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CHAPTER 1   

 

 

INTRODUCTION 

 

 

Embedded computing drives important aspects of our life including the modern 

communications, transportation, medicine and entertainment.  The number of embedded 

processors by far surpasses the number of processors used for desktop and server 

computing.  For example, a 2009 smartphone typically includes several processor cores  

[1] and a modern luxury car may have over 70 different processors and microcontrollers 

[2].  With emergence of ubiquitous computing and wireless sensor networks, we expect 

further diversification of embedded processors and their applications. 

Current technology and economic trends pose unique challenges to the design and 

the operation of embedded computer systems.  Semiconductor technology continues to 

provide cheaper, smaller, and faster transistors with each new technology generation, and 

we can integrate more and more transistors on a single chip.  However, more aggressive 

technologies suffer from lower component reliability.  Next, increased sophistication of 

hardware blocks and an increased level of integration limit the observability of internal 

signals.  In result, the time spent in post-silicon debug and verification has grown steadily 
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as we move from one technology generation to the next [3].  On the other side, software 

designer’s challenges are also on the rise: increased hardware complexity enables more 

sophisticated applications.  The software stack includes many layers, from hardware 

bring-up, low-level software, OS/RTOS porting, application developing, system 

integration and performance tuning & optimization, production tests, in-field 

maintenance, and failure analysis.  Growing software complexity often leads to project 

failures or lost revenue if very tight time-to-market goals are not met.  According to a 

study published by the National Institutes of Standards, software developers typically 

spend 50%-70% of their development time in program debugging [4].  This time is likely 

to continue growing with a shift from single- to multi-threaded applications -- developing 

parallel programs is known to be a more challenging task than developing sequential 

programs.  Hence, debugging and testing becomes one of the most critical steps in the 

design and operation of modern embedded computer systems.  

1.1 Software Debugging Challenges 

Ideally, system designers and software developers would like to be able to answer 

the simple question “What is my system doing?” at any point in the design and test cycle.  

However, achieving complete visibility of all signals in real time in modern embedded 

platforms is not feasible due to limited I/O bandwidth and high internal complexity.  

Modern embedded computer systems are built as Systems-On-a-Chip (SOCs) as 

illustrated in Figure 1.1.  SOCs now replace traditional designs that consist of multiple 

integrated circuits connected on a printed circuit board (PCB).  This transition from 

systems-on-a-board to systems-on-a-chip prevents system designers from observing and 

controlling internal signals.  One approach to addressing this problem is the development 
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of a dedicated In-Circuit-Emulator (ICE) with additional support for debugging.  

However, this approach is cost-prohibitive.  Furthermore, the ICE’s physical 

characteristics such as chip floorplan, pin layout, and timing characteristics, differ from 

the targeted SoC.  An alternative approach is to incorporate a trace module on the chip – 

a dedicated hardware resource solely devoted to debugging.  The trace module captures, 

buffers, and sends out a hardware trace – a recorded sequence of events related to 

program execution, including program execution trace, data trace, and interconnect 

signals.  

 

Figure 1.1  System-on-Chip Observabililty  
(Strikethroughs represent a change in observability when the identical system is built on a 

printed circuit board) 

Debugging and testing of embedded processors is traditionally done through a 

JTAG port that supports two basic functions: stopping the processor at any instruction or 

data access and examining the system state or changing it from outside.  The problem 

with this approach is that it is obtrusive – the order of events during debugging may 
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deviate from the order of events during “native” program execution when no interference 

from debugging operations is present.  These deviations can cause the original problem to 

disappear in the debug run.  For example, debugging operations may interfere with 

program execution in such a way that the data races we are trying to locate disappear.  

Moreover, stepping through the program is time-consuming for programmers and is 

simply not an option for debugging real-time embedded systems.  For example, setting a 

breakpoint may be impossible or harmful in real-time systems such as a hard drive or a 

vehicle engine controller.  A number of even more challenging issues arise in multi-core 

systems.  They may have multiple clock and power domains, and we must be able to 

support debugging of each core, regardless of what the other cores are doing.  Debugging 

through a JTAG port is not well suited to meet these challenges. 

1.2 The Case for Hardware Tracing 

Recognizing debugging challenges and issues, many vendors have developed 

modules with tracing capabilities and integrated them into their embedded platforms, e.g., 

ARM’s Embedded Trace Macrocell [5], MIPS’s PDTrace [6] and OCDS from Infineon 

[7] with a corresponding trace module from Freescale [8].  The IEEE’s Industry Standard 

and Technology Organization has proposed a standard for a global embedded processor 

debug interface (Nexus 5001) [9].  The trace and debug infrastructure on a chip typically 

includes logic that captures address, data, and control signals, logic to filter and compress 

the trace information, buffers to store the traces, and logic that emits the content of the 

trace buffer through a trace port to an external trace unit or host machine.  

Beside resolving debugging challenges and issues in single-core system, tracing is 

essential in debugging of multi-core systems; various interdependencies and interactions 
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cannot be observed with the simple snapshot of the system state, but continual tracing is 

needed in order to find bugs and other unwanted situations.  

Hardware traces can be classified into three categories depending on the type of 

information they contain: program (or instruction) traces, data traces (from the memory 

bus) and system traces (various signals of interest in debugging the implemented 

hardware or observing the inter-cores dependencies and so on).  Figure 1.2 illustrates 

how the tracing helps us to regain the observably into the system-on chip-behavior; real-

time traces from different subsystems can be analyzed offline in order to debug and 

develop the system and compensate for the lack of observability through logic-scopes. 

In this dissertation we focus on program traces which consist of instruction 

address (program execution) traces, data address traces (addresses of memory referencing 

instructions) and data value traces (data brought to the CPU using load instructions).  

These traces are widely used for both hardware and software debugging as well as for 

program optimization and tuning.  While data value traces are sufficient to replay the 

program offline and analyze its behavior, this type of tracing is often not favored due to 

its high bandwidth requirements.  On contrary, program execution traces have much 

lower bandwidth requirements while allowing for simple debugging tasks which are 

sufficient for many testing, debugging and verification purposes. 

Tracing requires huge amount of data to be sent out of a chip.  For example, a 

processor running at 1GHz produces gigabytes of trace information for just one second of 

execution time.  Thus, the tracing process must rely on very large on-chip buffers to store 

the traces of large program segments and/or on relatively wide trace ports that can 

transfer a large amount of trace data in real-time. 
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Figure 1.2  Observability of SoC operation using different types of traces 

1.3 The Case for Trace Compression 

Many existing trace modules employ program trace compression and buffering to 

achieve a bandwidth of about one bit/instruction/CPU on the trace port at the cost of 

roughly 7,000 gates (for instruction addresses only) [10].  These modules often use very 

rudimentary compression, such as differential encoding of consecutive instruction and 

data addresses.  However, they still rely on large on-chip buffers that can capture the 

program trace in real-time for a relatively short program segment and wide trace ports to 

read out trace information.  If we want to capture program traces of larger program 

segments, we will need larger trace buffers and/or wider trace ports.  However, large 

trace buffers and wide trace ports significantly increase the system complexity and cost.  

Moreover, they do not scale well, which is a significant problem in the era of multi-core 

chips, especially considering the rising need for data tracing, which has much larger 

bandwidth requirements than the program execution traces.  For example, the number of 



 

7 

 

package pins does not increase linearly with the increase of processor speed, or the 

number of transistors on the chip, as we move from one generation to the next-one. 

In this dissertation we argue that tracing can be significantly improved and the 

debugging costs decreased by using cost-effective hardware structures that compress 

program traces.  The existing trace modules cannot guarantee unobtrusive tracing, rather 

they strive to provide minimally obtrusive program tracing often providing incomplete 

traces.  However, this limits applicability of the trace modules in debugging real-time 

embedded systems where interference from debugging operations often cannot be 

tolerated.  The proposed trace compression algorithms and hardware structures are 

designed to reduce the cost of debugging infrastructure through reducing requirements 

for large on-chip trace buffers and wide trace ports.  In addition, the proposed trace 

compressors allow for unobtrusive tracing in real-time. 

1.4 Contributions 

In this dissertation we introduce a number of cost-effective hardware-based and 

real-time trace compression techniques.  We characterize program and data traces of 

embedded processors that run typical benchmark programs.  Based on these 

characteristics we develop several novel algorithms and trace compression structures that 

can be used in trace modules of future embedded systems.   We explore the design space 

including trace port bandwidth requirements and implementation complexity and find the 

optimal design strategies that guarantee unobtrusive tracing in real-time at minimal 

hardware cost.  More specifically, our contributions are as follows. 

 We have performed characterization of program execution traces in order to draw 

conclusions about the best approach for compression of these types of traces. 
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 We have developed a Double Move-To-Front method for compression of program 

execution traces.  

 We have developed a Stream Cache and Last Stream Predictor method for 

compression of program execution traces.  

 We have developed a Branch Predictor based method for compression of program 

execution traces. 

 We have developed a cost-effective filtering technique for reducing the size of 

data address traces.  The technique relies on reuse of register values to re-generate 

data addresses in a software debugger. 

 We have developed a technique for compression of high order data address bits.  

The compression of higher-order bits requires a simple compressor while the 

compressed traces have low variation in required bandwidth, eliminating the 

possibility of dropping traces when the available bandwidth is saturated. 

 We have characterized the behavior of data values in typical embedded systems 

applications to gain insight into the compressibility of these types of traces. 

 We modified and improved an existing scheme that relies on reusing data values 

already residing in the processor’s cache to re-generate register file values during 

the program execution in a software debugger. 

1.5 Outline 

The remainder of this dissertation is organized as follows.  In Chapter 2 we 

discuss the existing approaches and standards for software debugging and tracing in 

embedded systems.  In Chapter 3 we survey general-purpose compression algorithms as 

well as a number of software-based and hardware-based trace-specific compression 
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algorithms.  In Chapter 4 we describe the proposed mechanism for capturing and 

compression of program execution traces.  We introduce three methods for compression 

of program execution traces, namely, (a) Double Move-To-Front (b) Stream Descriptor 

Cache and Last Value Predictor, and (c) Branch Predictor Method.  For each method we 

describe algorithms and compressor structures and perform a detailed design space 

exploration including trace port bandwidth and design complexity.  In Chapter 5 we 

introduce and explore the effectiveness of two methods for capturing and compressing 

data address traces, namely, (a) Data Address Trace Filtering through a partial replay of 

the register file, and (b) Data Address Trace Compression through exploiting low 

variability of higher address bits.  In Chapter 6 we analyze typical load value traces and 

explore their amiability to compression.  We propose several low-complexity approaches 

to the compression of load value traces and explore their effectiveness.  Finally, in 

Chapter 7 we give concluding remarks.
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CHAPTER 2   

 

 

PROGRAM TRACING: BACKGROUND 

 

 

Program traces encompass recorded sequences of instruction addresses, data 

addresses, and data values captured during program execution.  Program execution or 

instruction traces are instrumental for software debugging and are also used in profiling 

for tuning and optimization.  However, some software bugs require a complete re-

creation of memory values.  In such cases collection of data address and data value traces 

is needed.   

In Section 2.1 we discuss types of program tracing depending on how traces are 

collected: software traces (Section 2.1.1) and hardware traces (Section 2.1.2).  In 

Section 2.2 we focus on hardware supported tracing and debug infrastructure needed to 

support it because it is crucial in debugging embedded systems.  Section 2.3 describes 

several representative examples of commercial trace modules. 
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2.1 Types of Tracing 

2.1.1 Software Tracing 

The most common form of program traces are software traces.  Software traces 

are traditionally created using a trace collector process that runs on the same platform as 

the traced program.  Exception handlers with different granularity (e.g., single-step, step-

on-branch) are typically used to capture relevant trace data.  The traces are then stored to 

dedicated trace buffers in system memory.  A separate process is responsible for 

emptying the buffers to an external storage (e.g., hard disk) using available 

communication channels.  A software debugger then reads and analyzes the collected 

trace.  Software tracing has a relatively low implementation cost and offers flexibility in 

selecting the type of events that are captured during tracing.  The main drawback is its 

obtrusiveness – the trace collector and trace transfer processes consume the CPU time, 

system memory, and communication channel bandwidth.  Thus, software tracing often 

slows down the program execution by an order of magnitude or more.  

