2 Event Message Management

In the WBAN prototype, a sensor node generates an event when a characteristic

feature has been recognized. An event is described by event type, a global timestamp,

and context-relevant data (see the event message format in Appendix B). For a health

monitoring WBAN such as ours, it is imperative that event data can be correlated among

the sensors in the distributed sensor network. Timestamps must be applied at the sending

node, because transmission of the events can be delayed up to one second due to the

TDMA scheme presented in Section 4.2.

Figure 5.7 shows how events are processed in the WBAN for one ECG sensor

(timeslot 1) and one motion sensor (timeslot 2). Events occur asynchronously relative to

a sensor’s designated timeslot and must be queued for transmission up to one super frame

period (one second for our WBAN). At the precise time of event occurrence, an event

message with global timestamp is constructed and the message is queued for

61

transmission. When the sensor’s scheduled timeslot arrives, all pending messages are

transmitted. Currently, we have implemented a redundant data transmission scheme for

R peak events where each event message describes both the current event and the

previous event, making the system somewhat resilient to packet loss errors. For

particularly critical events, however, an explicit acknowledgement is desired to ensure

arrival at the Personal Server.

105 105.2 105.4 105.6 105.8 106 106.2 106.4 106.6 106.8 107

105 105.2 105.4 105.6 105.8 106 106.2 106.4 106.6 106.8 107
0.5

1

1.5
x 10

4

105 105.2 105.4 105.6 105.8 106 106.2 106.4 106.6 106.8 107
1000

2000

3000

4000

accX

accY

accZ

Heart Beat

Event Message
with Timestamp

…

Beacon

Message

…

Heart Beat Step Heart Beat Step

Frame i-1

Motion

Sensor

(TS2)

ECG

Sensor

(TS1)

TS1 TS2NC TS3

Frame i

Beacon

Message

TS1 TS2NC TS3

105 105.2 105.4 105.6 105.8 106 106.2 106.4 106.6 106.8 107

105 105.2 105.4 105.6 105.8 106 106.2 106.4 106.6 106.8 107
0.5

1

1.5
x 10

4

105 105.2 105.4 105.6 105.8 106 106.2 106.4 106.6 106.8 107
1000

2000

3000

4000

accX

accY

accZ

Heart Beat

Event Message
with Timestamp

…

Beacon

Message

…

Heart Beat Step Heart Beat Step

Frame i-1

Motion

Sensor

(TS2)

ECG

Sensor

(TS1)

TS1 TS2NC TS3TS1 TS2NC TS3

Frame i

Beacon

Message

TS1 TS2NC TS3TS1 TS2NC TS3

Figure 5.7 Event management in TDMA environment

5.2.3 Dynamic USART Multiplexing

 One software challenge is realized by the Tmote Sky organization with respect to

the two MSP430F1611 USARTs. Unfortunately, USART1 is dedicated to the USB

interface – even though this is not used by the ActiS / eActiS embedded software.

Consequently, USART0 is allocated both for CC2420 radio communications and

62

daughter card communications via the 10-pin expansion header. We require both

functions concurrently. On one hand, the SPI is needed for transferring WBAN messages

between the microcontroller and the radio; and on the other hand, the UART is needed

for acquiring data samples from the ISPM daughter card. This motivated our scheme for

time multiplexed access and dynamic reassignment of USART0.

To facilitate deferred transmission of messages as well as to synchronize access to

USART0, we created the TimeslotMgr (Timeslot Manager) component. The Timeslot

Manager provides a parameterized SendMsg and ReceiveMsg interface so that existing

components can naturally replace a connection to GenericComm with a connection to the

TimeslotMgr. However, when an application attempts to send a message (by calling

SendMsg()), the message is not sent immediately as is the case with GenericComm.

Instead, the message is queued for transmission pending occurrence of the sensor node’s

designated timeslot.

Leveraging the power of time synchronization, we can very accurately calculate

scheduled beacon timeslots and scheduled transmission timeslots. The GlobalTime

interface provides the getGlobalNextBeacon() command which returns the global time of

the next expected beacon occurrence. This future occurring global timestamp is passed to

localTilGlobal() which returns the number of skew-adjusted jiffy ticks from now until its

occurrence. This number can be used to schedule a simple one shot timer event.

Likewise the designated transmission timeslot can be scheduled by adding a fixed delay

(50ms × timeslot) to the global timestamp of the last occurring beacon. Once again, this

can be converted to the number of local jiffy clocks until its occurrence and scheduled

using the local timer. For the benefit of reduced power consumption, the radio is

63

disabled during these inactive periods and then enabled again once the timeslot arrives.

In this fashion, the TimeslotMgr executes a continuous state machine: receive beacon,

disable radio, transmit (until queue is empty or timeslot expires), and disable radio.

The implemented state machine is even more complex since USART0 must be

shared between the SPI (radio) and UART (ISPM daughter card communications). The

Acc_ispmM component must reconfigure the USART for UART before it can issue an

accelerometer reading. TinyOS provides the BusArbitrationC component for this

purpose, but it is insufficient for managing this access. This needs to be managed by the

timeslot manager so that radio transmissions can be synchronized. For this reason, the

TimeslotMgr exposes a TimeslotLock interface which is acquired by the Acc_ispmM

component before attempting a reading. This is a split-phase operation so that the

Acc_ispmM component must wait for the TimeslotLock.acquired() event callback before

continuing. Signaling of the event is immediate if the radio is disabled; otherwise, it

must wait for a transmission to complete. The TimeslotMgr supports interleaving

accesses when radio messages are waiting for transmission, but it will not interrupt an in-

progress message. Likewise, the TimeslotMgr transmit state must check first that it has

exclusive access of the resource and if the lock is acquired, it must wait until it is released

before beginning a message transmission. Figure 5.8 illustrates this dynamic interleaving

and sharing of the USART.

64

USART0

Radio

C
o
lle

c
t

S
a
m

p
le

R
x
 R

a
d
io

Time

50 ms

SPI SPI

100 ms 150 ms

SPI SPI

C
o
lle

c
t
S

a
m

p
le

C
o
lle

c
t
S

a
m

p
le

C
o
lle

c
t
S

a
m

p
le

C
o
lle

c
t

S
a
m

p
le

C
o
lle

c
t
S

a
m

p
le

UART

T
x

R
a
d

io

T
x

R
a
d

io

T
x

R
a
d

io

T
x

R
a
d

io

Scheduled
Beacon

25ms

Scheduled
Timeslot

Figure 5.8 Dynamic USART multiplexing for ActiS application

5.2.3 Buffer Management

Most TinyOS applications execute a set of dedicated functions defined statically

at design time; typically, the messages are transmitted as they occur, requiring a small

number of TinyOS messages which can simply be statically allocated as data in the used

component. The ActiS application is more complicated, as we support a number of

runtime configurations that result in different transmission sequences. The ActiS node

must transmit configuration acknowledgements at the beginning of a session followed by

a sequence of event and data messages during a session, while the number and type of

messages change during operation. In addition, our TDMA scheme requires message

queuing and potentially numerous outstanding messages. Static allocation of the

65

maximum number of message buffers for each message type is not scaleable. For this

reason, we introduced the BufMgr component as a central buffer manager resource.

