

A BINARY INSTRUMENTATION TOOL SUITE FOR
CAPTURING AND COMPRESSING TRACES FOR

MULTITHREADED SOFTWARE

by

Albert R. Myers

A THESIS

Submitted in partial fulfillment of the requirements

for the degree of Master of Science in Engineering

in

The Department of Electrical & Computer Engineering

to

The School of Graduate Studies

of

The University of Alabama in Huntsville

HUNTSVILLE, ALABAMA

2014

ii

In presenting this thesis in partial fulfillment of the requirements for a master’s de-

gree from The University of Alabama in Huntsville, I agree that the Library of this

University shall make it freely available for inspection. I further agree that permis-

sion for extensive copying for scholarly purposes may be granted by my advisor or, in

his/her absence, by the Chair of the Department or the Dean of the School of Gradu-

ate Studies. It is also understood that due recognition shall be given to me and to

The University of Alabama in Huntsville in any scholarly use which may be made of

any material in this thesis.

(student signature) (date)

iii

THESIS APPROVAL FORM

Submitted by Albert R. Myers in partial fulfillment of the requirements for the de-

gree of Master of Science in Engineering in Computer Engineering and accepted on

behalf of the Faculty of the School of Graduate Studies by the thesis committee.

We, the undersigned members of the Graduate Faculty of The University of Ala-

bama in Huntsville, certify that we have advised and/or supervised the candidate on

the work described in this thesis. We further certify that we have reviewed the the-

sis manuscript and approve it in partial fulfillment of the requirements for the de-

gree of Master of Science in Engineering in Computer Engineering.

 Committee Chair

(Date)

 Department Chair

 College Dean

 Graduate Dean

iv

ABSTRACT

The School of Graduate Studies

The University of Alabama in Huntsville

Degree Master of Science in Engineering College/Dept. Engineering/Electrical &

 Computer Engineering

Name of Candidate Albert R. Myers

Title A Binary Instrumentation Tool Suite For Capturing and Compressing Traces

For Multithreaded Software

Program execution traces are widely used in program debugging, workload

characterization, performance analysis, and trace-driven architecture simulation. A

number of research efforts have been dedicated to tracing in single-threaded soft-

ware. Multi-cores that integrate a number of processor cores on a single chip and

execute multithreaded software have become the standard in embedded, desktop,

and server computer systems. In this research we develop and evaluate a suite of

software tools for capturing and compressing traces for multithreaded software

called mTrace, which we believe is the first set available. mTrace incorporates the

following tools: (i) mcfTrace that captures and compresses control-flow traces, (ii)

mlsTrace that captures and compresses memory referencing traces, (iii) mcfTRaptor

that captures control-flow traces and compresses them using our TRaptor branch

prediction mechanism, and (iv) mlvCFiat that captures load value traces and com-

presses them using our CFiat cache mechanism. The thesis describes the tools’ func-

tionality and verification and evaluates their effectiveness by considering trace sizes,

execution times, and prediction rates of cache and branch prediction structures for a

selected set of benchmarks.

Abstract Approval: Committee Chair

 Department Chair

 Graduate Dean

v

TABLE OF CONTENTS

 Page

LIST OF FIGURES .. xi

LIST OF TABLES .. xv

CHAPTER

TABLE OF CONTENTS ... 5

CHAPTER 1 .. 1

1.1 Background and Motivation ... 1

1.2 mTrace Tool Suite .. 3

1.3 Results .. 4

1.4 Contributions .. 5

1.5 Outline .. 6

CHAPTER 2 .. 7

2.1 Control Flow Traces ... 7

2.2 Memory Reference Traces .. 9

2.3 Tracing in Embedded and Multi-core Systems...................................10

2.4 Challenges and Opportunities ..13

CHAPTER 3 ...15

3.1 Software Trace Compression ..15

3.2 Hardware Trace Compression ..16

vi

CHAPTER 4 ...26

4.1 mcfTrace ..28

4.1.1 Functional Description ..29

4.1.2 Implementation Details ..32

4.1.3 Verification/Test ..39

4.2 mlsTrace ..43

4.2.1 Functional Description ..44

4.2.2 Implementation Details ..48

4.2.3 Verification/Test ..54

4.3 mcfTRaptor ..60

4.3.1 Functional Description ..61

4.3.2 Implementation Details ..68

4.3.3 Verification/Test ..77

4.4 mlvCFiat ..86

4.4.1 Functional Description ..86

4.4.2 Implementation Details ..92

4.4.3 Verification/Test ..99

CHAPTER 5 ... 108

5.1 Environment .. 108

5.2 Metrics ... 109

5.3 Benchmarks ... 110

vii

5.4 Running Experiments ... 116

CHAPTER 6 ... 119

6.1 mcfTrace .. 119

6.2 mlsTrace .. 122

6.3 mcfTRaptor .. 125

6.4 mlvCFiat .. 134

CHAPTER 7 ... 145

CHAPTER 8 ... 147

viii

LIST OF FIGURES

Figure Page

Figure 3.1 TRaptor Operation for One Thread (Private/Shared)19

Figure 3.2 mcfTRaptor with Private Predictor Structures20

Figure 3.3 mcfTRaptor with Shared Predictor Structures21

Figure 3.4 CFiat Operation for One Thread (Private/Shared)23

Figure 3.5 mlvCFiat with Private Cache Structures......................................24

Figure 3.6 mlvCFiat with Shared Cache Structures25

Figure 4.1 mcfTrace organization ...27

Figure 4.2 mcfTrace Descriptor Formats: Binary (top) and ASCII (bottom). 31

Figure 4.3 mcfTrace Example Output ..32

Figure 4.4 mcfTrace Instrumentation Implementation from mcfTrace.cpp ..35

Figure 4.5 Analysis Routine from mcfTrace ..36

Figure 4.6 mcfTrace Write Routine ..39

Figure 4.7 Selection from BranchEnumeration.s ..40

Figure 4.8 mcfTrace output for BranchEnumeration.s selection40

Figure 4.9 Unconditional branches from BranchEnumeration.s41

Figure 4.10 mcfTrace output for BranchEnumeration.s section41

Figure 4.11 Selection from BranchTest.s and mcfTrace output42

Figure 4.12 Selection from BranchTest.s and mcfTrace output43

Figure 4.13 mlsTrace descriptor formats: binary (top) and ASCII (bottom) ..46

Figure 4.14 mlsTrace example output ..48

Figure 4.15 mlsTrace instrumentation from mlsTrace.cpp51

Figure 4.16 mlsTrace analysis example from mlsTrace.h53

ix

Figure 4.17 Example 1 from mlsTest.c ..54

Figure 4.18 mlsTest.c output and mlsTrace descriptors for Example 156

Figure 4.19 Example 2 from mlsTest.c ..57

Figure 4.20 mlsTest.c output and mlsTrace descriptors for Example 259

Figure 4.21 mlsTrace descriptors for SIMD instructions in Example 260

Figure 4.22 mcfTRaptor descriptor formats: binary (top) and ASCII (bottom)

 ..65

Figure 4.23 mcfTRaptor example output ...67

Figure 4.24 mcfTRaptor instrumentation ...69

Figure 4.25 mcfTRaptor – indirect call analysis code71

Figure 4.26 mcfTRaptor – iBTB index ...72

Figure 4.27 mcfTRaptor – iBTB lookup ...73

Figure 4.28 mcfTRaptor – conditional branch analysis75

Figure 4.29 mcfTRaptor – gshsare index and update76

Figure 4.30 gshare Example ..77

Figure 4.31 gshare Entries Test Output ..79

Figure 4.32 Return Address Stack Example ...81

Figure 4.33 Return Address Stack Example Results82

Figure 4.34 iBTB Example ...83

Figure 4.35 iBTB Results ...86

Figure 4.36 mlvCFiat Descriptor Format ..89

mlvCFiat ASCII descriptors also include Thread ID, First Access Hit Count,

and Value. In Figure 4.36, the ASCII descriptor states thread zero had two first

x

access flag hits before mlvCFiat had a first access flag miss for a four byte load

operand with a value of 0x00000004. ..90

Figure 4.37 mlvCFiat Example ..92

Figure 4.38 mlvCFiat Instrumentation ...95

Figure 4.39 mlvCFiat Multiline Cache Load Analysis96

Figure 4.40 Multiline Cache Load Operation ..99

Figure 4.41 Evict.s .. 100

Figure 4.42 evict.s Results ... 103

Figure 4.43 multiblock.s ... 104

Figure 4.44 multiblock.s Results .. 107

Figure 5.1 Block Diagram of the Xeon E3-1240 v2 processor 109

Figure 5.2 An Excerpt of a Script File that Runs mcfTrace on the fft

Benchmark. .. 119

Figure 6.1 Ratio of Trace File Sizes for Shared and Private TRaptor 133

Figure 6.2 Trace File Size in Bytes/Ins and Byte/Read for Private mlvCFiat

 .. 138

Figure 6.3 Trace File Sizes in Bytes/Ins and Bytes/Read for Shared mlvCFiat

 .. 143

xi

LIST OF TABLES

Table Page

Table 4.1 mcfTrace Parameters ...29

Table 4.2 Intel 64 and IA-32 Control Transfer Instruction Classification33

Table 4.3 mlsTrace Parameters ...44

Table 4.4 mlsTrace Data Types ..49

Table 4.5 mcfTRaptor parameters ...62

Table 4.6 mlvCFiat parameters ...88

Table 5.1 Benchmark Characterization for Control-flow Instructions 113

Table 5.2 Benchmark Characterization for Memory Reads and Writes 114

Table 5.3 Benchmark Characterization of Memory Reads 115

Table 5.4 Benchmark Characterization of Memory Writes 116

Table 5.5 Trace Collection Runs .. 117

Table 6.1 mcfTrace Output Trace Files Sizes and Compression Ratio 120

Table 6.2 mcfTrace Running Times and Slowdown Due to Compression 122

Table 6.3 mlsTrace Output Trace Files Sizes and Compression Ratio 123

Table 6.4 mlsTrace Execution Times and Compression Slowdowns 124

Table 6.5. Private TRaptor Misprediction Rates ... 126

Table 6.6. Private TRaptor Trace File Sizes .. 127

Table 6.7 Private mcfTRaptor Execution Times and Slowdown Due to

Compression ... 129

Table 6.8. Shared TRaptor Misprediction Rates ... 131

Table 6.9. Shared TRaptor Trace File Sizes .. 132

xii

Table 6.10 Shared mcfTRaptor Execution Times and Slowdown Due to

Compression ... 134

Table 6.11. Private mlvCFiat Cache and First Access Hit Rates.................. 136

Table 6.12. Private mlvCFiat Trace File Sizes .. 137

Table 6.13 Private mlvCFiat Running Times and Compression Slowdown . 139

Table 6.14. Shared mlvCFiat Cache and First Access Hit Rates 141

Table 6.15. Shared mlvCFiat Trace File Sizes .. 142

Table 6.16 Shared mlvCFiat Running Times and Compression Slowdown . 144

1

CHAPTER 1

INTRODUCTION

This chapter is organized as follows. Section 1.1 gives background and moti-

vation for this thesis. Section 1.2 gives a short overview of the mTrace tool suite de-

veloped to enable capturing and storing of program execution traces in multithread-

ed software. Section 1.3 describes main results of the experimental evaluation of the

mTrace tool suite. Section Section 1.4 lists the main contributions of the thesis and

Section 1.5 gives an outline of the thesis.

1.1 Background and Motivation

Increasing software complexity and time-to-market contraints have created

challenges for system testing and verification. According to the National Institute of

Standards and Technology [1], between $22.2 and $59.5 billion are spent nationally

because of inadequate software testing infrastructure. One half of the costs are in-

curred by end users of software through error avoidance and error mitigation activi-

ties, and the other half is incured by software developers, reflecting the resources

consumed due to inadequate testing methods and tools. The same study found that

developers spend an increasing portion of time in software testing and debugging -

between 50% and 75% of total development time. Given the ever-increasing sophisti-

cation and complexity of software and a market shift toward mutli-core systems, the

cost of testing and debugging of software is likely to increase further. These trends

2

underscore a need for better better debugging tools to aide in the software engineer-

ing process.

Traditional software debugging is inadequate for real-time systems in avion-

ics, autmotive, or military applications because software instrumentation imposes

contraints on the timing requirements of the system. Software bugs that manifest in

real-time systems are not easily reproducible, and softare instrumentation itself

may affect the dynamic properties of the sofware being analyzed. Multithreaded

software can also create difficult to debug race conditions, where execution is nonde-

terministic. Hardware based debugging techniques do not suffer from these prob-

lems, and allow developers to debug software without the need to modify source code

or rebuild the executable. Hardware debugging usually traces out the relevant in-

formation from the processor chip to a remote system using a software interface.

Hardware debugging, or tracing, often requires large on chip buffers and wide trace

ports to effectively trace out large quantites of data in real-time. These hardware

requirements are the motivation of this research, which seeks to reduce traces to a

minimal size while still allowing full program replaybility, and similarly reduce

trace port bandwidth. IEEE provides a standard that defines different classes of

hardware debugging for embedded systems [2]. This standard, Nexus 5001, specifies

four classes of debugging, with each subsequent class requiring more hardware

complexity. Class 1 provides basic run-control, including break points and a mecha-

nism for reading register and memory values. Class 2 includes unobtrusive collec-

tion of execution traces in real-time, which provides enough information to recreate

the entire execution path of the program. Class 3 includes, in addition to the execu-

tion traces of class 2, the collection of memory referencing traces to provide complete

replayability of the values and addresses written to and read from memory. Class 4

3

allows the remote system interrogating the processor core to emulate memory ac-

cesses.

This research seeks to create a software tool suite for capturing and com-

pressing program execution traces (classes 2 and 3 of Nexus 5001) for multithreaded

software. Whereas a number of software tools exist for capturing program execution

traces for single-threaded software, no such tools are readily available for multi-

threaded software. The main goal of this research is the development and verifica-

tion of a tool suite to support capturing traces in multithreaded programs.

1.2 mTrace Tool Suite

The mTrace tool suite is a collection of Intel Pin tools that provide a means

for collecting execution traces (also called control-flow traces) and memory referenc-

ing traces with varying degrees of flexibility. The following four Pin tools are includ-

ed in mTrace:

 mcfTrace – Collects and reports control flow traces consisting of branch

instruction trace descriptors for multithreaded software. The address of

the branch instruction, target address, and type of branch instruction are

reported each time a thread retires a branch instruction.

 mlsTrace – Collects and reports memory reference traces for multithread-

ed software. Each trace descriptor includes the load/store instruction’s

address, operand address, operand size, and operand value.

 mcfTRaptor – Collects and reports a minimal control flow trace for multi-

threaded software using the TRaptor [3] branch prediction structure.

Trace descritpors are collected for incorrectly predicted branch instruc-

4

tions, reducing the total trace size needed for complete program replaya-

bility.

 mlvCFiat – Collects and reports a minimal load value trace for multi-

threaded software by utilizing the CFiat [4] cache access mechanism to

reduce the total trace size needed for program replayability. Trace de-

scriptors are collected whenever a cache block is evicted or an operand in

a cache block is referenced for the first time.

Each of these four tools uses a variety of parameters that modify the scope of

the trace, how tracing occurs, and how the trace is saved. The first two tools,

mcfTrace and mlsTrace, were motivated by a need to inspect general properties of

control-flow and memory reference traces for multithreaded software, while the last

two, mcfTRaptor and mlvCFiat, were motivated by the need for hardware tracing

techniques to reduce trace sizes and trace port bandwidths. Each tool generates a

trace file for a target binary (and any shared libraries it uses), and a statistics file

that characterizes the trace execution.

1.3 Results

The mTrace tools are fully tested and verified on a standard set of parallel

benchmark programs. We evaluate the effectiveness of the mTrace tools by consider-

ing trace file size and the time needed to capture and store traces as a function of

the number of software threads. Each trace tool supports an optional general-

purpose compression of captured traces before they are written to the secondary

storage. To evaluate compressability of individual traces, we measure compression

ratio achieved by general-purpose compressors.

5

For mcfTRaptor and mlvCFiat tools, we analyze the effectiveness of predictor

and cache structures employed by measuring misprediction and cache miss rates. In

addition, we analyze two different organizations of TRaptor and CFiat structures:

private in which each software thread owns a prediction structure and shared in

which multiple software threads share one structure. Our experimental evaluation

indicates that a private organization of branch prediction and cache structures re-

sults in smaller control-flow and load value traces when compared to the she shared

organization.

1.4 Contributions

This thesis makes the following contributions to the field of software binary

instrumentation and tools for trace capture and compression:

 Developed and tested tools for capturing and storing program execution

traces of multithreaded software, specifically:

o mcfTrace: a tool for capturing and compressing control-flow traces;

o mlsTrace: a tool for capturing and compressing data traces;

o mcfTRaptor: a tool for capturing and compressing control-flow

traces using our TRaptor mechanism;

o mlvCFiat: a tool for capturing and compressing data traces using

our CFiat mechanism.

 Performed experimental evaluation of the mTrace tools using SPLASH-2

benchmark suite while varying the number of threads.

 Created a public repository of the mTRace tools and traces available at:

http://lacasa.uah.edu/portal/index.php/software-data/32-mtrace-tools-and-

traces.

http://lacasa.uah.edu/portal/index.php/software-data/32-mtrace-tools-and-traces
http://lacasa.uah.edu/portal/index.php/software-data/32-mtrace-tools-and-traces

6

1.5 Outline

The outline of this thesis is as follows: Chapter 2 introduces software tracing,

tracing techniques, and future challanges and opportunities. Chapter 3 summarizes

the related work and the current state-of-the-art in the field of software and hard-

ware tracing. Chapter 4 describes the mTrace tool suite, summarizes their imple-

mentation, and lists the steps taken to verify their behavior. Chapter 5 explains the

experimental methodology used to evalute the mTrace tools for a set of benchmarks.

Chapter 6 gives the results of the experimental evaluation and Chapter 7 gives con-

cluding remarks.

7

CHAPTER 2

BACKGROUND

Software tracing provides software developers with detailed information on

the dynamic run-time behavior of software at the image, sub-routine, basic block, or

instruction level. Because tracing occurs at a lower level of abstraction and can gen-

erate billions of records per second, tracing imposes performance constraints during

collection and requires large amounts of storage. This chapter covers the background

of several aspects of this research. Sections 2.1 and 2.2 describe control flow and

memory reference traces and their applications, respectively. Section 2.3 relates the

problems of debugging embedded and real-time systems to tracing. Lastly, Section

2.4 explores the challenges faced in this research and opportunities to pursue in the

future.

2.1 Control Flow Traces

Control-flow traces are widely used in software debugging, trace-driven ar-

chitectural simulation (e.g., branch predictor studies), performance optimization and

tunning, and workload characterization [5]. Control flow traces of a program run-

ning on a processor are created by recording the addresses of the instructions in the

order they are executed. Each instruciton executed results in a single record in the

control-flow trace. Modern processors may execute billions of instructions per sec-

ond, generating a vast amount of information that needs to be captured, communi-

cated, and stored. In modern multi-cores, that include a dozen processor cores, the

amount of information captured in control-flow traces is even larger. The perfor-

8

mance and storage overheads associated with trace capture make such tracing feasi-

ble only on small program segments and impractical and cost-prohibitive for the en-

tire program.

Depending on the intended trace use, control flow traces can be modified to

include fewer but sufficient number of records. For example, in software debugging

the goal is to faithfully replay a program’s execution offline in software debugger. By

analyzing the actual control-flow captured on a host machine and comparing it with

the expected one, software developers can quickly locate sources of software bugs.

However, to recreate a program’s flow, one does not need to record the address of

every single instruction executed. Providing that the software debugger has access

to program’s executable, we need to record only changes in the program flow. These

changes are caused by either control-flow instructions or exceptions. When a change

in the program flow occurs, we need to record the program counter (PC) of the cur-

rently executing instruction and the branch target address (BTA) in the case of a

control-flow instruction or the exception-handler target address (ETA) in the case of

an exception. The format of trace records can be further modified to require fewer

bits for encoding. For example, the number of instructions executed in dynamic basic

blocks may replace the program counters, or the target addresses of direct branches

can be omitted from the trace because they can be inferred by the software debugger

from the program executable.

Other types of control-flow traces may require more trace records or fewer

trace records. For example, control-flow traces intended to be used in branch predic-

tor studies require one trace record per control-flow instruction, regardless of its

outcome. In multithreaded software, we may need to include additional information

9

such as thread identification that further qualifies each trace record. In some cases,

the time stamp or the processor core identification may be included in the trace.

2.2 Memory Reference Traces

Memory reference or data traces contain information recorded from instruc-

tions that read from memory or write to memory in the order in which they occur

during program execution. Typically, one trace record contains relevant information

on a single memory-referencing instruction, such as the program counter and infor-

mation about memory operands. For each memory operand, we may record (i) the

type of memory operation (read or write), (ii) operand address in memory, (iii) size of

the operand in bytes, and (iv) a data value read from memory or written to memory.

Other information may be included as well, including thread identification in case of

multithreaded software, timestamps for the read or write operation, or processor

core identification. The format of trace records depends on trace uses and they may

contain all or a subset of the fields described above. Regardless of the exact format of

trace records, capturing memory reference traces incurs very high performance and

storage overheads.

Similar to control flow traces, memory reference traces can be used for soft-

ware debugging, performance optimization and tunning, workload characterization,

and architectural simulations targeting memory subsystem and cache hierarchies.

For example, load value traces, traces that contain data values read from memory,

can be used in software debugging. Whereas control-flow traces support reconstruc-

tion of the program’s control flow only, load value traces enable under certain condi-

tions a complete replay of the executed program. These conditions assume that the

software debugger includes an instruction set simulator, has access to the program

10

binary, can access the control-flow traces containing exception records, and can ac-

cess to the load value traces [4]. Data address traces captured in real-time are of

special interest in multi-core systems as they offer valuable information about

shared memory access patterns and possible data race conditions.

2.3 Tracing in Embedded and Multi-core Systems

Software developers for server and desktop applications often rely on binary

instrumentation tools, software development environments, and software debuggers

to debug and trace program execution. For example, software developers may set

breakpoints, examine the content of registers and memory at breakpoitns, or step

through the program one instruction at a time. Setting breakpoints and examining

the processor state to locate difficult and intermittent bugs in large software projects

is demanding and time-consuming. Alternatively, developers can collect program

execution traces that are analyzed to diagnose program segments where bugs arise

faster. These software development environments may require minimal or no hard-

ware support. However, common to all these methods are that they are obtrusive –

the program execution in the debug mode differs from the “native” program execu-

tion when no debugging is involved. Whereas this interference may not pose chal-

lenges during software development for desktop and server applications, it is often

signicficant problem in embedded systems, especially real-time systems.

Embedded software developers face a unique set of challenges. These chal-

lenges are driven by both technology and market forces and include: (i) a growing

level of sophistication of embedded software with multi-layered software stacks, (ii)

increased levels of on-chip integration that limit the visibility of internal modules,

(iii) high operating frequencies, (iv) limited input/output bandwidths to and from

11

systems-on-a-chip, and (v) shrinking time-to-markets. Setting a breakpoint is often

not practical in debugging real-time embedded systems; e.g., it may be harmful for

hard drives or engine controllers. In addition, debugging through breakpoints inter-

feres with program execution. The order of events during debugging may deviate

from the order native execution; this deviation can cause original bugs to disappear

in the debug run.

To meet these challenges and get reliable and high-performance products to

market on time, embedded software developers increasingly rely upon on-chip re-

sources for debugging and program tracing. However, even limited hardware sup-

port for debugging and tracing is associated with extra cost in chip area for captur-

ing and buffering traces, for integrating these modules into the rest of the system,

and for sending out the information through dedicated trace ports. These costs often

make system-on-a-chip (SOC) designers reluctant to invest in additional chip area

solely devoted to debugging and tracing.

The IEEE’s Industry Standard and Technology Organization has proposed a

standard for a global embedded processor debug interface (Nexus 5001) [2]. This

standard specifies four classes of operation – higher numbered classes progressively

support more complex debug operations but require more on-chip resources. Class 1

provides basic debug features for run-control debugging, including single-stepping,

breakpoints, and access to processor registers and memory while the processor is not

running. Class 1 is traditionally implemented through a JTAG interface. However,

this approach is time-consuming and obtrusive; it interferes with the dynamic

runtime behavior of the program and can cause original bugs to disappear. More im-

portantly, it is not applicable to debugging real-time embedded systems where set-

ting breakpoints is simply not an option. Class 2 provides debug support for nearly

12

unobtrusive capturing and tracing program execution (control-flow) in real-time.

Class 3 provides support for memory and I/O read/write tracing in real-time, while

Class 4 provides resources for direct processor control through the trace port.

Many embedded processor vendors have developed modules with advanced

tracing and debugging capabilities and integrated them into their embedded plat-

forms, e.g., ARM’s Embedded Trace Macrocell [6], MIPS’s PDTrace [7], and OCDS

from Infineon [8]. The trace and debug infrastructure on a chip typically includes

logic that captures address, data, and control signals, logic to filter and compress the

trace information, buffers to store the traces, and logic that emits the content of the

trace buffer through a trace port to an external trace unit or host machine. In this

paper we focus on data traces (Class 3 operation in Nexus).

Existing commercially available trace modules rely either on hefty on-chip

buffers to store execution traces of sufficiently large program segments, or on wide

trace ports that can transfer a large amount of trace data in real-time. However,

large trace buffers and/or wide trace ports significantly increase the system complex-

ity and cost. Moreover, the number and speed of I/O pins dedicated to tracing cannot

keep pace with the increase in the speed and the number of processor cores and their

speed. These challenges are even more important in multi-core systems.

The mTrace project [9] involves developing the next generation of trace com-

pression methods and infrastructure to make continuous, real-time, unobtrusive,

and cost-effective program, data, and bus tracing possible in embedded systems. The

approach relies on on-chip hardware to record the processor state and corresponding

software modules in the debugger.

The goal of this thesis is to develop of a set of tools for collecting execution

traces (also called control-flow traces) and memory referencing traces with varying

13

degrees of flexibility and enable further research in the next generation of hardware-

supporting tracing and debugging in embedded systems.

2.4 Challenges and Opportunities

Descriptor orderings in a trace file may differ from run to run for multi-

threaded programs because the order in which trace descriptors are serialized to a

trace file is not enforced. Each control-flow or memory reference trace collected by an

mTrace tool can be used to reconstruct a thread’s execution path. However, the rela-

tive timing between each thread is not recorded, and a reconstruction of the execu-

tion path from the trace does not accurately describe the order of execution between

each thread. Certain aspects of dynamic program behavior may change for a single-

thread program as well. The operating system may choose different virtual address-

es for the stack, heap, and code sections of a program. A shared library may be load-

ed into a different address and operating system signals may not occur at the same

point between execution runs. Furthermore, the behavior of a system call is often a

function of the operating systems current state, which can vary. mTrace does not

guarantee that control trace and memory reference descriptor orderings will reflect

the actual execution and memory refence orderings that occurred at run time.