A number of software tools for trace collection and analysis have been developed.  

The best known tools are Shade [11] for instrumentation of SPARC and MIPS 

architectures; Performance Inspector [12] for x86, x86_64 and PowerPC64 architectures; 

and PIN [13, 14] for x86 and ARM architectures.  Microsoft has developed a tool for 

instruction level tracing [15] that also includes a compressor to reduce the trace storage 

requirements.  Here we will briefly discuss the PIN tool.  

The PIN tool [13] performs run-time binary instrumentation of Linux and 

Windows applications through a just-in-time compiler (JIT).  PIN starts by intercepting 

the execution of the first instruction of the executable and generating (“compiling”) new 
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code for the straight-line code sequence starting at the current instruction.  It then 

transfers control to the generated sequence.  The generated code sequence is almost 

identical to the original one, but PIN ensures that it regains control when a branch exits 

the sequence.  After regaining control, PIN generates more code for the branch target and 

continues execution.  Every time the JIT compiler fetches a code segment, a PIN analysis 

tool (called Pintool) has the opportunity to instrument it before it is translated for 

execution. 

PIN implements different optimizations to reduce the number of handshaking 

operations between the JIT and actual program executable, resulting in reduced tracing 

overhead.  For example, a branch predictor for indirect branches in a JIT compiler allows 

for less frequent switching to the original code and obtaining the target from there [14].  

In spite of these optimizations it imposes a significant slowdown (4 to 12 times just for a 

simple counting of the number of executed instructions).  This slowdown is acceptable 

for tracing of different general-purpose applications but is not feasible for tracing of real-

time embedded systems.   

2.1.2 Hardware Tracing  

Hardware program traces are collected using dedicated on-chip logic that can 

capture and store address, data, and control signals.  The implementation cost of debug 

infrastructure for hardware tracing varies depending on trace types that are being 

collected and the level of obtrusiveness.  With obtrusive hardware tracing, on-chip 

resources are used to perform tracing, compression and qualification of traces, but 

ultimately, the traces are transferred to system memory using system buses (thus 

interfering with system operation).  With minimally obtrusive or completely unobtrusive 
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tracing, dedicated on-chip buffers are used to store traces and a separate trace port is used 

to transfer the collected traces off-chip.  

Figure 2.1 gives a system view of a typical on-chip debug infrastructure for 

unobtrusive hardware tracing.  A target processor provides necessary internal signals to 

the trace module (Trace Signals block).  The trace module then selects what signals are of 

interest in the current trace cycle based on debug control and configuration commands 

received from the software debugger, it starts and stops tracing based on specified 

external or internal triggers.  The trace module optionally performs compression of 

traces.  Finally, traces are output through a trace port to the external trace storage 

memory, using a trace communication protocol (Trace Protocol block).  The trace 

protocol block is used not only for tracing data off the chip, but it also serves as an access 

point to the on-chip trace related resources from the software debugger side. 

 

Figure 2.1  System view of the hardware support for unobtrusive program tracing 
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The trace module is controlled by Debug Control signals.  Debug Control signals 

can come from the trace protocol subsystem if the protocol implements control features 

besides tracing the data only.  Debug Control signals can also come from the CPU side.  

For example, software interrupt routines can be used to setup the trace module operation.  

The control signals can come from the system level access protocol, JTAG or Debug Bus 

as shown in Figure 2.1, which allows for more flexible control of the trace module 

operation (the unified system level debug bus accepts control signals from different 

processors on the chip or from the software debugger).  When reading out already stored 

traces, the same set of Debug Control signals instruments the storage memory to output 

traces out of the chip. 

A Bus Trace Collection block serves as an additional source of traces for the trace 

module.  For example, in a multi-core system, traces collected directly from the shared 

bus give better insight into inter-processor dependencies and allow for better correlation 

of different processors’ execution. 

2.2 Hardware Supported Unobtrusive Tracing 

In this section we give more details on the debug infrastructure that supports 

minimally obtrusive or unobtrusive hardware tracing as illustrated in Figure 2.1.  

Section 2.2.1 gives examples of the existing implementations of the Trace Signals block.  

Section 2.2.2 discusses typical operations of trace modules.  Section 2.2.3 discusses 

protocols used to access trace and debug resources on the chip from the software 

debugger side, most notably the one specified by the IEEE-ISTO 5001 (Nexus) standard.   
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2.2.1 CPU Trace Signals 

A processor’s trace signals reflect the processor’s internal state.  They typically 

include signals that carry information about the currently executing instruction (e.g., 

instruction word and address) and values on the memory buses (data addresses and data 

values).  In addition, various pipeline and system state information may be available.  

For example, the Tensilica LX2 processor family implements a configurable trace 

port with different number of trace signals [16].  The simplest processor trace port is  

72-bit wide and includes a 32-bit program counter, 8-bit debug status field, and a 32-bit 

debug data field.  The debug status field contains information about the validity of the 

current instruction and its type and size.  Together with the debug data field, various 

events can be encoded, for example, causes of pipeline bubbles (e.g., read-after-write 

dependency, structural hazard, I-cache or D-cache miss), pipeline dependency 

information, and stall information.  Next, the debug status and data fields can signal 

whether an instruction is not executed using the CPU but from the on-chip debugger 

hardware (instrumented from software).  If the data tracing option is enabled, a 

processor’s port width ranges from 140 to 400 bits.  Additional bits include the load/store 

units address, data values, and status signals.  Load/store data field size depends on the 

memory bus width; Load/store status specifies the type of a memory or cache access and 

the size of the memory referencing request.  If the CPU implements two load/store units, 

the load/store trace signals exist for each unit. 

Similarly to the Tensilica’s processor trace port, the corresponding trace ports for 

MIPS and Freescale include status signals that inform the trace module about what type 

of data is presented on the unified trace port.  The MIPS trace port [6] supports tracing of 



 

16 

 

out-of-order load and store instructions by sending out a signal which contains the 

information of the load’s actual position in the load store queue (e.g., received load value 

corresponds to the Nth oldest load instruction).  In addition to memory addresses and data, 

the Freescale MPC565 [8] trace port includes the ownership information (which device 

on the bus issued a memory referencing instruction). 

The Xilinx Microblaze processor [17] implements a trace port with approximately 

200 signals [18].  In addition to detailed information on instruction traces and data traces 

from different memory modules, it includes information about the executing process, 

unmasked interrupt occurrences, pipeline halted information, exception type, information 

of pipeline advance for each pipeline stage, debug mode operation, etc.  

2.2.2 Trace Module Details 

Trace modules today offer various features.  The most important ones are related 

to the qualification of traced data.  Trace qualification assumes control on what to trace 

and when to trace (implemented using various triggers).  Other features include a certain 

level of automatic processing of traces to reduce the amount of unnecessary data 

presented to the user, compression of traces, and overall a tracing mechanism 

implementation which allows for correlation of traces in a multi-core system (this may 

also include timestamping of traces). 

The minimum set of tracing triggers allows starting and stopping tracing when 

certain instruction addresses occur.  More advanced triggers may come from conditioning 

other signals coming from the processor.  Finally, the most advanced triggers may come 

from the other processors or components on the chip (this is often referred to as cross-
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triggering).  The cross-triggering often requires additional considerations on 

synchronization of traces coming from different processers and their correlation in time. 

For example, Tensilica offers TRAX [16], a tracing module which connects to the 

Tensilica CPU’s trace port and outputs the traced data to the embedded trace memory 

according to Nexus format.  Traced data can be read out through the JTAG.  The current 

TRAX version implements instruction tracing only.  This indicates the importance of the 

program execution tracing only, due to its small bandwidth and storage requirements 

while enabling basic debugging tasks.  In addition, TRAX implements cross-triggering 

for stopping and starting tracing initiated from other cores in the system.  

Xilinx offers the MDM and XTRACE debugging tracing modules [17-19].  The 

XTRACE module encodes and multiplexes signals from the Microblaze trace port into 

22 signals, which are output off the chip, or the trace session can be saved to the on-chip 

trace memory.  Internal cross-trigger functionality is used to setup the trace sessions.  The 

MDM module is used to control the XTRACE module.  It is accessible through the JTAG 

port.  For basic debugging purposes, MDM can output information through the UART 

and it also has access to the Microblaze fast main bus fabric (FSL). 

Freescale offers READI [8], a trace and debug module which provides real-time 

tracing capabilities for different Freescale processors.  The module implements a Nexus 

Class 3 interface which allows for instruction and data tracing and also allows the control 

of various processor registers and on-chip memories from an external software  

debugger. 

The Embedded Trace Macrocell (ETM) module provides debug and trace 

facilities for ARM processors [5].  They allow information on the processor's state to be 
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captured both before and after a specific event, unobtrusive to the processor execution.  

The ETM can be configured in software to capture only select trace information and only 

after a specific sequence of conditions.  A trace port and FIFO, both configurable, allow 

the compressed trace data to be read from the chip by an external trace port analyzer, 

again unobtrusive to the processor execution.  The trace port can be configured from a 1 

to 32-bit data bus, with a trace clock independent to the core clock.  

The functionality of any of the ETMs can be extended by the addition of an 

Embedded Trace Buffer (ETB) [20].  The ETB, an on-chip memory, stores the captured 

traces so that later they can be read out at a reduced clock rate.  This can be done through 

the JTAG port of the device without using expensive trace port pins. 

2.2.3 Tracing and Debugging Protocols 

The most widely used protocol to access on-chip resources is JTAG.  JTAG 

connects on-chip registers into a scan chain which allows the software debugger to 

modify their values, which in turn, drive the logic internal signals according to predefined 

test patterns.  Each device within a chip has registers already included into the device’s 

scan chain.  In a system-on-a-chip with multiple logic devices all individual scan chains 

are connected together allowing the software debugger to access any device on the chip.  

Because of long scan chains and a serialized operation, JTAG is suitable only for run/stop 

based debugging, where the software debugger halts the processor, or the whole system, 

and then reads out registers in the scan chain to obtain information about the system state.  

JTAG has been improved over time to offer more debugging capabilities.  The IEEE 

1149.7 standard [21] was introduced to improve JTAG debug by implementing a system 

level bypass which allows for quicker accesses to a selected device using much shorter 
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scan chains.  The IEEE P1687 (IJTAG) standard focuses on standardizing the way an 

external system communicates with any form of internal design debug and test logic via 

the JTAG port.  IJTAG offers a standard way of connecting, accessing, analyzing, and 

describing embedded instrumentation hardware.  Instrumentation hardware includes not 

only debug and test logic but any circuitry used for device characterization, monitoring, 

configuration or functional use.  The IJTAG infrastructure resides at the deeper level than 

the JTAG and is accessible through JTAG.  The standard defines access mechanisms to 

the instruments and also defines their hardware and software description.  This way, the 

actual instrument details are hidden from the user allowing for better portability of 

instruments across different systems and their use with different testing tools. 

MIPI Test & Debug.  A Mobile Industry Processor Interface Test and Debug 

working group adds the high bandwidth unidirectional trace interface to the IEEE 

P1149.7 interface for use in smart phones and other network devices [22, 23].  The 

tracing is implemented through a System Trace Module (STM), which collects software 

and debug data from internal buses, encodes the data and sends it out of the chip through 

a Parallel Trace Interface (PTI).  The PTI is an external port of configurable width.  A 

protocol, System Trace Protocol (STP) is used for encoding trace information.  MIPI 

aims to offer a single debug and trace port for multi-core systems; thus, it allows tracing 

from up to 256 sources (either OS processes or hardware sources, e.g., different 

processors), offers automatic timestamping and has a configurable PTI width to conform 

various tracing requirements.  

IEEE 5001 (Nexus).  The Nexus standard defines trace and debug interface, 

including associated protocols and infrastructure that can serve tracing and controlling of 
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multiple cores on a chip from the software debugger.  Communication between the Nexus 

internal logic and a software debugger can be achieved through either a JTAG port 

already included on-chip or through the dedicated and extensible AUX port.  An AUX 

output interface is typically used for tracing data out of chip.  The Nexus employs a 

packet-based messaging tracing scheme with packet headers providing information about 

data source and destination and type of payload.  An AUX input interface allows for 

bypassing the JTAG control sequences, thus achieving faster response when configuring 

and calibrating the system.  Trace collection mechanisms are not addressed by the Nexus. 