Both the ActiS and eActiS applications require about 25 KB of flash memory for

TinyOS and program space and about 1.1 KB RAM for data and an additional 1.4 KB for

message buffering (25 buffers with 56 bytes per message). It should be noted that

changing the super frame period (discussed in Section 4.2) and increasing latency will

also determine the required number of message buffers for an application. Current

implementation achieves 52% flash utilization and 25% RAM utilization for a sensor

node implemented on a Tmote Sky platform.

5.3 ISPM Software

The program running on the ISPM module is a simple application implemented

on a resource constrained MSP430F1232. Because of the constraints and simplicity of

the application, all ISPM software is implemented in C without the advantages of TinyOS

and nesC environments. The module is slaved to the Tmote Sky module, responsible only

for sampling the accelerometer inputs and providing reliable serial communications to the

Tmote Sky board on request. The two dual-axis accelerometers are sampled at

approximately 200Hz, the data is averaged over the most recent four samples, and the

latest (x, y, z) results are passed to the Tmote Sky on interrupt request. To conserve

power, the processor enters low power mode during idle time. All ISPM level services

are interrupt-driven and will wake the processor from this sleep mode as necessary. An

interrupt also signifies each UART character transmission, allowing the processor to

sleep between characters and only wakes for FIFO management and preparation of the

next character.

66

Mindful of the Tmote Sky platform’s USART sharing constraints, ISPM to Tmote

Sky serial communication protocols were designed with a minimalist approach. To

conserve precious serial bandwidth, Tmote Sky requests are presented as discrete signals

invoking interrupts. This also serves as inherent synchronization and delimits the ISPM

responses. As a result, no framing protocol or start of message byte is required. The

protocol employed only has one overhead byte which indicates the type of data

transferred and to what level the data is processed. By minimizing the serial

communications, the Tmote Sky can quickly acquire the sample and then reconfigure the

USART for wireless radio operation.

A high baud rate of 115,200 bps was selected which allows the 7 byte message to

be transferred in ~600µs. One challenge was guaranteeing reliable communications at

this speed. At this speed, the serial clock must be derived from the higher speed (and

unstable) SMCLK versus the lower speed (and relatively stable) ACLK. In both the

ISPM and Tmote Sky systems, ACLK is directly generated from the stable on-board

32 kHz crystal oscillator. SMCLK, however, is derived from the internal runtime-

programmable digitally controlled oscillator (DCO). The integrated DCO is a real estate

and cost saving feature, however, its RC-type characteristics make its frequency vary

with temperature, voltage, and from one device to the next making it a poor choice for

baud rate generators [MSP430x1xx]. This problem, however, can be overcome by

runtime tuning of the DCO. By using an internal timer capture and the on-board 32 kHz

oscillator as an input, software control of the DCO can be achieved. By measuring the

known 32 kHz reference clock with DCO clock ticks, it is possible to calculate the period

of SMCLK. Recursive adjustments can be made until the period is satisfactory.

67

Assuming a 50ppm 32 kHz crystal, the DCO clock can be tuned to an accuracy of 0.5%

[Muelhofer00].

The current implementation tunes the DCO once at system initialization and does

not attempt to accommodate for temperature or voltage changes that may arise after

system initialization. This is suitable for lab conditions and research purposes; however,

more robust implementations would require a continuous real-time maintenance of the

DCO clock. This would also require a dedicated timer capture. Because all of the

MSP4301232 timer captures are utilized for accelerometer sensor sampling, our

implementation only uses the timer capture for this purpose at start-up. Once the DCO is

tuned, the timer capture is dedicated to accelerometer sampling.

68

CHAPTER 6

PERSONAL SERVER APPLICATION

We designed the prototype personal server to both address the needs of the

research prototype WBAN as well as support for a deployed WBAN system, providing

seamless control of the WBAN. The Personal Server application is responsible for node

identification and node configuration (controlling the WBAN), sensor fusion, and

provides the user interface. In a full multi-tier network as presented in Figure 3.1, the

personal server would also be responsible for establishing secure communications with

the medical server, upload session files, and download new caregiver instructions. The

personal server application was developed in Visual Studio .NET 2003 for both the .NET

compact framework (Pocket PC 2003) and full framework (Windows XP). WBAN

access is achieved with the Network Coordinator implemented on a Tmote Sky.

Figure 6.1 shows the message flow during a typical WBAN health monitoring

session. The Personal Server begins a health monitoring session by wirelessly

configuring sensor parameters, such as location (left/right ankle, waist, and chest)

selection of the type of physiological signal of interest, and specifying events of interest.

For example, a motion sensor can be configured to send activity estimate events (AEE)

when the level crosses a specified threshold, step recognition events, or raw data. The

69

personal server performs sensor fusion on the multiple data streams, creates session files

and archives the information in the patient database. Real-time feedback is provided

through the user interface. The user can monitor his / her vital signs and be notified of

any detected warnings or alerts.

Personal

Server

Timely updates

(Events, Status)

Monitor Vital Signs &

Generate Warnings

Configure WBAN &

Control (Start/Stop)

Beacons &

Configuration

ECG

Motion Sensors

(Accelerometers)

Motion Sensors

(Accelerometers)
Gait Phases & Activity

(Intensity)

ST-segments &

RR Intervals

Gait Phases & Activity

(Intensity)

Beacons &

Configuration

User

Interface

Patient

Database

Personal

Server

Timely updates

(Events, Status)

Monitor Vital Signs &

Generate Warnings

Configure WBAN &

Control (Start/Stop)

Beacons &

Configuration

ECG

Motion Sensors

(Accelerometers)

Motion Sensors

(Accelerometers)
Gait Phases & Activity

(Intensity)

ST-segments &

RR Intervals

Gait Phases & Activity

(Intensity)

Beacons &

Configuration

User

Interface

Patient

Database

Figure 6.1 Data flows in prototype WBAN

6.1 Sensor Node Identification and Configuration

Sensor node identification requires a method for uniquely identifying a single

sensor node to associate the node with a specific function during a health monitoring

session. For example, a motion sensor placed on the arm performs an entirely different

function than a motion sensor placed on the leg. Because two motion sensors are

otherwise indistinguishable, it is necessary to identify which sensor should function as an

arm motion sensor and which sensor should function as a leg motion sensor. In order to

70

make node identification user friendly and intuitive, we developed a scheme taking

advantage of the inherit motion sensing capabilities of each sensor. We let the user

arbitrarily place a motion sensor on his arm or leg, and then we can identify and associate

the sensor with the proper function through a series of easy to follow instructions. Our

form instructs the user to “shake one of the sensors.” While the user is moving the

sensor, the PS broadcasts an ACTIS_EVENT_MASKMSG requesting all sensors to report

activity level estimations. Based on the largest activity estimate returned, the PS can

identify the sensor being moved. This interface is more intuitive from a user’s

perspective, but was easily implemented using WBAN protocol event messages already

implemented for event processing. Figure 6.2 illustrates node identification.

Figure 6.2 Node identification using personal server

For development, we also implemented a static node assignment scheme. The

personal server adds another level of indirection between the mote address (mote ID) and

the enumerated sensor number that is presented to the user. This is defined in config.xml.

71

Figure 6.3 illustrates the association between the personal server assigned logical ID and

the compile-time assigned physical ID (WBAN Mote ID).