PinPlay [10] is a set of Pin tools that track thread execution and saves execu-

tion instances for deterministic record-replay, where the dynamic run time behavior

of a program is exactly reproduced in subsequent executions. PinPlay is composed of

a logger which records execution of a program to a file called a pinball, and a replay-

er that uses the pinball to repeat the captured execution. Other Pin tools can be in-

tegrated with PinPlay to correctly capture the dynamic program behavior of multi-

threaded software. PinPlay could be integrated with the mTrace tool suite to enforce

14

correct descriptor orderings for multithreaded programs. PinPlay can also solve a

performance issue in mTrace. Currently, instructions that write to memory must be

protected with a lock, as the act of executing the store instruction and inspecting the

memory address that it wrote to is not atomic – a different thread could write to that

address before it is inspected. PinPlay removes the need for this lock by redirecting

the store value before the instruction is executed.

15

CHAPTER 3

RELATED WORK

This chapter describes related work in the area of unobtrusive program trac-

ing schemes and software-based trace compression (Sections 3.1) and hardware-

based trace compression (Section 3.2).

3.1 Software Trace Compression

A number of software-based trace compression algorithms have been pro-

posed, including PDATS [11] [12], WPP [13], N-tuple [14], and more recently VPC

[15], and SBC [5]. The VPC trace compression algorithms [15] are a set of value pre-

diction based algorithms. Each algorithm builds on the success of the previous

alogorithm, with VPC1 compressing raw traces with value predictors and VPC2 add-

ing a second compression stage. Most VPC algorithms use value predictors to con-

vert traces into more compressable streams. VPC3 converts raw traces into streams,

allowing for a higher compression ratio and faster compression time. VPC4 is the

result of optimizations performed on VPC3’s predictor table replacement policy and

hash function. VPC4 compresses 36 times better, and compresses 53 times faster

than bzip2.

A single-pass stream-based compression (SBC) technique [5] was designed

and shown to have a compression ratio between 18 and 308 for a subset of the

CPU2000 benchmark suite. SBC maintains a relation between instruction addresses

and unique instruction streams to they they belong. An instruction stream is a block

of consecutively executing instructions, and the compressed instruction trace con-

16

tains a list of indentifiers for each of these streams. Data traces are captured by re-

cording the data address and number of accesses in each stream. SBC can be imple-

mented in hardware for minor resource and compression ratio trade off.

TCgen [16] is a tool that generates high-performance trace compressors. The

user provides a description of the trace format and TCgen translates the specifica-

tion to an optimized compressor using a selection of value predictors. TCgen is able

to use last-value predictors, finite-context-method predictors, and differential-finite-

context-method predictors. In addition to a value predictor configuration, TCgen re-

quires a description of the program traces in extended Backus-Naur form. TCgen

was tested on a subset of the SPECcpu2000 benchmark suite and was found to out-

perform VPC3 between 6% to 13%.

3.2 Hardware Trace Compression

Hardware trace compression methods usually include architectural extension

to the CPU to filter out redundant or unnecessary trace descriptors, before emitting

the trace descriptors to a remote system for debugging and replayability. A similar

extension is usually maintained in software to keep the state of the debugger con-

sistent with the hardware enhancements. In this section, we summarize proposed

hardware techniques for compressing program traces.

Program stream caches and last stream predictors [17] have been proposed

as hardware enhancements to filter trace descritpors by exploiting program charac-

teristics. Each basic block is uniquely identified by its starting address (SA) and

starting length (SL). In this case a trace descriptor is the pair (SA, SL). A stream

detector interrogates the processor’s control signals to check when a new program

stream is encountered or an exception occurs. A stream descriptor buffer then serial-

17

izes access to a stream descriptor cache (SDC), which is indexed by the XOR of the

stream address and string length. In the event of a cache hit, the set index and way

index for the descriptor are sent to the last stream predictor (LSP), which is a simple

last event predictor. In the event of a miss a block is evicted in accordance with the

replacement policy and the entry is updated. In the event that the LSP makes an

incorrect prediction, the set and way indexes are sent to an encoder, which emits a

descriptor to the remote debugger. The MiBench [18] benchmark was the target of

performance analysis and showed that for a 32 entry SDC, the bits per instruction

can vary between .001 (adpcm_c) and 1.377 (ghostscript).

The Double-Move-To-Front method (DMTF) [19] is a hardware method that

uses basic block properties (such as basic block length) to reduce trace sizes. As the

name suggests, DMTF makes use of two Move-To-Front [20] transformations, which

is used in the popular compression software bzip2. DMTF is designed with two his-

tory tables containing basic block length and sizes. When a stream is encountered

the first table, mtf1, is searched for a matching stream address and length. If it is

not found, the entries are shifted up, the basic block address and length are inserted

into the last entry, and a descriptor is traced out. When a basic block is found in the

first table the second table is searched in a similar manner. When a miss occurs in

this second table, mtf2, the table entry number that the basic block resides in mtf1 is

traced out and saved to mtf2. When the correct index is found in mtf2, the mtf2 in-

dex is traced out. Decompression is a reversed compression process and occurs in

software. Performance analysis for the DMTF method on the MiBench [18] bench-

mark showed that compression ratios were between 45 (fft) and 1738 (adpcm_c) for a

128 entry mtf1 and a 4 entry mtf2. In addition, a last value predictor was used for

18

the upper 12 bits of the address and a zero hit counter for mtf2 hit events to de-

crease descriptor lengths.

TRaptor [3] is a hardware mechanism that reduces the number of trace rec-

ords required for program replayability through a remote software debugger. TRap-

tor reduces the number of traces collected a sufficient amount by utilizing a branch

outcome predictor, gshare, and a branch target predictor implemented with an indi-

rect branch target buffer and a return address stack. The gshare outcome predictor

is organized as an array of two bit adaptive predictors, where each entry is accessed

using a function of the branch instruction address and a path information register

(PIR) which records the outcomes of previous branches. The return address stack

stores the return target address for instructions that return from a subprocedure.

The indirect branch target buffer saves the target address for branch instructions

whose target address is not inferrable from the branch instruction. Instead of emit-

ting a control flow descriptor for each branch instruction, TRaptor records the num-

ber of correctly predicted branchs with the parameter bCnt, and emits a control flow

trace descriptor only for incorrectly predicted branches or exceptions. Exceptions re-

quire a separate parameter, iCnt, which is incremented for each instruction and is

reset if an exception or a branch misprediction occurs. The TRaptor structure is or-

ganized to incercept the instruction type, branch instruction address, and branch

target address from the target CPU and encode control flow descriptors, when nec-

essary, and send them to a remote host, where an equivalent TRaptor structure in

software enables debugging of the target binary. Figure 3.1 contains the algorithm

used by TRaptor when presented with a branch instruction. iCnt is incremented for

every instruction (line 2) and bCnt is incremented for all branches (line 3). If a pre-

19

diction is incorrect, a trace descriptor is emitted (lines 6-7), and both iCnt and bCnt

are reset. If an exception occurs, a trace is emitted (line 13-14) and both parameters

are reset. For multithreaded software, a TRaptor structure can be allocated private-

ly to each thread or shared globally amongst all threads.

1. // For each committed instruction in Thread with index i

2. i.iCnt++; // increment iCnt

3. if ((i.iType==IndBr) || (i.iType==DirCB)) {

4. i.bCnt++; // increment bCnt

5. if (TRaptor mispredicts) {

6. Encode mispredicton event;

7. Place record into the Trace Buffer;

8. i.iCnt = 0;

9. i.bCnt = 0;

10. }

11. }

12. if (Exception event) {

13. Encode an exception event;

14. Place record into the Trace Buffer;

15. i.iCnt = 0;

16. i.bCnt = 0;

17. }

Figure 3.1 TRaptor Operation for One Thread (Private/Shared)

While originally not concerned with multithreaded software, Figure 3.2 de-

picts how TRaptor strutures can be allocated to each thread privately. Each thread

accesses its TRaptor mechanism through its thread ID and presents, depending on

the branch type, the instruction address and branch target address. Each thread can

accesss a private gshare, return address stack, and indirect branch target buffer.

The bCnt and iCnt parameters are also private to each thread.

20

Figure 3.2 mcfTRaptor with Private Predictor Structures

Figure 3.3 depicts TRaptor saring among threads in a multithreaded pro-

gram. Each access is sequential, with each thread sending the instruction address

and branch target to the shared TRaptor structure. The gshare, return address

Path Information
Register (PIR)

iBTB

iBTB
hit

PC

iBTB target
address

Tag

 ...

Target address

0

1

 q-1

...

RAS

0

1

r-1

XOR
iBTB.tag

iBTB.index

Branch History
Register (BHR)

PC

XOR
ghare.index

...

0

1

 p-1

Gshare

way 0
way 1

RAS target
address

Outcome

T-Raptor Structures

Multithreaded Program

Core 0
T-Raptor

Structures

Core 1
T-Raptor

Structures

Thread 0
[TID, PC, Type]

Core N-1
T-Raptor

Structures

. . .
Thread 1
[TID, PC, Type]

Thread N-1
[TID, PC, Type]

T0.bCnt

T0.iCnt

21

stack, and indirect branch target buffer are shared among all threads, but the bCnt

and iCnt parameters are private to each thread, allowing off-line program replaya-

bility for each thread.

Figure 3.3 mcfTRaptor with Shared Predictor Structures

Path Information
Register (PIR)

iBTB

iBTB
hit

PC

iBTB target
address

Tag

 ...

Target address

0

1

 q-1

...

RAS

0

1

r-1

XOR
iBTB.tag

iBTB.index

Branch History
Register (BHR)

PC

XOR
ghare.index

...

0

1

 p-1

Gshare

way 0
way 1

RAS target
address

Outcome

Shared T-Raptor Structures

Multithreaded Program

Thread 0
[TID, PC, Type] . . .

Thread 1
[TID, PC, Type]

Thread N-1
[TID, PC, Type]

...

T0.bCnt

T0.iCnt

. . .

TN-1.bCnt

TN-1.iCnt

22

CFiat [4] is a hardware-based mechanism that reduces load value traces by

collecting a minimal set of load value trace descriptors through the use of a cache

first access mechanism. The CFiat, or cache first access, mechanism emits load val-

ue descriptors on the first hit or the eviction of a cache block. The CFiat mechanism

extends an already existing data cache with first access flags that protect the oper-

ands in each cache block. An operand’s first access flag is set to one whenever a trace

descriptor is emitted for the operand or when the operand is written to memory.

Whenever a cache block is evicted, all flags associated with that cache block are set

to zero. Whenever a cache hit occurs and the flags associated with the operand are

found to be set to one, the fahCnt parameter is incremented. This parameter allows

for accurate replaying of traces in an off-line debugger. The size of the operand that

a flag can protect is refered to as the flag granularity and is a design parameter.

Figure 3.4 lists the cache first access algorithm. Each operand passes through

the cache first access mechanism, and if it results in a cache hit, the flags associated

with the operand are checked (line 3). If the flags are set, fahCnt is incremented. If

the flags are not set, a trace descriptor is eimitted, the flags corresponding to that

operand are set, and fahCnt is reset. In the event of a cache miss (line 10), all of the

flags associated with cache block are reset, a trace descriptor is emitted, the flags

associated just with that operand in the newly retrieved cache block are set, and

fahCnt is reset.

23

1. // For each retired load that reads n bytes in thread i

2. if (CacheHit) {

3. if (corresponding n FA flags are set)

4. i.fahCnt++;

5. else {

6. Emit trace record into Trace Buffer (tid, fahCnt, loadValue);

7. Set corresponding n FA flags;

8. i.fahCnt = 0;

9. }

10. } else { // cache miss event

11. Clear FA bits for newly fetched cache block;

12. Perform steps 5-7;

13. }

14.

15. // For each retired store that writes n bytes

16. Set corresponding n FA bits;

17.

18. // For external invalidation/update request

19. Clear FA bits for entire cache block

Figure 3.4 CFiat Operation for One Thread (Private/Shared)

Much like TRaptor, CFiat is organized as a hardware extension, in this case

to a data cache. The mechanism emits the encoded load value descriptors to on-chip

buffers and trace ports were transmitted to trace probe and host machine, where a

software copy of the CFiat mechanism is located. This host machine can replay the

program of the target binary. Figure 3.5 depicts the organization of the cache mech-

anism, with each thread allocated with a private data cache and set of first access

flags. Each thread accesses its data cache and first access flags independently and

emits trace descriptors when the conditions are met. The threads present the

memory referencing instruction’s address (PC), the operand address (DA), the oper-

and size (DS), type (read or write), and data value (DV).

24

Figure 3.5 mlvCFiat with Private Cache Structures

Figure 3.6 depicts sharing of data cache and cache first-access structures

among threads in a multithreaded program. Each access is sequential, with each

thread sending the instruction address and branch target to the shared data cache.

The data cache and first-access bits are shared among all threads, but the fahCnt is

private to each thread, allowing offline program replayability for each thread.

Set/Reset

FA flags

T0
.TraceB

u
ffer

Data Cache

DC Hit

DA

FA Hit

Tag

 ...

FA Flags

0

1

 q-1

DC index

T0.fahCnt

way 0

way k-1

CFiat Structures

Multithreaded Program

Core 0
CFiat

Structures

Core 1
CFiat

Structures

Thread 0
[TID, PC, DA, Type, DV]

Core N-1
CFiat

Structures

. . .
Thread 1
[TID, PC, DA, Type, DV]

Thread N-1
[TID, PC, DA, Type, DV]

DV

25

Figure 3.6 mlvCFiat with Shared Cache Structures

Set/Reset

FA flags

T0
.TraceB

u
ffer

Data Cache

DC Hit

DA

FA Hit

Tag

 ...

FA Flags

0

1

 q-1

DC index

way 0

way k-1

Shared CFiat Structures

Multithreaded Program

Thread 0
[TID, PC, DA, Type, DV]

. . .
Thread 1
[TID, PC, DA, Type, DV]

Thread N-1
[TID, PC, DA, Type, DV]

DV

...

T0.fahCnt

. . .

TN-1.fahCnt

26

CHAPTER 4

MTRACE TOOL SUITE

This chapter introduces a set of software tools for capturing and compressing

program traces of multithreaded programs, including both control flow and data

traces. The mTrace tool suite runs on systems that use the Intel-64/x86 instruction

set architectures and relies on Intel’s Pin binary instrumentation tool to capture

traces. The mTrace suite encompasses the following tools

 mcfTrace: a tool for capturing and compressing control-flow traces (Section

4.1);

 mlsTrace: a tool for capturing data traces, specifically memory referencing

load and store instructions (Section 4.2);

 mcfTRaptor: a tool for capturing control-flow traces and compressing them

using our T-Raptor mechanism that exploits branch predictor structures

(Section 4.3);

 mlvCFiat: a tool for capturing load value data traces and compressing them

using our C-fiat mechanism that relies on caches and first-access bits (Sec-

tion 4.4).

27

Figure 4.1 mcfTrace organization

Figure 4.1 shows the software organization that is shared by all mTrace tools.

Starting from the top, the target application is specified (e.g., a multithreaded Ma-

mTrace Pin Tool

Pin

Target
Application

Application
Input

mTrace Pin
Tool

Parameters

Number Of
Threads

Application
Output

Compressor

Output
Trace File

Output
Compressed

Trace File

28

trixMultiply program) with its input and output parameters, including the number

of threads (e.g., in MatrixMultiply we specify the matrix size and the number of

threads). We designed the mTrace tools to support a number of parameters for con-

trolling program tracing (mTrace Pin Tool Parameters). To accommodate a wide

range of trace uses, we allow users to specify which segment of the target application

to trace. This is achieved by specifying the number of instructions executed by the

target application before the tracing is turned on. The length of the traced segment

is controlled by specifying the number of instructions to be traced. In addition, the

user can select the format of trace descriptors to be either binary or ASCII text. Oth-

er optional parameters allow the user to specify whether the trace descriptors are

written directly to an output trace file or go to a general-purpose compressor to be

compressed before writing into a compressed trace file. The subsections below de-

scribe individual trace tools. For each trace tool, we first give its functional descrip-

tion, then describe high-level implementation details, and finally discuss test steps

taken to verify the correctness of our implementation.

4.1 mcfTrace

mcfTrace is a Pin tool designed to collect and save control-flow traces of mul-

tithreaded programs to a file. For each control-flow instruction, mcfTrace captures a

trace descriptor that consists of the following: a logical thread ID of the issuing

thread, the address of the instruction, the branch target address, the type of the con-

trol-flow instruction, and its outcome. The trace descriptors can be saved to a binary

file or text file, or piped to a general purpose compressor. Section 4.1.1 gives a func-

tional description of the mcfTrace tool. Section 4.1.2 gives a brief description of tool

29

implementation, and Section 4.1.3 describes verification process and test programs

used.

4.1.1 Functional Description

Table 4.1 lists the mcfTrace tool parameters that allow a user to control in-

strumentation and tracing. These parameters are used to control the following: (a)

the trace file type (binary or ASCII), (b) the code segment and trace scope at the in-

struction and sub-procedure level, (c) optional compression (d) the maximum trace

size, and (e) others.

Table 4.1 mcfTrace Parameters

Parameter Description

-a Saves trace descriptors in an ASCII file (default is binary)

-c <COMPRESSOR> Trace descriptors are piped to a general-purpose compressor

before saving. <COMPRESSOR> = {bzip2, pbzip2, gzip, pigz}

-d Each descriptor includes a corresponding assembly code

-f Trace file size limit in Megabytes. Instrumentation and trace

collecting stops after reaching this limit (default limit is 50

GBytes).

-filter_no_shared_libs Traces only target binary, shared libraries are not traced.

-filter_rtn <routine> Tracing only occurs in a specified routine(s).

-[h | help] Displays help message with all parameters and their descrip-

tion.

-l <NIST> Specifies NIST, the number of instructions that will be instru-

mented in the target.

-o <FNAME> Specify trace file name, FNAME.

-s <NIST> Specifies NIST, the number of instructions to be skipped before

instrumentation begins.

30

Figure 4.2 illustrates the format of the descriptors collected by mcfTrace. A

mcfTrace binary trace descriptor includes the following fields:

 Thread ID field is 1 byte long and encodes threads from 0 to 255;

 Instruction Address and Target Address fields that are 8 bytes long on 64-

bit architectures include the instruction address and the branch target

address, respectively; and

 Type & Outcome field encodes the type of the control-flow instruction and

its outcome (taken or not taken). The Intel-64 ISA supports the following

branch types: unconditional indirect (Type & Outcome=0), unconditional

direct (Type&Outcome = 1), conditional direct taken (Type&Outcome = 2),

and conditional direct not taken branches (Type&Outcome = 3).

Except for address sizes (which depend on the system’s address size), binary

descriptors do not have any variable fields and a binary file can be easily decoded by

applying this descriptor format. For Intel-64 architectures, a mcfTrace binary de-

scriptor uses exactly 18 bytes.

mcfTrace ASCII descriptors also include Thread ID, Instruction Address,

Target Address, Type&Outcome fields, as well as optional assembly code. Individual

fields in a descriptor are separated by a comma and individual descriptors are sepa-

rated by a new line character. Figure 4.2 gives an example of an ASCII descriptor,

which specifies that thread 0 issued an instruction at address 0x0000003f_83200b03,

and that the instruction is an unconditional direct branch (U, D, T) with the target

address 0x0000003f_83201130. In this case we opted to print out the assembly in-

struction for the descriptor, which is a call instruction.

31

Figure 4.2 mcfTrace Descriptor Formats: Binary (top) and ASCII (bottom).

Figure 4.3 contains an example output from mcfTrace. In this example,

mcfTrace creates the trace file, mcfTrace.out2013_8_31_15.4.1.txt, as well as a text

file, mcfTrace.out2013_8_31_15.4.1.Statistics, which contains statistics relating to

the branch trace descriptors that are captured. The user can specify an output trace

file name or the file name is generated automatically using a time stamp. A selected

segment of the output trace file is shown in lines 9-19. The statistics file contains

information about the number and types of individual branch instructions as shown

in lines 2-8.

Thread ID
(1 Byte)

Instruction
Address
(8 Bytes)

Target Address
(8 Bytes)

Type&Outcome
(1 Byte)

mcfTrace Descriptor: Binary

Format

Thread ID
(up to 4 Bytes)

Instruction
Address

(20 Bytes)

Target Address
(20 Bytes)

Type&Outcome
(8 Bytes)

mcfTrace Descriptor: ASCII

Format

Assembly Code
(Variable)

Example: 0, 0x0000003f83200b03, 0x0000003f83201130, U, D, T call 0x3f83201130

32

1. [myersar@EB245-mhealth3 ManualExamples]$ head mcfTrace.out2013_8_31_15.4.1.Statistics

1. mcfTrace: Traced 1000000 instructions

2. mcfTrace: Skipped 3000000 instructions

3. mcfTrace: Recorded 269334 control transfer instructions.

4. 4968 (%1.84) Unconditional Direct

5. 129517 (%48.09) Conditional Direct Taken

6. 131116 (%48.68) Conditional Direct Not Taken

7. 3733 (%1.39) Unconditional Indirect

8. [myersar@EB245-mhealth3 ManualExamples]$ head mcfTrace.out2013_8_31_15.4.1.txt

9. 1, 0x00007f5a40996bbe, 0x00007f5a40996be4, C, D, NT

10. 1, 0x00007f5a40996bc9, 0x00007f5a40996bb8, C, D, T

11. 1, 0x00007f5a40996bbe, 0x00007f5a40996be4, C, D, NT

12. 2, 0x00007f5a40996bc9, 0x00007f5a40996bb8, C, D, T

13. 1, 0x00007f5a40996bc9, 0x00007f5a40996bb8, C, D, T

14. 1, 0x00007f5a40996bbe, 0x00007f5a40996be4, C, D, NT

15. 1, 0x00007f5a40996bc9, 0x00007f5a40996bb8, C, D, T

16. 3, 0x00007f5a40996bc9, 0x00007f5a40996bb8, C, D, T

17. 1, 0x00007f5a40996bbe, 0x00007f5a40996be4, C, D, NT

18. 2, 0x00007f5a40996bbe, 0x00007f5a40996be4, C, D, NT

Figure 4.3 mcfTrace Example Output

4.1.2 Implementation Details

mcfTrace instruments applications at the instruction level by recompiling

basic blocks on a just in time basis with analysis routines that are inserted before

branch instructions. mcfTrace collects branch instruction data by passing the logical

thread ID of the executing thread, the address of the branch instruction, its target

(whether static or indirect), the type of branch instruction, and branch outcome as

arguments to these analysis routines.

The Intel 64 and IA-32 instruction set [21] control transfer instructions in-

clude conditional and unconditional jump instructions, a subroutine call instruction,

and a subroutine return instruction. Table 4.2 depicts the three classifications used

by mcfTrace when collecting descriptors.

33

Table 4.2 Intel 64 and IA-32 Control Transfer Instruction Classification

 Operand Instruction

Mnemonics

Conditional Direct Memory jnbe, jnb, jb, jz,, etc.

loop, loope, loopne, etc.

Unconditional Direct Memory jmp, call,

Unconditional Indirect Register Indirect, Memory jmp, call, rtn

The j* and loop* instructions use labels which reference addresses that are

generated by a linker and are considered static since they do not change during run-

time. These two groups of instructions are also conditional and use condition codes

kept in the status registers. Both the jump and call instructions can either use la-

bels or registers to specify the target address, thus can be classified as either uncon-

ditional direct or unconditional indirect control instructions. The rtn instruction uses

a target referenced by a stack register and is considered indirect.

Figure 4.4 shows the code segment in mcfTrace.cpp that instruments a target

to capture control-flow traces and write trace descriptors to an ASCII file.

mcfTrace.cpp contains routines that instrument the target and perform other

housekeeping roles such as initializing Pin and detaching Pin from the target. Simi-

lar instrumentation code is used when writing to a binary file. The Pin instruments

over basic blocks (line 1) and then iterates over individual instructions within the

basic block (line 3). Line 5 of the code inserts the SetFastForwardAndLength

analysis procedure that counts the number of instructions executed in the target.

This procedure allows us to implement fast forwarding and trace length control

functions. If we are fast forwarding, this analysis function simply counts the number

34

of instructions left to skip until tracing begins. If we are tracing, SetFastFor-

wardAndLength counts the number of instructions executed while tracing. Lines 8-

23 use Pin calls to filter the different branch instruction classes as described in Ta-

ble 4.2. The HasFallThrough Pin function is true for instructions that potentially

do not change control flow and can be used to decide between conditional and uncon-

ditional branches. IARG_THREAD_ID passes the logical ID of calling thread,

IARG_THREAD_PTR passes the address of branch instruction,

IARG_BRANCH_TARGET_ADDR passes the target of the branch instruction, and

IARG_BRANCH_OUTCOME passes whether or not the branch was taken (only used for

conditional branches).

35

1. for(BBL bbl = TRACE_BblHead(trace); BBL_Valid(bbl); bbl = BBL_Next(bbl))

2. {

3. for(INS ins = BBL_InsHead(bbl); INS_Valid(ins); ins = INS_Next(ins))

4. {

5. INS_InsertCall(ins, IPOINT_BEFORE, (AFUNPTR)SetFastForwardAndLength,

6. IARG_THREAD_ID, IARG_END);

7.

8. if(INS_IsDirectBranchOrCall(ins) && !INS_HasFallThrough(ins))

9. INS_InsertCall(ins, IPOINT_BEFORE,

10. (AFUNPTR)Emit_UnconditionalDirect_ASCII,

11. //Args: Thread ID, Instruction Address, Target Address

12. IARG_THREAD_ID, IARG_INST_PTR, IARG_BRANCH_TARGET_ADDR,

13. IARG_END);

14.

15. // Is Conditional and Direct

16. else if(INS_IsDirectBranchOrCall(ins) && INS_HasFallThrough(ins))

17. INS_InsertCall(ins, IPOINT_BEFORE, (AFUNPTR)Emit_ConditionalDirect_ASCII,

18. //Args: Thread ID, Instruction Address, Target Address, Taken?

19. IARG_THREAD_ID, IARG_INST_PTR, IARG_BRANCH_TARGET_ADDR,

20. IARG_BRANCH_TAKEN, IARG_END);

21.

22. else if(INS_IsIndirectBranchOrCall(ins) || INS_IsRet(ins))

23. INS_InsertCall(ins, IPOINT_BEFORE,

24. (AFUPTR)Emit_UnconditionalIndirect_ASCII,

25. //Args: Thread ID, Instruction Address, Target Address

26. IARG_THREAD_ID, IARG_INST_PTR, IARG_BRANCH_TARGET_ADDR,

27. IARG_END);

28. }

Figure 4.4 mcfTrace Instrumentation Implementation from mcfTrace.cpp

Figure 4.5 contains an example of an analysis routine found in mcfTrace.h,

which only contains analysis routines injected with mcfTrace.cpp. This routine pass-

es pertinent branch instruction data to a buffer which is later written to a binary

file. The CanEmit (line 4) function returns early if tracing is not enabled and will

detach mcfTrace from the target process if the tracing is finished or the file size limit

is reached. Lines 6-21 create the binary trace descriptor from the information passed

36

during instrumentation, and lines 24-28 push the descriptor on an STL container

which will be written to file at a later point. The STL container is shared between

the target’s threads and must be protected with a lock.

1. VOID Emit_ConditionalDirect_Bin(const THREADID threadid, const ADDRINT address,

2. const ADDRINT target, const BOOL taken)

3. {

4. if(!CanEmit(threadid)) return;

5.