Nexus allows vendors to adopt the standard at four levels or classes of operation.  

Higher classes include support for more complex debug operations, but in turn require 

more on-chip resources: 

 Class1: Basic Run Control.  System implements read/write to user registers and 

memories, single step debug through break-/watch- points and access to registers 

and memory locations when the execution is halted. 

 Class2: Instruction Trace.  In addition to class 1, the system includes support for 

capturing processor execution trace.  Also, it allows for monitoring of process 

ownership which is useful to correlate simultaneously executed threads in time. 

 Class 3: Data Trace.  In addition to class 2, the system includes support for 

monitoring and read/write to data and memory locations, including the I/O reads 

and writes.  This mainly relates to implementation of full tracing capabilities. 

 Class 4: Remote processor control and advanced trace.  In addition to class 3, 

the system includes support for direct processor control using memory 

substitution.  Memory substitution allows the processor to execute instructions 
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from the trace port rather than from the memory.  Memory substitution is 

implemented using address remapping for the I/O space (where the trace port is 

located) and for the memory (where the original executing program resides).  An 

advanced trace includes tracing of parameters that are not only used to determine 

program execution but also performance parameters and trace of interconnect 

signals. 

The Nexus packet-based messaging tracing scheme includes different types of 

messages which follow different implementation classes.  There are five main types of 

messages: 

 Status.  Indicate status information messages from the target. 

 General register read/write.  Memory mapped reads and writes between 

software tools and Nexus registers.  These messages can be used for run control 

and configuration of watchpoint/breakpoint operations. 

 Program Trace.  Trace of instruction addresses reduced to trace of branches only 

(or other program discontinuities). 

 Data Trace.  Trace of data addresses and values.  Nexus also supports data 

acquisition instructions for streaming export of larger amounts of system 

information (data from an on-chip trace buffer). 

  Memory Access.   Non-intrusive access to internal memory blocks. 

Figure 2.2 shows the system level organization of the Nexus infrastructure.  It 

includes various FSM’s to access internal registers, registers to control the Nexus 

operation and the TCODE formatting logic, which performs type-based packaging of 

trace messages coming from the underlying system using TCODE header.  
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Figure 2.2  Nexus system level organization 

2.3 Hardware Trace Infrastructure Examples 

In this section we focus on infrastructures that allow for collection of traces inside 

of a chip and transferring the traces out of the chip.  The examples do not necessarily 

follow the unobtrusive tracing system description from Figure 2.1, but they describe 

different important intricacies of trace collection and storage in real systems.  For 

example, the OCP-IP Debug in Section 2.3.1 focuses on collection of traces from the 

main system bus in a multi-core system.  The BugNet system in Section 2.3.2 is an 

obtrusive mechanism which explains different mechanisms when tracing the shared 

memory and presents some solutions to reduce the size of trace information carried out.  

Finally, Section 2.3.3 describes the CoreSight infrastructure, a complete unobtrusive 

system for real-time tracing of all cores in a multi-core environment. 

2.3.1 OCP-IP Debug 

Open Core Protocol (OCP) is a widely used standard IP core interface [24, 25].  

OCP facilitates an IP cores plug-and- play approach by decoupling the cores from other 
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parts of the chip using a clearly specified core interface protocol.  In an OCP system, any 

proprietary component (e.g., processors, memory modules, and I/O devices) can become 

OCP compliant by using a wrapper which implements the OCP interface.  The wrapper 

works as a socket, allowing any component to be easily attached and detached to/from an 

existing port on the OCP interconnect.  The socket-based approach also speeds up the 

verification and optimization of a design. 

Part of the OCP standard related to the debug has been developed by the OCP 

Debug Working Group [26].  This group aims to provide a socket based debug standard 

for OCP compliant SoC.  OCP debug efforts focus on defining the set of debug signals, at 

the OCP fabric level, which can be used by the external software tools for debugging, 

testing and other verification purposes.  The OCP debug socket is attached to the OCP 

bus and thus, resides at the deepest level of the debugging infrastructure, and the standard 

does not addresses how the debug data is traced out of the system (MIPI, Nexus or other 

protocols can be used for that purpose).  The OCP debug socket actual implementation 

can be adapted to different debugging needs: software centric debugging requires basic 

run control for cores and program and data tracing.  Hardware centric debugging exposes 

hardware logic signals used for hardware verification purposes.  System centric 

debugging allows for observation of interactions of different components on the chip, 

such as comparative debugging of any two cores on the chip and operates independently 

of implemented hardware in order to capture pre-reset and post-crash events and to 

perform.  A multi-core system debug greatly benefits from using the OCP bus and an 

OCP debug socket.  A debug socket, attached to the OCP fabric, has predefined 

functionalities, such as monitoring of all transactions and responses on the bus in a cycle-
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accurate manner and it also implements automatic trace qualification and performance 

analysis.  Various levels of support for debug are defined through basic and extended 

debug signals: 

Basic:  

 Debug and run control for cores (run/stop/halt, watch/break- points…) as seen in 

JTAG only debug solutions. 

 Cross-triggering between multiple cores and events to allow global and 

distributed event recognition across the multi-core system.  

 Synchronized run control supports clock synchronized program execution of 

two cores that run asynchronously in the normal case, allowing for time alignment 

of their instruction streams in order to study interdependencies. 

 Basic bus traffic observation through system trace with control of trace start/stop 

using triggers.  Tracing includes filtering based on OCP operations (e.g., Initiator, 

thread, address range, DMA). 

Extended:  

 Performance Counters (single and multi-core enable observation of selected 

parameters through summary only, which reduces the output bandwidth.  

 Time-stamping allows for correlation of events in a distributed system or events 

coming from asynchronous parts of system. 

 Power Management Monitoring includes observation of gated clock domains and 

voltage domains in aware architectures, where a debugging process must be 

performed across all IPs even those that are disconnected at the time. 
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 Security monitoring requires selective enabling debug of sensitive locations at 

different times and with different levels of authorization. 

2.3.2 Hardware/Software (Hybrid) Tracing  

Hybrid techniques rely on hardware structures to perform compression and 

reduction of traces, but ultimately, they require the use of system memory as trace 

storage.  This also has an impact on processor execution due to the sharing of memory 

resources and on-chip buses.  One such technique is BugNet [27] which uses the main 

memory to store traces. 

BugNet specifically addresses inter-core dependencies by attaching a modest 

hardware to a shared cache coherence protocol.  By recording the outcomes of all 

memory races, a debugger is supplied with sufficient information to correlate different 

processes in time.  BugNet additionally reduces the amount of data coming from this 

coherence monitor by introducing a hardware algorithm that filters out the memory race 

outcomes that can be inferred from other races that are already traced [28].   

BugNet aims to reduce the amount of traced data needed for a debugger to find 

the bug by recording only the last one second of program execution before the failure.  

This is because usually program failure is often due to a bug just a few million 

instructions away from the failure.  To support this, BugNet uses Checkpoints – a 

snapshot of system state – at each second and tracing of the system within last second.  

Regular data traces from/to each of the processors are compressed using a simple 

dictionary based compressor.  Additionally, data traces are reduced by logging only the 

first load into the cache; a load accessing a memory location needs to be logged only if it 

is the first access to that memory location.  The values of other loads can be re-generated 
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during replay in a software debugger that models caches and memories.  To implement 

this optimization, hardware extensions to L1 and L2 caches are necessary. 

The basic architecture of BugNet is shown in Figure 2.3.  Shaded parts of the 

system are part of BugNet.  BugNet attaches a logger to each shared cache to record 

memory races outcomes and saves the traces to the Memory Race Buffer.  The 

Checkpoint buffer records system state.  Both buffers are dumped to main memory on 

error detection. BugNet limitations are the need for integration with the operational 

system, detection of only the bugs that lead to the system failure and obtrusive tracing 

due to usage of main memory.  
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Figure 2.3  System view of BugNet architecture 

2.3.3 Hardware Based Debugging Infrastructure 

CoreSight [29] provides a SoC architecture which enables a software engineer to 

fully debug and trace an entire SoC in real-time (Figure 2.4).  CoreSight specifically 
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targets multiprocessor systems where two or more cores have to be halted simultaneously 

and tracing is required to be cycle accurate.  The cross trigger matrix, similar to other 

triggering mechanisms, enables simultaneous triggering of multiple cores including 

breakpoints and interrupts.  As a result, when a single core is halted (or triggered), all 

connected cores and peripherals are halted (or triggered), thus providing the user with 

both control and observability of the system state.  To provide the user with correctly 

correlated traces from different processors, a trace funnel puts data coming from different 

ETMs in order to the AMBA Trace Bus (ATB).  From here, data can be saved to the 

Embedded Trace Buffers or can be driven directly to the output port.  Together with the 

RealView software analysis tool, ARM aims to provide users with full support for 

correlations and synchronization of multi-processor executions. 

CoreSight hardware is accessible through the Debug access port (DAP), which 

can be also connected to the standard JTAG port.  DAP accesses the AMBA APB bus, 

which can communicate with all the debugging and tracing devices within the system 

(ETM, Cross-triggering, directly with the CPUs).  CoreSight also includes an 

Instrumentation block, which is a simple hardware support for software based tracing 

(e.g., printf style debugging, tracing of OS and application events and emitting diagnostic 

system information).  

While offering complete infrastructure for debugging complex systems on a chip, 

CoreSight does not address the compression of trace data.  With a growing number of 

cores on a single chip, it’s a question how CoreSight can scale in a multi-core 

environment due to the huge bandwidth requirements for tracing. 
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Figure 2.4  System view of ARM’s CoreSight architecture 
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CHAPTER 3    

 

 

TRACE COMPRESSION ALGORITHMS 

 

 

Trace compression algorithms are designed to exploit redundancies found in 

program traces.  Many of these redundancies can be extracted with general purpose 

compressors too, but trace-specific compressors can achieve similar or better 

compression ratios with less compute and storage resources.  Hardware implementation 

of either general purpose or trace specific compressors is a very challenging task.  To 

achieve high compression ratios, the compressors need large buffers, but they tend to be 

costly.  Efficient compression mechanisms with modest hardware resources exploit 

unique features of program traces.  For example, including architectural support for 

tracing in a processor (e.g., caches, execution units, information on program execution) 

and instruction set simulator in a software debugger enables significant reduction in the 

number of required trace records.  

The operation and principles behind the most widely used general-purpose 

software compression applications are described in Section 3.1.  Section 3.2 describes 

specialized techniques and approaches for compression of program traces.  In Section 3.3 
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we discuss hardware implementations of various trace compression techniques and 

describe several existing compression techniques which can be implemented in hardware, 

including those that rely on processor architectural state. 

3.1 General-Purpose Compression Algorithms 

In this section we briefly describe the most widely used software compression 

applications, gzip , bzip2 and Sequitur.  They are based on distinctly different approaches 

to the compression of general data sets.  gzip finds repeating patterns within a data set 

and replaces them with identifiers which are then efficiently encoded [30].  bzip2 is based 

on Burrow-Wheeler transformation [31], and it reorganizes data before compression to 

reduce the entropy within the individual data sets.  Both mechanisms also use different 

encoding techniques (Huffman coding [32, 33], arithmetic coding [34]) to produce a 

more compact description of input data set values.  We also describe the operation of 

Sequitur, a relatively new mechanism with a novel approach to compression which builds 

hierarchies of patterns. 

3.1.1 gzip 

gzip is based on a variant of the lz77 pattern match mechanism [30].  The lz77 

algorithm tries to find repeated patterns in the data set by comparing the incoming, yet to 

be processed, data with already processed data.  Whenever a pattern match occurs, the 

repeating pattern is replaced with an identifier consisting of two values: distance, which 

indentifies the start position where the previous occurrence of the same pattern starts, and 

length, which indentifies the length of repeated pattern.  To reduce the size of (distance, 

length) pairs, gzip uses two Huffman trees separately for distance and length in order to 
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encode more frequent values with less bits.  To improve efficiency, adaptive Huffman 

coding is used, where a new Huffman tree is built for each new block of data.  A new 

block starts when the internal logic determines that the current Huffman tree is no longer 

the optimal one. 