Physical ID

Sensor 1

Sensor 2

Sensor 3

Sensor 4

Sensor 5

Mode 1 (ECG)

Mode 2 (Acc)

Logical ID

Figure 6.3 Static ID assignments via config.xml

The Personal Server and ActiS nodes support two types of calibration. The first

type is a sensor calibration; its purpose is to accommodate sensor-to-sensor variations and

the exact nature of the calibration is sensor dependent. This is typically a one-time

calibration and not expected to be a long-term function of the user interface, but certainly

necessary for sensor preparation. The second type of calibration is a session calibration,

72

required immediately prior to starting a new monitoring session to calibrate the sensor in

the context of its current environment. For example, Activity sensors on the leg might

need an initial calibration of default orientation on the body.

6.2 Sensor Fusion

The Personal Server is solely responsible for collecting data and events from the

WBAN. Each sensor node in the network is sampling, collecting, and processing data.

Depending on the type of sensor and the degree of processing specified at configuration,

a variety of events will be reported to the Personal Server. User session files are created

in real-time using a custom binary file format, and are then converted to a Microsoft

Access database for off-line analysis. Table 6.1 shows the format of one record in the

binary file; all data values are stored in little-endian format. This file is constructed by

fusing event messages from all the sensors in the WBAN. The Personal Server must

recognize events as they are received and make decisions based on the severity of the

event. The following events are currently supported and recognized by the personal

server (complete format is specified in Appendix B):

• STEP (includes timestamp, step length, maximum forces)

• RPEAK – detection of heart beats using recognition of the R phase; the system

generates a precise timestamp and time interval between the current and a

previous heart beat or R-R interval (RRINT)

• Sensor Error

• Force Threshold Exceeded (Excessive Force)

• User’s activity – AEE (one-second integration of the 3D motion vector)

73

• Triggered user’s activity – generates an event if the AEE exceeds a specified

threshold.

Table 6.1 Personal Server Record Format

Octets Field Description

4 Timestamp 32-bit global jiffy time
2 numValues Number of values used in data field
2 Not used Reserved for future timing parameters
4 SessionSignalID Unique identifier formed from concatenation of session

number with signal type
20 data Data dependent, for raw data this is 10 16-bit samples
32 bytes

6.3 Graphical User Interface

The user interface on the personal server facilitates the user’s start / stopping of

health monitoring sessions, configuration, and event management. This is all supported

with the current personal server and WBAN nodes. Any control or feedback capability

provided to the user interface must be implemented using the WBAN communication

protocol. The protocol provides the tools enabling control of the WBAN and defines

what can and cannot be accomplished. We strived to keep a simple set of WBAN

message types, but still implement complex user interface functions and application

flexibility. Figure 6.4 depicts the main personal server screen for controlling the WBAN.

74

Figure 6.4 Personal Server Control of WBAN

Although all sensors in our system perform on-sensor processing and event

detection, there are events where processed and summary events are not sufficient and

real-time raw signal capture is necessary. During development, it was invaluable to be

able to monitor sensor data in real-time. For heart rate sensors we implemented a single

graphical ECG trace; for motion sensors we implemented three traces representing x, y,

and z acceleration components on the same graph, as represented in Figure 6.5. This

captured data is also stored to a file and can be analyzed off-line to improve step

detection algorithms. In most cases, the algorithms were first developed on previously

recorded sample data sets. When the algorithms worked well on the sample data sets,

they were then implemented on the embedded sensors to run in real-time.

75

Figure 6.5 Real-time display of raw data

76

CHAPTER 7

CONCLUSIONS

Wireless Body Area Networks (WBANs), comprised of tiny intelligent

physiological sensors, represent a promising addition to wearable systems for health

monitoring. Following current trends in advances in size, low power, and dense

integration (complete systems on a chip), it is expected that WBAN sensor nodes can be

easily integrated into a user’s clothing or worn as tiny patches on the skin. The absence

of wires and small weight make them unobtrusive and allow ubiquitous, ambulatory

health monitoring for extended periods. Integration of WBANs into a broader

telemedicine system empowers patients and users with continuous ambulatory

monitoring, a chance for remote rehabilitation at reduced cost while adding value, and the

earliest possible detection of abnormal health indicators.

This thesis presents a WBAN implementation which consists of multiple sensor

nodes, a personal server, and a network coordinator. The sensor boards and network

coordinator were built from off-the-shelf wireless sensor platforms with custom-designed

intelligent physiological sensor boards for ECG and activity monitoring. The nodes

communicate wirelessly using standards-based IEEE 802.15.4 and a novel, health-

monitoring specific, power-efficient TDMA scheme. In addition, we introduced novel

techniques for time synchronization including an original hybrid convergence scheme

77

and an event management scheme motivated by power efficiency. Most importantly, we

demonstrated the capability to perform on-sensor processing – particularly with motion

sensors – and outlined the power savings realized when features are extracted on-sensor,

avoiding expensive wireless transmissions. We also developed a personal server

application in order to facilitate system development and illustrate the WBAN’s practical

use in collecting data and events.

Perhaps the most lasting contribution is a working prototype for continued

research in this area. Future work should consider enhancing algorithms for real-time

signal processing (step detection, assessing user activity, ECG processing), using the

WBAN to participate in an organized research trial, implementing encryption in the

WBAN, and implementing a prototype medical server to illustrate the potential for

research data mining. Other possibilities for future work are to implement compression

to further decrease radio transmissions and enhance power saving capabilities, increase

sensor sampling rates, and implement local flash storage to allow sensors to continue data

collection in the absence of a personal server. In addition, runtime tuning of the DCO

should be explored for achieving reliable daughter card communications under a number

of adverse conditions.

APPENDICES

79

APPENDIX A

WBAN MESSAGE FORMAT

Figure A.1 depicts a dissected WBAN message and the format of the TinyOS

message. As the figure indicates, several fields of the TinyOS message header are

directly shared with the 802.15.4 frame (length, frame control field, data link sequence

number, and address). The 802.15.4 addressing supports 4 – 20 bytes in the address

field; however, this is fixed to four bytes in the TinyOS implementation. It should be

noted that the mote ID address refers to the destination address. Applications that require

the source address of the node should include this in the TOSH_DATA field (application

message).

80

Preamble

802.15.4 Data Frame

SFD

4 1 9 +10 + 30

MPDU
Frame

Length

1

PHY
Layer

FCSMSDU
Frame

Control

Seq

Num
Address

TinyOS

3011 2 2

TOSH

DATA

12

length fcf dsn destpan
Mote

ID

AM

type group

1

12 4 2

MAC

Layer

10 + 30

App Msg Not Used

*

* TOSH_DATA size was modified from 28 to 30 bytes for the WBAN application

n 30 - n

WBAN APP
Layer

Preamble

802.15.4 Data Frame

SFD

4 1 9 +10 + 30

MPDU
Frame

Length

1

PHY
Layer

FCSMSDU
Frame

Control

Seq

Num
Address

TinyOS

3011 2 2

TOSH

DATA

12

lengthlength fcf dsn destpan
Mote

ID

AM

type

AM

type group

1

12 4 2

MAC

Layer

10 + 30

App Msg Not Used

*

* TOSH_DATA size was modified from 28 to 30 bytes for the WBAN application

n 30 - n

WBAN APP
Layer

Figure A.1 WBAN protocol stack

 The default installation of TinyOS uses a fixed 28 byte message payload

(TOSH_DATA) for all transmissions. During our WBAN implementation we extended

the message payload from 28 bytes to 30 bytes to accommodate a 32-bit timestamp on

raw data messages and oscilloscope messages (see Appendix B). This payload is fixed in

size so that unused portions are simply not used. Application developers benefit from a

simple implementation and avoid the woes of dynamic memory allocation on extremely

resource constrained systems. The Active Message Type (AM Type) field is analogous

to a UDP port number. It facilitates transport functionality and multiplexing of multiple

application sessions over the physical link. Application endpoints agree on the AM Type

for a given application and then the representation of the data within the payload. The

one byte group ID can be used for upper layer multiplexing techniques – partitioning

wireless networks into multiple groups.