6. //setup descriptor

7. BinaryDescriptorTableEntry binDescriptor;

8. binDescriptor.tid = *static_cast<UINT8*>(Pin_GetThreadData(tls_key, threadid));

9. binDescriptor.branchAddress = address;

10. binDescriptor.targetAddress = target;

11. //If taken paramater will be non-zero

12. if(taken == 0)

13. {

14. IncrementBranchStatistics(ConditionalDirectNotTaken);

15. binDescriptor.branchType = ConditionalDirectNotTaken;

16. }

17. else

18. {

19. IncrementBranchStatistics(ConditionalDirectTaken);

20. binDescriptor.branchType = ConditionalDirectTaken;

21. }

22.

23. //critical section

24. GetLock(&table_lock, threadid+1);

25. binDescriptorTable.push_back(binDescriptor);

26. //increment file counter

27. IncrementFileCount(BinDescriptorTableEntrySize);

28. ReleaseLock(&table_lock);

29. }

Figure 4.5 Analysis Routine from mcfTrace

Figure 4.6 includes the section of mcfTrace that writes trace descriptors to

file. Because mcfTrace can create arbitrarily large control-flow traces, it creates a

37

thread to empty the STL container whenever possible. ThreadWriteBin is this

thread’s function and is launched before the target is instrumented. Lines 12-22 and

32-42 write the descriptor to file or pipe it to a compressor. The

Pin_IsProcessExiting (Lines 10 and 30) call is used to kill the thread whenever

mcfTrace detaches from the target process. ThreadWriteBin is used in every

mTrace tool.

38

1. VOID ThreadWriteBin(VOID *arg)

2. {

3. THREADID threadid = Pin_ThreadId();

4. if(usingCompression)

5. {

6. while(1)

7. {

8. //if process is closing (entered fini()) kill thread

9. if(Pin_IsProcessExiting())

10. Pin_ExitThread(1);

11.

12. GetLock(&table_lock, threadid+1);

13. while(!binDescriptorTable.empty())

14. {

15. BinaryDescriptorTableEntry temp = binDescriptorTable.front();

16. fwrite(&temp.tid, sizeof(temp.tid), 1,outPipe);

17. fwrite(&temp.branchAddress, sizeof(temp.branchAddress), 1, outPipe);

18. fwrite(&temp.targetAddress, sizeof(temp.targetAddress), 1, outPipe);

19. fwrite(&temp.branchType, sizeof(temp.branchType), 1, outPipe);

20. binDescriptorTable.pop_front();

21. }

22. ReleaseLock(&table_lock);

23. }

24. }

25. else

26. {

27. while(1)

28. {

29. if(Pin_IsProcessExiting())

30. Pin_ExitThread(1);

31.

32. GetLock(&table_lock, threadid+1);

33. while(!binDescriptorTable.empty())

34. {

35. BinaryDescriptorTableEntry temp = binDescriptorTable.front();

36. OutFile.write((char *)&temp.tid, sizeof(temp.tid));

37. OutFile.write((char *)&temp.branchAddress, sizeof(temp.branchAddress));

38. OutFile.write((char *)&temp.targetAddress, sizeof(temp.targetAddress));

39. OutFile.write((char *)&temp.branchType, sizeof(temp.branchType));

40. binDescriptorTable.pop_front();

41. }

42. ReleaseLock(&table_lock);

43. }

44. }

45. }

39

Figure 4.6 mcfTrace Write Routine

4.1.3 Verification/Test

mcfTrace was tested using two assembly code programs, BranchEnumera-

tion.s and BranchTest.s. BranchEnumeration contains all of the x86_64 branch in-

structions to ensure that mcfTrace collects the correct branch instruction infor-

mation for each branch. The Intel-64 and x86 instruction sets [21] list branch in-

structions not shown in BranchEnumeration.s, but they are really mnemonics for

the instructions already provided, e.g. the ja instruction is really a jnbe instruction.

Figure 4.7 contains a small selection of conditional branch instructions from

BranchEnumeration.s. Part one of this test program lists branch instructions be-

longing to the j* conditional jump family and part two contains conditional branch

instructions belonging to the loop* branch family. These four branches are not taken

and will be reported consecutively by mcfTrace. Figure 4.8 contains the branch de-

scriptors from mcfTrace for this section of code. All four branch instruction de-

scriptors are shown correctly as conditional direct branches that are not taken. Fig-

ure 4.9 contains a section of unconditional branches from BranchEnumeration.s. In

this case, the jmp and call instructions are unconditional direct branches, while the

rtn instruction is an unconditional indirect branch.

40

1. #Part 1

2. #unsigned conditional direct branches

3. #all branches will not be taken

4. #branch if strictly above

5. #Taken when CF and ZF are both zero

6. mov rax, 1

7. cmp rax, 2

8. jnbe exit1

9. #branch if above or equal

10. # Taken when CF is 0

11. jnb exit1

12. #Part 2

13. #More conditional branch instructions

14. #Loop family

15. mov rcx, 1

16. loop1:

17. loop loop1

18. mov rcx, 1

19. loop2:

20. loope loop2

21. mov rcx, 1

Figure 4.7 Selection from BranchEnumeration.s

1. mcfTrace ASCII Output, with disassembly:

2. 0, 0x00000000004004d3, 0x000000000040059e, C, D, NT jnbe 0x40059e

3. 0, 0x00000000004004d9, 0x000000000040059e, C, D, NT jnb 0x40059e

4. 0, 0x0000000000400572, 0x0000000000400572, C, D, NT loop 0x400572

5. 0, 0x000000000040057b, 0x000000000040057b, C, D, NT loope 0x40057b

Figure 4.8 mcfTrace output for BranchEnumeration.s selection

41

1. #Unconditional Direct jump

2. jmp Label1

3. #Not Executed

4. test rax, rax

5.

6. Label1:

7. #setup puts

8. mov edi, OFFSET FLAT:.LC0

9. #unconditional direct branch - call

10. call puts

11. exit1:

12. leave

13. .cfi_def_cfa 7, 8

14. Ret

Figure 4.9 Unconditional branches from BranchEnumeration.s

Figure 4.10 contains the relevant mcfTrace output for this section of

BranchEnumeration.s. The targets for the jmp and call instructions match the ad-

dresses shown in their assembly mnemonic. The ret instruction is indirect and the

target shown in the descriptor was taken from the stack.

Next, mcfTrace was tested with BranchTest.s, which creates more sophisti-

cated branch contexts. Figure 4.12 contains a sample of BranchTest.s. In Lines 1-12

we take several successful branches before falling through to an indirect call instruc-

tion at line 22.

1. mcfTrace ASCII Output, with disassembly:

2. 0, 0x000000000040058f, 0x0000000000400594, U, D, T jmp 0x400594

3. 0, 0x0000000000400599, 0x00000000004003b8, U, D, T call 0x4003b8

4. 0, 0x000000000040059f, 0x00007f688ca5ce5d, U, I, T ret

Figure 4.10 mcfTrace output for BranchEnumeration.s section

42

1. Label1:

2. mov rax, 2

3. cmp rax, 1

4. jnbe Label2

5. test rax, rax

6. Label2:

7. cmp rax, 2

8. jz Label3

9. Label3:

10. mov rcx, 5

11. Label4:

12. loop Label4

13.

14. #setup puts

15. mov edi, OFFSET FLAT:.LC0

16.

17. #unconditional direct branch - call

18. call puts

19.

20. #unconditional indirect branch - call

21. mov rax, OFFSET FLAT:test

22. call rax

23.

24. leave

25. .cfi_def_cfa 7,8

26.

27. #indirect taken branch

28. ret

29. .cfi_endproc

Figure 4.11 Selection from BranchTest.s and mcfTrace output

Figure 4.12 lists the correct descriptors for the code shown in Figure 4.11.

The first six descriptors map to the branches taken in lines 1-12 in Figure 4.11. The

seventh descriptor is a branch that exits the loop in lines 11-12 and the last de-

scriptor is an indirect call shown that is set up and executed in lines 21 and 22.

43

1. 0, 0x00000000004004ec, 0x00000000004004f1 C, D, T jnbe 0x4004f1

2. 0, 0x00000000004004f5, 0x00000000004004f7 C, D, T jz 0x4004f7

3. 0, 0x00000000004004fe, 0x00000000004004fe C, D, T loop 0x4004fe

4. 0, 0x00000000004004fe, 0x00000000004004fe C, D, T loop 0x4004fe

5. 0, 0x00000000004004fe, 0x00000000004004fe C, D, T loop 0x4004fe

6. 0, 0x00000000004004fe, 0x00000000004004fe C, D, T loop 0x4004fe

7. 0, 0x00000000004004fe, 0x00000000004004fe C, D, NT loop 0x4004fe

8. 0, 0x0000000000400511, 0x00000000004004c4 U, I, T call rax

Figure 4.12 Selection from BranchTest.s and mcfTrace output

4.2 mlsTrace

mlsTrace is a Pin tool designed to collect and save traces of memory referenc-

ing instructions for multithreaded programs into a file. For each read and/or write

reference in the program, mlsTrace captures a trace descriptor that contains the fol-

lowing fields: the logical ID of the thread that executed the instruction that initiate

the reference, the instruction address, the read/write operand virtual address, and

the read/write value. When mlsTrace is capturing both load and store instructions,

an additional field is included in the trace descriptor to differentiate between the

two. Trace descriptors are collected in the order in which they are executed. Traces

are saved to a text or binary file, or piped to a general purpose compressor. When

writing to a binary file, mlsTrace trace descriptors also contain the operand sizes for

decoding purposes. Section 4.2.1 gives a functional description of the mlsTrace tool.

Section 4.2.2 gives a brief description of tool implementation, and Section 4.2.3 de-

scribes verification process and test programs used.

44

4.2.1 Functional Description

Table 4.3 lists the mlsTrace parameters that allow a user to control tracing of

memory referencing instructions. These parameters are used to control the follow-

ing: (a) the trace file type (binary or ASCII), (b) the code segment and trace scope at

the instruction and sub-procedure level, (c) load and/or store value tracing, and (d)

optional compression.

Table 4.3 mlsTrace Parameters

Parameter Description

-a Saves trace descriptors in an ASCII file

-c <COMPRESSOR> Trace descriptors are piped to a general-purpose compressor

before saving. <COMPRESSOR> = {bzip2, pbzip2, gzip, pigz}

-d Each descriptor includes a corresponding assembly code

-f Trace file size limit in Megabytes. Instrumentation and trace

collecting stops after reaching this limit.

-filter_no_shared_libs Only traces target binary, shared libraries are not traced.

-filter_rtn <routine> Tracing only occurs in a specified routine(s).

-[h | help] Displays help message with all parameters and their descrip-

tion.

-l <NIST> Specifies NIST, the number of instructions that will be instru-

mented in the target.

-o <FNAME> Specify trace file name, FNAME.

-s <NIST> Specify NIST, the number of instructions to be skipped before

instrumentation begins.

-store Instrument store instructions. Trace includes trace descriptors

for instructions that write to memory. When this option is ena-

bled, a new field is inserted in every descriptor to distinguish

between load and store descriptors.

45

Figure 4.13 shows the format of load and store value descriptors collected by

mlsTrace. An mlsTrace binary trace descriptor includes the following fields:

 Thread ID field is 1 byte long and encodes threads from 0 to 255;

 Load/Store (optional) field is a byte that distinguishes between load and

store descriptors;

 Instruction Address and Operand Address are fields that are 8 bytes long

on 64-bit architectures and include the instruction address and the oper-

and address, respectively;

 Operand Size which is 1 byte long and gives the size of the referenced da-

ta in bytes; and

 Value of the data stored in memory or loaded from memory, whose size

depends on Operand Size.

Similar to the mcfTrace trace format, the address fields can be either four or

eight bytes depending on the system’s addressing size. Since descriptors can be col-

lected for load and store instructions, we need the Load/Store field to encode the de-

scriptor type. This field only appears when load and store value tracing is enabled.

mlsTrace ASCII descriptors also include Thread ID, Load/Store, Instruction

Address, Operand Address, Value fields, as well as optional assembly code. Individ-

ual fields in a descriptor are separated by a comma and individual descriptors are

separated by a new line character. Figure 4.13 gives an example of an ASCII de-

scriptor, which specifies that thread 0 issued a load instruction with address

0x0000003f_83200f08, and that the instruction loaded a quadword at the address

0x0036ff3f_84001130 with the value 0x00000000_64320011. In this case we opted to

print out the assembly instruction for the descriptor, which is a mov instruction.

46

Figure 4.13 mlsTrace descriptor formats: binary (top) and ASCII (bottom)

Figure 4.14 gives an example run of mlsTrace. Where both load and store

traces are captured for the MatrixMultiplication_OpenMP program that multiplies

two randomly generated squared matrices with 16x16 elements. mlsTrace creates

the trace file, mlsTrace.out2013_12_18_20.16.52.txt, as well as a text file,

mlsTrace.out2013_12_18_20.16.52.Statistics, which contains statistics relating to

the load and store instructions and their operand sizes. If the user does not supply

his or her own output trace file name, mlsTrace will create a file using a time stamp

as the name. Lines 2-11 show messages from mlsTrace sent to standard output indi-

cating that 8 software threads are created. Line 12 is the target’s output. Lines 14-

23 are descriptors from the top of the trace file and lines 25-46 are from the statis-

tics file.

Thread ID
(1 Byte)

Instruction
Address
(8 Bytes)

Operand Address
(8 Bytes)

Operand Size
 (1 Byte)

Thread ID
(up to 4 Bytes)

Instruction
Address

(20 Bytes)

Operand Address
(20 Bytes)

mlsTrace Descriptor: ASCII Format

Example: 0, 0x0000003f83200f08, 0x0036ff3f84001130, 0x0000000064320011 mov rax, qword ptr [rdx]

mlsTrace Descriptor: Binary Format

Value
 (Operand Size

Bytes(s))

Value
(Variable)

Load/
Store

(1 Byte)

47

1. [myersar@EB245-mhealth3 ManualExamples]$ pin -t obj-intel64/mlsTrace.so -a -store

 -- /Matrix_Multiplication_OpenMP 16

2. mlsTrace: Writing to text file: mlsTrace.out2013_12_18_20.16.52.txt

3. mlsTrace descriptor: ThreadID, Load/Store, Instruction Address,

 Operand Address, Operand Size, Value

4. mlsTrace: thread begin 0 14635

5. mlsTrace: thread begin 1 14643

6. mlsTrace: thread begin 2 14644

7. mlsTrace: thread begin 3 14645

8. mlsTrace: thread begin 4 14646

9. mlsTrace: thread begin 5 14647

10. mlsTrace: thread begin 6 14648

11. mlsTrace: thread begin 7 14649

12. 200

13. [myersar@EB245-mhealth3 ManualExamples]$ head mlsTrace.out2013_12_18_20.16.52.txt

14. 0, S, 0x0000003f83200b03, 0x00007ffffafd9180, 8, 0x0000000000000000

15. 0, S, 0x0000003f83201130, 0x00007ffffafd9178, 8, 0x0000000000000000

16. 0, S, 0x0000003f83201134, 0x00007ffffafd9170, 8, 0x0000000000000000

17. 0, S, 0x0000003f83201136, 0x00007ffffafd9168, 8, 0x0000000000000000

18. 0, S, 0x0000003f83201138, 0x00007ffffafd9160, 8, 0x0000000000000000

19. 0, S, 0x0000003f8320113a, 0x00007ffffafd9158, 8, 0x0000000000000000

20. 0, S, 0x0000003f8320113c, 0x00007ffffafd9150, 8, 0x0000000000000000

21. 0, L, 0x0000003f83201156, 0x0000003f8341fb80, 8, 0x0000003f83201130

22. 0, S, 0x0000003f8320115d, 0x0000003f8341fd48, 8, 0x00059d5cfe8a2ad6

23. 0, L, 0x0000003f83201167, 0x0000003f8341ffc8, 8, 0x0000003f8341fdf0

24. [myersar@mhealth3 ManualExamples]$cat mlsTrace.out2013_12_18_20.16.52.Statistics

25. Instrumentation Time: 3838.15 ms

26. Number of Threads: 8

27. Traced 11636618 instructions

28. Skipped 0 instructions

29. Total Load Operands: 1846653

30. 125272 (%6.78) Byte Operands

31. 8284 (%0.45) Word Operands

32. 1467034 (%79.44) Doubleword Operands

33. 245226 (%13.28) Quadword Operands

34. 0 (%0.00) Extended Precision Operands

35. 837 (%0.05) Octaword Operands

36. 0 (%0.00) Hexaword Operands

37. 0 (%0.00) Operands of other size

38. Total Store Operands: 194098

39. 6890 (%3.55) Byte Operands

40. 41 (%0.02) Word Operands

41. 38830 (%20.01) Doubleword Operands

42. 147948 (%76.22) Quadword Operands

43. 0 (%0.00) Extended Precision Operands

48

44. 389 (%0.20) Octaword Operands

45. 0 (%0.00) Hexaword Operands

46. 0 (%0.00) Operands of other size

Figure 4.14 mlsTrace example output

4.2.2 Implementation Details

mlsTrace instrumentation occurs at the instruction and instruction operand

level. We iterate over basic blocks and the instructions in each basic block, but be-

cause the x86 and Intel 64 instruction sets [21] include instructions that contain

more than one read or operand, mlsTrace may insert more than one analysis routine

for each load/store instruction. mlsTrace collects the frequency of load and store op-

erands and their sizes and saves them to a statistics file.

Intel uses five fundamental data types: byte, word (two bytes), doubleword,

quadword, and octaword (or double quadword). In addition, Intel has included larger

types to supplement their floating point unit and SIMD extensions. The operand siz-

es that mlsTrace tracks are included in Table 4.4. Operands with a size not listed in

this table are listed as “other” in the statistics file.

49

Table 4.4 mlsTrace Data Types

Data Type Size In Bytes

Word 2

Doubleword 4

Quadword 8

Octaword 16

Hexaword 32

Extended Precision Floating Point 10

Figure 4.15 shows an instrumentation routine found in mlsTrace.cpp.

mlsTrace.cpp contains instrumentation and other housekeeping functions for thread

creation and Pin call backs. mlsTrace inserts (in line 5) the analysis function Set-

FastForwardAndLength which counts the number of instructions executed in the

target. This procedure allows us to implement fast forwarding and trace length con-

trol functions. If we are fast forwarding, this analysis function simply counts the

number of instructions left to skip until tracing begins. If we are tracing, Set-

FastForwardAndLength counts the number of instructions executed while tracing.

Line 8 uses Pin routines to tell us if an instruction reads memory, writes to memory,

or both. In line 14 we iterate over each memory referencing operand and insert

analysis routines that emit load value descriptors and store value descriptors at

lines 16-20 and 32-35, respectively. There are some instructions, such as inc, that

have operands that read and write to memory, so we must allow for that case.

Instructions that write to memory present analysis-atomicity problems [10]

for accurate tracing. The process of executing an instruction that writes to memory

and inspecting that memory address with instrumented code is not atomic and dif-

ferent threads could write to the same memory address before inspection. We solve

50

this problem by using a lock to protect store instructions during analysis. In lines

24-26 we insert an analysis function to lock the tool from writing to the same ad-

dress and in lines 32-35 we capture the descriptor for the store instruction and un-

lock the lock. Certain control flow instructions, notably the call instruction, write to

memory so we need to inspect memory after the branch is taken, otherwise we insert

the analysis routine after the instruction. This context is managed by lines 28-30 in

Figure 4.15. The logical thread ID of the thread issuing the memory referencing in-

struction, the instruction address, the operand virtual address, and the operand size

are passed to each analysis routines. InsertPredicatedCall only injects analysis

routines if a load or store instruction has a true predicate, as Intel-64 and x86 archi-

tectures can use predicated mov instructions.

51

1. for(BBL bbl = TRACE_BblHead(trace); BBL_Valid(bbl); bbl = BBL_Next(bbl))

2. {

3. for(INS ins = BBL_InsHead(bbl); INS_Valid(ins); ins = INS_Next(ins))

4. {

5. INS_InsertCall(ins, IPOINT_BEFORE, (AFUNPTR)SetFastForwardAndLength,

6. IARG_THREAD_ID, IARG_END);

7.

8. if(INS_IsMemoryRead(ins) || INS_IsMemoryWrite(ins))

9. {

10. UINT32 memOperands = INS_MemoryOperandCount(ins);

11.

12. for(UINT32 memOp = 0; memOp < memOperands; memOp++)

13. {

14. if(INS_MemoryOperandIsRead(ins, memOp) && TraceLoad.Value())

15. {

16. INS_InsertPredicatedCall(ins,IPOINT_BEFORE,

17. (AFUNPTR)Emit_LoadValueDescriptor_ASCII,

18. IARG_THREAD_ID, IARG_INST_PTR,

19. IARG_MEMORYOP_EA, memOp,

20. IARG_MEMORYREAD_SIZE, IARG_END);

21. }

22. if(INS_MemoryOperandIsWritten(ins, memOp) && TraceStore.Value())

23. {

24. INS_InsertPredicatedCall(ins, IPOINT_BEFORE,

25. (AFUNPTR)lock_WriteLocation, IARG_FAST_ANALYSIS_CALL,

26. IARG_THREAD_ID, IARG_MEMORYOP_EA, memOp, IARG_END);

27.

28. IPOINT where = IPOINT_AFTER;

29. if (!INS_HasFallThrough(ins))

30. where = IPOINT_TAKEN_BRANCH;

31.

32. INS_InsertPredicatedCall(ins, where,

33. (AFUNPTR)Emit_StoreValueDescriptor_ASCII,

34. IARG_THREAD_ID, IARG_INST_PTR,

35. IARG_MEMORYWRITE_SIZE, IARG_END);

36. }

37. }

38. }

39. }

40. }

Figure 4.15 mlsTrace instrumentation from mlsTrace.cpp

52

Figure 4.16 lists the analysis functions used by mlsTrace to emit a store de-

scriptor to a binary file. These are located in mlsTrace.h, which only contains the

analysis routines inserted by mlsTrace.cpp. lock_WriteLocation prevents other

application threads from writing to a memory location before mlsTrace inspects

memory for the value written for an instrumented instruction.

Emit_StoreValueDescriptor_Bin is an analysis function that captures binary

trace descriptors for instructions that write to memory and pushes them on an STL

container. Similar to mcfTrace, mlsTrace spawns a thread that continuously writes

the contents of this container to a file or compressor. In lines 12 and 13 we copy the

value written to memory and release the lock that was protecting the address. The

CanEmit routine is used to check if tracing is enabled or to detach mlsTrace from

the process if the trace file limit size is reached. In lines 20-40 we save the trace de-

scriptor fields to a container, which is protected by a lock. Because Intel uses a little

endian byte ordering, the load and store values are converted to big endian when

writing to an ASCII file.

53

1. VOID Pin_FAST_ANALYSIS_CALL lock_WriteLocation(const THREADID threadid,

2. const ADDRINT * ea)

3. {

4. GetLock(&mem_lock, threadid+1);

5. lockedOperandAddress = ea;

6. }

7. VOID Emit_StoreValueDescriptor_Bin(const THREADID threadid, const ADDRINT address,

8. const UINT32 opSize)

9. {

10. //copy value

11. UINT8 valBuf[opSize];

12. Pin_SafeCopy(valBuf, lockedOperandAddress, opSize);

13. ReleaseLock(&mem_lock);

14.

15. //if we can't record yet, return

16. if(!CanEmit(threadid)) return;

17. //increment load statistics

18. IncrementStoreStatistics(opSize);

19.

20. BinaryDescriptorTableEntry BinDescriptor;

21. BinDescriptor.type = store;

22. BinDescriptor.tid = *static_cast<UINT8*>(Pin_GetThreadData(tls_key, threadid));

23. BinDescriptor.insAddr = address;

24. BinDescriptor.operandEffAddr = reinterpret_cast<intptr_t>(lockedOperandAddress);

25. BinDescriptor.operandSize = opSize;

26.

27. //reverse endianess

28. ConvertToBigEndian(valBuf, opSize);

29.

30. //Allocate memory for value

31. BinDescriptor.data = new UINT8[opSize];

32. //copy to struct entry

33. std::copy(valBuf, valBuf+opSize, BinDescriptor.data);

34.

35. //critical section

36. GetLock(&table_lock, threadid+1);

37. //Push back, will write on close

38. binDescriptorTable.push_back(BinDescriptor);

39. IncrementFileCount(BinaryDescriptorSize+opSize);

40. ReleaseLock(&table_lock);

41. }

Figure 4.16 mlsTrace analysis example from mlsTrace.h

54

4.2.3 Verification/Test

mlsTrace was tested with a program that executes a number of load and store

instructions with varying operand sizes. Two examples are given in this section from

the test program, mlsTest.c, along with the load and store value descriptors cap-

tured by mlsTrace. Figure 4.17 depicts the first section of mlsTest.c, which refer-

ences some unsigned and signed byte operands, and an unsigned doubleword that is

used as a loop counter. In line 5-7 of Figure 4.17 we print the addresses of these var-

iables to standard output. Both loops, starting at lines 9 and 14, generate load and

store instructions for the loop counter. Lines 11 and 12 execute store instructions for

the two byte arrays, while lines 16 and 17 load array elements to registers.

1. int i;

2. //bytes

3. volatile uint8_t uint8[17];

4. volatile int8_t sint8[17];

5. printf("i address: %p\n", &i);

6. printf("uint8 address: %p\n",uint8);

7. printf("sint8 address: %p\n",sint8);

8.

9. for(i=0;i<17;i++)

10. {

11. uint8[i] = i;

12. sint8[i] = -i;

13. }

14. for(i=0;i<17;i++)

15. {

16. uint8[i];

17. sint8[i];

18. }

19.

Figure 4.17 Example 1 from mlsTest.c

55

Figure 4.18 lists the program output from Example 1 and a selection of the

load and store value descriptors captured by mlsTrace along the assembly instruc-

tions associated with each descriptor. Lines 1-3 are from standard output and show

the addresses of the three variables used in this example. Lines 4-5 contain the de-

scriptors for the loop counter, i, which is initialized and moved to the eax register

(which will be used in a cmp instruction). Line 6 loads the loop counter value into

the edx register which is written to uint8 at line 7, negated and written to sint8 at

line 9 (negation instruction not shown). These two descriptors come from the source

code lines 11 and 12 from Figure 4.17. There are two more store descriptors associ-

ated with this loop at lines 12 and 14, with values 0x01 and 0xff, respectively. Lines

15-20 correspond to the second and third iteration of the loop at line 14 in Figure

4.17. The first two byte descriptors, at lines 16 and 17, show that the values 0x01

and 0xff were loaded from memory, while the last two byte descriptors have the val-

ues 0x02 and 0xfe. Throughout this example and the following example, the eax reg-

ister is used to check the for loop condition.