The gzip is important in this dissertation as the pattern repetitions are common 

within instruction and data addresses and a relatively simple pattern matching algorithm 

can be employed in hardware to compress the traces. 

3.1.2 bzip2 

bzip2 is a complex compression algorithm which uses different concepts from 

data encoding and the compression field.  In its core, bzip2 implements a reversible 

block-sort algorithm, or Burrow-Wheeler transformation [31].  The transformation does 

not compress the data but re-organizes it in such a way that it reduces the entropy of data 

in each separately processed block.  For example, if the frequency of the different and 

most frequent data values, A and B, is approximately the same in one data set, the data 

set can be reorganized so that A values appear mostly in one part of the program  

(block 1) while B values appear mostly in other part of the program (block 2).  This leads 

to lower entropy within the data set, when compressing block 1 and block 2 separately.  

However, an increased compression ratio must be high enough to compensate for the 

additional storage required to record the information about the reverse transformation.  

bzip2 uses Move-to-Front (MTF) encoding in the second stage.  MTF is a frequency 

based table, where recent and most frequent data are in the front of the table.  MTF does 

not reduce the size of the input block, but adds additional reordering of data to decrease 

the entropy even more.  Huffman coding is the final stage in the bzip2 algorithm.  A 
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complex scheme implements multiple Huffman tables and dynamically decides on the 

most optimal one for currently processed data. 

bzip is less amiable to hardware implementations because it relies on frequent 

memory operations to reorganize data and it also works with extremely large data sets (up 

to 900 KB).  However, certain concepts, such as MTF, are used in this dissertation. 

3.1.3 Sequitur 

Sequitur [35] replaces two repeating symbols with a new one.  For example, 

repeating symbols a followed by b can be replaced by a new symbol A.  Further on, if the 

A is followed by symbol c repeatedly, the Ac pattern is replaced by, e.g., symbol D.  In 

this way a hierarchy of patterns is captured into a smaller number of symbols.  Sequitur 

has unique feature in that it preserves the context of original data; an original symbol or a 

pattern is easily found and reconstructed (e.g., symbol D from the compressed file is 

simply converted into a, b, c using the grammar file built during execution).  Sequitur is 

highly unsuitable for hardware implementation as the algorithm saves the context 

information (grammar) for each new symbol built during the execution.  Thus, the 

memory requirements can increase linearly with the processed trace and are in fact 

unbounded. 

3.2 Specialized Algorithms for Instruction and Data Trace Compression 

Various mechanisms exist which try to identify and exploit redundancies typical 

for instruction and data traces.  Several approaches are described here.  Many of them use 

one of the compression principles exploited by general purpose compressors and just 

adapts them to the expected behavior of data or instruction traces.  Others exploit the 
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correlation between data addresses (or values) with the instruction address in order to 

achieve greater compression of data traces.   

In this dissertation, the most important compressors are those built from value 

predictors.  Value predictors are used in a processor pipeline to improve latencies of 

memory operations by predicting data addresses and load values of fetched, and not yet 

processed load instruction.  

3.2.1 Instruction Address Trace Compression 

Instruction address compression techniques work by compressing only the 

information from control-flow changing instructions.  This is possible as a simple 

decompressor, which has the basic information from program binary, can easily 

reconstruct all other instructions. 

The simplest approach to compression is to replace an address with the offset from 

the last address, which is employed in Nexus [9].  This approach exploits the locality of 

instruction addresses, where consecutive branching often changes just lower instruction 

address bits, and thus, upper ones do not have to be traced. 

Several techniques exist which try to replace the execution sequence with its 

identifier.  For example, Whole Program Path (WPP) [36] instruments a program to 

produce a trace of acyclic paths.  Then, a modification of the Sequitur algorithm is used 

to compress acyclic paths, represented by unique identifiers.  WPP successfully finds the 

most frequent program paths, which is very useful for various types of analysis.  

However, since the WPP is not a single-pass mechanism, as it requires code 

instrumentation, its implementation in hardware is very limited.  An advanced WPP 

implementation, time stamped WPP [37], enables fast access to the trace produced by a 
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particular function.  The mechanism separately performs WPP on traces belonging to 

different functions.  PDI [38] associates dictionary entries with the most frequent 

instruction words.  N-TUPLE [39] saves a number of control flow change identifiers per 

dictionary entry.  In this way, a whole group of repeated identifiers can be replaced with 

the pointer to the dictionary entry.  N-TUPLE exploits frequent patterns that exist among 

dynamic basic blocks in common programs. 

A more complex approach to compression is through building a control flow 

graph, which together with information on transitions between graph nodes, describes the 

control flow changes.  One such a technique is QPT [40].  QPT records only information 

about significant events and only transitions between basic blocks where a program 

chooses between alternative paths and only those transitions that are not part of a 

maximum spanning tree of a control flow graph.  The actual instruction addresses can be 

regenerated using the control flow graph. 

3.2.2 Data Address Compression 

The Nexus standard [9] uses the same offset based encoding for both instruction 

addresses and data addresses.  The compression benefits from spatial and temporal 

locality of memory references where the consecutive memory addresses differ by only a 

small value.  Mache [41] replaces a data address with the offset from the last address of 

the same type.  Types are instruction reference, data read and data write.  PDATS [38] 

adds more complexity by introducing the variable length encoding of the offset field and 

includes an optional repetition counter. 

Data addresses can be compressed by linking them to the program loops.  Various 

mechanisms [42] [43] require two-pass mechanisms where first program loops are 
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detected either using the control-flow analysis or program instrumentation.  In a second 

pass, many of the data references are easily identified as being always constant per loop 

or always having the same offset from loop to loop.  However, all other data addresses, 

with so-called chaotic behavior, are not compressed. 

A special type of compressors tries to link the data addresses with the instruction 

block.  A technique described in [44] records all possible data offsets and repetitions for a 

data address which is linked to an instruction block.  Also, instruction blocks are 

compressed by indentifying all instruction blocks’ successors and their repetition count.  

The memory requirements for this mechanism are very high, and the mechanism can be 

considered as only the first-pass reordering of memory and instruction addresses for an 

easier compression using a general purpose compressor.  Stream Based Compression 

(SBC) [45] exploits the inherent characteristics of instruction and data address traces.  

Instruction traces consist of a fairly low number of different streams (streams are 

dynamic basic blocks described by their descriptor - starting address and the length, in 

number of instructions).  Newly occurred stream descriptors are allocated in a table and 

the table search is performed upon each new stream occurrence.  An index in a table 

replaces the whole stream descriptor.  Data addresses traces have strong spatial/local 

locality which is exploited through a mechanism aware of frequent constant strides 

between consecutive memory referencing addresses.  

Value predictors for data addresses.  Value predictors for data addresses or data 

address predictors are cache like structures that store recently executed data addresses 

(last several data addresses per instruction address).  Data address predictors are used in 

the processor’s pipeline for data pre-fetching [46] (prediction of future memory 
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references) and early load address calculation [47] (to enable issuing a load instruction 

early in the pipeline instead of waiting for the address calculation).  Data address 

predictors can also be used for compression of data addresses.  The compression is 

achieved by replacing a data address with an identifier which points to the cache entry 

which stores the correctly predicted address. 

Data address predictors are usually organized as instruction pointer-indexed (IP-

indexed) caches or tables, which store different information on data addresses recently 

issued by the load instruction.  For example, last value (or address) predictors [48, 49] 

store the last several addresses seen by a load instruction (predictors are named LVx 

where x denotes the number of stored addresses).  Stride based predictors are frequently 

used for both load address prediction and hardware pre-fetching due to their modest 

hardware requirements and the fact that many data addresses appear in strides (both 

consecutively in program or per instruction).  This is particularly true for scientific 

applications where programs traverse large arrays of data [46, 50].  Context based 

predictors [51-53]  are trying to predict the next data address based on the value of 

several last addresses.  Context based predictors usually employ two caches (tables) 

where the first one stores the hashed history of the previously seen addresses which is 

used to access the second cache where the addresses are saved.  Hybrid predictors [53, 

54] combine last value stride and context predictors and implement a chooser which tries 

to determine which of the implemented predictors should give the final prediction for a 

given load. 

A special context predictor named correlated predictor [55] tries to predict 

addresses which are not easily predictable by last value or stride predictors.  The 
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correlated address predictor splits the upper and lower part of each data address.  Upper 

bits are stored in an IP-indexed table (a table of so-called base addresses), while the 

lower bits of several data addresses corresponding to the same base address are saved in 

the second table.  A hashed history of data addresses, for each base addresses, is used to 

index into the second table.  The lower data address bits change more frequently, and 

reducing their storage requirements (32 to 8 bits in this case) allows for more information 

to be added to a cache. 

The compression of data addresses using address predictors is not a developed 

field of research.  One of the existing mechanisms, data address stride cache [56], focuses 

on IP addressed, tagged and non tagged, caches of acceptable sizes.  The technique 

achieves good compression rates but only for programs with a significant amount of data 

addresses which appear in strides.   

For software based compression, the VPC mechanism [57, 58], combinations of 

various predictors each covering different behaviors of data addresses, yields excellent 

compression ratios that surpass the ones achieved by a general purposes compressor.  

However, this approach is not suitable for hardware implementation as it is not scalable 

to the point where implementable cache structures can perform any good. 

3.2.3 Data Value Prediction 

Mechanisms for compression of results of memory referencing instructions often 

compress load values only.  The load values are sufficient to replay the program in a 

software debugger which employs an instruction set simulator while requiring less design 

effort and hardware support.  Fully functional simulators are often available, as they are 
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also used for system instrumentation, profiling and optimization purposes, and require 

modest changes to include support to obtain information from traces. 

Compression of load value traces is not a developed research field.  Load values 

are often considered as any other, random, data set which presumably requires a very 

complex and expensive compressor.  However, certain types of redundancies exist and 

are typical for load value traces only.  For example, the Value-Centric Data Cache [59] 

focuses on statistically proven frequent values within the data set.  It shows that certain 

small values, such as -1, 0, 1, 4 …, are very frequently used in programs.  An efficient 

encoding achieves compression by encoding small values in the predetermined number of 

bits (e.g., 4, 6, 8). 

Value predictors (for load values).  The research in compression of load values 

benefits from the research on load value predictors [47].  Value predictors have similarity 

with the techniques used in the processor’s pipeline for efficient data prefetching and 

early load address calculation described in the previous section.  Load value predictors 

bring the whole prediction concept to another level and try to speculate on the value of 

addressed memory location.  If successful, the program execution can continue without 

waiting for the time consuming memory access.  The speculatively executed instructions 

are confirmed once the predicted value is verified by the fetched one. 

The driving force behind research in value predictors is the concept of value 

locality.  The concept of value locality is introduced in [48].  The value locality describes 

the likelihood a load instruction will load a value that was recently loaded by the same 

instruction.  The value locality exists because of various reasons and several are 

mentioned here: a) data redundancies, which exist due to small variations in input data 
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set, b) constant values, which are usually loaded from memory as opposed to encoding 

them into the instruction word, c) branches, which are frequent instruction, often load 

very predictable branch target address information,  d) data address operands (registers 

used to calculate data addresses), which are loaded from memory,  often exhibit the same 

strong spatial and temporal locality as the data addresses, e) register spill, which occurs 

when a compiler runs out of registers, causes repeated reloading of the same value.  

According to an analysis in [48], up to 50% of load instructions in SPEC92 programs 

load the same value (unbound LV1 predictor) or up to 80% when the instruction loads 

one of the last 16 loaded values (unbound LV16 predictor). 

Value predictors are proven successful in the software compression of load 

values.  For example, the VPC3 mechanism [58] which employs 17 different value 

predictors with overall memory requirements of 27MB achieves a compression ratio of 

1.7x more than the Sequitur, the best performing general purpose mechanism analyzed. 