81

APPENDIX B

WBAN ACTIS APPLICATION MESSAGES

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Length (1) FCF MSB (1)

FCF LSB (1) DSN (1)

DESTPAN (2)

ADDRESS (2)

AM TYPE (1) GROUP ID

Fixed

header

APPLICATION MESSAGE

(varies)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Length (1) FCF MSB (1)

FCF LSB (1) DSN (1)

DESTPAN (2)

ADDRESS (2)

AM TYPE (1) GROUP ID

Fixed

header

APPLICATION MESSAGE

(varies)

Figure B.1 General WBAN message format including TinyOS header

Table B.1 TinyOS header field descriptions

Field Octets Description
Length 1 Length of message
FCF 2 Frame Control Field (see 802.15.4)
DSN 1 Data link sequence number (maintained in radio driver)
DESTPAN 2 Destination PAN identifier (if inter-PAN addressing

should be used)

Address 2 Destination Mote ID
AM Type 1 Active Message Type (see Table B.2)
Group ID 1 User defined Group Identifier

82

Table B.2 ActiS WBAN Active Message Types

AM Type Value Description
AM_OSCOPEMSG 10 (0x0A) Raw Data / Oscilloscope

application
AM_OSCOPERESETMSG 32 (0x20) Reset the sample number for

the next sample
AM_ACTIS_CFG_MODEMSG 71 (0x47) configures sensor mode of

operation
AM_ACTIS_CFG_LOCMSG 72 (0x48) Configures sensor location

AM_ACTIS_CFG_RATEMSG 73 (0x49) configures sensor sampling
rate

AM_ACTIS_CFG_STARTMSG 74 (0x4A) Begin operation
AM_ACTIS_CFG_STOPMSG 75 (0x4B) Stop operation
AM_ACTIS_CALMSG 76 (0x4C) Initiate sensor calibration
AM_ACTIS_EVENT_MASKMSG 77 (0x4D) Configure event masking on

sensor
AM_ACTIS_INVMSG 78 (0x4E) Query sensor inventory
AM_ACTIS_CFG_ACKMSG 81 (0x51) Return for any config message

AM_ACTIS_CAL_ACKMSG 82 (0x52) Calibration complete
AM_ACTIS_EVENTMSG 83 (0x53) Report Sensor Event
AM_ACTIS_INV_RESPMSG 88 (0x58) Sensor Inventory Response
AM_TIME_SYNCMSG 170 (0xAA) Beacon Message

83

B.1 Personal Server to Sensor Node Messages

B.1.1 OSCOPE RESET (AM_OSCOPERESETMSG = 0x20)

The Oscope Reset message is used by the personal server to reset the sequence

number on any ongoing raw data message stream. This message is zero bytes in length

(TOS length fields should be set to zero).

B.1.2 CONFIGURE OPERATING MODE (AM_CFG_MODEMSG = 0x47)

The Configure Operating Mode message is used by the personal server to

configure the sensor node’s mode of operation.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved (2)

Timestamp (4)

Mode (1) Reserved (1)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved (2)

Timestamp (4)Timestamp (4)

Mode (1)Mode (1) Reserved (1)Reserved (1)

Figure B.2 Configure Operating Mode message format

Table B.3 Configure Operating Mode message fields

Octets Field Description
4 Timestamp 32-bit global timestamp
2 Reserved Not implemented at this time
1 Mode Mode of operation (see Table B.4)
1 Reserved Not implemented at this time

8 bytes

Table B.4 ActiS Operation Modes

Value Operating mode
0 Disabled
1 ECG
2 Motion Sensor

84

B.1.3 CONFIGURE LOCATION (AM_CFG_LOCMSG = 0x48)

The Configure Location message is used by the personal server to configure the

sensor node’s location. This is especially important for motion sensors. For example, a

motion sensor on the leg or foot would responsible for step detection, while a motion

sensor on the waist is not. In addition, the algorithms for estimating energy expenditure

might be different.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved (2)

Timestamp (4)

Location (1) reserved (1)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved (2)

Timestamp (4)Timestamp (4)

Location (1)Location (1) reserved (1)reserved (1)

Figure B.3 Configure Location message format

Table B.5 Configure Location message fields

Octets Field Description
4 Timestamp 32-bit global timestamp
2 Reserved Not implemented at this time
1 Location Location (see Table B.6)
1 Reserved Not implemented at this time

8 bytes

85

Table B.6 ActiS Locations

Value Location
1 Left Foot
2 Right Foot
3 Left ankle
4 Right ankle

5 Left knee
6 Right knee
7 Left thigh
8 Right thigh
9 Waist front
10 Waist back

11 Waist side
12 Center back
13 Left wrist
14 Right wrist
15 Left elbow
16 Right elbow
17 Left upper arm

18 Right upper arm
19 Forehead
20 Top of head
21 Back of head

86

B.1.4 CONFIGURE RATE (AM_ACTIS_CFG_RATEMSG = 0x49)

The Configure Rate message is used to configure the sensor node’s sampling rate.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved (2)

Timestamp (4)Timestamp (4)

Rate (2)

Figure B.4 Configure Rate message format

Table B.7 Configure Rate message fields

Octets Field Description
4 Timestamp 32-bit global timestamp
2 Reserved Not implemented at this time
2 Rate Sampling Rate (Hz)

8 bytes

87

B.1.5 CONFIGURE START (AM_ACTIS_CFG_STARTMSG = 0x4A)

The Configure Start message is used to start a health monitoring session.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved (2)

Timestamp (4)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved (2)

Timestamp (4)Timestamp (4)

Figure B.5 Configure Start message format

Table B.8 Configure Start message fields

Octets Field Description
4 Timestamp 32-bit global timestamp
2 Reserved Not implemented at this time

6 bytes

88

B.1.6 CONFIGURE STOP (AM_CFG_STARTMSG = 0x4B)

The Configure Stop message is used to stop a health monitoring session.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved (2)

Timestamp (4)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved (2)

Timestamp (4)Timestamp (4)

Figure B.6 Configure Stop message format

Table B.9 Configure Stop message fields

Octets Field Description
4 Timestamp 32-bit global timestamp
2 reserved Not implemented at this time

6 bytes

89

B.1.7 CALIBRATION (AM_CALMSG = 0x4C)

The Calibration message is designed primarily for motion sensors. The message

is sent by the personal server to commence calibration. There are two primary types of

calibration: Detailed one-time sensor calibration and session calibration.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved (2)