56

1. i address: 0x7fff19df619c

2. uint8 address: 0x7fff19df6180

3. sint8 address: 0x7fff19df6160

4. 0, S, 0x000000000040056a, 0x00007fff19df619c, 4, 0x00000000

mov dword ptr [rsp+0x1dc], 0x0

5. 0, L, 0x00000000004005b8, 0x00007fff19df619c, 4, 0x00000000

mov eax, dword ptr [rsp+0x1dc]

6. 0, L, 0x000000000040057e, 0x00007fff19df619c, 4, 0x00000000

mov edx, dword ptr [rsp+0x1dc]

7. 0, S, 0x0000000000400587, 0x00007fff19df6180, 1, 0x00

mov byte ptr [rsp+rax*1+0x1c0], dl

8. 0, L, 0x0000000000400595, 0x00007fff19df619c, 4, 0x00000000

mov edx, dword ptr [rsp+0x1dc]

9. 0, S, 0x00000000004005a0, 0x00007fff19df6160, 1, 0x00

mov byte ptr [rsp+rax*1+0x1a0], dl

10. 0, L, 0x00000000004005a7, 0x00007fff19df619c, 4, 0x00000001

mov eax, dword ptr [rsp+0x1dc]

11. 0, L, 0x000000000040057e, 0x00007fff19df619c, 4, 0x00000001

mov edx, dword ptr [rsp+0x1dc]

12. 0, S, 0x0000000000400587, 0x00007fff19df6181, 1, 0x01

mov byte ptr [rsp+rax*1+0x1c0], dl

13. 0, L, 0x0000000000400595, 0x00007fff19df619c, 4, 0x00000001

mov edx, dword ptr [rsp+0x1dc]

14. 0, S, 0x00000000004005a0, 0x00007fff19df6161, 1, 0xff

mov byte ptr [rsp+rax*1+0x1a0], dl

15. 0, L, 0x00000000004005d1, 0x00007fff19df619c, 4, 0x00000001

mov eax, dword ptr [rsp+0x1dc]

16. 0, L, 0x00000000004005da, 0x00007fff19df6181, 1, 0x01

movzx eax, byte ptr [rsp+rax*1+0x1c0]

17. 0, L, 0x00000000004005eb, 0x00007fff19df6161, 1, 0xff

movzx eax, byte ptr [rsp+rax*1+0x1a0]

18. 0, L, 0x0000000000400604, 0x00007fff19df619c, 4, 0x00000002

mov eax, dword ptr [rsp+0x1dc]

19. 0, L, 0x00000000004005da, 0x00007fff19df6182, 1, 0x02

movzx eax, byte ptr [rsp+rax*1+0x1c0]

20. 0, L, 0x00000000004005eb, 0x00007fff19df6162, 1, 0xfe

movzx eax, byte ptr [rsp+rax*1+0x1a0]

Figure 4.18 mlsTest.c output and mlsTrace descriptors for Example 1

57

Example 2, shown in Figure 4.19, is similar to the first example and executes

load and store instructions with 10 and 32 byte operands. Intel processors can utilize

10 byte double extended precision floating point data types to reduce the precision

loss that occurs in many floating point algorithms. Line 2 prints the address of a

double extended precision array and lines 3-8 contain code that reads and writes

these array elements to memory. This test program also executes instructions from

Intel’s advanced vector extensions instruction set (AVX), which are single instruc-

tion multiple data instructions that act on 256 bit wide operands. In this case,

mlsTest.c uses a compiler intrinsic to perform the addition of two 256 bit operands

organized as a vector of eight single precision floating point numbers. Lines 12-14

map to a sequence of AVX load and store instructions that will be captured by

mlsTrace.

1. volatile long double extendedPre80[8];

2. printf("extendedPre80 address: %p\n",extendedPre80);

3. for(i=0;i<8;i++)

4. {

5. extendedPre80[i]=i;

6. }

7. for(i=0;i<8;i++)

8. {

9. extendedPre80[i] = extendedPre80[i] + i;

10. }

11.

12. volatile __m256 A = _mm256_set_ps(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0);

13. volatile __m256 B = _mm256_set_ps(2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0);

14. volatile __m256 R = _mm256_hadd_ps(A,B);

Figure 4.19 Example 2 from mlsTest.c

58

Figure 4.20 contains the output from Example 2 in Figure 4.19 and some of

the load and store value trace descriptors captured by mlsTrace. Line 1 is from the

standard output and contains the address of the double extended precision array.

Lines 2-11 come from the first loop in Figure 4.19. Lines 2 and 3 initialize the loop

counter while line 4 writes the same integer value to the stack. The descriptor at

line 5 shows that this four byte signed integer is loaded from the stack and is con-

verted to a 10 byte double extended precision number and saved to a register. At line

6 the byte operand is saved to the array extendedPre80. The second iteration of the

first loop is depicted in lines 7-11, where the floating point value 1.0 is written to ex-

tendedPre80. Lines 12-18 are captured during the first iteration of the second loop in

Figure 4.19, with Lines 12, 13, 15, and 16 concerning the loop variable. At line 14 a

previously saved extendedPre80 element is loaded to a register and another signed

doubleword is converted at line 17. The addition instruction is not captured by

mlsTrace, but the store instruction is at line 18.

59

1. extendedPre80 address: 0x7fff1a03b980

2. 0, S, 0x0000000000400711, 0x00007fff1a03badc, 4, 0x00000000

mov dword ptr [rsp+0x1dc], 0x0

3. 0, L, 0x0000000000400760, 0x00007fff1a03badc, 4, 0x00000000

mov eax, dword ptr [rsp+0x1dc]

4. 0, S, 0x000000000040072c, 0x00007fff1a03b91c, 4, 0x00000000

mov dword ptr [rsp+0x1c], eax

5. 0, L, 0x0000000000400730, 0x00007fff1a03b91c, 4, 0x00000000

fild st0, dword ptr [rsp+0x1c]

6. 0, S, 0x000000000040074d, 0x00007fff1a03b980, 10, 0x00000000000000000000

fstp ptr [rsp+0x80], st0

7. 0, S, 0x0000000000400759, 0x00007fff1a03badc, 4, 0x00000001

mov dword ptr [rsp+0x1dc], eax

8. 0, L, 0x0000000000400760, 0x00007fff1a03badc, 4, 0x00000001

mov eax, dword ptr [rsp+0x1dc]

9. 0, S, 0x000000000040072c, 0x00007fff1a03b91c, 4, 0x00000001

mov dword ptr [rsp+090], eax

10. 0, L, 0x0000000000400730, 0x00007fff1a03b91c, 4, 0x00000001

fild st0, dword ptr [rsp+0x1c]

11. 0, S, 0x000000000040074d, 0x00007fff1a03b990, 10, 0x3fff8000000000000000

fstp ptr [rsp+0x90], st0

12. 0, S, 0x000000000040076c, 0x00007fff1a03badc, 4, 0x00000000

mov dword ptr [rsp+0x1dc], 0x0

13. 0, L, 0x00000000004007de, 0x00007fff1a03badc, 4, 0x00000000

mov eax, dword ptr [rsp+0x1dc]

14. 0, L, 0x000000000040079f, 0x00007fff1a03b980, 10, 0x00000000000000000000

fld st0, ptr [rsp+0x80]

15. 0, L, 0x00000000004007a1, 0x00007fff1a03badc, 4, 0x00000000

mov eax, dword ptr [rsp+0x1dc]

16. 0, S, 0x00000000004007a8, 0x00007fff1a03b91c, 4, 0x00000000

mov dword ptr [rsp+0x1c], eax

17. 0, L, 0x00000000004007ac, 0x00007fff1a03b91c, 4, 0x00000000

fild st0, dword ptr [rsp+0x1c]

18. 0, S, 0x00000000004007cb, 0x00007fff1a03b980, 10, 0x00000000000000000000

fstp ptr [rsp+0x80], st0

Figure 4.20 mlsTest.c output and mlsTrace descriptors for Example 2

Lastly, Figure 4.21 contains the remaining descriptors for the AVX intrinsics

in Figure 4.19. Lines 1 and 2 write the single precision floating point vectors to

60

memory. The trace file includes descriptors for the many doubleword load instruc-

tions and vector packing and unpacking instructions, but they are not included here

for succinctness. At line three the two vectors are added (with one operand reading

from memory) and the result stored at line 4.

1. 0, S, 0x00000000004008ba, 0x00007fff1a03b960, 32,

0x000000410000e0400000c0400000a0400000804000004040000000400000803f

vmovaps ymmword ptr [rsp+0x60], ymm0

2. 0, S, 0x0000000000400986, 0x00007fff30833c00, 32,

0x00001041000000410000e0400000c0400000a040000080400000404000000040

vmovaps ymmword ptr [rsp+0x40], ymm0

3. 0, L, 0x00000000004009b3, 0x00007fff30833de0, 32,

0x00001041000000410000e0400000c0400000a040000080400000404000000040

vhaddps ymm0, ymm0, ymmword ptr [rsp+0x60]

4. 0, S, 0x00000000004009bc, 0x00007fff30833be0, 32,

0x000070410000304100008841000050410000e04000004040000010410000a040

 vmovaps ymmword ptr [rsp+0x20], ymm0

Figure 4.21 mlsTrace descriptors for SIMD instructions in Example 2

4.3 mcfTRaptor

Similar to mcfTrace, mcfTRaptor is a Pin tool designed to collect control flow

traces from multithreaded software and save the trace descriptors to a file. However,

mcfTRaptor seeks to reduce the number of descriptors collected by using the TRap-

tor branch prediction structure to correctly predict branch outcomes and branch tar-

gets. Branch instruction trace descriptors are collected whenever a TRaptor struc-

ture incorrectly predicts branch outcomes or branch targets, and when an exception

occurs. mcfTRaptor is designed to trace multithreaded software, with a TRaptor

branch predictor allocated privately to a thread or shared amongst all threads in the

61

process. Descriptors collected by mcfTRaptor can be saved to a text or binary file, or

be piped to a general purpose compressor. Section 4.3.1 gives a functional descrip-

tion of the mcfTRaptor, section 4.3.2 describes some of the implementation details of

mcfTRaptor, and section 4.2.3 lists steps taken to verify the output of mcfTRaptor.

4.3.1 Functional Description

Table 4.5 contains the parameters for controlling control flow tracing with

mcfTRaptor. These parameters are used to control the following: (a) the trace file

type (binary or ASCII)), (b) the TRaptor branch prediction structure parameters (c)

the segment of the target to trace at the subroutine level, and (d) optional compres-

sion. The TRaptor predictor contains a gshare branch outcome predictor, a return

address stack (RAS), and an indirect branch target buffer (iBTB). A user may specify

the size and configuration of these predictor structures, such as the number of en-

tries in the gshare outcome predictor (ranging from 0 to 4096), the number of entries

in the RAS (0, 8, 16, and 32) and the number of entries in the iBTB. In addition, a

user may specify whether these structures are thread private or shared by all

threads.

62

Table 4.5 mcfTRaptor parameters

Parameter Description

-gshare <ENTRIES> gshare outcome predictor size for TRaptor trace module. <EN-

TRIES> = {0, 256, 512, or 1024, 2048, 4096}.

-RAS <ENTRIES> Size of return address stack for TRaptor. <ENTRIES> = {0, 8,

16, 32}

-iBTB<ENTRIES> Size of 2-way set associative indirect branch target buffer for

TRaptor.

<ENTRIES> = { 0, 16, 32, 64 }

-TRaptorShare TRaptor structures are shared between threads. This includes

the gshare outcome predictor, return address stack, and indi-

rect branch target buffer.

-a Saves trace descriptors in an ASCII file

-c <COMPRESSOR> Trace descriptors are piped to a general-purpose compressor

before saving.

<COMPRESSOR> = {bzip2, pbzip2, gzip, pigz}

-d Each descriptor includes a corresponding assembly code

-f Trace file size limit in Megabytes. Instrumentation and trace

collecting stops after reaching this limit.

-filter_no_shared_libs Only traces target binary, shared libraries are not traced.

-filter_rtn <routine> Tracing only occurs in a specified routine(s).

-[h | help] Displays help message with all parameters and their descrip-

tion.

-l <NIST> Specifies NIST, the number of instructions that will be instru-

mented in the target.

-o <FNAME> Specify trace file name, FNAME.

-s <NIST> Specify NIST, the number of instructions to be skipped before

instrumentation begins.

Figure 4.22 categorizes the format control flow descriptors collected by

mcfTRaptor. mcfTRaptor uses three distinct trace descriptors for mispredicted out-

63

comes, mispredicted targets, and exceptions. The binary trace descriptor fields for

the three categories are described below.

 Mispredicted Outcome

o The Thread ID field is 1 byte long and encodes threads from 0 to

255.

o The bCnt field is 4 bytes long and holds the number of correctly

predicted branch outcomes and targets before an incorrect predic-

tion occurs. Whenever a trace descriptor is captured with

mcfTRaptor, this value is reset to one.

 Mispredicted Target

o The Thread ID field is 1 byte long and encodes threads from 0 to

255.

o The bCnt field is 4 bytes long and holds the number of correctly

predicted branch outcomes and targets before an incorrect predic-

tion occurs. Whenever a trace descriptor is captured by mcfTRap-

tor, this value is reset to one.

o The Taken field is a 1 byte field used to distinguish between mis-

predicted target and mispredicted outcome descriptors.

o Target Address is 8 bytes long an contains the correct branch in-

struction target.

 Exception

o The Thread ID field is 1 byte long and encodes threads from 0 to

255.

64

o The Exception field is a 4 byte long field categorizes the trace de-

scriptor as an exception descriptor. This field will always have the

value zero, and is used to distinguish an Exception descriptor from

a Mispredicted Target descriptor.

o iCnt is 4 byte long field that holds the number of instructions exe-

cuted before the exception occurred. Like bCnt, this field is reset

whenever a descriptor is captured by mcfTRaptor.

o The Target address field is an 8 byte field that holds the exception

handler address.

The use of three types of control flow descriptors with varying sizes necessi-

tates the use of fields that differentiate each descriptor for decoding purposes. The

bCnt field will never take on the value zero, which is reserved for the exception field

in the exception descriptor. The address fields can be either four or eight bytes de-

pending on the system’s addressing size. When tracing in binary mode, mispredicted

outcome descriptors are 5 bytes long, mispredicted target descriptors are 14 bytes

long, and exception descriptors are 17 bytes long. ASCII descriptors include the

same fields as binary descriptors, but can augmented with the assembly instruction

that corresponds to the descriptor. Figure 4.22 gives examples for all three ASCII

descriptor types that mcfTRaptor can capture.

65

Figure 4.22 mcfTRaptor descriptor formats: binary (top) and ASCII (bottom)

Figure 4.23 contains an example mcfTRaptor run for a simple multithreaded

matrix multiplication program. In this example, the number of entries for the gshare

mcfTRaptor descriptor: Binary

Format

Thread ID
(1 Byte)

Mispredicted Outcome

bCnt
(4 Bytes)

Thread ID
(1 Byte)

Mispredicted Target

bCnt
(4 Bytes)

Target Address
(8 Bytes)

Taken
(1 Byte)

Thread ID
(1 Byte)

Exception

iCnt
(4 Bytes)

Target Address
(8 Bytes)

Exception(4
Bytes)

mcfTRaptor descriptor: ASCII

Format

Thread ID
(up to 4
Bytes)

Mispredicted Outcome

bCnt

(up to 12

Bytes)

Thread ID
(up to 4

Byte)

Mispredicted Target

bCnt
(up to 12

Bytes)

Target Address
(20 Bytes)

Taken
(3 Bytes)

Thread ID

(up to 4

Byte)

Exception

iCnt
(up to 12

Bytes)

Target Address
(20 Bytes)

Exception
(4 Bytes)

0, 1 jz 0x7f428fe34618

1, 1, T, 0x0000003f83e07780 call rax

0, 0, 78, div dword ptr [rbp-36]

Descriptor
Type

(1 Byte)

Descriptor
Type

(1 Byte)

Descriptor
Type

(1 Byte)

66

outcome predictor is set to 4096, the size of the return address stack is 32 entries,

and the number of entries for the two-way set-associative indirect branch target

buffer is 64. The target is traced in ASCII mode with assembly instructions append-

ed to each descriptor. Lines 2-14 contain output written to standard out from

mcfTRaptor and line 15 is standard output from the target. Lines 19-25 contain the

contents of the statistics file, mcfTRaptor.out2014_1_3_13.16.20.Statistics, generat-

ed for this run. Here, we can see the outcome prediction rates for direct conditional

branches and target prediction rates for indirect unconditional branches. Lastly,

lines 28-37 contain the beginning of the trace file saved by mcfTRaptor, mcfTRap-

tor.out2014_1_3_13.16.20.txt. Each descriptor shown in Figure 4.23 represents a

mispredicted outcome for a conditional branch, with all but two descriptors coming

from the same instruction, jbe 0x3f832011b0.

67

1. [mhealth3 ManualExamples]$ pin -t obj-intel64/mcfTRaptor.so -a -d -

 gshare 4096 -RAS 32 -iBTB 64 -- ./Matrix_Multiplication_OpenMP 32

2. mcfTRaptor: Writing to ASCII file: mcfTRaptor.out2014_1_3_13.16.20.txt

3. mcfTRaptor: mcfTRaptor descriptors -

4. Mispredicted outcomes for direct conditional branches: Thread ID, bCnt

5. Mispredicted targets for indirect unconditional branches: Thread ID, bCnt,

 T, Target Address

6. Exceptions: Thread ID, bCnt, iCnt, Target Address

7. mcfTRaptor: Private TRaptor thread begin 0 30326

8. mcfTRaptor: Private TRaptor thread begin 1 30334

9. mcfTRaptor: Private TRaptor thread begin 2 30335

10. mcfTRaptor: Private TRaptor thread begin 3 30336

11. mcfTRaptor: Private TRaptor thread begin 4 30337

12. mcfTRaptor: Private TRaptor thread begin 5 30338

13. mcfTRaptor: Private TRaptor thread begin 6 30339

14. mcfTRaptor: Private TRaptor thread begin 7 30340

15. 224

16. [EB245-mhealth3 ManualExamples]$ head mcfTRaptor.out2014_1_3_13.16.20.Statistics

17. mcfTRaptor: Instrumentation Time 6886.79 ms

18. mcfTRaptor: Skipped 0 instructions

19. mcfTRaptor: Recorded 5123700 direct conditional branches, indirect unconditional

 branches, and exceptions

20. 5064797 conditional direct branches

21. 5040574 (%99.52) outcomes predicted

22. 24223 (%0.48) outcomes mispredicted

23. 58903 unconditional indirect branches

24. 56288 (%95.56) targets predicted

25. 2615 (%4.44) targets mispredicted

26. 0 exceptions

27. [mhealth3 ManualExamples]$ head mcfTRaptor.out2014_1_3_13.16.20.txt

28. 0, 2 jbe 0x3f832011b0

29. 0, 2 jbe 0x3f832011b0

30. 0, 3 jnbe 0x3f832014d0

31. 0, 1 jbe 0x3f832014f0

32. 0, 4 jbe 0x3f832011b0

33. 0, 2 jbe 0x3f832011b0

34. 0, 2 jbe 0x3f832011b0

35. 0, 2 jbe 0x3f832011b0

36. 0, 2 jbe 0x3f832011b0

37. 0, 2 jbe 0x3f832011b0

Figure 4.23 mcfTRaptor example output

68

4.3.2 Implementation Details

For mcfTRaptor, instrumentation occurs at the instruction level. We iterate

over basic blocks and the instructions in each basic block, and insert analysis rou-

tines for each branch instruction encountered. The instrumentation code for tracing

in ASCII mode is given in Figure 4.24. As with mcfTrace, mcfTRaptor iterates over

newly encountered basic blocks and inserts analysis code for conditional branch,

jump, call, and return instructions. Because we can see the outcome and target of a

branch instruction before the instruction is executed, the analysis code is always in-

serted before the branch instruction, using the IPOINT_BEFORE context provided by

Pin. The analysis routines are organized for efficiency, as some control flow instruc-

tions may only use one component of TRaptor. For example, lines 8-11 are used to

instrument conditional branch instructions, which will only use the gshare outcome

predictor in TRaptor. Lines 13-15 instrument return instructions, which only utiliz-

es the return address stack when making a target prediction. Subprocedure calls

that utilize indirect addressing are instrumented in lines 17-20. This analysis rou-

tine consults the indirect branch target buffer for a target prediction and pushes the

return address for the call instruction onto the return address stack. Lines 22-25 in-

strument non-call indirect branch instructions, with the analysis code checking the

iBTB for target predictions, and lines 27-30 instrument direct calls, where the anal-

ysis code only pushes the return address onto the RAS. Lastly, the exception de-

scriptor requires that mcfTRaptor count the number of instructions that execute pri-

or to the exception occurring. Lines 32-34 instrument every instruction to increment

iCnt in the event an exception occurs.

69

1. for(BBL bbl = TRACE_BblHead(trace); BBL_Valid(bbl); bbl = BBL_Next(bbl))

2. {

3. for(INS ins = BBL_InsHead(bbl); INS_Valid(ins); ins = INS_Next(ins))

4. {

5. INS_InsertCall(ins, IPOINT_BEFORE, (AFUNPTR)SetFastForwardAndLength,

6. IARG_THREAD_ID, IARG_END);

7.

8. if(INS_IsDirectBranchOrCall(ins) && INS_HasFallThrough(ins))

9. INS_InsertCall(ins, IPOINT_BEFORE,

10. (AFUNPTR)Private_DirectConditional_ASCII, IARG_THREAD_ID,

11. IARG_INST_PTR, IARG_BRANCH_TAKEN,IARG_END);

12.

13. else if(INS_IsRet(ins))

14. INS_InsertCall(ins, IPOINT_BEFORE, (AFUNPTR)Private_Ret_ASCII,

15. IARG_THREAD_ID, IARG_INST_PTR, IARG_BRANCH_TARGET_ADDR, IARG_END);

16.

17. else if(INS_IsIndirectBranchOrCall(ins) && INS_IsCall(ins))

18. INS_InsertCall(ins, IPOINT_BEFORE, (AFUNPTR)Private_IndirectCall_ASCII,

19. IARG_THREAD_ID, IARG_INST_PTR, IARG_BRANCH_TARGET_ADDR, IARG_ADDRINT,

20. INS_NextAddress(ins), IARG_END);

21.

22. else if(INS_IsIndirectBranchOrCall(ins))

23. INS_InsertCall(ins, IPOINT_BEFORE,

24. (AFUNPTR)Private_OtherUnconditionalIndirect_ASCII,

25. IARG_THREAD_ID, IARG_INST_PTR, IARG_BRANCH_TARGET_ADDR, IARG_END);

26.

27. else if(INS_IsCall(ins))

28. INS_InsertCall(ins, IPOINT_BEFORE, (AFUNPTR)Private_Direct_Call,

29. IARG_THREAD_ID, IARG_INST_PTR, IARG_ADDRINT, INS_NextAddress(ins),

30. IARG_END);

31.

32. else

33. INS_InsertCall(ins, IPOINT_BEFORE, (AFUNPTR)Private_iCnt_Increment,

34. IARG_THREAD_ID, IARG_END);

35. }

36. }

Figure 4.24 mcfTRaptor instrumentation

70

In the rest of this section, we explore the implementation of two analysis rou-

tines and the TRaptor components they utilize. Figure 4.25 shows the analysis code

from mcfTRaptorPrivateAnalysis.h for indirect sub procedure calls when tracing in

binary mode. Intel’s Pin provides thread local storage, and the TRaptor object asso-

ciated with the thread that executed the branch instruction is retried with the

thread ID at line 6. mcfTRaptor can also use a shared TRaptor object that is protect-

ed by a lock. In every mcfTRaptor analysis routine the bCnt and iCnt counters are

incremented (lines 8 and 9). The iBTB index is generated with the instruction ad-

dress in the TRaptor method GetIBTBindex which is listed in Figure 4.26. After

retrieving the index the iBTB entry needs to check for target prediction.

IBTBisHit, which is listed in Figure 4.27, takes the iBTB index and target and re-

turns true if the prediction is correct. This sub procedure also updates the iBTB if

necessary. If the target prediction is incorrect, mcfTRaptor writes a descriptor to file

and resets bCnt and iCnt. Lastly, the return address of the call instruction is pushed

on to the return address stack.

71

1. VOID Private_IndirectCall_Bin(const THREADID threadid, const ADDRINT addr, const

2. ADDRINT target, const ADDRINT ret)

3. {

4. if(!CanEmit(threadid)) return;

5.

6. TRaptor* traptor = get_tls(threadid);

7.

8. traptor->IncrementiCnt();

9. traptor->IncrementbCnt();

10.

11. ADDRINT index = traptor->GetIBTBindex(addr);

12. BOOL correct = traptor->IBTBisHit(addr, index, target);

13.

14. IncrementBranchStatistics(Target, correct);

15.

16. if (!correct)

17. {

18. BinaryDescriptorTableEntry mispredicted_outcome;

19. mispredicted_outcome.tid = traptor->tid;

20. mispredicted_outcome.bCnt = traptor->bCnt;

21. mispredicted_outcome.targetAddress = target;

22. mispredicted_outcome.type = Target;

23. PushBinDescriptor(threadid, mispredicted_outcome);

24. traptor->ResetCounters();

25. }

26. traptor->PushRAS(ret);

27. }

Figure 4.25 mcfTRaptor – indirect call analysis code

Figure 4.26 contains the procedure that generates the iBTB index for branch

target prediction. The iBTB index is a hash index generated using the upper bits of

the branch instruction address and the upper bits of the path information register

(PIR), which records iBTB hits and misses. Line 5 calculates this index and returns

it to the analysis routine.

72

1. inline ADDRINT TRaptor::GetIBTBindex(const ADDRINT address) const

2. {

3. // iBTB.index = PIR[8+index size-1: 8] xor PC[4+index size-1:4];

4. if(this->hasIBTB)

5. return ((PIR >> 8) & indexMask) ^ ((address >> 4) & indexMask);

6. else

7. return 0;

8. }

Figure 4.26 mcfTRaptor – iBTB index

Figure 4.27 lists the TRaptor function to check iBTB predictions and update

iBTB entries. The conditions in lines 16-25 are met when the predicted target saved

in the iBTB matches the actual branch target of the instruction. These entries are

referenced by the index generated by GetIBTBIndex, and each way is accessed seri-

ally. When a correct prediction is made, the least recently used way is noted for the

next access and the path information register (PIR) is updated in the TRaptor struc-

ture.

73

1. inline BOOL TRaptor::IBTBisHit(const ADDRINT address, const ADDRINT index,

2. const ADDRINT target)

3. {

4. if(!this->hasIBTB)

5. return false;

6.

7. BOOL hit;

8. if(this->way0[index] == target)

9. {

10. this->LastUsedWay[index] = WAY0;

11. hit = true;

12. }

13. else if(way1[index] == target)

14. {

15. this->LastUsedWay[index] = WAY1;

16. hit = true;

17. }

18. else

19. {

20. hit = false;

21. if(this->LastUsedWay == WAY0)

22. {

23. this->way1[index] = target;

24. this->LastUsedWay[index] = WAY1;

25. }

26. else

27. {

28. this->way0[index] = target;

29. this->LastUsedWay[index] = WAY0;

30. }

31. }

32. //update PIR

33. //PIR[12:0] = ((PIR[12:0]<<2) xor PC[16:4]) | Outcome

34. this->PIR = ((this->PIR << 2) ^ ((address >> 4) & 0x1fff)) | 1;

35. return hit;

36. }

Figure 4.27 mcfTRaptor – iBTB lookup

74

Figure 4.28 contains the analysis code inserted for conditional branches,

which references the gshare branch outcome predictor structure in TRaptor. The

gshare index is generated at line 13, and mcfTRaptor retrieves the prediction for the

given instruction and compares it to the actual outcome at line 16. If the prediction

is correct, a binary descriptor associated with this instruction is created and written

to file. Lastly, the gshare entry is updated with the branch outcome. Because this

analysis routine is used when tracing with shared branch outcome and target struc-

tures, the TRaptor structure is protected with a lock at line 6 and 17.

75

1. VOID Shared_DirectConditional_Bin(const THREADID threadid, const ADDRINT addr,

2. const BOOL taken)

3. {

4. //see if we can emit

5. if(!CanEmit(threadid)) return;

6. GetLock(&shared_lock, threadid+1);

7.