3.3 Compression Algorithms in Hardware 

Very few compression algorithms are proposed for compression of either 

instruction or data traces.  A hardware implementation of LZ77 pattern match algorithm 

[60], specialized for the compression of branch addresses and their targets, achieves 

relatively good compression rates under the enormous hardware cost.  For example, a 

configuration with 50,000 logic gates requires a trace port bandwidth of 0.45 bits/ins for 

MiBench [61] programs. The mechanism suffers from the lack of any encoding of 

(distance, length) pairs (see Section 3.1.1 on gzip) as it would require even more costly 

implementation. 
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Stream cache (SC) is a mechanism that uses cache structures to store recently 

executed streams.  Stream cache achieves very high compression ratios.  The indices 

from the cache (information about the SC way and set where the hit occurred) are further 

grouped into tuples of 8 and stored in a buffer (the buffer keeps several groups of tuples). 

Each time a new tuple is found in the tuple buffer, an index in the buffer is output, 

effectively replacing 8 stream descriptors.  This mechanism suffers from relatively low 

hit rates in the tuple history buffer which also requires expensive CAM memory. 

Data addresses are not a focus of research in trace compression due to their 

smaller significance when compared to both instruction trace and data value trace and 

because of the lack of a practical need for unobtrusive tracing of data addresses in the 

past.  In single-core systems, real-time tracing of data addresses was not important, as the 

memory access patterns, needed to simulate a program and optimize the memory, can be 

extracted using functional simulators.  Furthermore, in multi-core general purpose 

systems, actual real-time unobtrusive tracing is usually not required.  However, in the 

rising field of multi-core embedded real-time systems, data address tracing is crucial to 

observe correlations between cores and their communication with the shared memory.  

Value predictors are proven to increase the processors performance, but due to 

their hardware constraints, the use of value predictors as the compressor’s structures is 

very limited.  The differentiating point between value predictors (either data address or 

load value) used for performance improvements and for the trace compression is the 

usable hit rate or the prediction rate.  For example, the maximum achievable 

predictability for the data address for the SPEC95 test suite is between 21% and 79% 

using the last value address predictor and 3% and 54% using the stride predictor [62].  
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Average correct prediction rates are 40% for data addresses reported in [55] for the last 

value address predictor and 14% for the stride predictor.  For prediction of load values, a 

theoretical limit for a LV4 predictor is less than 70% for the SPEC95 test suite [48].  A 

realistic, and improved LV4 load value predictor with 21KB of state achieves a 

prediction rate of 32% for the SPEC95 test suite [49].  Reported prediction rates improve 

a processor’s performance to the point where the use of value and address predictors is 

justified.  However, these prediction rates are very low concerning the compression.  For 

example, a prediction rate of approximately 50% yields very low maximum compression 

ratios of only 2x.  As mentioned earlier, VPC compressors [57, 58], a combination of 

different predictors with very large structures, can achieve high compression rates, but 

they are not suitable for hardware implementation. 

3.3.1 Architectural Support for Trace Compression 

Program traces have a unique feature that they can often be inferred by a software 

debugger augmented by an architectural functional simulator.  The results of any 

instruction during program replay can be reconstructed as long as the target platform 

provides load value traces.  This approach can be taken one step further where the 

functional simulator also simulates the state of memory.  In that case, the software 

debugger needs to know only the values which enter the memory for the first time.  From 

that point, any processor operation which stores and loads the known memory location 

can be reconstructed by the software debugger.  One such a scheme is implemented in 

BugNet [27] (see Section 2.3.2), a debugging and tracing infrastructure for multi-core 

systems.  A similar mechanism is implemented in a Flight Data Recorder (FDR), a multi-

processor debugging and tracing infrastructure [63], which logs only the results of store 
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instructions.  The FDR system tracks memory stores originating from the DMA and I/O 

devices, which bring the new, and unknown, data to the system.  Thus, any load 

instruction that a processor issues, loads a known value from the memory.  

The techniques described require an instruction set simulator at the software 

debugger side and the architectural extensions on the target platform so that the 

implemented tracing mechanism knows whether to trace results of memory referencing 

instruction or not. 

Both FDR and BugNet focus on general purpose systems built by one vendor.  

These mechanisms include the support for tracing in the L1 cache, L2 cache and the main 

memory, which is often not feasible in embedded and application specific systems where 

the whole chip is built out of components provided by different vendors.  However, these 

mechanisms are important in this dissertation as they can be adapted for different 

purposes, including the required compression of data traces in embedded systems. 
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CHAPTER 4   

 

 

COMPRESSION OF PROGRAM EXECUTION TRACES  

 

 

In this chapter we describe the proposed mechanism for program execution 

tracing and introduce three algorithms and the corresponding hardware structures for 

compression of program execution traces.  The chapter is organized as follows.  

Section 4.1 describes a system view of the proposed tracing mechanism.  Section 4.2 

discusses the program execution trace characteristics and different approaches for 

capturing program flow changes.  In the next three sections we introduce three program 

execution trace compression techniques, namely, Double Move To Front (DMTF) 

(Section 4.3), Stream Descriptor Cache and Last Stream Predictor (SDC-LSP) 

(Section 4.4), and Branch Predictor Based Trace Compressor (Section 4.5).  Section 4.6 

gives the results of a comparative analysis of the proposed compression techniques and 

several recent academic proposals from the open literature.  

4.1 System View of the Proposed Tracing Mechanism 

Program execution traces are created by recording the addresses of executed 

instructions.  However, to replay a program flow offline, we do not need to record each 
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instruction address.  Instead, we only have to record program flow changes, which can be 

caused by either control-flow instructions or exceptions.  When a change in the program 

flow occurs, we need to know the address of the next instruction in the sequence; it is 

either the target address of the current branch instruction or the starting address of an 

exception handler. 

Figure 4.1 shows a system view of the proposed tracing mechanism.  The target 

platform encompasses a CPU core running a program and a trace module capturing the 

changes in the program control flow.  Therefore, the trace module is coupled with the 

CPU core through a simple interface that consists of the program counter, branch type 

information (direct/indirect, conditional/unconditional), and an exception control signal.  

The trace module consists of relatively simple hardware structures and logic dedicated to 

capturing and compressing program execution traces.  A trace encoding block receives a 

set of events from the trace compressor structures and encodes them in such a way to 

reduce the size of trace records.  The trace records are stored into a trace buffer.  The 

trace buffer serves to store trace records for significant portions of the traced program, or 

to amortize sudden bursts of trace records in case of real-time tracing.  The recorded trace 

is read out of the chip through a trace port.  The trace records can be collected on an 

external trace unit for later analysis or forwarded to a host machine running a software 

debugger. 

The software debugger, running on a host machine, reads, decodes, and 

decompresses the trace records.  To decompress the trace records, the debugger maintains 

exact software copies of the state in the trace module compressor structures.  They are 

updated during program replay by emulating the operation of the hardware trace module.  
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Decompression produces a sequence of control flow descriptors that, in conjunction with 

the program binary, provide enough information for a complete program replay off-line. 
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Figure 4.1  System view of the proposed program tracing and replay mechanism 

The goal of the trace module designer is to minimize the size of the trace buffer 

and to minimize trace port bandwidth requirements.  Thus, as a measure of performance 

of compression techniques, we use the average number of bits emitted per instruction on 

the trace port, which is equivalent to 32/(Compression Ratio), assuming 4-byte addresses.  

The compression ratio (CR) is defined as the ratio of the raw instruction address trace 

size, calculated as the number of instructions multiplied by the address size, and the size 

of the total compressor output during program execution.  To summarize trace port 

bandwidth for multiple benchmarks, we use a weighted average mean.  A benchmark 

weight is directly proportional to the number of instructions executed in the benchmark. 
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4.2 Characterization of Control Flow Changes 

Capturing program flow changes can be done using stream (dynamic basic block) 

descriptors or by recording branch/target pairs. Both techniques are used to describe the 

very same changes in the control flow but in a different way.  An instruction stream is a 

sequential run of instructions, from the target of a taken branch to the first taken branch 

in the sequence.  Each instruction stream can be uniquely represented by its starting 

address (SA) and its length (SL).  Thus, the complete trace of instruction addresses from 

an instruction stream can be replaced by the corresponding stream descriptor, i.e., the 

(SA, SL) pair.   

A sequence of stream descriptors is sufficient to enable program reply off-line.  

However, the sequence of stream descriptors (SA, SL) includes some redundant 

information that can be omitted in order to reduce trace port bandwidth or storage 

requirements.  If a control flow is changed as a result of an unconditional direct branch 

(target encoded within the instruction word), we do not need to end the current 

instruction stream.  This is because the software debugger is able to follow the program 

execution across the control flow changes in case of unconditional direct branches.  This 

modification reduces the number of program streams and thus the number of trace 

records that needs to be sent out through the trace port.  In addition, when an instruction 

stream starts with the target of a direct branch, the SA field does not have to be traced out 

because it can be inferred by the software debugger.  Figure 4.2 shows the distribution of 

branch types in the MiBench benchmark suite [61], collected using SimpleScalar [64] 

while running ARM binaries.  The results indicate that only a small fraction of control 
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flow changes require the SA field to be traced: on average only 1% of the total number of 

instructions are indirect taken branches. 
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Figure 4.2  MiBench branch related statistics 

Figure 4.3 gives a sequence of steps carried out by a stream detector logic that 

captures instruction streams.  The stream detector tracks the current program execution 

by monitoring the program counter and control signals coming from the CPU core.  For 

each new instruction, the SL register is incremented.  The new stream signal is asserted 

when one of the following conditions is met:  (a) the processor executes a control-flow 

instruction of a particular type, namely, direct conditional, indirect conditional, indirect 

unconditional, or return; or (b) an exception signal is asserted causing the program flow 

to depart from sequential execution.  After forwarding the stream descriptor into the trace 
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compressor, the stream detector prepares itself for the beginning of a new program stream 

by recording the starting address in the SA register and zeroing out the SL register.  

 

1. if (NewStream) { 
  SA = PC; SL = 0; NewStream = False;  
2. } 
3. if ((not ControlFlowChange)or(ControlFlowChange && 
 (BranchType==DirectUncond)){ 
4.  SL++; 
5.  if (SL == MaxSL) { 
6.   Terminate Stream; 
7.   Send (SA, SL) to the trace compressor; 
8.   NewStream = True; 
9.  } 
10. } else { 
11.  SL++; 
  Terminate Stream and place (SA, SL) to the Stream compressor; 
12.  NewStream = True; 
13. } 

Figure 4.3  Stream Detector operation 

Most programs have only a small number of unique program streams, with just a 

fraction of them responsible for majority of program execution.  Table 4.1 shows some 

important characteristics of MiBench.  The columns (a-d) show the number of executed 

instructions (in millions), the number of unique streams, and the maximum and average 

stream length, respectively.  The number of unique streams ranges from 341 to 6871, and 

the average dynamic stream length is between 5.9 (bf_e) and 54.7 (adpcm_c) instructions.  

The fifth column (e) shows the number of unique program streams that constitute 90% of 

dynamically executed streams.  This number ranges between 1 and 235, and it is 78 on 

average.  Note: all calculations assume weighted average, where weights are determined 

based on the number of executed instructions.  The maximum stream length never 

exceeds 256, thus we choose to use 8 bits to represent SL.  In addition to this, it can be 
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shown that these frequently executed program streams create repeating patterns with 

strong local correlation.  

Table 4.1  MiBench benchmark characteristics  
[Legend: IC – Instruction Count, SC – Stream Count, SL – Stream Length 

CDF – Cumulative Distribution Function] 

  IC  SC  Max  Avg  CDF 

Test  (mil.)    SL  SL  90% 

adpcm_c  733  341  71  54.7  1 

bf_e  544  403  70  5.9  22 

cjpeg  105  1590  239  12.3  47 

djpeg  23  1261  206  25.1  31 

fft  631  846  94  10.5  209 

ghostscript  708  6871  251  10.0  67 

gsm_d  1299  711  165  19.5  33 

lame  1285  3229  237  32.4  235 

mad  287  1528  206  20.7  42 

rijndael_e  320  513  77  21.0  45 

rsynth  825  1238  180  17.6  49 

stringsearch  4  436  65  6.0  48 

sha  141  519  65  15.4  10 

tiff2bw  143  1038  43  12.8  2 

tiff2rgba  152  1131  75  27.7  2 

tiffmedian  541  1335  92  22.3  5 

tiffdither  833  1777  67  14.3  63 

Average  816  1791  145  21.6  77.8 

  (a)  (b)  (c)  (d)  (e) 

 

 

4.3 Double Move-To-Front Method 

In this section we discuss a method for program execution trace compression called 

the Double Move to Front Method (DMTF).  First we describe the Move-to-Front 

transformation used in general-purpose compression algorithms (Section 4.3.1).  Then, 

we introduce the proposed DMTF method (Section 4.3.2) and several enhancements 
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designed to increase its effectiveness and/or reduce its implementation complexity 

(Section 4.3.3).  Finally, we discuss the results of our trace port bandwidth analysis 

(Section 4.3.4) and the results of our hardware implementation cost analysis 

(Section 4.3.5). 