Timestamp (4)

Cal type (1) reserved (1)

Mote ID (2)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved (2)

Timestamp (4)Timestamp (4)

Cal type (1)Cal type (1) reserved (1)reserved (1)

Mote ID (2)

Figure B.7 Calibration message format

Table B.10 Calibration message fields

Octets Field Description
4 Timestamp 32-bit global timestamp
2 Reserved Not implemented at this time
2 Mote ID ID of sensor to calibrate
1 Cal type Type of calibration (See

Table B.11)

10 bytes

Table B.11 ActiS Calibration Types

Value Calibration Type
1 sensor calibration (x-y plane)

2 Sensor calibration (z plane)
3 Session calibration

90

B.1.8 EVENT MASK (AM_EVENT_MASKMSG = 0x4D)

The Event Mask message is used to sensitize a sensor to a specific event of

interest.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved (2)

Timestamp (4)

Event type (1) bEnabled (1)

Mote ID (2)

Argument (2)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved (2)

Timestamp (4)Timestamp (4)

Event type (1)Event type (1) bEnabled (1)bEnabled (1)

Mote ID (2)

Argument (2)

Figure B.8 Event Mask message format

Table B.12 Event Mask message fields

Octets Field Description
4 Timestamp 32-bit global timestamp
2 reserved Not implemented at this time
2 Mote ID ID of sensor
1 Event Type Event of interest (See

Table B.13)
1 bEnabled 0 = mask events, 1 = sensor should notify on

event detection
2 Argument Context sensitive (See

Table B.13)

12 bytes

91

Table B.13 ActiS Event Types and Argument in Event Mask message

Value Event Type Argument Definition
1 Reset (cannot be masked) Not used
2 Sensor Error (cannot be

masked)
Not used

3 Step Detected Not used
4 R Peak Detected Not used
5 Force Threshold Minimum force for reporting

6 AEE (Activity induced
Energy Estimate)

Minimum AEE for reporting

7 All (enable all events
supported with default
thresholds)

Not Used

92

B.1.9 INVENTORY (AM_INVENTORYMSG = 0x4E)

The Inventory message is sent by the personal server to query status and function

of an individual sensor. When sent with a broadcast address, it can be used to search or

locate sensors in a WBAN. The “full” field can be used to set the length of the reply (full

status or brief status).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved (2)

Timestamp (4)

Full (1) reserved (1)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved (2)

Timestamp (4)Timestamp (4)

Full (1)Full (1) reserved (1)reserved (1)

Figure B.9 Inventory message format

Table B.14 Inventory message fields

Octets Field Description
4 Timestamp 32-bit global timestamp
2 reserved Not implemented at this time
1 Full 0 = short response, non-zero = full response
1 reserved Not implemented at this time

8 bytes

93

B.1.10 TIME SYNC BEACON (AM_TIME_SYNCMSG = 0xAA)

The Time Sync Beacon message is sent from the network coordinator to propagate

time synchronization to sensor nodes in the WBAN. This message also delimits the

super frame boundary.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Seq Num (1) reserved (1)

Root ID (2)

Node ID (2)

Sending Time (4)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Seq Num (1)Seq Num (1) reserved (1)reserved (1)

Root ID (2)

Node ID (2)

Sending Time (4)

Figure B.10 Time Sync Beacon message format

Table B.15 Time Sync Beacon message fields

Octets Field Description
2 Root ID Address of network coordinator
2 Node ID Address of sending node
1 Seq Num Beacon sequence number
1 Reserved Not implemented at this time
4 Sending Time NC assessed time stamp

10 bytes

94

B.2 Sensor Node to Personal Server Messages

B.2.1 RAW DATA / OSCOPE (AM_OSCOPEMSG = 0x0A)

The Raw Data / Oscope message is sent by sensor nodes to transfer raw data in

blocks of 10 discrete 16-bit samples at a time. This message is modified only slightly

from the TinyOS Oscilloscope demonstration program included with the TinyOS

distribution. The addition of the timestamp field is the only change, and it is carefully

placed at the end of the message to maintain compatibility with the Java oscilloscope

utility distributed with TinyOS.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Source Mote ID (2)

SN (2)

channel (2)

Timestamp (4)

Sample SN-9 (2)

Sample SN-8 (2)

Sample SN-7 (2)

Sample SN-6 (2)

Sample SN-5 (2)

Sample SN-3 (2)

Sample SN-4 (2)

Sample SN-2 (2)

Sample SN-1 (2)

Sample SN (2)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Source Mote ID (2)

SN (2)

channel (2)

Timestamp (4)Timestamp (4)

Sample SN-9 (2)Sample SN-9 (2)

Sample SN-8 (2)Sample SN-8 (2)

Sample SN-7 (2)Sample SN-7 (2)

Sample SN-6 (2)Sample SN-6 (2)

Sample SN-5 (2)Sample SN-5 (2)

Sample SN-3 (2)Sample SN-3 (2)

Sample SN-4 (2)Sample SN-4 (2)

Sample SN-2 (2)Sample SN-2 (2)

Sample SN-1 (2)Sample SN-1 (2)

Sample SN (2)Sample SN (2)

Figure B.11 Raw Data / Oscope message format

95

Table B.16 Raw Data / Oscope message fields

Octets Field Description
2 Source Mote ID Address of sending node
2 SN Sample number corresponding to the last

sample
2 Channel Signal ID (see Table B.17)

20 Sample SN-9..SN 10 16-bit data samples
4 Timestamp 32-bit jiffy timestamp

30 bytes

Table B.17 WBAN defined signal IDs (channel field)

channel Signal name Description
0 ACCX Accelerometer, x-axis
1 ACCY Accelerometer, y-axis
2 ACCZ Accelerometer, z-axis
3 ECG1 ECG, signal 1
4 ECG2 ECG, signal 2

5 AUX1 Auxiliary, user debug
6 AUX2 Auxiliary, user debug
7 AUX3 Auxiliary, user debug

96

B.2.2 CONFIGURE ACKNOWLEDGEMENT (AM_CFG_ACKMSG = 0x51)

The Configure Acknowledgement message is sent from the sensor node to the

personal server in response to one of the configuration messages. The original

configuration message is included for reference and a response code is supplied as

indicated in Table B.18.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Source Mote ID (2)

Response (1) Reserved (1)

CORRESPONDING CONFIGURATION MESSAGE

(varies)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Source Mote ID (2)

Response (1)Response (1) Reserved (1)Reserved (1)

CORRESPONDING CONFIGURATION MESSAGE

(varies)

Figure B.12 Configure Acknowledgement message format

Table B.18 Configure Acknowledgement message fields

Octets Field Description
2 Source Mote ID Address of sending node
1 Response ACK = 0, NAK = 255
1 reserved Not implemented at this time

Varies Corresponding Configuration
Message

The message to which this
response applies

 4 bytes + length of corresponding configuration message

97

B.2.3 CALIBRATION ACKNOWLEDGEMENT (AM_CAL_ACKMSG = 0x52)

The Calibration Acknowledgement message is sent from the sensor node to the

personal server in response to a calibration message.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Source Mote ID (2)

Response (1) Cal type (1)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Source Mote ID (2)

Response (1)Response (1) Cal type (1)Cal type (1)

Figure B.13 Calibration Acknowledgement message format

Table B.19 Calibration Acknowledgement message fields

Octets Field Description
2 Source Mote ID Address of sending node
1 Response ACK = 0, NAK = 255
1 Cal type Type of calibration that was performed

(See
Table B.11)

4 bytes

98

B.2.4 EVENT (AM_EVENTMSG = 0x52)

The Event message is used to notify the personal server of an on-sensor event.