8.

9. //increment bCnt and iCnt

10. SharedTRaptor->IncrementiCnt();

11. SharedTRaptor->IncrementbCnt();

12.

13. ADDRINT index = SharedTRaptor->GetGSHAREindex(addr);

14.

15. //see if prediction is correct

16. BOOL correct = SharedTRaptor->OutcomePredictionIsCorrect(index, taken);

17.

1. //update statistics for DirCB

2. IncrementBranchStatistics(Outcome, correct);

3.

4. //Emit descriptor if prediction is wrong or doesn't use gshare

5. if(!correct)

6. {

7. BinaryDescriptorTableEntry mispredicted_outcome;

8. mispredicted_outcome.tid = SharedTRaptor->tid;

9. mispredicted_outcome.bCnt = SharedTRaptor->bCnt;

10. mispredicted_outcome.type = Outcome;

11. PushBinDescriptor(threadid, mispredicted_outcome);

12. //reset iCnt, bCnt

13. SharedTRaptor->ResetCounters();

14. }

15. //update TRaptor's GSHARE

16. SharedTRaptor->UpdateGSHARE(index, taken);

17. ReleaseLock(&shared_lock);

18. }

Figure 4.28 mcfTRaptor – conditional branch analysis

The last code section for TRaptor, Figure 4.29, contains the functions that

generate the gshare index and update gshare. The gshare index is created using the

branch history register and address of the branch instruction. The PCmask and and

76

BHRmask variables are used to mask off the correct bits and depend on the number

of gshare entries. Line 10 begins the procedure that updates the TRaptor gshare and

uses the previously generated index. The BHR is updated with the outcome at line

16 and the two bit state machine updated at lines 21-27.

1. inline ADDRINT TRaptor::GetGSHAREindex(const ADDRINT address) const

2. {

3. //create gshare index

4. //gshare.index = BHR[log2(p):0] xor PC[4+log2(p):4]

5. if(hasgshare)

6. return ((this->PCmask & address) >> 4) ^ (this->BHR & this->BHRmask);

7. return 0;

8. }

9.

10. inline void TRaptor::UpdateGSHARE(const ADDRINT index, const BOOL taken)

11. {

12. if(!this->hasgshare)

13. return;

14.

15. //update BHR

16. this->BHR = (this->BHR << 1) | taken;

17.

18. UINT16 temp = (1 << log2p) - 1;

19. this->BHR &= temp;

20.

21. UINT8 prev = this->GSHARE[index];

22. UINT8 B1 = prev >> 1;

23. UINT8 B0 = prev & 0x1;

24.

25. UINT8 F1 = ((B1 & B0) | (taken & B1) | (taken &B0)) << 1;

26. UINT8 F0 = (B1 & ~B0) | (taken & ~B0) | (taken & B1);

27. this->GSHARE[index] = F1 | F0;

28. }

Figure 4.29 mcfTRaptor – gshsare index and update

77

4.3.3 Verification/Test

mcfTRaptor was tested with a number of different situations to verify that

the TRaptor branch predictor correctly references the gshare outcome predictor, the

return address stack, and the indirect branch target buffer for a variety of different

instructions. Three sections of an assembly program, traptortest.s, which verifies

each component of the TRaptor branch prediction mechanism implemented by

mcfTRaptor are presented here. The gshare outcome predictor is tested by using a

series of branch instructions seen in Figure 4.30. In this section of the program, the

branch instruction at line 9 is executed ten times, followed by two more branch in-

structions at line 11. The jmp instruction at line 2 does not reference the TRaptor

mechanism or generate a branch instruction because it is a direct unconditional and

can be inferred from the binary. The branch instruction at line 9 is incorrectly pre-

dicted by gshare multiple times before a correct prediction is made, as the branch

history register (BHR) needs to shift in the results before the index of gshare entry is

stabilized.

1. mov DWORD PTR [rbp-4], 0

2. jmp .L2

3. .L3:

4. mov eax, DWORD PTR [rbp-4]

5. mov DWORD PTR [rbp-8], eax

6. add DWORD PTR [rbp-4], 1

7. .L2:

8. cmp DWORD PTR [rbp-4], 9

9. jbe .L3

10. jbe .L3

11. jbe .L3

Figure 4.30 gshare Example

78

Figure 4.31 contains the resulting test output for this section of the program.

For each conditional branch instruction, the gshare index, prediction, result, and

updated prediction are shown. The trace descriptor is also given. The first five en-

tries correspond the to 6th through 10th iterations of the loop from lines 3-8 in Figure

4.30, and the last two correspond the last two branch instructions in Figure 4.30.

The gshare index changes every iteration until the BHR is saturated (line 24-28).

The gshare branch predictor uses a two-bit counter to encode prediction states and is

initialized with the “weak” not taken state. The first prediction made with index 183

is incorrect and the predictor is updated to the “weak” taken state. The next loop it-

eration is correctly predicted, but the last iteration is mispredicted (lines 36-40) as

the recent outcome results have changed the gshare index. The 6th entry is for an

instruction located at after the loop body but still uses the same index. The last en-

try references a different index and is correctly predicted because the entry was ini-

tialized to “weak” not taken.

79

1. bCnt: 1

2. GSHARE[119]: 1(NT)

3. Actual Result: T

4. *Mispredicted outcome: 0, 2 jbe 0x400481

5. Next Prediction for GSHARE[119]: 2

6.

7. bCnt: 1

8. GSHARE[55]: 1(NT)

9. Actual Result: T

10. *Mispredicted outcome: 0, 2 jbe 0x400481

11. Next Prediction for GSHARE[55]: 2

12.

13. bCnt: 1

14. GSHARE[183]: 1(NT)

15. Actual Result: T

16. *Mispredicted outcome: 0, 2 jbe 0x400481

17. Next Prediction for GSHARE[183]: 2

18.

19. bCnt: 1

20. GSHARE[183]: 2(T)

21. Actual Result: T

22. *Correct outcome prediction

23. Next Prediction for GSHARE[183]: 3

24.

25. bCnt: 2

26. GSHARE[183]: 3(T)

27. Actual Result: NT

28. *Mispredicted outcome: 0, 3 jbe 0x400481

29. Next Prediction for GSHARE[183]: 2

30.

31. bCnt: 1

32. GSHARE[183]: 2(T)

33. Actual Result: NT

34. *Mispredicted outcome: 0, 2 jbe 0x400481

35. Next Prediction for GSHARE[183]: 1

36.

37. bCnt: 1

38. GSHARE[181]: 1(NT)

39. Actual Result: NT

40. *Correct outcome prediction

41. Next Prediction for GSHARE[181]: 0

Figure 4.31 gshare Entries Test Output

80

In the next example we want to verify that the RAS correctly records the tar-

get of function return targets. Figure 4.32 contains the assembly code for testing the

RAS. main() starts at line 21, and calls the subroutine funct() with an integer

parameter set to 5. funct() is called recursively five times, totaling seven return

instructions for the entire program. Tracing was limited solely to these two func-

tions. The ret instruction returning control to the operating system loader causes a

misprediction because the target address was not saved upon program entry.

81

1. funct:

2. .LFB0:

3. push rbp

4. mov rbp, rsp

5. sub rsp, 16

6. mov DWORD PTR [rbp-4], edi

7. cmp DWORD PTR [rbp-4], 0

8. je .L5

9. .L2:

10. sub DWORD PTR [rbp-4], 1

11. mov eax, DWORD PTR [rbp-4]

12. mov edi, eax

13. call funct

14. jmp .L4

15. .L5:

16. nop

17. .L4:

18. leave

19. Ret

20.

21. main:

22. .LFB1:

23. push rbp

24. mov rbp, rsp

25. mov edi, 5

26. call funct

27. leave

28. ret

Figure 4.32 Return Address Stack Example

Figure 4.33 contains the test output for the assembly program shown in Fig-

ure 4.32. For each ret instruction the bCnt, target address, and RAS prediction are

printed. The descriptor is also printed for mispredictions. The first five entries are

the returns inside funct(), while the sixth entry is a return to main() from funct

after the first funct() returns. The remaining entry is a return to the operating

82

system ELF loader in the kernel. Except for the last entry, every prediction was cor-

rect.

1. bCnt: 1

2. Target = 400493

3. RAS[6] = 400493

4. *Correct target prediction

5.

6. bCnt: 2

7. Target = 400493

8. RAS[5] = 400493

9. *Correct target prediction

10.

11. bCnt: 3

12. Target = 400493

13. RAS[4] = 400493

14. *Correct target prediction

15.

16. bCnt: 4

17. Target = 400493

18. RAS[3] = 400493

19. *Correct target prediction

20.

21. bCnt: 5

22. Target = 400493

23. RAS[2] = 400493

24. *Correct target prediction

25.

26. bCnt: 6

27. Target = 4004a6

28. RAS[1] = 4004a6

29. *Correct target prediction

30.

31. bCnt: 7

32. Target = 7fd2349a7cdd

33. RAS[0] = 0

34. *Mispredicted target: 0, 8, T, 0x00007fd2349a7cdd ret

Figure 4.33 Return Address Stack Example Results

83

Lastly, we test the iBTB for indirect function calls. Figure 4.34 contains an

assembly program that executed an indirect call instruction to fpoint1() ten times

at line 15. The address of the function is loaded into the rdx register at line 14. The

descriptors and test output for the conditional branch at line 20 is suppressed. Each

time this indirect call is executed we inspect the iBTB index and its entry.

1. fpoint1:

2. push rbp

3. mov rbp, rsp

4. leave

5. ret

6. main:

7. push rbp

8. mov rbp, rsp

9. sub rsp, 16

10. mov QWORD PTR [rbp-16], OFFSET FLAT:fpoint1

11. mov DWORD PTR [rbp-4], 0

12. jmp .L4

13. .L5:

14. mov rdx, QWORD PTR [rbp-16]

15. mov eax, 0

16. call rdx

17. add DWORD PTR [rbp-4], 1

18. .L4:

19. cmp DWORD PTR [rbp-4], 9

20. jle .L5

21. leave

22. Ret

Figure 4.34 iBTB Example

Figure 4.35 contains the iBTB test output for five iterations of the loop con-

taining the indirect call, the first two iterations and the last three iterations. The

84

pathway information register (PIR), set index, target, predictions from both ways

are printed for each execution. If the prediction is incorrect, the descriptor is given

as well. The first iteration results in a compulsory miss while the second iteration

results in a hit. The last three entries show that the iBTB correctly predicted the

targets for the last three iterations of the loop. Intermediate iterations that are not

shown here incurred more compulsory misses as different PIR values generated dif-

ferent set indexes.

85

1. PIR = 0x0, address = 0x40049c

2. set index = 9

3. target = 400474

4. way0[9] = 0

5. way1[9] = 0

6. Miss! way0 set to last used way.

7. new PIR = 0x49

8. *Mispredicted target: 0, 2, T, 0x0000000000400474 call rdx

9.

10. PIR = 0x49, address = 0x40049c

11. set index = 9

12. target = 400474

13. way0[9] = 400474

14. way1[9] = 0

15. Found in way0. way0 set as last used.

16. new PIR = 0x6d

17. *Correct target prediction

18.

19. PIR = 0x16d, address = 0x40049c

20. set index = 8

21. target = 400474

22. way0[8] = 0

23. way1[8] = 0

24. Miss! way0 set to last used way.

25. new PIR = 0xfd

26. *Mispredicted target: 0, 2, T, 0x0000000000400474 call rdx

27.

28. PIR = 0xaabd, address = 0x40049c

29. set index = 3

30. target = 400474

31. way0[3] = 400474

32. way1[3] = 0

33. Found in way0. way0 set as last used.

34. new PIR = 0xbd

35. *Correct target prediction

36.

37. PIR = 0xaabd, address = 0x40049c

38. set index = 3

39. target = 400474

40. way0[3] = 400474

41. way1[3] = 0

42. Found in way0. way0 set as last used.

43. new PIR = 0xbd

44. *Correct target prediction

86

Figure 4.35 iBTB Results

4.4 mlvCFiat

mlvCFiat is a Pin tool for load value tracing that reduces the number of de-

scriptors needed to replay the execution path for multithreaded software. mlvCFiat

collects a reduced set of load value descriptors by using a cache first access mecha-

nism to track cache block evictions. First access flags provide the status of cache

blocks. A trace descriptor is collected whenever the access flags are reset, either on a

cache miss or on the first hit for a cache block. After the first hit, the register fahCnt

is incremented for each following cache hit, which is captured with the next trace

descriptor. A hardware implementation of cache first access would augment the ex-

isting cache structure with first access flag bits, but the mlvCFiat Pin tool simulates

a cache in software. mlvCFiat can trace multithreaded software by allocating a

cache first access structure privately to each thread or utilize a shared global first

access structure. Like the preceding tools, trace descriptors can be saved to a binary

or text file, or piped to a general purpose compressor. Section 4.4.1 provides a func-

tional description of mlvCFiat and section 4.4.2 some of the implementation details

found in mlvCFiat. Section 4.4.3 describes the steps taken to verify the output of

mlvCFiat.

4.4.1 Functional Description

Table 4.6 includes a description of the parameters that can be used with

mlvCFiat to control the following: (a) the trace file type (binary or ASCII), (b) the

mlvCFiat cache and first access mechanism parameters, (c) the segment of the tar-

get to trace at the subroutine level, and (d) optional compression.

87

88

Table 4.6 mlvCFiat parameters

Parameter Description

-a Saves trace descriptors in an ASCII file

-c <COMPRESSOR> Trace descriptors are piped to a general-purpose compressor

before saving. <COMPRESSOR> = {bzip2, pbzip2, gzip, pigz}

-ca <ASSOCIATIVITY> Sets the associativity of the cache first access structure, with

one being direct mapped. By default, the associativity is four.

ASSOCIATIVITY = { 1, 2, 4, …}

-cfg <GRANULARITY> Sets the first access flag granularity, with each flag protecting

an operand of size GRANULARITY in a cache block. By de-

fault, the granularity is set to four (word).

GRANULARITY = { 1, 2, 4, 8, ..}

-cls <LINE SIZE> Sets the cache block size for the cache utilizing the cache first

access flags. By default, the line size is 32 bytes. LINE SIZE = {

1, 2, 4, 8, … }

-cs <KILOBYTES> The size of the cache utilizing the first access flags in kilobytes.

By default, the cache is 32 KB. KILOBYTES = { 1, 2, 4, 8, …}

-cshare Shares a global cache and first access mechanism between each

thread. This is turned off by default, and each thread is allocat-

ed a cache and first access mechanism.

-d Each descriptor includes a corresponding assembly code

-f Trace file size limit in Megabytes. Instrumentation and trace

collecting stops after reaching this limit.

-filter_no_shared_libs Only traces target binary, shared libraries are not traced.

-filter_rtn <routine> Tracing only occurs in a specified routine(s).

-[h | help] Displays help message with all parameters and their descrip-

tion.

-l <NIST> Specifies NIST, the number of instructions that will be instru-

mented in the target.

-o <FNAME> Specify trace file name, FNAME.

-s <NIST> Specify NIST, the number of instructions to be skipped before

instrumentation begins.

89

Figure 4.36 illustrates the format of the binary and ASCII descriptors collect-

ed with mlvCFiat. A mlvCFiat descriptor collected in binary mode includes the fol-

lowing fields:

 Thread ID is a byte long field that encodes the logical ID for the thread

that executed the load instruction;

 First Access Hit Count is four bytes long and holds the number of cache

hits following the last cache eviction or new cache block entry;

 Operand Size is one byte long and is the size of the operand contained in

Operand Value; and

 the Value of the operand associated with the load instruction, which is

Operand Size bytes long.

The operand size field is only used for decoding purposes and is not found in

the ASCII descriptor, and the value field’s endianess is corrected.

Figure 4.36 mlvCFiat Descriptor Format

mlvCFiat descriptor: Binary Format

First Access Hit
Count

(4 Byte)

Operand Value
(Operand Size)

mlvCFiat descriptor: ASCII Format

Thread ID
(1 Byte)

0, 2, 0x00000004 mov r8d, dword ptr [rax]

Operand
Size (1
Byte)

Operand Value
(Operand Size)

First Access Hit
Count

(Up To 12 Bytes)

Thread ID
(Up To 4

Bytes)

90

mlvCFiat ASCII descriptors also include Thread ID, First Access Hit Count,

and Value. In Figure 4.37, the ASCII descriptor states thread zero had two first ac-

cess flag hits before mlvCFiat had a first access flag miss for a four byte load oper-

and with a value of 0x00000004.

Figure 4.38 contains an example of mlvCFiat’s output. A simple multithread-

ed matrix multiplication is traced with mlvCFiat using a 64 KB cache with 32 byte

long cache blocks and an associativity of four. The lines 1 through 12 are output

from mlvCFiat and in line 13 we inspect the contents of the statistics file that con-

tains cache and first access flag hit statistics. The name of the statistics and trace

files were generated with a timestamp because we did not supply mlvCFiat with a

filename. In line 38 we inspect the beginning of the trace file created by mlvCFiat,

with several descriptors associated with eight byte mov instructions shown in lines

38-48.

91

1. pin -t obj-intel64/mlvCFiat.so -a -d -- ./Matrix_Multiplication_OpenMP 32

2. mlvCFiat: Writing to text file: mlvCFiat.out2014_1_22_16.13.24.txt

3. mlvCFiat descriptor: ThreadID, fahCnt, Load Value

4. mlvCFiat: thread begin 0 13711

5. mlvCFiat: thread begin 1 13719

6. mlvCFiat: thread begin 2 13720

7. mlvCFiat: thread begin 3 13721

8. mlvCFiat: thread begin 4 13722

9. mlvCFiat: thread begin 5 13723

10. mlvCFiat: thread begin 6 13724

11. mlvCFiat: thread begin 7 13725

12. c563

13. [myersar@EB245]$ cat mlvCFiat.out2014_1_22_16.13.24.Statistics

14. Instrumentation Time (ms): 5297.710000

15. Instructions Traced: 27329641

16. Skipped Instructions: 0

92

17.

18. -- Cache References Hits:Misses (Hit Rate)

19. Total 4769372:23463(99%)

20. Byte Operands 177687:4534(97%)

21. Word Operands 7195:1900(79%)

22. Doubleword Operands 3672973:3584(99%)

23. Quadword Operands 907307:13357(98%)

24. Extended Precision Operands 0:0(0%)

25. Octaword Operands 4210:88(97%)

26. Hexaword Operands 0:0(0%)

27. Other Sized Operands 0:0(0%)

28. -- First Access Flag References Hits:Misses (Hit Rate)

29. Total 4265739:37172(99%)

30. Byte Operands 136310:13283(91%)

31. Word Operands 5329:1832(74%)

32. Doubleword Operands 3564260:5817(99%)

33. Quadword Operands 556745:16219(97%)

34. Extended Precision Operands 0:0(0%)

35. Octaword Operands 3095:21(99%)

36. Hexaword Operands 0:0(0%)

37. Other Sized Operands 0:0(0%)

38. [myersar@EB245]$ head mlvCFiat.out2014_1_22_16.13.24.txt

39. 0, 0, 0x0000003f83201130 sub r13, qword ptr [rip+0x21ea23]

40. 0, 0, 0x0000003f8341fdf0 add rdx, qword ptr [rip+0x21ee5a]

41. 0, 0, 0x000000000000000e mov rax, qword ptr [rdx]

42. 0, 0, 0x0000000000000004 mov rax, qword ptr [rdx]

43. 0, 0, 0x000000006ffffef5 mov rax, qword ptr [rdx]

44. 0, 0, 0x0000000000000005 mov rax, qword ptr [rdx]

45. 0, 0, 0x0000000000000006 mov rax, qword ptr [rdx]

46. 0, 0, 0x000000000000000a mov rax, qword ptr [rdx]

47. 0, 0, 0x000000000000000b mov rax, qword ptr [rdx]

48. 0, 0, 0x0000000000000003 mov rax, qword ptr [rdx]

Figure 4.38 mlvCFiat Example

4.4.2 Implementation Details

This section describes some of mlvCFiat’s implementation details, including

the two instrumentation and analysis routines, and handling multiline cache refer-

ences. mlvCFiat instruments a target at the instruction and operand level by insert-

93

ing analysis code before newly encountered load and store instructions. Because of

mlvCFiat’s cache first access mechanism, every load and store operand must be in-

vestigated for cache and first access flag accesses. Load instructions necessitate that

CFiat parameters be updated on cache hits, cache misses, and cache block admit-

tance. Whenever a cache miss or hit occurs and the first access flags are not set,

mlvCFiat retrieves the necessary information and save the descriptor to file. Trace

descriptors are not collected for store instructions that cause a cache miss, as the

value stored can be inferred from the instruction. However, the corresponding first

access flags must be set by store instructions if it is the first hit.

Figure 4.39 contains a section of code from mlvCFiat.cpp used to instrument

a target. As with the other tools in mTrace, mlvCFiat iterates over newly encoun-

tered basic blocks at run-time and inserts analysis routines, shown in lines 18, 24,

32, and 38. mlvCFiat uses the thread ID of the issuing thread, the address of the op-

erand, and the size of the operand to create a descriptor. These parameters are

passed to the analysis routines, which are located in mlvCFiat.h. Operands can be

longer than the cache block size used by mlvCFiat and a separate analysis routine

needs to iterate over subsequent cache sets before acknowledging the cache refer-

ence as a hit or miss. This condition is checked in line 12. Load and store instruc-

tions may contain more than one operand, so an analysis routine may be inserted

more than once before a load or store instruction.

94

1. for(BBL bbl = TRACE_BblHead(trace); BBL_Valid(bbl); bbl = BBL_Next(bbl))

2. {

3. for(INS ins = BBL_InsHead(bbl); INS_Valid(ins); ins = INS_Next(ins))

4. {

5. INS_InsertCall(ins, IPOINT_BEFORE, (AFUNPTR)SetFastForwardAndLength,

6. IARG_THREAD_ID, IARG_END);

7.

8. UINT32 memOperands = INS_MemoryOperandCount(ins);

9. for(UINT32 memOp = 0; memOp < memOperands; memOp++)

10. {

11. const UINT32 size = INS_MemoryOperandSize(ins, memOp);

12. const BOOL single = (size <= 4);

13.

14. if(INS_MemoryOperandIsRead(ins, memOp))

15. {

16. if(single)

17. {

18. INS_InsertPredicatedCall(ins, IPOINT_BEFORE,

19. (AFUNPTR)Load_SingleCacheLine_ASCII_Private, IARG_THREAD_ID,

20. IARG_MEMORYOP_EA, memOp, IARG_MEMORYREAD_SIZE, IARG_END);

21. }

22. else

23. {

24. INS_InsertPredicatedCall(ins, IPOINT_BEFORE,

25. (AFUNPTR)Load_MultiCacheLines_ASCII_Private, IARG_THREAD_ID,

26. IARG_MEMORYOP_EA, memOp, IARG_MEMORYREAD_SIZE, IARG_END);

27. }

28. if(INS_MemoryOperandIsWritten(ins, memOp))

29. {

30. if(single)

31. {

32. INS_InsertPredicatedCall(ins, IPOINT_BEFORE,

33. (AFUNPTR)Store_SingleCacheLine_Private, IARG_THREAD_ID,

34. IARG_MEMORYOP_EA, memOp, IARG_MEMORYWRITE_SIZE, IARG_END);

35. }

36. else

37. {

38. INS_InsertPredicatedCall(ins, IPOINT_BEFORE,

39. (AFUNPTR)Store_MultiCacheLines_Private, IARG_THREAD_ID,

40. IARG_MEMORYOP_EA, memOp, IARG_MEMORYWRITE_SIZE, IARG_END);

41. }

42. }

43. }

44. }

45. }

95

46. }

Figure 4.39 mlvCFiat Instrumentation

Figure 4.40 contains an analysis routine inserted before operands that may

extend over multiple cache blocks. In this case, a thread will utilize a private data

cache and associated cache first access flags privately. These structures are given to

a thread when it initially spawns and is referenced by its thread ID. In line 5 the

thread’s private storage is retrieved. The thread local storage contains the data

cache and first access mechanism, along with the fahCnt parameter. When tracing

with a shared data cache, the fahCnt value is still private to each thread. In line 9

the cache is referenced to see if the operand causes a miss or a hit on a new cache

block. This procedure is shown in Figure 4.41. The return value dictates whether a

trace descriptor associated with operand is collected and pushed on to a data struc-

ture to be written to file at a later point. fahCnt is reset when a descriptor is emitted

and incremented otherwise.

96

1. VOID Load_MultiCacheLines_Bin_Private(const THREADID threadid,

2. const ADDRINT * addr, const UINT32 size)

3. {

4. if(!CanEmit(threadid)) return;

5. tls *localStorage = static_cast<tls*>(Pin_GetThreadData(tls_key, threadid));

6.

7. uintptr_t address = reinterpret_cast<uintptr_t>(addr);

8.

9. bool emit = localStorage->localCache->LoadMultiLine(address, size);

10.

11. if(emit)

12. {

13. BinaryDescriptorTableEntry BinDescriptor;

14.

15. UINT8 valBuf[size];

16. Pin_SafeCopy(valBuf, addr, size);

17. ConvertToBigEndian(valBuf, size);

18.

19. BinDescriptor.tid = localStorage->tid;

20. BinDescriptor.fahCnt = localStorage->fahCnt;

21. BinDescriptor.operandSize = size;

22. BinDescriptor.data = new UINT8[size];

23. std::copy(valBuf, valBuf+size, BinDescriptor.data);

24.

25. GetLock(&table_lock, threadid+1);

26. binDescriptorTable.push_back(BinDescriptor);

27. IncrementFileCount(BinaryDescriptorSize+size);

28. ReleaseLock(&table_lock);

29.

30. localStorage->fahCnt = 0;

31. }

32. else

33. localStorage->fahCnt++;

34. }

Figure 4.40 mlvCFiat Multiline Cache Load Analysis

Lastly, Figure 4.41 lists the function that handles load operands that poten-

tialy span more than one cache block. In the event that a descriptor needs to be col-

97

lected, this subroutine will return true. It takes the address and size of the operand

in question, and returns false on either of the two conditions:

 At least one of the cache blocks associated with operand is evicted because

of a cache miss;

 At least one first access flag protecting the operand is not set.

The data cache is referenced by an index, tag, and line index. The line index

is used to reference each byte along a cache block, and SplitAddress() routine at

line 18 generates the set index and tag from the operand address. An operand that

extends beyond the end of a cache block will reside in the following cache sets, and

possibly in a different way. This problem is solved using the ending address of an

operand and looping through each set that the operand resides in by generating a

new starting address for the operand (line 25-32). In line 22 we check if the refer-

ence is a hit or a miss. When the cache reference hits (line 25) the flags protecting

the operand in that cache block are examined. If at least one flag is zero the return

condition is set to false, the flags associated with the operand are set, and the next

address is generated if the operand extends beyond the current cache block. In the

event of a miss (line 45) we set the return condition to false, clear all of the flags pro-

tecting the cache block, set the flags associated with the operand, and continue on to

the next cache block if necessary. At the end of the routine, cache and first access

statistics are incremented. First access flag hits and misses are only noted when

there were no cache misses. Lastly, the condition to collect a descriptor is returned

in line 70.

98

1. LoadMultiLine(ADDRINT addr, const UINT32 size)

2. {

3. bool emit = false;

4. const ADDRINT highAddr = addr + size;

5. bool cacheAllHit = true;

6. bool flagsAllHit = true;

7.