4.3.1 Move-to-Front Transformation 

Move-to-Front (MTF) [65] is an encoding of data designed to reduce the entropy 

of symbols in a data message by exploiting the local correlation between symbols.  It is 

used in conjunction with the Burrows-Wheeler transform in the bzip2 utility program 

[31].  The MTF algorithm encodes an input data message as follows.  If an incoming 

input symbol is found in a history table ht, it is replaced with its index i in the ht, and the 

symbol is moved at the top of the table (the entry with index 0).  The ht is updated by 

shifting down first i-1 entries by one position, such that ht[i]=ht[i-1], ..., ht[1]=ht[0].  To 

illustrate the MTF operation, let us consider an input message AABC, and a history table 

ht=[C, B, A] (symbol C is at the position 0).  The MTF transforms the 3-symbol input 

message into a new 2-symbol message 2022. 

The original MTF transformation can be easily extended to allow operation 

starting from an empty history table.  The history table is searched for an incoming input 

symbol.  If the symbol is not found in the table (we call this event an ht miss), the 

original symbol is output and the table is updated by shifting its content by one position 

and by placing the incoming symbol in the ht[0].  If the symbol is found in the history 

table (an ht hit event), its index is output and the table is updated as described above.  The 

MTF allows for an effective encoding of frequently executed program sections.  Let us 

consider several typical examples of program loops where symbols A, B, and C represent 
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unique instruction streams characterized by their respective (SA, SL) pairs, for example, 

a program loop consisting of a sequence of two streams A and B repeating many times, 

illustrated as {AB}, is transformed into a hit pattern {11}; similarly, a loop with a 

repeating pattern {ABC} is transformed into {222}.  

A relatively small history table will suffice to achieve a good hit rate due to a 

strong temporal locality of instruction streams in common programs.  When a stream 

descriptor (SA, SL) is found in the history table, it is replaced with its index in the history 

table.  Otherwise, the full stream descriptor of 40 bits is output in case the SA is a target 

of an indirect branch.  If the SA is a target of a direct branch, it can be inferred from the 

program binary, and we output only 8 bits for SL.  The effectiveness of the MTF 

transformation on program execution traces consisting of a sequence of stream 

descriptors is shown in Table 4.2a.  We measure the frequency of the output symbols 

after the MTF transformation is applied.  The average number of unique MTF output 

symbols that constitute 90% of all dynamically executed program streams is only 14.5, 

down from 78 before the MTF transformation in Table 4.1e, ranging from 1 (adpcm_c) to 

38 (stringsearch).  Note: the experiments are conducted assuming a history table with 

128 entries; the hit rate is over 97%, so a very small number of streams are not 

transformed with the MTF. 

A perfect trace compression without stream pattern recognition would replace 

each stream with just a single bit.  As described above, the MTF transformation 

significantly reduces the number of trace symbols.  To come close to a one bit per stream 

goal, we need to identify the most frequent entry and encode it with a single bit.   

Table 4.2b shows the percentage of the hit events in the most frequent ht entry.  Although 
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this percentage is fairly high for many benchmarks (e.g., adpcm_c, tiff2bw), it is 

relatively modest for others (e.g, 17% for fft, and 46% on average across all benchmarks).  

An additional problem is how to identify the most frequent entry in the ht because it 

varies across benchmarks.  

Table 4.2  Move-to-Front transformation effect on program streams in MiBench  

  ht CDF  ht[most freq.]  ht2[0] 

Test  90%  HR  HR 

adpcm_c  1  0.99  1.00 

bf_e  5  0.41  0.69 

cjpeg  11  0.46  0.90 

djpeg  11  0.69  0.87 

fft  32  0.17  0.66 

ghostscript  22  0.20  0.76 

gsm_d  6  0.48  0.90 

lame  21  0.23  0.74 

mad  25  0.30  0.75 

rijndael_e  2  0.57  0.79 

rsynth  10  0.26  0.77 

stringsearch  38  0.62  0.81 

sha  2  0.86  0.92 

tiff2bw  1  0.97  0.99 

tiff2rgba  1  0.92  0.99 

tiffmedian  1  0.91  0.97 

tiffdither  38  0.45  0.78 

Average  14.5  0.46  0.82 

  (a)  (b)  (c) 

 

 

In order to resolve these two problems, we introduce an additional, second level 

move-to-front transformation.  Let us consider the following repeating stream pattern 

{ABAC}.  The hit pattern at the output from the first-level MTF is {1212}.  If we supply 

this pattern to the second-level MTF history table, the hit pattern at the output is {1111}, 
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with even lower entropy of information.  Because the MTF transformation lowers the 

number of frequent symbols, the level 2 history table can be significantly smaller.  

This approach can be further extended by introducing another level of MTF 

transformation; in general, we could introduce a hierarchy of MTF history tables.  The 

size of the MTF history tables will exponentially decrease as we move toward the upper 

levels.  However, an increase in the number of MTF levels will reach the point of 

diminishing returns, and will not yield expected gains.  In general, the optimal 

configuration is application specific.  Our analysis shows that a 2-level MTF 

configuration appears to be optimal.  Table 4.2c shows a high percentage of program 

streams that end up in the entry ‘0’ of the level 2 history table (ht2), from 66% to 100%.  

By encoding this entry with a single bit, we approach the goal of having one bit per 

instruction stream.  Note: the experiments are conducted using ht2 with 16 entries 

achieving 94% hit rate. 

4.3.2 DMTF Method 

The analysis from the previous section suggests the use of a 2-level move-to-front 

transformation as optimal in compressing program instruction traces.  Consequently, we 

design an instruction trace compressor with two history tables in sequence.  We name this 

scheme Double Move-to-Front (DMTF).  The first- and the second-level history tables 

are named mtf1 and mtf2, respectively.  

Figure 4.4 illustrates the operation of the proposed trace compressor.  When a 

new stream is detected, its descriptor (SA, SL) is forwarded to mtf1.  As described before, 

the mtf1 table is searched for the stream descriptor.  If we find a match, we have an mtf1 

hit; the index of the matching entry is output to the next stage, and mtf1 is updated 
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accordingly.  Otherwise, we have an mtf1 miss; the mtf1 content is shifted down by one 

position, and mtf1[0] is loaded with the stream descriptor.  In the case of an mtf1 hit, the 

index i1 is sent to the mtf2 history table; mtf2 is searched for the index i1.  If we find a 

match in the entry 0, mtf2[0], we have an mtf2 zero entry hit.  If we find a match in the 

remaining mtf2 entries, we have an mtf2 non-zero entry hit.  Otherwise, we have an mtf2 

miss event.   

 

Figure 4.4  DMTF operation 

We can distinguish four different events in the DMTF scheme, and they are 

encoded as follows.  An mtf2[0] hit is encoded with a single bit '0'.  An mtf2 non-zero 

entry hit is encoded with a one-bit header '1' and the mtf2 index i2 ('1'+i2).  An mtf1 hit 

with a miss in mtf2 is encoded with ('1'+i2miss+i1); note that the last index in the mtf2 

table, i2miss, is reserved to indicate a miss event in the mtf2.  Finally, a miss in mtf1 is 
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encoded with a header ('1'+i2miss+i1miss) followed by a full or a partial stream 

descriptor ([SA], SL) – 40 or 8 bits.  Note: the last index in the mtf1 table, i1miss, is 

reserved to indicate a miss in the mtf1. 

The compression ratio that can be achieved using the DMTF scheme can be 

expressed analytically as follows.  Equation (4.1) shows the number of bits needed to 

encode a single stream after DMTF compression, as a function of five parameters: mtf2 

zero-entry hit rate, mtf2.zhr; mtf2 non-zero entry hit rate, mtf2.ohr; mtf1 hit rate, mtf1.hr; 

mtf1 size, mtf1.size; and mtf2 size, mtf2.size.  Note: mtf2.hr=mtf2.zhr + mtf2.ohr.  

Equation (4.2) shows the compression ratio as a function of the number of instructions in 

a program, the number of executed instruction streams, and the number of bits per one 

instruction stream. 
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An Example Compression/Decompression.  Let us illustrate the compression 

flow using an example from Figure 4.5a.  We consider the following sequence of 

instruction streams ABCAABABAC, where A, B, and C denote 3 instruction streams 

with distinct stream descriptors.  Let us assume a 64-entry mtf1 and an 8-entry mtf2.  



 

56 

 

Note that the actual number of entries is 63 and 7, respectively, since the last indices are 

reserved to indicate miss events.  The first three instruction streams are not found in the 

mtf1 and are output with the header '1', followed by a 3-bit index in the mtf2 reserved for 

miss events ('111'), a 6-bit index in the mtf1 reserved for miss events ('111111'), and 

individual stream descriptors ([SA], SL).  Next, the stream A is found in mtf1[2], but 

index 2 is not found in the mtf2 resulting in an mtf2 miss with mtf1 hit event; we emit a 

header '1'+'111' followed by the mtf1 index '000010'.  The next stream in sequence is A, 

resulting again in an mtf2 miss with mtf1 hit event; this event is encoded with 

'1+'111'+'000000'.  The rest of the compression flow continues as illustrated in 

Figure 4.5a.  

The decompression flow is a reversed compression flow, and it requires the same 

configuration of the history tables.  The compressed trace is read, headers are analyzed 

and the history tables updated according to the DMTF method described above.  The 

decompression flow is illustrated in Figure 4.5b.  The first item starts with the header 

'1'+'111'+'111111', which indicates that the next 40 bits represent the first stream 

descriptor (SA, SL).  The stream descriptor is loaded into mtf1[0].  The de-compressor 

now can recreate a complete instruction trace for this stream.  The next two items in the 

trace are decompressed in the same way.  The next trace record '1+'111'+'000010' directs 

the de-compressor to find the original stream descriptor in mtf1[2] (instruction stream A).  