Only non-maskable event types and event types that have been explicitly enabled by the

personal server using an event mask message can generate event messages.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Timestamp (4)

Event type (1) Reserved (1)

Argument 1 (2)

Source Mote ID (2)

Argument 3 (2)

Argument 4 (2)

Argument 2 (2)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Timestamp (4)Timestamp (4)

Event type (1)Event type (1) Reserved (1)Reserved (1)

Argument 1 (2)Argument 1 (2)

Source Mote ID (2)Source Mote ID (2)

Argument 3 (2)Argument 3 (2)

Argument 4 (2)Argument 4 (2)

Argument 2 (2)Argument 2 (2)

Figure B.14 Event message format

Table B.20 Event message fields

Octets Field Description
2 Source Mote ID Address of sending node
1 Event Type
1 Reserved Not implemented at this time
4 Timestamp 32-bit global timestamp
8 Argument 1 – 4 See Table B.21

16 bytes

99

Table B.21 ActiS Event Types and Arguments in Event Message

Value Event Type Argument Use
1 Reset (cannot be

masked)
Not Used

2 Sensor Error
(cannot be
masked)

Not Used

3 Step Detected Arg 1 - Vector force
Arg 2 - time since last step
Arg3,4 - not used

4 R Peak Detected Arg 1 - RR interval
Arg 2 - Baseline
Arg 3 - Timestamp of last RPeak (15..0)
Arg 4 - Timestamp of last RPeak (31..16)

5 Force Threshold Arg 1 – measured force on x-axis
Arg 2 – measured force on y-axis
Arg 3 – measured force on z-axis
Arg 4 – not used

6 AEE Arg 1 – AEE for previous one second
interval
Arg 2,3,4 – Not Used

100

B.2.5 INVENTORY RESPONSE (AM_INVENTORY_RESPTMSG = 0x58)

The Inventory Response message is sent in response to the INVENTORY

MESSAGE. The length of reply is dependent on the full field supplied by the personal

server in the INVENTORY MESSAGE. The full response summarizes the sensors

operating configuration and embedded software version. The short response can be used

simply to verify a sensor’s presence in the network.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Timestamp (4)

Mode (1) Location (1)

Major Version (2)

Source Mote ID (2)

Minor Version (2)

Rate (1) Reserved (1)

Short

Full

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Timestamp (4)

Mode (1) Location (1)

Major Version (2)

Source Mote ID (2)

Minor Version (2)

Rate (1) Reserved (1)

Short

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Timestamp (4)

Mode (1) Location (1)

Major Version (2)

Source Mote ID (2)

Minor Version (2)

Rate (1) Reserved (1)

Timestamp (4)Timestamp (4)

Mode (1) Location (1)Mode (1)Mode (1) Location (1)Location (1)

Major Version (2)Major Version (2)

Source Mote ID (2)Source Mote ID (2)

Minor Version (2)Minor Version (2)

Rate (1) Reserved (1)Rate (1)Rate (1) Reserved (1)Reserved (1)

Short

Full

Figure B.15 Inventory Response message format

Table B.22 Inventory Response message fields

Octets Field Description
2 Source Mote ID Address of sending node
4 Timestamp 32-bit global timestamp
2 Major Version Most significant Version number
2 Minor Version Least significant Version number
1 Mode Operating Mode (See Table B.4)
1 Location Location of sensor (See Table B.6)
1 Rate Sampling Rate
1 Reserved Not implemented at this time

14 bytes Full
6 bytes Short

101

APPENDIX C

TINYOS MODIFICATIONS

This appendix identifies the changes to the standard TinyOS 1.1.15 installation in

order to build and run the ActiS applications. The changes are of two types: a) new

TimeSync library component and b) modifications to existing files. For simplicity, we

use $ROOT to refer to the system specific root of the TinyOS installation.

There are five files necessary for the TimeSync library component. Those are

enumerated in Table C.1. The TimeSync folder does not exist in the standard TinyOS

installation; this folder must be created and then simply copy these files from the WBAN

project CD into the new folder.

Table C.1 TimeSync library files

File Description of File

$ROOT\TOS\lib\TimeSyn\GlobalTime.h TimeSync structure definitions
$ROOT\TOS\lib\TimeSyn\GlobalTime.nc GlobalTime interface definition
$ROOT\TOS\lib\TimeSyn\TimeSyncC.nc TimeSync configuration
$ROOT\TOS\lib\TimeSyn\TimeSyncM.nc TimeSync implementation
$ROOT\TOS\lib\TimeSyn\TimeSyncMsg.h TimeSync Beacon Message Format

 The remaining seven files are existing files that must be modified to support the

WBAN applications. The easiest way to modify these is to make a backup of the original

(TinyOS) file and then copy the files directly from the WBAN project CD – overwriting

the file in the process. For future versions of TinyOS (beyond 1.1.15), it becomes

102

necessary to merge the files and understand the differences. Table C.2 enumerates the

changes in each file in an effort to help with this process.

Table C.2 Changes to existing TinyOS files

File Description of Change

$ROOT\TOS\lib\CC2420\
CC2420RadioC.nc

Add LocalTime interface and
TimerM component to the CC2420
Radio Configuration

$ROOT\TOS\lib\CC2420\
CC2420RadioM.nc

Add changes to CC2420 driver to
support the MAC-layer time
stamping of FTSP. All changes are
inside #ifdef TELOS_TIME_SYNC

$ROOT\TOS\platform\MSP430\
HPLUSART0m.nc

Changes to
USARTControl.setClockSource() to
overcome a software defect
preventing dynamic selection of
clock source (needed for USART
multiplexing)

$ROOT\TOS\platform\telos\
AM.h

Added localTime to TinyOS packet
definition. This is not transmitted
over the radio, but is the field used
for receive time stamping related to
time synchronization protocol.

$ROOT\TOS\platform\telos\
BusArbitrationM.nc

Changes to support our TimeslotMgr
scheme and USART multiplexing.
Specifically, prevent calls to
StdControl.stop() from disabling
bus arbitration (this is called from
RadioSplitControl stop())

$ROOT\TOS\platform\telos\
hardware.h

Telos rev A GPIO assignments for
testing purposes

$ROOT\TOS\platform\telosb\
hardware.h

Telos rev B / Tmote Sky GPIO
assignments for testing purposes

103

APPENDIX D

BUILDING AND RUNNING APPLICATIONS IN TINYOS

 This appendix is dedicated to providing quick start instructions for new project

members. It identifies the common steps for building, installing, and testing WBAN

projects.

 ActiS and eActiS projects are built from the same project directory using makefile

flags. Figure D.1 shows an excerpt from the ActiS makefile and a number of the

configurable items for building the ActiS project.

104

.

.