8. const ADDRINT lineSize = LineSize();

9. const ADDRINT notLineMask = ~(lineSize - 1);

10. UINT32 globalSize = size;

11.

12. do

13. {

14. CACHE_TAG tag;

15. UINT32 setIndex;

16. UINT32 wayIndex;

17. UINT32 lineIndex;

18. SplitAddress(addr, tag, setIndex, lineIndex);

19.

20. SET & set = _sets[setIndex];

21.

22. bool localCacheHit = set.Find(tag, wayIndex);

23. cacheAllHit &= localCacheHit;

24.

25. if(localCacheHit)

26. {

27. UINT32 localSize;

28. if(globalSize + lineIndex > lineSize)

29. localSize = lineSize - lineIndex;

30. else

31. localSize = globalSize;

32. globalSize -= localSize;

33.

34. bool localFlagsHit = set.AreFlagsSet(wayIndex, lineIndex, localSize);

35. //if at least one flag is not set

36. if(! localFlagsHit)

37. {

38. flagsAllHit = false;

39. emit = true;

40. //set FA flags

41. set.SetFlags(wayIndex, lineIndex, localSize);

42. }

43. }

44. else

45. {

99

46. wayIndex = set.Replace(tag);

47. set.ClearFlags(wayIndex);

48. emit = true;

49.

50. UINT32 localSize;

51. if(globalSize + lineIndex > lineSize)

52. localSize = lineSize - lineIndex;

53. else

54. localSize = globalSize;

55.

56. globalSize -= localSize;

57.

58. set.SetFlags(wayIndex, lineIndex, localSize); // Set FA Flags

59. }

60. addr = (addr & notLineMask) + lineSize; // start of next cache block

61. }

62. while (addr < highAddr);

63.

64. OPERAND_TYPE opType = getOperandType(size);

65. //increment cache statistics

66. _cache_accesses[opType][ACCESS_TYPE_LOAD][cacheAllHit]++;

67. //increment flag statistics if cache was hit

68. if(cacheAllHit)

69. _flag_accesses[opType][flagsAllHit]++;

70. return emit;

71. }

Figure 4.41 Multiline Cache Load Operation

4.4.3 Verification/Test

This section describes some of the steps taken to test the mlvCFiat tool. Two

assembly programs, evict.s and multiblock.s, test the cache simulator and first ac-

cess flag mechanism utilized by mlvCFiat. evict.s ensures that the cache simulator

handles cache evictions correctly and that the first access mechanism clears and sets

the appropriate flags associated with an operand. multiblock.s ensures that the

100

cache simulator and first access mechanism handle operands larger than the line

size of the cache. Figure 4.42 contains the assembly program evict.s, which simply

writes to a contiguous array of four byte operands. The cache is set to an unrealistic

size, 32 bytes, to test way evictions. The associativity is set to two and the line size

to 16 bytes. Lines 2 and 3 set up the stack for main() and line 4 intializes the loop

variable in the ecx register for loop in lines 6-13. Lastly, the leave instruction, which

is really two explicit instructions that roll back the state of the stack, is seen at line

14, and the return instruction is at line 15. This loop will execute nine times causing

three total line evictions. Since each way is 16 bytes there will be two compulsory

misses followed by capacity/compulsory miss which will evict the cache block. In to-

tal, there will be one store from the push instruction, 9 stores from the loop, and two

loads from the leave instruction and return instruction.

1. main:

2. push rbp

3. mov rbp, rsp

4. mov ecx, 0

5. jmp .L2

6. .L3:

7. mov eax, ecx

8. cdqe

9. mov DWORD PTR [rbp-48+rax*4], eax

10. add ecx, 1

11. .L2:

12. cmp ecx, 8

13. jle .L3

14. leave

15. ret

Figure 4.42 Evict.s

101

Figure 4.43 contains the result of tracing the evict.s test program. Each cache

reference is given an an entry that contains the instruction, operand address, oper-

and size, set index, tag, and line index. Operands larger than 8 bytes may span more

than one cache block and some parameters are given for each block belonging to the

cache, such as set index and line index. The first entry, for the push instruction is

shown in lines 1-6 and potentially spans more than one cache block. In this case, it

does not and registers a compulsory miss. The next four entries belong to the first

four iterations of the loop in evict.s. The first entry for mov instruction starts at line

8 and causes a cache miss. The next three iterations are hits while the fifth iteration

causes a miss in the second way (way 0 here). The sixth, seventh, and eigth itera-

tions are clearly hits in this second way. The ninth iteration, starting at line 56 is a

miss and replaces the cache block used for the first four iterations of the loop. The

last two instructions are load instructions. The leave instruction causes a cache

miss, and a trace descriptor is collected. The return instruction is a hit because the

leave instruction brought the return address into the cache. However, when this

block was brought into the cache the first access flags were only set for the operand

associated with the leave instruction, which is located eight bytes above the return

address. Therefore, the first access flags protecting this operand were not set and a

trace descriptor is collected.

1. push rbp

2. Operand Address = 0x7fffa51e1680

3. Operand Size = 8

4. Block: 1

5. Set Index = 0, Tag = 8795997725032, Line Index = 0

6. Local Miss! Replacing way 1

102

7.

8. mov dword ptr [rbp+rax*4-0x30], eax

9. Operand Address = 0x7fffa51e1650

10. Operand Size = 4

11. Set Index = 0, Tag = 8795997725029, Line Index = 0

12. Cache Miss! Replacing way 0

13.

14. mov dword ptr [rbp+rax*4-0x30], eax

15. Operand Address = 0x7fffa51e1654

16. Operand Size = 4

17. Set Index = 0, Tag = 8795997725029, Line Index = 4

18. Cache Hit! Found at way 0

19.

20. mov dword ptr [rbp+rax*4-0x30], eax

21. Operand Address = 0x7fffa51e1658

22. Operand Size = 4

23. Set Index = 0, Tag = 8795997725029, Line Index = 8

24. Cache Hit! Found at way 0

25.

26. mov dword ptr [rbp+rax*4-0x30], eax

27. Operand Address = 0x7fffa51e165c

28. Operand Size = 4

29. Set Index = 0, Tag = 8795997725029, Line Index = 12

30. Cache Hit! Found at way 0

31.

32. mov dword ptr [rbp+rax*4-0x30], eax

33. Operand Address = 0x7fffa51e1660

34. Operand Size = 4

35. Set Index = 0, Tag = 8795997725030, Line Index = 0

36. Cache Miss! Replacing way 1

37.

38. mov dword ptr [rbp+rax*4-0x30], eax

39. Operand Address = 0x7fffa51e1664

40. Operand Size = 4

41. Set Index = 0, Tag = 8795997725030, Line Index = 4

42. Cache Hit! Found at way 1

43.

44. mov dword ptr [rbp+rax*4-0x30], eax

45. Operand Address = 0x7fffa51e1668

46. Operand Size = 4

47. Set Index = 0, Tag = 8795997725030, Line Index = 8

48. Cache Hit! Found at way 1

49.

50. mov dword ptr [rbp+rax*4-0x30], eax

51. Operand Address = 0x7fffa51e166c

103

52. Operand Size = 4

53. Set Index = 0, Tag = 8795997725030, Line Index = 12

54. Cache Hit! Found at way 1

55.

56. mov dword ptr [rbp+rax*4-0x30], eax

57. Operand Address = 0x7fffa51e1670

58. Operand Size = 4

59. Set Index = 0, Tag = 8795997725031, Line Index = 0

60. Cache Miss! Replacing way 0

61.

62. Leave

63. Operand Address = 0x7fffa51e1680

64. Operand Size = 8

65. Block: 1

66. Set Index = 0, Tag = 8795997725032, Line Index = 0

67. Local Cache Miss! Replacing way 1

68.

69. ret

70. Operand Address = 0x7fffa51e1688

71. Operand Size = 8

72. Block: 1

73. Set Index = 0, Tag = 8795997725032, Line Index = 8

74. Local Cache Hit! Found in way 1

75. Local Flags Miss

Figure 4.43 evict.s Results

Figure 4.44 contains the assembly program multiblock.s, which uses Intel’s

AVX SIMD instructions to cache 32 byte operands. The cache parameters are the

same from previous testing: the cache size is 32 bytes, the line size is 16 bytes, and

the associativity is two. The first push instruction and ending leave and ret instruc-

tions are ignored in the testing output, as their entries are equal to entries shown in

Figure 4.43. Lines 7-14 set four operands to zero one the stack. These 32 bytes will

be packed in the AVX ymm0 register as four, 8-byte doubles in lines 16-22. They are

then stored as a single 32 byte operand on the stack in line 24. The next vmovapd

104

instruction at line 25 loads the operand to a different register, ymm1. At this point

the program brings an unrelated cache block into one of the ways at line 27. Lastly,

line 29 loads the 32 byte operand to the ymm1 register for a second time.

1. main:

2.

3. push rbp

4. mov rbp, rsp

5. and rsp, -32

6.

7. movabs rax, 0

8. mov QWORD PTR [rsp-8], rax

9. movabs rax, 0

10. mov QWORD PTR [rsp-16], rax

11. movabs rax, 0

12. mov QWORD PTR [rsp-24], rax

13. movabs rax, 0

14. mov QWORD PTR [rsp-32], 0

15.

16. vmovsd xmm0, QWORD PTR [rsp-8]

17. vmovsd xmm1, QWORD PTR [rsp-16]

18. vunpcklpd xmm1, xmm1, xmm0

19. vmovsd xmm0, QWORD PTR [rsp-24]

20. vmovsd xmm2, QWORD PTR [rsp-32]

21. vunpcklpd xmm0, xmm2, xmm0

22. vinsertf128 ymm0, ymm0, xmm1, 0x1

23.

24. vmovapd YMMWORD PTR [rsp-64], ymm0

25. vmovapd ymm1, YMMWORD PTR [rsp-64]

26.

27. mov QWORD PTR [rsp-96], 1

28.

29. vmovapd ymm1, YMMWORD PTR [rsp-64]

30.

31. leave

32. ret

Figure 4.44 multiblock.s

105

Figure 4.45 contains the results of testing multiblock.s. Only the entries as-

sociated with the middle half of the program are shown. The operands referenced by

the first four entries are already found in the cache as they were brought in earlier

in the program (lines 7-14 in Figure 4.44). These operands are all 8 bytes long and

possibly span more than one cache block. The next entry, starting at line 33, is for

the 32 byte store instruction from line 24 in Figure 4.44. This instruction causes a

miss and brings the operand into the cache, with the first half residing in way 0 and

the second half resisiding in way 1. The following 32 byte load instruction traverses

both ways and are shown as hits. The entry for the 8 byte mov instruction at line 55

shows that it was a miss. At this point, the cache contains the second half of the op-

erand from the instruction at line 25 of Figure 4.44 in way 1 and the entire operand

at line 27 of Figure 4.44 in way 0. When the last instruction executed, a miss occurs

and way 1 is replaced before way 0. The last half of the operand would have hit if

way 0 was replaced first. Regardless, the cache reference is a miss, and a trace de-

scriptor is collected.

1. vmovsd xmm0, qword ptr [rsp-0x8]

2. Load Instruction (potentially multiblock)

3. Operand Address = 0x7fffb79aa778

4. Operand Size = 8

5. Block: 1

6. Set Index = 0, Tag = 8796017109623, Line Index = 8

7. Local Cache Hit! Found in way 0

8.

9. vmovsd xmm1, qword ptr [rsp-0x10]

10. Load Instruction (potentially multiblock)

11. Operand Address = 0x7fffb79aa770

12. Operand Size = 8

13. Block: 1

14. Set Index = 0, Tag = 8796017109623, Line Index = 0

15. Local Cache Hit! Found in way 0

106

16.

17. vmovsd xmm0, qword ptr [rsp-0x18]

18. Load Instruction (potentially multiblock)

19. Operand Address = 0x7fffb79aa768

20. Operand Size = 8

21. Block: 1

22. Set Index = 0, Tag = 8796017109622, Line Index = 8

23. Local Cache Hit! Found in way 1

24.

25. vmovsd xmm2, qword ptr [rsp-0x20]

26. Load Instruction (potentially multiblock)

27. Operand Address = 0x7fffb79aa760

28. Operand Size = 8

29. Block: 1

30. Set Index = 0, Tag = 8796017109622, Line Index = 0

31. Local Cache Hit! Found in way 1

32.

33. vmovapd ymmword ptr [rsp-0x40], ymm0

34. Store Instruction (potentially multiblock)

35. Operand Address = 0x7fffb79aa740

36. Operand Size = 32

37. Block: 1

38. Set Index = 0, Tag = 8796017109620, Line Index = 0

39. Local Miss! Replacing way 0

40. Block: 2

41. Set Index = 0, Tag = 8796017109621, Line Index = 0

42. Local Miss! Replacing way 1

43.

44. vmovapd ymm1, ymmword ptr [rsp-0x40]

45. Load Instruction (potentially multiblock)

46. Operand Address = 0x7fffb79aa740

47. Operand Size = 32

48. Block: 1

49. Set Index = 0, Tag = 8796017109620, Line Index = 0

50. Local Cache Hit! Found in way 0

51. Block: 2

52. Set Index = 0, Tag = 8796017109621, Line Index = 0

53. Local Cache Hit! Found in way 1

54.

55. mov qword ptr [rsp-0x60], 0x1

56. Store Instruction (potentially multiblock)

57. Operand Address = 0x7fffb79aa720

58. Operand Size = 8

59. Block: 1

60. Set Index = 0, Tag = 8796017109618, Line Index = 0

107

61. Local Miss! Replacing way 0

62.

63. vmovapd ymm1, ymmword ptr [rsp-0x40]

64. Load Instruction (potentially multiblock)

65. Operand Address = 0x7fffb79aa740

66. Operand Size = 32

67. Block: 1

68. Set Index = 0, Tag = 8796017109620, Line Index = 0

69. Local Cache Miss! Replacing way 1

70. Block: 2

71. Set Index = 0, Tag = 8796017109621, Line Index = 0

72. Local Cache Miss! Replacing way 0

Figure 4.45 multiblock.s Results

108

CHAPTER 5

EXPERIMENTAL METHODOLOGY

This chapter describes our experimental setup used for the demonstration

and evaluation of the mTrace trace tools. Section 5.1 describes hardware and soft-

ware setup used for running our experiments. Section 5.2 defines evaluation metrics

and methods used to acquire them. Section 5.3 gives a short description of a selected

set of SPLASH-2 benchmarks that are used as a workload. Finally, Section 5.4 de-

scribes the way experiments are run and controlled.

5.1 Environment

Our experimental setup includes a Dell PowerEdge T110 II server with a sin-

gle Intel Xeon E3-1240 v2 processor and 16 Gbytes of memory. The Xeon E3-1240 v2

processor consists of a single monolithic die with four 2-way threaded physical pro-

cessor cores for a total of 8 logical processor cores, a shared 8 Mbytes L3/LLC cache

memory, an integrated memory controller, PCI and DMI interfaces, a graphics pro-

cessor, and a system agent. A block diagram is shown in Figure 5.1.

109

Figure 5.1 Block Diagram of the Xeon E3-1240 v2 processor

The server runs the CentOS 6.3 operating system with 2.6.32 Linux kernel.

The mTrace tools are developed and tested under Pin versions 2.12 and 2.13 [22].

The mTrace tools and the target benchmark programs are compiled using the GNU

C/C++ compiler gcc-4.7.7. When running experiments mTrace tools can optionally

invoke general-purpose trace compressors. The compressors included are gzip 1.3.12

[23] based on a deflate algorithm, a block sorting file compressor bzip2 1.0.5 [24],

and their parallel implementations pigz and pbzip2, respectively.

5.2 Metrics

The mTrace tools are designed to capture program traces of multithreaded

programs and are primarily evaluated for their functionality. In addition, we con-

duct a set of experiments to determine their effectiveness by measuring the trace file

size and time to capture the trace files (wall-clock time). For each generated raw

trace file we determine and report its size. The mTrace trace tools are also combined

Core 0

Core 0

Core 0

Core 0

LLC

LLC

LLC

LLC

Graphics

System
Agent

Integrated
Memory

Controller

PCIe, DMI

2 DDR3
Channels

16x PCIe

110

with bzip2 and gzip general-purpose compressors and the file sizes of compressed

traces are reported. To illustrate compressability of individual types of traces, we

report the compression ratio, defined as the ratio between a raw trace file size and

its compressed trace file size.

The mTrace tools introduce significant overhead to benchmark execution un-

der Pin. The overhead stems from operations perfomed to capture program traces

from individual program threads, to write them into a buffer (this operation has to

be serialized), and to empty buffers into trace files. Additional overhead comes from

combining general-purpose compressors with the tracing tools. To quantify this

overhead for a tracing tool, we report benchmark execution time under Pin with the

corresponding tool capturing and storing program traces.

5.3 Benchmarks

We use a subset of the SPLASH-2 benchmark suite to evaluate the mTrace

tools. SPLASH-2 is a well-established [25] set of parallel programs designed to char-

acterize a wide range of scientific and engineering applications for purposes of ex-

ploring architectural properties and interactions of shared-memory multi-core pro-

cessors and distributed-memory multiprocessors. Each benchmark was executed

with one, four, and eight threads. The SPLASH-2 benchmark suite supports multi-

ple benchmark inputs – from a simtest input set that results in relatively short pro-

gram runs with several hundred millions of instructions executed in a benchmark

run, to a simnative input set that involves many billions of instructions executed in

a single benchmark run. In our experiments, we use a simsmall input set resulting

in benchmark runs with up to several billions of instructions executed.

111

We report the results of tracing for the following benchmarks: cholesky, fft,

radiocity, radix, and raytrace.

cholesky is a cache block optimized Cholesky decomposition for solving sys-

tems of linear equations for sparse matrices. It factors a sparce matrix into the

product of a lower triangular matrix and its transpose. cholesky is run in a default

mode which is optimized for a 16 KB cache.

fft is a one dimensional complex fast Fourier transform algorithm [26] that is

optimized to reduce interprocessor communication and cache blocked to maximize

data cache reuse. The data set consists of contiguous arrays of data points to be

transformed and complex roots of unity, each organized as a set of matrices to be as-

signed to a processor. total data points are transformed. The data points are or-

ganized for cache blocks with a length of 16 bytes.

radix is an iterative radix sort that uses local and global histograms to per-

mute the radix sort keys. The radix used is 4,096 with 4,194,304 keys to sort.

radiosity uses the iterative hierarchical diffuse radiosity method to find the

equilibrium distribution of light in a graphical scene. Each scene is initially modeled

with a number of polygons. In each iteration of the kernel, light transport interac-

tions are computed among the polygons in a scene, and each polygon is placed in a

hierarchy to improve accuracy over the lifetime of the kernel. At the end of each it-

eration, the overall radiosity is checked for convergence. Data structure accesses are

highly irregular and no effort is made to partition data between threads.

raytrace renders a three-dimensional scene using ray tracing. A scene is rep-

resented using a hierarchical uniform grid and a ray is traced through each pixel in

the image plane. The ray reflects off the scene in an unpredictable way. The parti-

112

tioning is done by dividing an image plane into contiguous blocks of pixels that are

queued to execute on individual processors.

Characterizing the benchmark programs helps analyze the effectiveness of

the tracing tools. Control flow and data trace files sizes depend on benchmark char-

acteristics. For example, the perecentage and the type of control flow instructions

directly impact the number and size of trace descriptors emitted by the mcfTrace

tool. Similarly, the number and type of memory referencing instructions directly im-

pact the number and size of trace descriptors emitted by the mlsTrace tool. In addi-

tion to these parameters, the number of emitted descriptors depends on the type,

size, and accuracy of predictor and cache structures used in the mcfTRaptor and

mlvCFiat tools.

Table 5.1 shows relevant information about control flow instructions in the

benchmarks of interest as a function of the number of threads (N = 1, 4, and 8). The

number of instructions (IC – instruction count) varies between ~698 million (radix)

and ~1,541 million (raytrace). The percentage of branch instructions varies between

as low as ~ 1% for radix to ~14.5% for raytrace. An increase in the number of threads

results in a slight increase in the number of instructions and the percentage of the

control-flow instructions. This can be explained by an increase in synchronization

overhead and data partitioning of the input between each thread as the number of

threads increases. The dominant type of branches is conditional direct – ranging

from ~1% of all instructions for radix to ~10.9% for raytrace. A smaller percentage of

branches are unconditional direct and unconditional indirect.

113

Table 5.1 Benchmark Characterization for Control-flow Instructions

Bench-

mark N IC

Bra-

nches

Condi-

tional

Direct

Uncondi-

tional Di-

rect

Uncondi-

tional In-

direct

[%] [%] [%] [%]

fft 1 960,254,393 8.80 5.84 1.65 1.31

fft 4 960,821,401 8.80 5.85 1.64 1.31

fft 8 961,572,523 8.81 5.85 1.64 1.31

radix 1 694,668,483 1.07 1.07 0.00 0.00

radix 4 696,138,350 1.10 1.10 0.00 0.00

radix 8 698,381,703 1.14 1.14 0.00 0.00

cholesky 1 1,081,038,955 5.62 5.09 0.35 0.18

cholesky 4 1,096,051,872 6.70 6.12 0.40 0.18

cholesky 8 1,136,640,946 7.57 6.98 0.41 0.18

radiosity 1 1,215,384,053 13.74 9.45 2.88 1.41

radiosity 4 1,241,890,515 13.89 9.62 2.85 1.41

radiosity 8 1,242,543,809 13.92 9.64 2.87 1.41

raytrace 1 1,537,614,427 14.58 10.94 1.99 1.66

raytrace 4 1,540,131,445 14.59 10.94 1.99 1.66

raytrace 8 1,541,210,870 14.59 10.95 1.99 1.66

Table 5.2 shows the total number of instructions (IC), the number of oper-

ands read from memory (MReads), and the number of operands written to memory

(MWrites). The last two columns show the number of operands read from memory

and the number of operands written to memory per an exectued instruction

(MReads/Ins and MWrites/Ins, respectively). The number of operads read from

memory per instruction executed varies between 0.11 for radix and 0.31 for raytrace.

The number of operands written to memory per instruction executed varies between

0.06 for radix to 0.12 for radiosity.

114

Table 5.2 Benchmark Characterization for Memory Reads and Writes

Bench-

mark N IC MReads MWrites

MReads

/Ins

MWrit

es/Ins

 fft 1 960,254,510 199,615,611 107,609,072

0.21 0.11

fft 4 960,820,067 199,755,754 107,657,802

0.21 0.11

fft 8 961,583,506 199,947,706 107,726,156

0.21 0.11

radix 1 694,669,006 74,618,267 42,024,250

0.11 0.06

radix 4 696,137,588 75,197,210 42,307,947

0.11 0.06

radix 8 698,379,415 76,088,233 42,728,340

0.11 0.06

cholesky 1 1,081,038,992 275,046,475 98,308,268

0.25 0.09

cholesky 4 1,123,237,461 304,718,317 86,620,208

0.27 0.08

cholesky 8 1,248,542,661 352,888,899 86,830,251

0.28 0.07

radiosity 1 1,215,384,100 392,047,261 140,962,559

0.32 0.12

radiosity 4 1,244,627,545 398,452,881 142,537,302

0.32 0.11

radiosity 8 1,265,132,243 399,635,959 142,946,527

0.32 0.11

raytrace 1 1,537,614,410 481,039,746 166,102,517

0.31 0.11

raytrace 4 1,539,518,453 481,481,500 166,190,940

0.31 0.11

raytrace 8 1,541,626,207 482,135,505 166,258,371

0.31 0.11

Memory reads can be further characterized based on the size of the operand

read from memory. Table 5.3 shows a breakdown of the number of operands read

from memory per an instruction executed depending on the size of the operand. The

Intel64 instruction set supports a number of operand sizes, including 8-bit Byte, 16-

bit word, 32-bit double word (DWord), 64-bit quad word (Qword), 80-bit extended

precision (EWord), 128-bit octa word (OWord), 256-bit hexa word (HWord), and Oth-

ers. Expectedly, 64-bit (QWord) are read from memory more often than operands of

other sizes, though some benchmarks read 256-bit operands (e.g., radiosity). Similar-

115

ly, Table 5.4 shows a breakdown of the number of operands written to memory per

an instruction executed depending on the size of the operand.

Table 5.3 Benchmark Characterization of Memory Reads

Bench-

mark N

Read

Bytes

Read

Words

Read

Dwords

Read

QWords

Read

EWords

Read

OWords

Read

HWords

Read

Oth-

ers

 fft 1 0.00 0.02 0.01 0.17 0.00 0.00 0.00 0.01

fft 4 0.00 0.02 0.01 0.17 0.00 0.00 0.00 0.01

fft 8 0.00 0.02 0.01 0.17 0.00 0.00 0.00 0.01

radix 1 0.00 0.00 0.00 0.10 0.00 0.00 0.00 0.00

radix 4 0.00 0.00 0.00 0.10 0.00 0.00 0.00 0.00

radix 8 0.00 0.00 0.00 0.10 0.00 0.00 0.00 0.00

cholesky 1 0.00 0.00 0.00 0.22 0.00 0.00 0.00 0.03

cholesky 4 0.00 0.00 0.00 0.25 0.00 0.00 0.00 0.02

cholesky 8 0.00 0.00 0.00 0.26 0.00 0.00 0.00 0.02

radiosity 1 0.00 0.00 0.22 0.09 0.00 0.01 0.00 0.00

radiosity 4 0.00 0.00 0.22 0.09 0.00 0.01 0.00 0.00

radiosity 8 0.00 0.00 0.22 0.09 0.00 0.01 0.00 0.00

raytrace 1 0.00 0.00 0.00 0.30 0.00 0.00 0.00 0.01

raytrace 4 0.00 0.00 0.00 0.30 0.00 0.00 0.00 0.01

raytrace 8 0.00 0.00 0.00 0.30 0.00 0.00 0.00 0.01

116

Table 5.4 Benchmark Characterization of Memory Writes

Bench-

mark N

Write

Byte

Write

Word

Write

Dword

Write

QWord

Write

EWord

Write

OWord

Write

HWord

Write

Others

 fft 1 0.00 0.01 0.01 0.10 0.00 0.00 0.00 0.00

fft 4 0.00 0.01 0.01 0.10 0.00 0.00 0.00 0.00

fft 8 0.00 0.01 0.01 0.10 0.00 0.00 0.00 0.00

radix 1 0.00 0.00 0.00 0.06 0.00 0.00 0.00 0.00

radix 4 0.00 0.00 0.00 0.06 0.00 0.00 0.00 0.00

radix 8 0.00 0.00 0.00 0.06 0.00 0.00 0.00 0.00

cholesky 1 0.00 0.00 0.00 0.08 0.00 0.01 0.00 0.00

cholesky 4 0.00 0.00 0.00 0.07 0.00 0.00 0.00 0.00

cholesky 8 0.00 0.00 0.00 0.06 0.00 0.00 0.00 0.00

radiosity 1 0.00 0.00 0.05 0.06 0.00 0.01 0.00 0.00

radiosity 4 0.00 0.00 0.05 0.06 0.00 0.01 0.00 0.00

radiosity 8 0.00 0.00 0.05 0.06 0.00 0.01 0.00 0.00

raytrace 1 0.00 0.00 0.00 0.10 0.00 0.00 0.00 0.00

raytrace 4 0.00 0.00 0.00 0.10 0.00 0.00 0.00 0.00

raytrace 8 0.00 0.00 0.00 0.10 0.00 0.00 0.00 0.00

5.4 Running Experiments

To evaluate the effectiveness of the mTrace tools, we conducted a number of

trace collection runs for each mTrace tool. Table 5.5 illustrates the trace collection

runs performed on each tool (mcfTrace, mlsTrace, mcfTRaptor, and mlvCFiat). For

each benchmark, we collected traces when the number of threads is N=1, N=4, and

N=8. For each (benchmark, N) pair, we ran an mTrace tool while collecting original

traces (Raw), original traces streamed to the gzip compressor (gzip), and original

117

traces streamed to the bzip2 compressor. Thus, we performed 45 trace collection

runs for each tool, or 180 trace collection runs for all mTrace tools combined.