The following trace record '1'+'111'+'000000' directs the de-compressor to find the stream 

in mtf1[0], which is stream A.  The rest of the decompression process is illustrated in 

Figure 4.5b.  
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Steps: 1 2 3 4 5 6 7 8 9 10

Input: A B C A A B A B A C

… mtf1
2 A B B C C C C B

1 A B C C A B A B A
0 A B C A A B A B A C

mtf1

output -- -- -- 2 0 2 1 1 1 2

… mtf2
2 0 0 0 0

1 2 0 2 2 2 1
0 .. .. .. 2 0 2 1 1 1 2

1+7+ 1+7+ 1+7+

Output: 63+A 63+B 63+C 1+7+2 1+7+0 1+1 1+7+1 0 0 1+1  
(a) 

Steps: 1 2 3 4 5 6 7 8 9 10

Input: 1+7+ 1+7+ 1+7+ 1+7+2 1+7+0 1+1 1+7+1 0 0 1+1
63+A 63+B 63+C

… mtf1
2 A C B C C C C B

1 A B B C A B A B A

0 A B C A A B A B A C

mtf1

output -- -- -- 2 0 2 1 1 1 2

… mtf2
2 0 0 0 0

1 2 0 2 2 2 1
0 .. .. .. 2 0 2 1 1 1 2

Output: A B C A A B A B A C  
(b) 

Figure 4.5  DMTF compression (a) and decompression (b) flow examples 

Performance Analysis.  Table 4.3a shows the trace port bandwidth for MiBench 

benchmarks; the size of the mtf1 is fixed to 128 entries and the mtf2 size is varied from 4 

to 16 entries.  The last row (Average) shows the total bits per instruction calculated as the 

weighted mean of individual program results.  The results show that we are able to 

achieve an excellent compression with bandwidth ranging from 0.714 to 0.018.  The 

results also indicate that a DMTF configuration with only 4-entry mtf2 will outperform 

configurations with larger mtf2.  
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Table 4.3  Trace bandwidth for DMTF(128,X), X= 4-16 (a), distribution of the individual 
trace components (b) 

  bits/ins (mtf1 size = 128)   Distribution per component for DMTF(128,4) 

Test \ mtf2 size  4  8  16  zht  mtf2ht  mtf1ht  mtf1mt  

adpcm_c  0.018  0.018  0.019  99%  1%  0%  0% 

bf_e  0.292  0.340  0.380  40%  52%  8%  0% 

cjpeg  0.128  0.127  0.127  57%  10%  31%  2% 

djpeg  0.074  0.074  0.074  47%  12%  30%  11% 

fft  0.714  0.734  0.749  9%  3%  10%  78% 

ghostscript  0.299  0.301  0.299  25%  7%  55%  13% 

gsm_d  0.089  0.093  0.098  52%  13%  4%  32% 

lame  0.098  0.097  0.099  23%  12%  28%  37% 

mad  0.153  0.153  0.151  24%  8%  48%  20% 

rijndael_e  0.099  0.078  0.088  38%  17%  45%  0% 

rsynth  0.153  0.161  0.172  29%  18%  13%  41% 

stringsearch  0.394  0.411  0.426  34%  7%  58%  2% 

sha  0.075  0.080  0.085  79%  20%  0%  0% 

tiff2bw  0.082  0.082  0.082  95%  2%  3%  0% 

tiff2rgba  0.038  0.038  0.038  95%  3%  0%  1% 

tiffmedian  0.061  0.062  0.063  71%  5%  2%  22% 

tiffdither  0.189  0.199  0.207  29%  9%  44%  18% 

Average  0.176  0.183  0.190  42.8%  12.3%  20.0%  25.0% 

  (a)  (b) 

 

 

4.3.3 Enhanced DMTF Method 

The output of the DMTF trace compressor contains a lot of redundant 

information.  We introduce two low-cost enhancements that exploit this redundancy 

and/or reduce the complexity of the compressor implementation.  The four components 

of the output trace, mtf2 zero hit trace (zht), mtf2 non-zero hit trace (mtf2ht), mtf2 miss 

with mtf1 hit trace (mtf1ht), and mtf1 miss trace (mtf1mt) are analyzed separately.  

Table 4.3b shows the contribution of each component to the total trace size for 

DMTF(128,4) (128-entry mtf1 and 4-entry mtf2).  The results show the mtf1mt 

component is responsible for 25% of the total size, in spite of high hit rates in the mtf1.  
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Fortunately, the redundant information in this trace can be easily exploited using a simple 

last-value predictor on upper address bits that stay constant during program execution.  

Next, the zero trace occupies 43% of the total trace.  We expect it to contain long runs of 

'0's, and its size can be reduced by replacing them by a counter. 

Last-Value Predictor for Upper Address Bits.  The upper address bits of the 

starting address (SA) field in the stream descriptor rarely change during program 

execution.  We analyzed the locality of the stream starting addresses; the SA field of the 

incoming stream is compared bit by bit to the SA of the previous instruction stream or to 

SAs of the several last instruction streams.  The results indicate that the upper 12 address 

bits, SA[31:20], stay constant during program execution in 99% of cases.  Therefore, we 

divide the SA field into two parts: the lower 20 address bits SA[19:0] that are compressed 

through the DMTF, and the upper 12 bits that are handled using a simple last value 

predictor (HLV).  Note: SA[1:0] is '00' for the ARM ISA and could be omitted; SA[0]= '0' 

for the ARM Thumb ISA, so the SA[0] could be omitted.  Here we keep the whole 

address. 

A 12-bit last value (LV) register keeps the upper 12 bits of the last stream’s SA.  

The upper 12 address bits of an incoming stream are compared to the LV.  If they match, 

we have an HLV hit.  The lower 20 address bits SA[19:0] and SL are used in a mtf1 

lookup. We adopt a scheme where mtf1 hits are conditional upon the corresponding HLV 

hits.  An HLV miss will cause a miss trace record to be emitted regardless of mtf1 hits.  

When we have an HLV hit with mtf1 miss event, the upper address bits are not emitted (in 

case a full stream descriptor is required).  Finally, in cases when both mtf1 and HLV have 
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a hit, a regular DMTF record is emitted.  The miss trace format is consequently extended 

to support these modifications. 

The effectiveness of this enhancement is analyzed below.  In general, it is 

beneficial in DMTF configurations with a relatively small mtf1 and lesser so with a larger 

mtf1.  The performance benefits are somewhat limited because direct branches dominate 

in the MiBench suite (92% of all branches on average) and all stream descriptors that 

start with targets of direct branches do not require the SA field.  However, it significantly 

reduces the complexity of the DMTF implementation, as we do not need to keep the 

upper 12 address bits in the mtf1 history table. 

Zero Hit Trace Counters.  We now show that the DMTF method ensures that 

the mtf2 zero hit event is the most frequent one, and thus it is encoded with a single bit '0'.  

In many benchmarks the output trace will consist of long runs of zeros.  The redundancy 

in this trace can be exploited by utilizing a zero-length counter (ZLC for short); it counts 

the consecutive zeros and replaces them with a counter value preceded by a new header.  

The number of bits used to encode this trace component is determined by the counter 

size.  A longer counter can capture longer runs of zeros, but a counter which is too long 

results in wasted bits.  Our analysis of the zht trace component shows a fairly large 

variation in the average number of consecutive zeros, ranging from 5 in ghostscript and 

fft to hundreds in adpcm_c and tiff2bw.  In addition, zero runs in a program may vary 

across different program phases.  This implies that an adaptive ZLC length method would 

be optimal.  

The adaptive zero-length counter (AZLC) tries to dynamically adjust the ZLC 

size to the program flow characteristics.  An additional 4-bit saturating counter monitors 
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the zht component, and it is updated as follows.  It is incremented by 3 when the number 

of consecutive zeros in the trace (mtf2[0] hits) exceeds the current size of the ZLC.  The 

monitoring counter is decremented by 1 when a detected zero sequence is smaller than 

the ZLC counter maximum value.  When the monitoring counter reaches the maximum 

(15) or minimum (0) values, a change in the ZLC size occurs. 

The AZLC requires a slight modification of the trace output format.  A header bit 

'0' is followed by log2(AZLC Size) bits.  The counter size is automatically adjusted as 

described above.  The decompressor needs to implement the same adaptive algorithm.  

Figure 4.6 shows a modified trace format that supports two enhancements, HLV 

and AZLC. 

SA&SL Detector

PC

HLV

SA[31:20]

mtf2

mtf1
index

ZLC

Counter 

Set 
Size

'0' |
AZLC 

mtf2[0] 
hit

mtf2[>0] hit

'1' |
mtf2 index 

AZLC

'1' | 
mtf2 max. index | 

mtf1 index 

mtf1 hit and 
mtf2 miss

SA[19:0]&SL[7:0] 

HLV hit and 
mtf1 miss 

SA&SL
inc/dec

mtf1

Branch
Type

HLV miss

'1' | 
mtf2 max. index | 
mtf1 max. index |

SL | '0' |
SA[31:0] (if needed)

'1' | 
mtf2 max. index | 
mtf1 max. index |

SL | '1' |
SA[19:0] (if needed)  

Figure 4.6  An enhanced DMTF trace format 
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4.3.4 Trace Port Bandwidth Analysis 

Figure 4.7 shows the average trace port bandwidth (bits/ins) of several DMTF 

configurations as a function of the mtf1 size (64-320).  The basic DMTF (bDMTF) with 

mtf2=4 performs better than with mtf2=8 for any mtf1 size as previously indicated in 

Figure 4.4.  The DMTF with HLV predictor and mtf2=4 (hDMTF) performs better than 

bDMTF only for small mtf1 sizes.  When mtf1=192, bDMTF slightly outperforms 

hDMTH primarily due to significant performance degradation for the lame benchmark.  

Finally, the enhanced DMTF with mtf2=4 (eDMTF) with both improvements performs 

the best.  For all configurations, the compression ratio saturates for the mtf1 with 

256 entries, and the mtf1 with 192 entries strikes an optimal balance between the 

complexity and compression ratio.  Figure 4.7 gives a design guideline and shows how 

one can trade compression ratio for complexity (the most complex resource in the 

enhanced DMTF module is the mtf1 table). 
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Figure 4.7  Trace port bandwidth as a function of the mtf1 size 
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Table 4.4  Compression ratios for xDMTF (x=b,h,e) 

  mtf1=192, mtf2=4    mtf1=64, mtf2=4   

  CR  CR  CR  bits/ins.  CR  CR  CR  bits/ins 

Test  bDMTF  hDMTF  eDMTF  eDMTF  bDMTF  hDMTF  eDMTF  eDMTF 

adpcm_c  1738  1738  29389  0.001  1738  1738  29441  0.001 

bf_e  108.8  108.8  112.7  0.284  110.5  110.5  114.5  0.279 

cjpeg  245.3  245.7  353.1  0.091  245.6  248.7  360.5  0.089 

djpeg  448.9  451.6  612.9  0.052  421.9  433.6  582.4  0.055 

fft  151.7  151.9  159.1  0.201  26.9  31.1  31.6  1.012 

ghostscript  104.7  106.1  104.6  0.306  104.8  108.4  106.9  0.299 

gsm_d  495.4  495.4  808.4  0.040  363.2  381.2  547.8  0.058 

lame  317.1  274.2  283.2  0.113  318.6  279.7  289.8  0.110 

mad  202.7  208.8  217.0  0.147  219.0  227.6  237.4  0.135 

rijndael_e  308.9  308.9  333.5  0.096  333.7  334.5  363.4  0.088 

rsynth  307.2  307.4  296.3  0.108  159.1  176.6  173.8  0.184 

stringsearch  77.0  77.2  82.7  0.387  32.9  37.2  38.8  0.825 

sha  424.9  425.1  654.3  0.049  425.1  425.2  654.7  0.049 

tiff2bw  390.2  390.4  2807.6  0.011  221.3  241.0  521.8  0.061 

tiff2rgba  852.5  853.8  5334.6  0.006  348.8  393.5  637.7  0.050 

tiffmedian  653.1  653.4  2712.9  0.012  386.1  418.7  819.1  0.039 

tiffdither  167.8  169.6  193.2  0.166  140.9  144.8  162.7  0.197 

Average  242.5  239.5  268.1  0.119  143.1  153.1  165.1  0.193 

 

 

Table 4.4 shows a detailed evaluation for bDMTF, hDMTF, and eDMTF with 

two configurations (192,4) and (64,4), x={b,h,e}.  The hDMTF configuration achieves 

7% higher compression ratio than bDMTF for mtf1=64.  This improvement is due to 

reducing the size of the miss trace.  For mtf1=192, we see a decrease in hDMTF 

performance over bDMTF as explained above.  The eDMTF configuration achieves 15% 

higher CR over bDMTF for mtf1=64 and 11% for mtf1=192.  This improvement is 

unevenly distributed over benchmarks and is useful for tests such as adpcm_c (17x) or 

tiff2rgba (6x).  The best performing configuration (eDMTF with mtf1=192) achieves the 

total weighted average bandwidth on the trace port of only 0.12 bits per instruction.  
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4.3.5 Hardware Implementation and Complexity 

The mtf1 and mtf2 history tables can be implemented as custom fully associative 

structures with a single-clock cycle lookup and additional hardware needed to support the 

move-to-front update operation.  Instead, we propose a cost-effective implementation that 

combines a standard content addressable memory (CAM) and a most-recently used 

(MRU) stack (Figure 4.8).  The MRU stack has the same number of entries as the history 

table, but its contents are indices in the CAM memory.  Each MRU stack entry points to a 

particular CAM location, and thus has [log2(MTF_Size)] bits. 