PFLAGS=-I%T/lib/Flash

PFLAGS += -DTELOS_TIME_SYNC -I%T/lib/TimeSync -DTIMESYNC_RATE=1

PFLAGS += -DACTIS_TIME_SYNC_TEST

#CAO 01.25.06 set TOSH DATA LENGTH to 30 for ActiS

#(supports 10 sample oscope + 32bit timestamp)

PFLAGS += -DTOSH_DATA_LENGTH=30

For ECG sensor, define exactly one of these

PFLAGS += -DACTIS_ECG

PFLAGS += -DECG_POLAR

For Accelerometer sensor, define this

PFLAGS += -DACTIS_ACC

and exactly one of these

PFLAGS += -DACC_ISPM

PFLAGS += -DACC_ANALOG

Select number of buffers

PFLAGS += -DMAX_NUM_BUFFERS=26

Define channel / group

PFLAGS += -DCC2420_DEF_CHANNEL=12

DEFAULT_LOCAL_GROUP := 0x22

.

.

From ActiS Makefile

Select ECG or ACC

Select type of Acc Sensor

Number of buffers

for BufMgr

Channel assignment

must match NC

Figure D.1 ActiS makefile configuration options

 The application can be built and installed in the same step. If more than one

Tmote Sky is connected, the COM port must be specified. This can be determined by

using the motelist command:

Chris Otto@martini /opt/tinyos-1.x/Apps/ActiS

$ motelist

Reference CommPort Description

---------- ---------- --

M4A0M2ET COM6 tmote sky

Issue make <platform> [re]install.<addr> bsl,<port> where platform is either telosa or

telosb. <Addr> is the desired moteID of the sensor and cannot be one; static timeslot

105

assignments are based on moteID and the address should be programmed between 2 and

20. <port> is the zero-based COM port (i.e., COM6 is represented by a 5).

Chris Otto@martini /opt/tinyos-1.x/Apps/ActiS

$ make telosb install.3 bsl,5

.

.

.

24984 bytes programmed.

Reset device ...

rm -f build/telosb/main.exe.out-3 build/telosb/main.ihex.out-3

Use reinstall when the images have already been compiled and only the platform needs to

be programmed. Similarly, the network coordinator (ActisGway) can be built from the

ActiSGway project folder and an address of 1 should always be specified:

Chris Otto@martini /opt/tinyos-1.x/Apps/ActiSGway

$ make telosb install.1 bsl,4

.

.

.

14826 bytes programmed.

Reset device ...

rm -f build/telosb/main.exe.out-1 build/telosb/main.ihex.out-1

Chris Otto@martini /opt/tinyos-1.x/Apps/ActisGway

From time to time, it will be handy to use the TinyOS tools for debugging. In particular,

the Listen tool provides a rudimentary packet sniffer and will display all packets

forwarded to the network coordinator USB interface. The Listen tool uses the

MOTECOM environment variable which selects the port and baudrate. This can be

invoked from the tools directory:

Chris Otto@martini /opt/tinyos-1.x/tools

$ export MOTECOM=serial@COM5:telos

Chris Otto@martini /opt/tinyos-1.x/tools

$ java net.tinyos.tools.Listen

serial@COM5:57600: resynchronising

1E 01 08 EA FF FF FF FF 0A 7D 03 00 86 1A 00 00 99 21 88 21 89 21

8B 21 98 21 83 21 93 21 9F 21 A2 21 83 21 8F B0 1F 00

1E 01 08 EB FF FF FF FF 0A 7D 03 00 86 1A 01 00 15 21 16 21 2A 21

1A 21 0D 21 01 21 29 21 0E 21 0F 21 0E 21 8F B0 1F 00

106

Similarly, the Java scope can be invoked for the purposes of graphing raw data and

various forms for outputs using the raw data / oscope message. This tool also requires

assignment of the MOTECOM variable:

Chris Otto@martini /opt/tinyos-1.x/tools

$ export MOTECOM=serial@COM5:telos

Chris Otto@martini /opt/tinyos-1.x/tools

$ java net.tinyos.oscope.oscilloscope

serial@COM5:57600: resynchronising

107

REFERENCES

[10Blade] 10Blade, http://www.10blade.com

[Accusplit] Accusplit, http://www.accusplit.com

[ADXL202] Analog Devices, Low-Cost ±2 g Dual-Axis Accelerometer with Duty Cycle

Output, http://www.analog.com/en/prod/0%2C2877%2CADXL202%2C00.html

[Anliker04] U. Anliker, J.A. Ward, P. Lukowicz, G. Tröster, F. Dolveck, M. Baer, F.

Keita, E. Schenker, F. Catarsi, L. Coluccini, A. Belardinelli, D. Shklarski, M.

Alon, E. Hirt, R. Schmid, and M. Vuskovic, “AMON: A Wearable

Multiparameter Medical Monitoring and Alert System,” IEEE Transactions on

Information Technology in Biomedicine, Vol.8, Issue 4, December 2004,

pp. 415-427.

[Body] BodyMedia, Inc. http://www.bodymedia.com

[Bluetooth] http://www.bluetooth.com.

[Bouten97] C.V.C. Bouten, K.T.M. Koekkoek, M. Verduin, R. Kodde, and J.D. Janssen,

“A Triaxial Accelerometer and Portable Data Processing Unit for the Assessment

of Daily Physical Activity,” IEEE Transactions on Biomedical Engineering, 44

(3). pp. 136-147.

[CamN] Cambridge Neurotechnology Ltd., http://www.camntech.com/

[CardioLabs] CardioLabs, Inc. http://www.cardiolabs.com/

108

[CardioNet] CardioNet, http://www.cardionet.com

[CC2420] Chipcon CC2420 2.4 GHz IEEE 802.15.4 / ZigBee-ready RF Transceiver,

http://www.chipcon.com/files/CC2420_Data_Sheet_1_3.pdf

[Cox05] D. Cox, E. Jovanov, and A. Milenkovic, “Time Synchronization for ZigBee

Networks,” Proceedings of the 37th SSST, Tuskegee, Alabama, 2005.

[DeVaul03] R.W. DeVaul, M. Sung, J. Gips, and S. Pentland, “MIThril 2003:

Applications and Architecture,” Proceedings of ISWC 2003, White Plains, U.S.A.,

2003.

[Gay03] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and D. Culler, “The

nesC Language: A Holistic Approach to Networked Embedded Systems,” ACM

SIGPLAN Conference on Programming Language Design and Implementation,

San Diego, U.S.A., 2003.

[IEEE802.15.4] IEEE std. 802.15.4 - 2003: Wireless Medium Access Control (MAC) and

Physical Layer (PHY) Specifications for Low Rate Wireless Personal Area

Networks (LR-WPANs), http://standards.ieee.org/getieee802/download/802.15.4-

2003.pdf, 2003.

[Istepanian04] R.S.H. Istepanian, E. Jovanov, and Y.T. Zhang, "Guest Editorial

Introduction to the Special Section on M-Health: Beyond Seamless Mobility and

Global Wireless Health-Care Connectivity," IEEE Transactions on Information

Technology in Biomedicine, Vol.8, Issue 4, December 2004, pp. 405 - 414.

109

[Jovanov05a] E. Jovanov, A. Milenkovic, C. Otto, and P.C. de Groen, “A Wireless Body

Area Network of Intelligent Motion Sensors for Computer Assisted Physical

Rehabilitation,” Journal of NeuroEngineering and Rehabilitation, March 2005,

2:6.