Table 5.5 Trace Collection Runs

Bench-

mark N = 1 N = 4 N = 1

Raw gzip bzip2 Raw gzip bzip2 Raw gzip bzip2

fft         

radix         

cholesky         

radiosity         

raytrace         

Figure 5.2 shows an excerpt of a script file that controls collection of control

flow traces using mcfTrace on the fft benchmark. Line 1 of the script specifies the

path to the pin executable and Line 2 specifies the path to the mcfTrace tool. Line 16

specifies the path to the fft executable with its command line parameters. Lines 18-

21 describe the commands for trace collection runs for Raw, gzip, and bzip2 experi-

ments when the number of threads is N=1, and Lines 30-33 describe the commands

when the number of threads is N=4. Similar commands are prepared for other

benchmarks and other mTrace tools. The commands specify the name of the output

trace files and the output Statistics file. In addition, we measure the execution time

of the trace collection runs using the Unix time command.

118

1. Pin="/home/myersar/mtrace/pin-2.12-58423-gcc.4.4.7-linux/pin -t"

2. TOOL=/home/myersar/mtrace/pin-2.12-58423-gcc.4.4.7-

linux/source/tools/ManualExamples/obj-intel64/mcfTrace.so

3.

4. mkdir ./mcfTraceResults

5. cd ./mcfTraceResults

6. rm *

7.

8. #run, collect run time, collect trace size

9. echo 'mcfTrace Time overhead in seconds' > mcfTraceTime.csv

10. echo 'benchmark,num threads,raw real,raw user,raw sys,gzip real,gzip user,gzip

sys,bzip2 real,bzip2 user,bzip2 sys' >> mcfTraceTime.csv

11.

12. echo 'mcfTrace trace size in bytes' > mcfTraceSize.csv

13. echo 'benchmark,num threads,raw,gzip,bzip2' >> mcfTraceSize.csv

14.

15. #FFT

16. BENCHMARK="/opt/parsec-3.0/ext/splash2x/kernels/fft/inst/amd64-linux.gcc/bin/fft -

m20"

17. #1 thread

18. time -p ($Pin $TOOL -o fft_mcfTrace_p1_raw -- $BENCHMARK -p1 > mcfTraceLog.txt) 2>

fftTimeP1raw.txt

19. time -p ($Pin $TOOL -o fft_mcfTrace_p1_gzip -c gzip -- $BENCHMARK -p1 >>

mcfTraceLog.txt) 2> fftTimeP1gzip.txt

20. time -p ($Pin $TOOL -o fft_mcfTrace_p1_bzip2 -c bzip2 -- $BENCHMARK -p1 >>

mcfTraceLog.txt) 2> fftTimeP1bzip2.txt

21. fileSize "fft" "1" "fft_mcfTrace_p1_raw.bin" "fft_mcfTrace_p1_gzip.bin.gz"

"fft_mcfTrace_p1_bzip2.bin.bz2"

22. #timeParse "fft" "1"

23. #4 threads

24. time -p ($Pin $TOOL -o fft_mcfTrace_p4_raw -- $BENCHMARK -p4 >> mcfTraceLog.txt) 2>

fftTimeP4raw.txt

25. time -p ($Pin $TOOL -o fft_mcfTrace_p4_gzip -c gzip -- $BENCHMARK -p4 >>

mcfTraceLog.txt) 2> fftTimeP4gzip.txt

26. time -p ($Pin $TOOL -o fft_mcfTrace_p4_bzip2 -c bzip2 -- $BENCHMARK -p4 >>

mcfTraceLog.txt) 2> fftTimeP4bzip2.txt

27. fileSize "fft" "4" "fft_mcfTrace_p4_raw.bin" "fft_mcfTrace_p4_gzip.bin.gz"

"fft_mcfTrace_p4_bzip2.bin.bz2"

28. #timeParse "fft" "4"

29. #4 threads

30. time -p ($Pin $TOOL -o fft_mcfTrace_p8_raw -- $BENCHMARK -p8 >> mcfTraceLog.txt) 2>

fftTimeP8raw.txt

31. time -p ($Pin $TOOL -o fft_mcfTrace_p8_gzip -c gzip -- $BENCHMARK -p8 >>

mcfTraceLog.txt) 2> fftTimeP8gzip.txt

119

32. time -p ($Pin $TOOL -o fft_mcfTrace_p8_bzip2 -c bzip2 -- $BENCHMARK -p8 >>

mcfTraceLog.txt) 2> fftTimeP8bzip2.txt

33. fileSize "fft" "8" "fft_mcfTrace_p8_raw.bin" "fft_mcfTrace_p8_gzip.bin.gz"

"fft_mcfTrace_p8_bzip2.bin.bz2"

Figure 5.2 An Excerpt of a Script File that Runs mcfTrace on the fft Benchmark.

CHAPTER 6

RESULTS

This chapter describes the result of our experimental evaluation. Section 6.1

shows the evaluation results of mcfTrace. Section 6.2 shows the evalaution results of

mlsTrace. Section 6.3 shows the results of mcfTRaptor and Section 6.4 shows the re-

sults of mlvCFiat.

6.1 mcfTrace

Table 6.1 shows the sizes of control-flow traces in bytes generated by

mcfTrace. For each benchmark, mcfTrace is run to generate files containing the con-

trol-flow traces in the original binary format (raw) or the compressed binary streams

using the gzip or bzip2 general-purpose compressors (gzip and bzip2). The last two

columns show the compression ratio achieved by mcfTrace when run in combination

with the compression utilities. The size of the raw trace files depends on the number

of instructions and the frequency of control-flow instructions in a benchmark and

ranges from as low as ~133 MB for radix to over 4 GB for raytrace. We can observe

an increase in the raw trace size with an increase in the number of threads.

120

Table 6.1 mcfTrace Output Trace Files Sizes and Compression Ratio

Trace File Size [Bytes]

Compression Ratio

Benchmark N raw gzip bzip2

gzip bzip2

fft 1 1,520,637,084 13,677,731 2,633,546

111.18 577.41

fft 4 1,522,295,568 38,990,553 21,508,820

39.04 70.78

fft 8 1,524,474,126 47,736,778 26,809,040

31.94 56.86

radix 1 133,813,926 353,890 40,769

378.12 3282.25

radix 4 137,653,992 3,627,161 1,954,396

37.95 70.43

radix 8 143,367,768 5,856,226 3,105,096

24.48 46.17

cholesky 1 1,093,147,254 9,473,216 2,342,543

115.39 466.65

cholesky 4 1,322,821,530 32,300,945 17,279,494

40.95 76.55

cholesky 8 1,549,532,592 56,277,295 31,236,020

27.53 49.61

radiosity 1 3,006,352,998 55,618,847 12,206,438

54.05 246.29

radiosity 4 3,104,184,060 313,693,918 186,335,060

9.90 16.66

radiosity 8 3,113,836,020 330,900,955 204,813,100

9.41 15.20

raytrace 1 4,035,907,728 117,315,720 25,216,232

34.40 160.05

raytrace 4 4,043,987,280 451,195,014 276,887,323

8.96 14.61

raytrace 8 4,048,774,776 469,470,186 303,907,747

8.62 13.32

The compression ratio achieved with gzip varies with benchmarks and the

number of threads in a benchmark run. For single-threaded benchmark runs, gzip

achieves compression ratios between 34 for raytrace and 378 for radix. bzip2

achieves even better compression ratios, ranging from 160 for raytrace to 3282 for

radix. The compression ratio is significantly lower in benchmark runs with N = 4

and N = 8 threads. Streaming trace descriptors that come from multiple threads in a

single trace file significantly limit the ability of gzip and bzip2 compressors to find

and exploit redundancy that exists in each execution thread separately. In bench-

mark runs with N = 4 threads, gzip achieves compression ratios between 9 for ray-

121

trace and 41 for cholesky, whereas bzip2 achieves compression ratio between 14.6 for

raytrace and 76.6 for cholesky. The compression ratios for N = 8 are slightly lower

than those observed N = 4.

Table 6.2 shows executions times of benchmarks run under Pin with the

mcfTrace tool capturing raw or compressed control-flow traces in a file. Overhhead

due to capturing traces depends on many factors, from benchmark characteristics,

number of threads, and specification of the host machine. In general, that overhead

ranges between 20 and 100 times relative to the simplest Pin tool that captures the

number of instructions (inscount_tls). The last two columns show the slowdown

caused by streaming the trace descriptors into general-purpose compressors, gzip

and bzip2, respectively. Interestingly, gzip does not increase the overhead caused by

mcfTrace when capturing raw traces. This can be explained by the relatively small

computational ovehead of gzip that is overlapped with writes to the hard disk.

Smaller size of trace files written to the hard disk also reduces the overhead. On the

other hand bzip2 significantly increases the tracing overhead, for 8 - 10 times for

single-threaded benchmark runs, and for 2.8 – 5.3 times for multithreaded bench-

mark runs.

Considering both trace file sizes and instrumentation time we recommend

mcfTrace to be used in combination with gzip because it generates smaller trace files

sizes relative to the uncompressed trace file sizes with no additional overhead. If

trace file size minimization is a must, then bzip2 should be used – it will produce

smaller trace files for multithreaded benchmark runs and significantly smaller trace

files for single-threaded benchmark runs when compared to gzip.

122

Table 6.2 mcfTrace Running Times and Slowdown Due to Compression

 Execution Time [sec]

Compression

Slowdown

Benchmark N raw gzip bzip2 gzip bzip2

fft 1 53.3 49.7 525.5

0.9 9.9

fft 4 77.4 75.9 407.4

1.0 5.3

fft 8 78.3 82.1 415.7

1.0 5.3

radix 1 19.1 19.1 52.9

1.0 2.8

radix 4 54.0 53.4 87.6

1.0 1.6

radix 8 57.0 56.2 81.8

1.0 1.4

cholesky 1 46.9 46.1 391.0

1.0 8.3

cholesky 4 95.9 92.5 458.8

1.0 4.8

cholesky 8 103.7 109.6 507.2

1.1 4.9

radiosity 1 83.6 81.2 895.3

1.0 10.7

radiosity 4 140.7 136.5 431.5

1.0 3.1

radiosity 8 144.4 142.6 402.5

1.0 2.8

raytrace 1 115.5 107.6 1018.2

0.9 8.8

raytrace 4 175.6 172.2 529.3

1.0 3.0

raytrace 8 182.6 185.0 505.0

1.0 2.8

6.2 mlsTrace

Table 6.3 shows the sizes of memory traces captured by mlsTrace. The

mlsTrace tool captures raw memory read and write traces as well as raw traces

compressed using gzip and bzip2. The last two columns show the compression ratio

achieved when mlsTrace captured data traces streams into gzip and bzip2. Raw

trace file sizes are a function of benchmark characteristics such as the instruction

count, frequency of memory reads and writes, and operand sizes. Data traces exhibit

limited redundancy. The compression ratio achieved by gzip ranges between 4.3 for

123

radix and ~9.7 for radiosity in signle-threaded benchmark runs and between ~3.7 for

radix and ~5 for cholesky in multithreaded benchmark runs. The compression ratio

achieved by bzip2 ranges between 5.7 for fft and 24.9 for radiosity in single-threaded

benchmark runs (N = 1), and between 4.9 for radix and 9 for radiosity in multi-

threaded benchmark runs (N = 4 and N = 8).

Table 6.3 mlsTrace Output Trace Files Sizes and Compression Ratio

Trace File Size

[Bytes]

Compression

Ratio

Benchmark N raw gzip bzip2

gzip bzip2

Fft 1 5,596,485,289 1,020,079,791 972,506,097

5.49 5.75

Fft 4 5,599,133,141 1,186,968,787 1,063,716,714

4.72 5.26

Fft 8 5,602,725,000 1,234,018,537 1,105,283,032

4.54 5.07

radix 1 2,116,357,785 485,556,506 366,216,968

4.36 5.78

radix 4 2,133,325,668 552,612,832 426,307,857

3.86 5.00

radix 8 2,159,411,996 581,422,985 443,246,734

3.71 4.87

cholesky 1 8,663,432,796 1,471,125,246 851,148,565

5.89 10.18

cholesky 4 9,145,447,183 1,819,089,301 1,139,067,412

5.03 8.03

cholesky 8 10,172,979,510 2,020,187,096 1,373,024,647

5.04 7.41

radiosity 1 9,177,533,244 940,365,491 368,705,920

9.76 24.89

radiosity 4 9,332,676,058 1,743,056,093 1,035,667,173

5.35 9.01

radiosity 8 9,357,975,123 1,940,078,805 1,185,528,817

4.82 7.89

raytrace 1 12,953,707,377 1,849,508,083 807,429,052

7.00 16.04

raytrace 4 12,966,140,811 2,865,055,779 1,886,428,420

4.53 6.87

raytrace 8 12,977,316,764 3,126,812,569 2,135,364,871

4.15 6.08

Table 6.4 shows execution times of benchmarks run under Pin with mlsTrace

capturing memory read and write descriptors and streaming them into trace files on

124

the hard disk directly or through the general-purpose compressors, gzip and bzip2.

The last two columns show compression slowdown when trace descriptors are

streamed to the compressors before they are written into a trace file. Similarly to

mcfTrace, mlsTrace too minimally increases execution time when combined with

gzip. However, the slowdown in cases when mlsTrace employs bzip2 is significant,

runing between 2.1 and 5.1 times relative to the uncompressed trace capturing.

Table 6.4 mlsTrace Execution Times and Compression Slowdowns

Execution Time [sec]

Compression

Slowdown

Benchmark N raw gzip bzip2

gzip bzip2

fft 1 158.7 178.5 808.4

1.1 5.1

fft 4 174.8 190.8 868.6

1.1 5.0

fft 8 171.2 194.8 810.0

1.1 4.7

radix 1 92.7 120.5 267.7

1.3 2.9

radix 4 128.2 179.7 295.5

1.4 2.3

radix 8 131.6 178.4 281.5

1.4 2.1

cholesky 1 205.3 226.8 900.2

1.1 4.4

cholesky 4 233.3 281.5 990.4

1.2 4.2

cholesky 8 280.7 309.1 1120.5

1.1 4.0

radiosity 1 280.4 282.4 1319.1

1.0 4.7

radiosity 4 302.5 329.0 1001.7

1.1 3.3

radiosity 8 321.8 313.7 961.1

1.0 3.0

raytrace 1 336.0 340.6 1639.2

1.0 4.9

raytrace 4 360.3 415.3 1326.6

1.2 3.7

raytrace 8 385.7 420.7 1311.2

1.1 3.4

125

Considering both data trace files sizes and execution overhead we can ob-

serve that bzip2 achieves slightly higher compression ratio than gzip, but the differ-

ence is likely too small to justify the significantly higher overhead of bzip2 relative

to gzip.

6.3 mcfTRaptor

In evaluating mcfTRaptor we consider two approaches: private TRaptor and

shared TRaptor. The private TRaptor relies on a private predictor structure, exclu-

sively maintained by a single program thread. The shared TRaptor assumes a pre-

dictor structure shared by all program threads. Regardless of configuration, the pre-

dictor structures include a 4096-entry gshare outcome predictor, a 64-entry indirect

branch target buffer (iBTB), and a 32-entry return address stack (RAS).

Predictor structures have proved to be very effective in filtering the number

of trace descriptors that need to be emitted to a trace file in single-threaded bench-

marks [3], and we expect them to work well in multithreaded benchmarks. Mispre-

diction rates in the outcome predictor and the target address predictors (iBTB and

RAS) serve as good indicators of the TRaptor effectiveness. Lower misprediction

rates mean fewer trace descriptors that need to be recorded in a trace file.

Table 6.5 shows the number of conditional direct branches and outcome mis-

prediciton rates, as well as the number of indirect unconditional branches and target

address misprediction rates for our benchmark runs. The outcome misprediciton

rate ranges from as low as ~0.07% for radix to ~8.6% for raytrace. An increase in the

number of threads does not result in a significant increase in the outcome mispredic-

tion rates as each thread has its own predictor structures. A slight increase is still

possible due to the time needed to warm-up predictor structures. Similar observa-

126

tions can be made for target address misprediction rates. Radix exhibits a relatively

high percentage of mispredictions ~13-15%, but the actual number of indirect

branches is negligible. Based on these misprediction rates, we can expect TRaptor to

generate dramatically smaller trace files than mcfTrace.

Table 6.5. Private TRaptor Misprediction Rates

Conditional

Direct

Outcome

Mispredic-

tion

Uncondi-

tional Indi-

rect

Target Mis-

prediction

Benchmark N

[%]

[%]

fft 1 56,075,154 2.367

12,608,375 0.003

fft 4 56,164,674 2.419

12,609,525 0.005

fft 8 56,283,270 2.437

12,610,998 0.007

radix 1 7,427,127 0.073

2,355 13.503

radix 4 7,637,388 0.095

3,750 15.253

radix 8 7,950,663 0.116

5,672 13.082

cholesky 1 55,014,795 3.904

1,955,003 0.041

cholesky 4 75,344,569 3.237

1,988,820 0.052

cholesky 8 112,548,429 2.318

2,043,430 0.067

radiosity 1 114,846,298 8.155

17,161,173 0.085

radiosity 4 119,746,055 8.195

17,474,632 0.105

radiosity 8 121,657,810 8.033

17,576,046 0.091

raytrace 1 168,163,801 8.742

25,484,168 2.998

raytrace 4 168,571,698 8.619

25,503,088 3.165

raytrace 8 168,959,087 8.581

25,538,844 3.089

127

Table 6.6 shows the trace file sizes for raw TRaptor traces (raw) and their

compressed versions (gzip and bzip2). By comparing the TRaptor generated raw

trace file sizes with the corresponding raw control-flow trace fize sizes generated by

mcfTrace, we can see a significant reduction is size, ranging from ~40 times for ray-

trace to ~3,500 for radix. The last two columns illustrate the potential of TRaptor

traces to be further compressed by a factor of ~4 for raytrace to ~12 for cholesky us-

ing gzip, and a factor of 5.9 for raytrace to 20.7 for cholesky using bzip2.

Table 6.6. Private TRaptor Trace File Sizes

Output Trace Size

[Bytes]

Compression

Ratio

Benchmark N raw gzip bzip2

gzip bzip2

fft 1 7,968,642 682,878 404,422

11.7 19.7

fft 4 8,160,789 1,072,299 638,049

7.6 12.8

fft 8 8,242,686 1,233,471 784,802

6.7 10.5

radix 1 37,500 5,855 4,338

6.4 8.6

radix 4 52,188 8,731 6,633

6.0 7.9

radix 8 66,510 11,802 9,150

5.6 7.3

cholesky 1 12,898,629 1,040,887 623,559

12.4 20.7

cholesky 4 14,647,143 1,796,840 1,217,190

8.2 12.0

cholesky 8 15,670,374 2,235,523 1,556,134

7.0 10.1

radiosity 1 56,410,818 6,105,575 4,247,789

9.2 13.3

radiosity 4 59,154,543 13,002,449 8,969,660

4.5 6.6

radiosity 8 58,872,636 14,771,288 10,325,310

4.0 5.7

raytrace 1 99,661,752 9,338,611 6,100,864

10.7 16.3

raytrace 4 99,282,171 21,553,551 14,585,726

4.6 6.8

raytrace 8 98,828,169 25,024,844 16,796,688

3.9 5.9

128

Table 6.7 shows the execution times for benchmark runs with the private

TRaptor as well as slowdown when using general-purpose compressors. When com-

pared to mcfTrace, mcfTRaptor requires much more time to produce raw files than

mcfTrace, in spite of having to write smaller files on the hard disk. This can be ex-

plained by an additional overhead cuased by lookups in the simulated predictor

structures. When combined with gzip and bzip2, mcfTRaptor adds very little or no

overhead in the execution time as the compression task can be fully overlapped with

capturing traces.

129

Table 6.7 Private mcfTRaptor Execution Times and Slowdown Due to Compression

 Execution Times [sec]

Compression

Slowdown

Benchmark N raw gzip bzip2 gzip bzip2

fft 1 214.58 246 238.75

1.15 1.11

fft 4 278.81 274.15 266.52

0.98 0.96

fft 8 269.43 276.6 269.76

1.03 1.00

radix 1 176.46 170.09 172.21

0.96 0.98

radix 4 219.97 219.73 218.43

1.00 0.99

radix 8 205.08 214.29 214.56

1.04 1.05

cholesky 1 272.8 273.4 274.96

1.00 1.01

cholesky 4 324.26 335.96 329.87

1.04 1.02

cholesky 8 358.38 363.78 363.87

1.02 1.02

radiosity 1 358.38 363.78 363.87

1.02 1.02

radiosity 4 372.17 401.49 384.44

1.08 1.03

radiosity 8 383.49 373.27 386.11

0.97 1.01

raytrace 1 359.98 396.71 370.57

1.10 1.03

raytrace 4 487.56 466.67 478.48

0.96 0.98

raytrace 8 474.76 459.63 473.05

0.97 1.00

Table 6.8 shows the number of conditional direct branches and outcome mis-

prediciton rates, as well as the number of indirect unconditional branches and target

address misprediction rates for our benchmark runs for the shared TRaptor. The

outcome misprediciton rates significantly increase relative to those observed in the

private TRaptor when the number of threads is N = 4 and N = 8 in all benchmarks

except radix. For example, the outcome misprediction with N = 4 reaches 47.3% for

radiosity, 12.3% for cholesky, and 43.8% for raytrace. Similar trends can be observed

for the target address misprediction rates, ranging from 0.007% for fft with N = 4 to

130

76% for radiosity when N = 8. The dramatic deterioration of predictor structures’

performance is expected as it is caused by conflicting requests coming from different

program threads to the shared predictor structures. It should be noted that predictor

designs could be enchanced to better support multithreaded workloads, but that is

out of the scope of this thesis.

Table 6.9 shows the trace file sizes for raw traces generated by the shared

TRaptor (raw) and their compressed versions (gzip and bzip2). By comparing the

raw trace files sizes generated by the shared TRaptor to those generated by the pri-

vate TRaptor, we can see a significant increase in the file sizes in the shared TRap-

tor when the number of threads is N = 4 or N = 8 (Figure 6.1). High misprediction

rates on the shared predictor structures result in an increased number of trace de-

scriptors that needs to be emitted during tracing. For example, when N = 4 the

shared TRaptor generates 7.1 times larger raw trace file size than the private TRap-

tor for fft, 3.7 times for cholesky, and 8.8 times for radiosity. An exception is radix

where the increase is only 1.4 times. Similar observations can be made for N = 8 and

for the compressed traces. Figure 6.1 illustrates the ratios calculated by dividing

the corresponding trace file sizes generated by the shared TRaptor and by the pri-

vate TRaptor.

131

Table 6.8. Shared TRaptor Misprediction Rates

Bench-

mark N

Conditional

Direct

Outcome

Mispre-

diction

Uncondi-

tional Indi-

rect

Target

Mispre-

diction

[%]

[%]

fft 1 56,075,136 2.367

12,608,375 0.003

fft 4 56,165,249 17.185

12,609,565 0.007

fft 8 56,281,901 19.322

12,610,841 0.012

radix 1 7,427,133 0.073

2,357 13.534

radix 4 7,637,233 0.125

3,761 25.445

radix 8 7,950,682 0.190

5,634 28.772

cholesky 1 55,014,795 3.795

1,955,003 0.042

cholesky 4 72,565,834 12.358

1,988,809 4.456

cholesky 8 104,323,219 22.041

2,043,279 4.911

radiosity 1 114,846,298 8.155

17,161,173 0.085

radiosity 4 119,536,557 47.367

17,472,879 70.145

radiosity 8 121,466,057 47.419

17,553,933 76.119

raytrace 1 168,163,801 8.524

25,484,168 2.969

raytrace 4 168,258,563 43.826

25,465,355 48.850

raytrace 8 169,040,607 43.875

25,556,188 53.867

132

Table 6.9. Shared TRaptor Trace File Sizes

Output Trace Size

[Bytes]

Compression

Ratio

Benchmark N raw gzip bzip2

gzip bzip2

fft 1 7,968,525 682,677 388,285

11.67 20.52

fft 4 57,925,020 9,357,182 6,796,357

6.19 8.52

fft 8 65,272,347 11,637,459 8,558,896

5.61 7.63

radix 1 37,479 5,855 4,345

6.40 8.63

radix 4 71,535 13,188 10,268

5.42 6.97

radix 8 114,789 23,028 18,198

4.98 6.31

cholesky 1 12,539,103 1,039,380 623,573

12.06 20.11

cholesky 4 55,135,530 8,042,678 5,765,925

6.86 9.56

cholesky 8 139,465,914 23,564,216 16,599,347

5.92 8.40

radiosity 1 56,410,554 6,106,785 4,247,521

9.24 13.28

radiosity 4 523,573,119 83,876,736 54,543,137

6.24 9.60

radiosity 8 546,015,318 100,094,387 65,742,972

5.46 8.31

raytrace 1 97,359,720 9,239,680 6,099,587

10.54 15.96

raytrace 4 629,043,807 106,700,282 70,171,451

5.90 8.96

raytrace 8 651,491,616 125,150,497 83,276,963

5.21 7.82

133

Figure 6.1 Ratio of Trace File Sizes for Shared and Private TRaptor

Table 6.10 shows the execution times for benchmark runs with the shared

TRaptor as well as slowdown when using general-purpose compressors. When com-

pared to the private mcfTRaptor, the executions times slightly increase. Similarly to

the private TRaptor, the shared TRaptor adds a very little or no overhead in the ex-

ecution time when captured traces are streamed to general-purposed compressors.

0

2

4

6

8

10

12

1 4 8 1 4 8 1 4 8 1 4 8 1 4 8

fft radix cholesky radiosity raytrace

Threads
Benchmarks

Trace Files Size (Shared TRaptor)/Trace File Size (Private TRaptor)

raw

gzip

bzip2

134

Table 6.10 Shared mcfTRaptor Execution Times and Slowdown Due to Compression

 Execution Time Slowdown

Benchmark N raw gzip bzip2 gzip bzip2

[s] [s] [s]

fft 1 258.96 252.59 257.66

0.98 0.99

fft 4 283.09 272.53 286.55

0.96 1.01

fft 8 279.93 253.37 280.59

0.91 1.00

radix 1 173.14 176.77 164.25

1.02 0.95

radix 4 223.6 226.57 206.54

1.01 0.92

radix 8 204.99 213.37 207.93

1.04 1.01

cholesky 1 284.85 261.42 283.44

0.92 1.00

cholesky 4 345.34 335.91 340.15

0.97 0.98

cholesky 8 369.8 374.25 373.7

1.01 1.01

radiosity 1 279.4 267.66 328.85

0.96 1.18

radiosity 4 405.86 388.68 415.42

0.96 1.02

radiosity 8 412.4 433.37 414.16

1.05 1.00

raytrace 1 359.29 387.29 407.14

1.08 1.13

raytrace 4 479.89 486.57 519.05

1.01 1.08

raytrace 8 501.37 527.28 524.37

1.05 1.05

6.4 mlvCFiat

mlvCFiat implements a version of the CFiat technique for filtering load val-

ues captured in multithreaded programs using cache first-access bits. We consider

two options as follows: (i) a private CFiat in which each thread maintains a separate

data cache with first-access bits, and (ii) a shared CFiat in which all threads share a

single data cache with first-access bits. To evaluate the effectiveness of each configu-

ration, we consider direct metrics, such as trace file size and tracing time under

mlvCFiat. In addition, we consider indirect metrics such as cache hit rates and load

135

first-access hit rates that help us evaluate the impact of various trade-offs faster.