[Jovanov05b] E. Jovanov, A. Milenkovic, C. Otto, P. de Groen, B. Johnson, S. Warren,

and G. Taibi, “A WBAN System for Ambulatory Monitoring of Physical Activity

and Health Status: Applications and Challenges,” Proceedings of the 27th Annual

International Conference of the IEEE Engineering in Medicine and Biology

Society, Shanghai, China, September 2005.

[Jovanov06] E. Jovanov, and D. Raskovic, “Wireless Intelligent Sensors,” in R.H.

Istepanian, S. Laxminarayan, C.S. Pattichis, Eds, M-Health: Emerging Mobile

Health Systems, Springer, 2006.

[Lorincz04] K. Lorincz, D.J. Malan, T.R.F Fulford-Jones, A. Nawoj, A. Clavel, V.

Shnayder, G. Mainland, S. Moulton, and M. Welsh, “Sensor Networks for

Emergency Response: Challenges and Opportunities,” IEEE Pervasive

Computing, Special Issue on Pervasive Computing for First Response, Oct/Dec

2004, pp. 16-23.

[Maglaveras98] N. Maglaveras, T. Stamkopoulos, C. Pappas, and M.G. Strintzis, “An

Adaptive Backpropagation Neural Network for Realtime Ischemia Episodes

Detection: Development and Performance Analysis Using the European ST-T

Database,” IEEE Transactions on Biomedical Engineering, Vol. 45, July 1998.

pp. 805-813.

110

[Martin00] T. Martin, E. Jovanov, and D. Raskovic, “Issues in Wearable Computing for

Medical Monitoring Applications: A Case Study of a Wearable ECG Monitoring

Device,” International Symposium on Wearable Computers ISWC 2000, Atlanta,

October 2000.

[Maróti04] M. Maróti, B. Kusy, G. Simon, and Á. Lédeczi, “The Flooding Time

Synchronization Protocol,” Proceedings of the 2nd International Conference on

Embedded Networked Sensor Systems, Baltimore, U.S.A., 2004.

[Mathie04] M.J. Mathie, A.C.F. Coster, N.H. Lovell, and B.G. Celler “Accelerometry:

Providing An Integrated, Practical Method For Long-Term, Ambulatory

Monitoring Of Human Movement,” Physiological Measurement Vol. 25,

February 2004, pp. R1-R20.

[Milenkovic05] A. Milenkovic, M. Milenkovic, E. Jovanov, and D. Hite, “An

Environment for Runtime Power Monitoring of Wireless Sensor Network

Platforms,” Proceedings of the 37th SSST, Tuskegee, Alabama, 2005.

[Milenkovic06] A. Milenkovic, C. Otto, and E. Jovanov, "Wireless Sensor Networks for

Personal Health Monitoring: Issues and An Implementation," To appear in

Computer Communications (Special issue: Wireless Sensor Networks:

Performance, Reliability, Security, and Beyond), Elsevier, 2006.

[Mokdad00] A.H. Mokdad, J.S. Marks, D.F. Stroup, and J.L. Gerberding, "Actual Causes

of Death in the United States, 2000," Journal of the American Medical

Association Vol. 291, No. 10, March 2004, pp. 1238-1241.

[Moteiv] Moteiv, http://www.moteiv.com

111

[MSP430x1xx] Texas Instruments, MSP430x1xx Family User’s Guide,

http://focus.ti.com/lit/ug/slau049f/slau049f.pdf

[Muelhofer00] A. Muelhofer, “Controlling the DCO Frequency of the MSP430x1xx,”

Texas Instruments Application Report SLAA074, April 2000,

http://focus.ti.com/lit/an/slaa074/slaa074.pdf

[NCHC] National Coalition on Health Care, http://www.nchc.org/facts/cost.shtml

[Oliver05] N. Oliver, and F. Flores-Mangas, “HealthGear: A Real-time Wearable System

for Monitoring and Analyzing Physiological Signals,” MSR Technical Report,

May 2005.

[Otto05] C. Otto, J.P. Gober, R.W. McMurtrey, A. Milenkovic, and E. Jovanov, "An

Implementation of Hierarchical Signal Processing on Wireless Sensor in TinyOS

Environment," 43rd Annual ACM Southeast Conference ACMSE 2005, Vol. 2,

Kennesaw, Georgia, March 18-20, 2005, pp. 49-53.

[Otto06] C. Otto, A. Milenkovic, C. Sanders, and E. Jovanov, "System Architecture of a

Wireless Body Area Sensor Network for Ubiquitous Health Monitoring," Journal

of Mobile Multimedia, Vol. 1, No. 4, 2006, pp. 307-326.

[Pan85] J. Pan, and W.J. Tompkins, “A Real Time QRS Detection Algorithm,” IEEE

Transactions on Biomedical Engineering, Vol. 32, March 1985. pp. 230-236.

[Pentland04] S. Pentland, “Healthwear: Medical Technology Becomes Wearable,” IEEE

Computer, 37(5), 2004, pp. 34-41.

[Polar] Polar Electro, Inc. http://www.polarusa.com

112

[Priddy06] B. Priddy, and E. Jovanov, “Wireless LAN Technologies for Healthcare

Applications,” in R.H. Istepanian, S. Laxminarayan, C.S. Pattichis, Eds, M-

Health: Emerging Mobile Health Systems, Springer, 2006.

[Raskovic04] D. Raskovic, T. Martin, and E. Jovanov, “Medical Monitoring Applications

for Wearable Computing,” The Computer Journal, July 2004, Vol. 47, Issue 4, pp.

495-504.

[Shnayder05] V. Shnayder, B. Chen, K. Lorincz, T.R.F. Fulford-Jones, and M. Welsch,

“Sensor Networks for Medical Care,” Harvard University Technical Report TR-

08-05, 2005.

[Steele03] B.G. Steele, B. Belza, K. Cain, C. Warms, J. Coppersmith, and J. Howard,

“Bodies In Motion: Monitoring Daily Activity And Exercise With Motion

Sensors In People With Chronic Pulmonary Disease,” Journal of Rehabilitation

Research & Development, Sep/Oct 2003, Supplement 2, 40(5), pp. 45–58.

[Suunto] Suunto, http://www.suunto.com

[TinyOS] TinyOS, http://www.tinyos.net

[UCB] U.S. Census Bureau, U.S. Interim Projections by Age, Sex, Race, and Hispanic

Origin, http://www.census.gov/ipc/www/usinterimproj

[Warren05] S. Warren, J. Lebak, J. Yao, J. Creekmore, A. Milenkovic, and E. Jovanov,

“Interoperability and Security in Wireless Body Area Network Infrastructures,”

Proceedings of the 27th Annual International Conference of the IEEE

Engineering in Medicine and Biology Society, Shanghai, China, September 2005.

113

[Wheelock99] B. Wheelock, “Autonomous Real-Time Detection of Silent Ischemia,”

M.S. thesis, University of Alabama in Huntsville, 1999.

[WHO2000] World Health Organization, “The World Health Report 2000 – Health

Systems: Improving Performance,” 2000.

[ZigBee] Zigbee Alliance: Zigbee Specification v1.0, 2004, http://www.zigbee.org