The private and shared caches are configured as follows: 64 kB cache size, 4-way set-

associativity, and 64 B cache block size.

Table 6.11 shows the number of cache accesses and the cache miss rate, as

well as the number of memory reads and the first-access miss rate for the private

CFiat. Smaller cache miss rates and smaller first-access miss rates translate directly

into fewer mlvCFiat trace descriptors that need to be recorded in trace files. The

number of cache accesses vary across benchmarks, from ~116 million for radix to

~647 million for raytrace. It stays roughly the same as the number of threads in-

creases for fft, radix, and raytrace, and increases slightly for cholesky. The cache

miss rate is relatively small for all benchmarks except for radix and varies little

with an increase in the number of threads. The last column shows the first-access

miss rate (FA miss rate). It ranges between 0.86% for radiosity with N = 1 and

14.83% for cholesky with N = 8. This means that fewer than one memory read out of

one hundred will result in a mlvCFiat trace descriptor emitted to a file in the case of

radiosity with N = 1, and that one out of seven memory reads will result in a

mlvCFiat trace descriptor emitted to a trace file in the case of cholesky with N = 8.

Based on these results, we expect mlvCFiat to be highly effective in filtering the

number of trace records emitted to a trace file.

136

Table 6.11. Private mlvCFiat Cache and First Access Hit Rates

Bench-

mark N

Number of

Cache Acesses

Cache Miss

Rate

Number of Load

Accesses

FA Miss

Rate

 [%] [%]

fft 1 307,224,668 1.78 197,292,509 2.29

fft 4 307,413,543 1.15 197,406,682 2.39

fft 8 307,668,664 1.06 197,568,023 2.49

radix 1 116,642,428 13.18 67,680,866 11.54

radix 4 117,505,266 13.15 68,199,113 11.71

radix 8 118,815,351 13.10 68,994,011 12.02

cholesky 1 373,354,743 2.26 267,062,119 14.83

cholesky 4 392,929,212 1.64 300,656,363 9.83

cholesky 8 442,409,902 1.34 350,594,170 7.33

radiosity 1 533,009,818 0.53 390,948,586 0.86

radiosity 4 542,874,634 0.58 398,371,769 0.92

radiosity 8 542,276,706 0.57 398,005,075 0.92

raytrace 1 647,142,264 0.58 477,542,067 1.93

raytrace 4 647,450,206 0.66 477,430,176 2.14

raytrace 8 647,853,582 0.65 477,746,593 2.10

Table 6.12 shows the sizes of raw and compressed trace files captured with

mlvCFiat for all benchmark runs. The last two columns show the compression ratio

determined as the size of a raw mlvCFiat trace file divided by the size of the corre-

sponding compressed mlvCFiat trace file (gzip and bzip2). The frequency of memory

reads, the size of operands, the cache hit rate, and the first-access hit rate are pa-

rameters that determine the number of trace descriptors that need to be recorded

and thus the trace file sizes. Thus, benchmarks with a high percentage of first-

access miss rates produce larger trace files sizes (e.g., cholesky and radix).

137

Table 6.12. Private mlvCFiat Trace File Sizes

Output Trace Size [Bytes]

Compression

Ratio

Benchmark N raw gzip bzip2

gzip bzip2

fft 1 344,461,089 119,049,767 129,072,841 2.89 2.67

fft 4 347,114,036 124,190,432 133,015,225 2.80 2.61

fft 8 349,597,059 126,559,483 135,926,071 2.76 2.57

radix 1 382,845,328 154,293,762 124,421,632 2.48 3.08

radix 4 387,956,660 162,775,319 133,313,801 2.38 2.91

radix 8 396,445,955 166,961,934 137,552,631 2.37 2.88

cholesky 1 1,689,590,188 185,703,785 193,552,377 9.10 8.73

cholesky 4 1,212,625,123 153,181,545 140,051,857 7.92 8.66

cholesky 8 1,017,343,050 131,351,074 118,539,070 7.75 8.58

radiosity 1 57,384,634 12,846,491 7,273,049 4.47 7.89

radiosity 4 64,365,196 16,855,664 11,362,710 3.82 5.66

radiosity 8 64,093,547 17,879,489 12,508,787 3.58 5.12

raytrace 1 234,938,443 50,705,335 24,831,230 4.63 9.46

raytrace 4 257,305,028 63,450,387 35,401,668 4.06 7.27

raytrace 8 252,083,715 75,029,509 40,395,721 3.36 6.24

Figure 6.2 offers an alternative view into the effectiveness of mlvCFiat with

private caches. It shows the number of bytes in a trace file divided by the total num-

ber of executed instructions (Bytes/Ins) as well as the number of bytes in a trace file

divided by the total number of read operations (Bytes/Read). These metrics offer

more insights than the total sizes as they capture the number of bytes traced per ex-

ecuted instruction or per read operation in a benchmark. We can see that radix, de-

spite having a relatively high first-access miss rate, does not have large number of

bytes per instruction emitted to a trace file as such instructions occur infrequently.

138

Conversely, cholesky has a relatively high cost of tracing load values regardless of

metric used. These results demonstrate that the modified CFiat technique extended

to multithreaded applications with private caches and fist-access bits promises a

dramatic reduction in the number of trace descriptors that need to be emitted from

the target platform.

Figure 6.2 Trace File Size in Bytes/Ins and Byte/Read for Private mlvCFiat

Table 6.13 shows the execution times of mlvCFiat for our benchmark runs.

The last two columns show the slowdown caused by general-purpose compressors

when mlvCFiat streams captured descriptors into them. The execution times of

0

1

2

3

4

5

6

7

1 4 8 1 4 8 1 4 8 1 4 8 1 4 8

fft radix cholesky radiosity raytrace

Threads
Benchmarks

Private mlvCFiat Raw Trace File Size (Bytes/Ins and Bytes/Read)

Bytes/Ins

Bytes/Read

139

mlvCFiat are generally lower than the execution times of mlsTrace. For example,

mlvCFiat requires 289.4 seconds for raytrace with N = 8, compared to 385.7 (Table

6.4) seconds required by mlsTrace. Unlike mlsTrace that generates large trace files,

mlvCFiat generates smaller trace files and thus spends less time into trace record-

ing. The slowdown due to compression is negligible in the case of mlvCFiat when

combined with gzip.

Table 6.13 Private mlvCFiat Running Times and Compression Slowdown

 Execution Time [sec]

Compression

Slowdown

Benchmark N raw gzip bzip2

gzip bzip2

fft 1 102.3 101.82 122.81 1.00 1.20

fft 4 136.39 137.56 154.61 1.01 1.13

fft 8 140.43 137.34 158.64 0.98 1.13

radix 1 67.19 68.53 88.39 1.02 1.32

radix 4 106.97 107.52 129.86 1.01 1.21

radix 8 110.18 112.55 132.15 1.02 1.20

cholesky 1 131.39 131.74 264.54 1.00 2.01

cholesky 4 184.22 186.28 252.67 1.01 1.37

cholesky 8 214.44 207.05 259.33 0.97 1.21

radiosity 1 135.89 132.59 133.49 0.98 0.98

radiosity 4 235.09 236.67 231.47 1.01 0.98

radiosity 8 243.36 239.67 237.61 0.98 0.98

raytrace 1 176.93 174.17 181.07 0.98 1.02

raytrace 4 281.01 284.52 285.81 1.01 1.02

raytrace 8 289.37 282.13 296.94 0.97 1.03

140

Table 6.14 shows the number of cache accesses and the cache miss rate as

well as the number of memory read operations and the first-access miss rate for the

shared mlvCFiat. The results show that the data cache miss rates increases for

benchmark runs when the number of threads is N = 4 and N = 8 relative to the miss

rate observed in the private mlvCFiat. This is expected as the references from mul-

tiple threads now compete for the limited resources in the cache. Still, the cache

miss rate remains relatively small in all benchmark runs except for radix, where it

reaches 20.7% for N = 4 and 25.3% for N = 8. The shared mlvCFiat first-access miss

rate also increases relative to the private mlvCFiat first-access miss rate. It ranges

from 1.6% for radiosity with N = 4 to 21% for cholesky when N = 8.

141

Table 6.14. Shared mlvCFiat Cache and First Access Hit Rates

Bench-

mark N

Number of

CacheAcesses

CacheMiss-

Rate

Number of

Load

Accesses

FA Mis

Rate

 [%] [%]

fft 1 307,224,680 1.782 197,291,797 2.290

fft 4 307,413,525 2.587 194,943,784 6.117

fft 8 307,669,595 3.819 190,981,103 11.634

radix 1 116,642,518 13.182 67,680,804 11.541

radix 4 117,505,524 20.700 60,392,966 9.719

radix 8 118,818,621 25.339 56,320,482 11.409

cholesky 1 373,354,743 2.264 267,063,640 14.833

cholesky 4 391,682,559 2.571 295,844,475 16.556

cholesky 8 460,589,711 3.318 359,646,296 20.234

radiosity 1 533,009,818 0.527 390,946,458 0.867

radiosity 4 543,191,528 0.764 397,715,012 1.556

radiosity 8 542,213,475 1.599 393,746,820 3.999

raytrace 1 647,142,264 0.649 477,183,421 2.107

raytrace 4 647,148,563 2.693 465,870,745 8.280

raytrace 8 648,889,926 4.817 456,687,210 14.122

Table 6.15 shows the raw and compressed trace file sizes captured with the

shared mlvCFiat for our benchmark runs. The last two columns show the compres-

sion ratio determined as the size of the raw shared mlvCFiat trace file divided by the

size of the corresponding compressed shared mlvCFiat trace file (gzip and bzip2).

When compared to the private mlvCFiat trace file size, the shared mlvCFiat gener-

ates larger trace file sizes when the number of threads is N = 4 and N = 8. This re-

sult is expected as the cache miss rate and the first access hit rate both increased for

the shared mlvCFiat. Looking at compressability of traces generated by the shared

142

mlvCFiat for N = 4 and N = 8, we can observe that the compression ratio achieved by

gzip and bzip2 in general lags behind the compression ratio achieved by the private

mlvCFiat.

Figure 6.3 shows the trace file sizes expressed in bytes per executed instruc-

tion (Bytes/Ins) and in bytes per memory read operation (Bytes/Read). We can see

that the number of bytes per executed instruction does not exceed 2 bytes, with a

maximum observed for cholesky.

Table 6.15. Shared mlvCFiat Trace File Sizes

OutputTraceSize [Bytes]

Compression

Ratio

Benchmark N raw gzip bzip2

gzip bzip2

fft 1 344,516,436 119,170,380 129,081,747 2.89 2.67

fft 4 584,411,446 298,416,289 288,514,246 1.96 2.03

fft 8 904,131,002 524,738,825 507,005,862 1.72 1.78

radix 1 382,843,113 154,292,674 124,414,035 2.48 2.39

radix 4 467,715,206 180,305,339 142,886,992 2.59 3.76

radix 8 547,826,231 205,499,558 160,391,829 2.67 3.83

cholesky 1 1,689,931,981 185,552,488 193,770,645 9.11 8.72

cholesky 4 1,649,797,130 274,290,421 217,698,002 6.01 7.58

cholesky 8 1,969,518,113 440,007,097 305,085,785 4.48 6.46

radiosity 1 57,535,418 12,707,221 7,540,207 4.53 7.63

radiosity 4 102,728,392 28,093,318 19,255,596 3.66 5.33

radiosity 8 252,636,840 71,238,996 42,514,386 3.55 5.94

raytrace 1 253,544,922 51,766,218 24,147,799 4.90 10.50

raytrace 4 948,341,506 280,543,654 137,608,864 3.38 6.89

raytrace 8 1,541,792,874 471,699,763 251,114,623 3.27 6.14

143

Figure 6.3 Trace File Sizes in Bytes/Ins and Bytes/Read for Shared mlvCFiat

Table 6.16 shows the execution times of the shared mlvCFiat for our bench-

mark runs. The last two columns show the slowdown when the shared mlvCFiat

streams captured descriptors into the general-purpose compressors (gzip and bzip2).

The execution times of the shared mlvCFiat are generally slightly longer than the

execution times of the private mlvCFiat, but still shorter than the execution times of

mlsTrace. The slowdown due to compression is negligible in case of the shared

mlvCFiat when combined with gzip or bzip2.

0

2

4

6

8

10

12

1 4 8 1 4 8 1 4 8 1 4 8 1 4 8

fft radix cholesky radiosity raytrace

Threads
Benchmark

Shared mlvCFiat Raw Trace File Size: Bytes/Ins and Bytes/Read

Bytes/Ins

Bytes/Read

144

Table 6.16 Shared mlvCFiat Running Times and Compression Slowdown

 Excution Time [sec]

Compression

Slowdown

Benchmark N raw gzip bzip2

gzip bzip2

fft 1 127.66 132.7 153.59 1.04 1.20

fft 4 156.78 157.85 200.43 1.01 1.28

fft 8 158.46 177.37 229.02 1.12 1.45

radix 1 79.25 78.17 99.63 0.99 1.26

radix 4 110.13 111.09 140.38 1.01 1.27

radix 8 114.79 117.7 142.76 1.03 1.24

cholesky 1 162.99 171.83 294.2 1.05 1.81

cholesky 4 206.29 201.55 295.89 0.98 1.43

cholesky 8 231.53 239.78 334.41 1.04 1.44

radiosity 1 187.21 186.66 190.68 1.00 1.02

radiosity 4 247.71 245.41 249.59 0.99 1.01

radiosity 8 254.48 253.04 259.92 0.99 1.02

raytrace 1 242.67 239.49 253.41 0.99 1.04

raytrace 4 300.36 303.09 343.54 1.01 1.14

raytrace 8 313.45 344.41 363.58 1.10 1.16

145

CHAPTER 7

CONCLUSIONS

This research focuses on the development of a suite of binary instrumentation

tools called mTrace. The mTrace tool suite includes four tools that support capturing

and compressing control-flow and memory-reference traces of multithreaded soft-

ware running on x86/Intel 64 computers under Intel’s Pin dynamic binary instru-

mentation framework. The mTrace tools and traces generated by these tools are de-

signed primarily to aide in the design and evaluation of hardware-based tracing

mechanisms. However, they can be also used to aide software debugging as well as

in trace-driven simulation of multi-core computer systems. Two of the tools,

mcfTrace and mlsTrace, are used to analyze general control-flow and memory refer-

ence traces. mcfTRaptor seeks to reduce control-flow trace sizes for complete pro-

gram replayability by exploiting branch prediction schemes for outcome and target

prediction. mlvCFiat uses a cache extension to reduce load value trace sizes for com-

plete program replayability. All four of these Pin tools can target multithreaded pro-

grams, with the option of organizing the predicition structures and cache extensions

in mcfTRaptor and mlvCFiat privately per thread, or globally over all threads.

The mTrace tools are designed to allow a user to control program tracing by

specifying the type of output trace file (binary or ASCII), the code segment to be

traced (fast-forwarding or subroutine tracing), the optinal compression of captured

traces using general-purpose compressors. In addition, mcfTRaptor and mlvCFiat

allow a user to specify the configuration of predictor and cache structures. In addi-

146

tion to trace files, the mTrace tools generate an output file that contains extensive

statistics on benchmark execution and efficiency of internal predictors in the

mcfTRTaptor and mlvCFiat tools.

The mTrace tools are fully verified using a set of carefully crafted test pro-

grams that exercise various program and tool characteristics. The mTrace tools are

used to generate program traces of SPLASH-2 parallel benchmark programs with

N = 1, N = 4, and N = 8 threads. We evaluated the efficacy of the mTrace tools by

analyzing the size of output trace files, execution times, and other metrics of inter-

est, such as misprediction rates and cache miss rates at predictor structures. We

find that additional compression using gzip usually does not impose an additional

overhead in execution times for all considered tools. mcfTRaptor and mlvCFiat with

private predictor and cache structures proved to be very effective in reducing the

number of trace descriptors that needs to be recorded in the trace file.

Opportunities related to this work include enforcing te dynamic run-time be-

havior between executions of the target executable. Because the trace descriptors

collected by these four tools are not perfect when compared to the native execution of

the software, trace descriptor orderings will change between execution runs. Other

changes may occur as well, including the location of shared libraries, system calls,

the stack, and the heap in the virtual address space. Capturing that information will

allow for complete and accurate replayability of the target program.

The mTrace tools and traces generated are available publicly and can be

found at: http://lacasa.uah.edu/portal/index.php/software-data/32-mtrace-tools-and-

traces.

http://lacasa.uah.edu/portal/index.php/software-data/32-mtrace-tools-and-traces
http://lacasa.uah.edu/portal/index.php/software-data/32-mtrace-tools-and-traces

147

CHAPTER 8

BIBLIOGRAPHY

[1] RTI, "The Economic Impacts of Inadequate Infrastructure for Software

Testing," NIST, Research Triangle Park, 2002.

[2] IEEE-ISTO, "The Nexus 5001 Forum Standard for a Global Embedded

Processor Debug Interface," IEEE, 2003.

[3] V. Uzelac, A. Milenkovic, M. Milenkovic and M. Burtscher, "Using Branch

Predictors and Variable Encoding for On-the-Fly Program Tracing,"

IEEE Transactions on Computers, vol. PP, no. 99, p. 30, 2012.

[4] V. Uzelac and A. Milenkovic, "Hardware-Based Load Value Trace Filtering

for On-the-Fly Debugging," ACM Transaction on Embedded Computing

Systems, vol. 12, no. 2, p. 18, 2013.

[5] A. Milenkovic and M. Milenkovic, "An Efficient Single-Pass Trace

Compression Technique Utilizing Instruction Streams," ACM

Transactions on Modeling and Computer Simulation, vol. 17, no. 1,

January 2007.

[6] ARM, "CoreSight Trace Macrocells," ARM, [Online]. Available:

http://arm.com/products/system-ip/debug-trace/trace-macrocells-

etm/index.php. [Accessed 2 March 2014].

[7] MIPS Technologies, "MIPS PDtrace Specification," MIPS Technologies,

[Online]. Available:

http://files.tomek.cedro.info/electronics/doc/mips/architecture/MD00439-

2B-PDTRACETCB-SPC-06.16.pdf. [Accessed 3 March 2014].

[8] Infineon Technologies, "Microcontrollers On chip Debug Support," August

2001. [Online]. Available: http://www.infineon.com/dgdl/C166SV1-

OCDS.pdf?folderId=db3a304412b407950112b41f1dd13613&fileId=db3a

304412b407950112b41f1e303614. [Accessed 3 March 2014].

[9] A. Milenković, "mTrace," UAH, 4 February 2014. [Online]. Available:

http://lacasa.uah.edu/portal/index.php/research/31-mtrace. [Accessed 3

March 2014].

[10] H. Patil, C. Pereira, M. Stallcup, G. Lueck and J. Cownie, "PinPlay: a

framework for deterministic replay and reproducible analysis of parallel

programs," in IEEE/ACM international symposium on Code generation

and optimization, New York, NY, 2010.

[11] E. Johnson, J. Ha and M. B. Zaidi, "Lossless Trace Compression," IEEE

Transactions on Computers, vol. 50, no. 2, pp. 158-173, February 2001.

[12] E. Johnson, "PDATS II: Improved Compression of Address Traces," in

Proceedings of the 18th IEEE International Performance, Computing,

and Communications Conference, 1999.

[13] J. R. Larus, "Whole Program Paths," in Proceedings of the ACM SIGPLAN

148

1999 conference on Programming language design and implementation,

Atlanta, GA, 1999.

[14] A. Milenkovic, M. Milenkovic and J. Kulick, "N-Tuple Compression: A Novel

Method for Compression of Branch Instruction Traces," in Proceedings

of the 16th International Conference on Parallel and Distributed

Computing Systems, Reno, 2003.

[15] M. Burtscher, "VPC3: A Fast and Effective Trace-Compression Algorithm,"

ACM SIGMETRICS Performance Evaluation Review, vol. 32, no. 1, pp.

167-176, June 2004.

[16] M. Burtscher, "TCgen 2.0: A Tool to Automatically Generate Lossless Trace

Compressors," ACM SIGARCH Computer Architecture News, vol. 34, no.

3, pp. 1-8, June 2006.

[17] A. Milenkovic, A. Uzelac, M. Milenkovic and M. Burtscher, "Caches and

Predictors for Real-time Unobtrusive, and cost-effective Program

Tracing in Embedded Systems," IEEE Transactions on Computers, vol.

60, no. 7, pp. 992-1005, 2011.

[18] M. R. Guthaus, T. M. Austin, R. B. Brown, J. D. Ernst, S. J. Ringenberg and

N. T. Mudge, "MiBench: A free, commercially representative embedded

benchmark suite," in IEEE International Workshop on Workload

Characterization, Austin, 2001.

[19] V. Uzelac and A. Milenkovic, "A Real-Time Program Trace Compressor

Utilizing Double Move-to-Front Method," in Proceedings of the 46th

Annual Design Automation Conference, 2009.

[20] J. L. Bentley, "A Locally Adaptive Data Compression Scheme," Commun.

ACM, vol. 29, no. 4, pp. 320-330, 1986.

[21] Intel, "Intel® 64 and IA-32 Architectures Software Developer Manuals,"

September 2013. [Online]. Available:

http://www.intel.com/content/dam/www/public/us/en/documents/manual

s/64-ia-32-architectures-software-developer-vol-1-manual.pdf. [Accessed

10 December 2013].

[22] Intel, "Pintool: A framework for Dynamic Binary Instrumentation," Dec.

2009. [Online]. Available: http://www.pintool.org.

[23] J.-L. Gailly. [Online]. Available: http://www.gzip.org/. [Accessed 06 02 2014].

[24] J. Seward. [Online]. Available: http://www.bzip.org/. [Accessed 06 02 2014].

[25] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh and A. Gupta, "The SPLASH-2

Programs: Characerization and Methodological Considerations," in 22nd

Annual International Symposium, 1995.

[26] D. H. Bailey, "FFTs in External or Hierarchical Memory," in Proceedings of

the 1989 ACM/IEEE conference on Supercomputing , 1990.

[27] R. A. Uhlig and T. N. Mudge, "Trace-drivien Memory Simulation: A Survey,"

ACM Computing Surveys, vol. 29, no. 2, pp. 128-170, June 1997.

[28] T. Yeh and Y. N. Patt, "Alternative Implementations of Two-Level Adaptive

Branch Prediction," in Proceedings of the 19th Annual International

Symposium on Computer Architecture, 1992.

[29] K. Sayood, Introduction to Data Compression, 3rd ed. ed., Morgan Kauffman,

149

2005.

[30] J. Ziv and A. Lempel, "A Universal Algorithm for Sequential Data

Compression," IEEE Transactions on Information Theory, vol. 23, no. 3,

pp. 337-343, May 1977.

[31] D. A. Huffman, "A Method for the Construction of Minimum-Redundancy

Codes," Proceedings of the I.R.E., vol. 40, no. 9, pp. 1098-1101,

September 1952.

[32] M. Burrows and D. J. Wheeler, "A Block-sorting Lossless Data Compression

Algorithm," Palo Alto, CA, 1994.

[33] J. Seward, February 2010. [Online]. Available: http://www.bzip.org/.

[34] C. G. Nevill-Manning and I. Witten, "Identifying Hierarchical Structure in

Sequences: A linear-time algorithm," Journal of Artificial Intelligence

Research, vol. 7, no. 1, pp. 67-82, September 1997.

[35] A. D. Samples, "Mache: No-Loss Trace Compression," Berkeley, CA, 1988.

[36] A. Milenkovic and M. Milenkovic, "Stream-Based Trace Compression," IEEE

Computer Architecture Letters, vol. 1, no. 1, pp. 9-12, January 2002.

[37] T. Moseley, D. Grunwald and R. Peri, "Seekable Compressed Traces," in

Proceedings of the 2007 IEEE 10th International Symposium on

Workload Characterization, 2007.

[38] M. Burtscher, July 2006. [Online]. Available:

http://www.csl.cornell.edu/~burtscher/research/TCgen/.

[39] M. Burtscher and N. Sam, "Automatic Generation of High-Performance

Trace Compressors," in Proceedings of the international symposium on

Code generation and optimization, San Jose, CA, 2005.

[40] S. Nussbaum and J. E. Smith, "Modeling Superscalar Processors via

Statistical Simulation," in Proceedings of the 2001 International

Conference on Parallel Architectures and Compilation Techniques,

Washington, DC, 2001.

[41] K. Pettis and R. C. Hansen, "Profile guided code positioning," in Proceedings

of the ACM SIGPLAN 1990 conference on Programming language design

and implementation, New York, 1990.

[42] K. Karuri, M. A. Al Faruque, S. Kraemer, R. Leupers, G. Ascheid and H.

Meyr, "Fine-grained application source code profiling for ASIP design,"

in Proceedings of the 42nd annual Design Automation Conference,

Anaheim, CA, 2005.

[43] A. R. Lebeck and D. A. Wood, "Cache Profiling and the SPEC Benchmarks: A

Case Study," IEEE Computer, vol. 27, no. 10, pp. 15-26, October 1994.

[44] New Mexico State University, November 2002. [Online]. Available:

http://tracebase.nmsu.edu/tracebase.html.

[45] J. L. Henning, "SPEC CPU2006 Benchmark Descriptions," ACM SIGARCH

Computer Architecture News, vol. 34, no. 4, pp. 1-17, September 2006.

[46] C. Erbas, A. D. Pimentel, M. Thompson and S. Polstra, "A Framework for

System-Level Modeling and Simulation of Embedded Systems

Architectures," EURASIP Journal on Embedded Systems, vol. 2007, no.

150

1, p. 2, January 2007.

[47] M. Milenkovic, S. T. Jones, F. Levine and E. Pineda, "Performance Inspector

Tools with Instruction Tracing and Per-Thread / Function Profiling," in

Proceedings of the Linux Symposium, Ottawa, 2008.

[48] "Pin: Building Customized Program Analysis Tools with Dynamic

Instrumentation," in ACM SIGPLAN, New York, 2005.

[49] F. S. Foundation, "GCC, the GNU Compiler Collection," [Online]. Available:

http://gcc.gnu.org/. [Accessed 06 02 2014].

[50] X. Zhang, N. Gupta and R. Gupta, "Whole Execution Traces and Their Use in

Debugging," in The Compiler Design Handbook, Boca Raton, Florida,

CRC Press, 2002, pp. 4-4.

[51] M. L. Soffa, K. Walcott and J. Mars, "Exploiting Hardware Advances for

Software Testng and Debugging," in ICSE, Honolulu, HI, 2011.