The mtf lookup operation encompasses a lookup into the CAM with (SA, SL) pair 

and a lookup into the MRU stack.  In the case of a CAM hit, the corresponding CAM 

index is forwarded to the MRU stack and the MRU lookup is performed.  The selected 

entry is moved to the top of the MRU stack, and the top (i-1) locations are shifted down.  

In the case of a CAM miss, the MRU stack provides the address of the CAM location 

where the new stream is going to be stored (the index at the bottom of the MRU stack), 

and the MRU stack is updated accordingly.  Figure 4.8 shows a block diagram of a single 

level MTF history buffer.  The lookup and update together require two processor clock 

cycles and are performed only when a new instruction stream is detected.  Hence, the 

compression can be done at the full processor speed without ever slowing the processor. 

To estimate the complexity of the proposed implementation, we consider 

enhanced DMTF(192,4) configuration.  The mtf1 CAM memory has 191 entries, each 

with 28 bits (20 for SA, and 8 for SL).  With 3 gates per CAM bit [66], the CAM 

complexity is estimated at 3x28x191 ~ 16000 logic gates.  The mtf1 MRU stack has 191 

8-bit entries, plus comparators attached to each of them.  Registers use latches that 
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occupy approximately 2.5 logic gates per bit, comparators use 2.5 logic gates per bit 

while a tri-state buffer uses 0.5 logic gates per bit.  The mtf1 MRU stack size is estimated 

at approximately 8400 gates.  Similarly the mtf2 size is estimated to be approximately 

150 logic gates.  Together with the LV predictor (12-bit register + comparator) and the 

AZLC counter (4 bits), the total complexity of the DMTF(192,4) is about 24,600 gates. 

 

Figure 4.8  MTF hardware implementation 

4.4 Stream Descriptor Cache and Last Stream Predictor 

In this section we describe a trace compression method based on hardware 

structures called a stream descriptor cache (SDC) and a last stream predictor (LSP).  

First, we describe the trace compressor structure and compression algorithms 

(Section 4.4.1).  Next, we explore the design space including the size and organization of 

the proposed compressor structures (Section 4.4.2).  In Section 4.4.3 we describe several 

enhancements designed to further reduce the trace port bandwidth and reduce the 
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complexity of the compressor structures.  Finally, we give the results of the trace port 

bandwidth analysis in Section 4.4.4 and estimate hardware implementation cost in 

Section 4.4.5.  

4.4.1 Compressor Organization  

The proposed mechanism performs the compression of program execution traces 

in two stages.  In the first stage, we perform a stream cache transformation using a 

structure called the stream descriptor cache (SDC).  This transformation translates a 

stream descriptor into a stream index (SI).  The stream index is used as an input to a 

predictor structure called a last stream predictor (LSP) in the second stage.  

Consequently, a sequence of stream descriptors coming from the stream detector is 

translated into a sequence of hit and miss events at the output of the SDC and LSP 

compressor structures.  These events are efficiently encoded, thus significantly reducing 

the size of trace records that are stored in the trace buffer before they are sent to the trace 

port.  A high level architecture of the compressor is given in Figure 4.9. 

Stream descriptor cache.  The stream cache is organized into NWAY ways and 

NSET sets as shown in Figure 4.10.  An entry in the stream descriptor cache holds a 

complete stream descriptor (SA, SL).  

Stream
Cache

Last Stream
Predictor

(SA, SL)

(SA/-, SL) SCI Hit / Miss

Trace Record Encoder
To Trace Buffer

SI

Hit / Miss

 

Figure 4.9  System view of Stream Cache with Last Stream Predictor compressor 
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Figure 4.10  Trace module structures: Stream Descriptor Cache and Last Stream 
Predictor 

Figure 4.11 describes the sequence of steps carried out during the stream cache 

transformation by the SDC controller.  The next stream descriptor is received from the 

Stream Detector and an SDC lookup is performed.  A set in the stream descriptor cache is 

calculated as a simple function of the stream descriptor, e.g., bit-wise XOR of selected 

bits from the SA and SL fields.  If the incoming stream descriptor matches an entry in the 

selected set, we have an SDC hit event; otherwise, we have an SDC miss event.  In the 

case of an SDC hit, the corresponding stream index, determined by concatenating the set 

and way indices (SI = {iSet, iWay}), is forwarded to the LSP.  In the case of an SDC 

miss, the reserved index zero is forwarded (SI = 0).  If all entries of the selected set are 

occupied, an entry is evicted based on the replacement policy (e.g., LRU, FIFO), and it is 

updated with the incoming stream descriptor.  

The compression ratio achieved by our stream detector and stream detector cache, 

CR(SDC), is defined as the ratio of the raw instruction address trace size, calculated as 
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the number of instructions multiplied by the address size, and the size of the SDC output 

(Equation (4.3)).  It can be expressed analytically as a function of the average dynamic 

stream length (avgSL), the SDC hit rate (hrSDC), the SDC size (NSET*NWAY), and the 

probability that a stream starts with a target of an indirect branch (pIND).  For each 

program stream, log2(NSET*NWAY) bits are emitted to the SI output.  On each SDC miss, a 

5-byte (SA, SL) or 1-byte (-, SL) stream descriptor is outputted, depending on whether 

the corresponding stream starts with the target of an indirect or direct branch, 

respectively.  The parameters avgSL and pIND are benchmark dependent and cannot be 

changed except maybe through program optimization – e.g., favoring longer streams 

using loop unrolling or trace scheduling.  Smaller stream caches require shorter indices 

but likely have a lower hit rate, which negatively affects the compression ratio.  Thus, a 

detailed exploration of the stream cache design space is necessary to determine a good 

hash function as well as a good stream cache size and organization (NSET and NWAY). 

 

1. Get the next stream descriptor, (SA, SL), from the Stream Detector 
2. Lookup in the stream descriptor cache with iSet = F(SA, SL); 
3. if (SDC hit) 
4.  SI = (iSet concatenate iWay); 
5. else { 
6.  SI = 0; 
7.  if (SA is reached via an indirect branch) 
8.   Prepare stream descriptor (SA, SL) for output; 
9.  else  
10.   Prepare stream descriptor (-, SL) for output; 
11.  Select an entry (iWay) in the iSet set to be replaced; 
12.  Update stream descriptor cache entry:  
13.  SDC[iSet][iWay].Valid = 1;  
14.  SDC[iSet][iWay].SA = SA,  
15.  SDC[iSet][iWay].SL = SL; 
16. } 
17. Update replacement indicators in the selected set; 

Figure 4.11  Stream Descriptor Cache operation 
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Last Stream Predictor.  The second stage uses a simple last value predictor as 

shown in Figure 4.10 and described in Figure 4.12, to exploit redundancy in the SI 

component caused by repeating sequences of stream indices.  A linear predictor table 

with NP entries is indexed by a hash function that is based on the history of previous 

stream indices.  If the selected predictor entry matches the incoming stream index, we 

have an LSP hit.  Otherwise, we have an LSP miss, and the selected predictor entry is 

updated with the incoming stream index.  The hit/miss information (1 bit) and, in the case 

of an LSP miss, SI (log2(NSET*NWAYS) bits) are forwarded to the trace encoder.   

 

18. Get the incoming index, SI; 
19. Calculate the LSP index: pIndex = G(indices in the History Buffer); 
20. Perform lookup in the Last Stream Predictor with pIndex; 
21. if(LSP[pIndex] == SI) 
22.    Emit(’1’); 
23. else { 
24.    Emit(’0’ + SI); 
25.    LSP[pIndex] = SI;  
26. } 
27. Shift SI into the History Buffer; 

Figure 4.12  Last Stream Predictor operation 

The compression ratio achievable by the LSP stage alone, CR(LSP), can be 

calculated as shown in Equation (4.4).  It depends on the stream index size and the LSP 

hit rate, hrLSP.  The maximum compression ratio that can be achieved in this stage is 

log2(NSET*NWAY).  The design space exploration for the last stream predictor includes 

determining a good hash function and a good number of entries in the predictor NP.  
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Trace Record Encoder.  The trace encoder assembles output trace messages 

based on the events in SDC and LSP as shown in Table 4.5.  We distinguish 

three combinations of events in the compressor structures: (a) an LSP hit with a SDC hit, 

(b) an LSP miss with an SDC hit, and (c) an LSP miss with an SDC miss.  The LSP 

cannot hit if the SDC misses.  In the case of an LSP hit with an SDC hit, the single-bit 

trace record ′1′ is placed into the trace buffer.  In the case of an LSP miss with an SDC 

hit, the trace record starts with a ′0′ single-bit header and is followed by the value of the 

stream index that missed in the LSP.  Finally, in the case of an LSP miss with an SDC 

miss, the trace record consists of a ′0′ single-bit header, followed by a zero stream index 

that indicates a miss in the SDC, and a 40-bit (SA, SL) or 8-bit (-, SL) stream descriptor, 

depending on the type of branch that led to the beginning of the stream. 

Table 4.5  Trace records encoding 

Event Encoded  Trace Record  Trace Record Bit Width 

  H  SI  Stream  
Descriptor 

 

LSP miss, SDC miss  
(SA is the target of an indirect branch) 

0  0  (SA, SL)  1+ log2(NSET*NWAY) + 40 

LSP miss, SDC miss 
(SA is the target of a direct branch) 

0  0  (‐, SL)  1+ log2(NSET*NWAY) + 8 

LSP miss, SDC hit  0  non‐zero  ‐  1+ log2(NSET*NWAY) 

LSP hit, SDC hit  1  ‐  ‐  1 
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An Example Compression/Decompression.  Code snippet in Figure 4.13 

includes a simple loop executing 100 iterations.  The loop body consists of only one 

instruction stream.  When the first iteration completes on the target platform, the stream 

detector captures the stream descriptor (SA, SL) = (0x020001f4, 9).  Let us assume a  

64-entry 4-way associative stream descriptor cache (NSET=16, NWAYS=4).  The SDC 

indexes are calculated as a function of certain bits of the stream descriptor; let us assume 

we calculate the iSet as follows: iSet = SA[7:4] xor SL[3:0]; in our case iSet=0x6.  A 

lookup in the SDC set with index iSet=0x6 results in an SDC miss because the SDC 

entries are initially invalid.  The least recently used entry in the selected SDC set is 

updated by the stream descriptor information (let us assume it is iWay=0), and the 

reserved 6-bit index 0 is output to the next stage (SI=′000000′).  A lookup in the LSP 

entry with index pIndex =0 results in an LSP miss because the LSP entries are also 

initially invalid.  The LSP entry with index 0 is updated with the SI value.  A complete 

trace record for the first occurrence of the stream includes a header bit ′0′ followed by the 

6-bit index ′000000′ and the 40-bit stream descriptor (47 bits in total; here we assume that 

we need to output the starting address of the stream in spite of the fact that it can be 

inferred from the program binary).   

When we encounter the second iteration of the loop, the stream descriptor is 

found in the selected SDC set (an SDC hit).  The SI is iSet concatenated with iWay, 

resulting in SI=′011000′ (iSet=′0110′ and iWay=′00′).  If we assume that the LSP 

predictor access is solely based on the previous SI (0 in our case), we will have another 

LSP miss.  A trace record ′0.011000′ (h=′0′, SI=′011000′) is output to the trace buffer, 

and LSP’s entry 0 is now updated with the value ′011000′.  The third loop iteration 
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results in an SDC hit, and SI=′011000′ is forwarded to the LSP stage.  The LSP will again 

miss (the entry pointed to by the previous SI is not initialized yet), and another trace 

record ′0.011000′ is sent to the trace buffer.  The LSP entry with index ′011000′ is 

updated with the value ′011000′.  The fourth iteration hits in both the SDC and the LSP 

and only a single bit ′1′ is sent to the trace buffer.  The next 95 iterations will also have 

only a single bit trace record to indicate both SDC and LSP hits.  The final iteration does 

not hit because the loop end branch falls through and the stream length will therefore be 

larger than that of the previous streams. 

 

// Code Snippet 
28.  for(i=0; i<100; i++) { 
29.       c[i] = s*a[i] + b[i]; 
30.       sum = sum + c[i]; 
31.  } 
// Assembly listing of the code snippet for the ARM ISA 
32.  @ 0x020001f4: mov  r1,r12, lsl #2 
33.  @ 0x020001f8: ldr  r2,[r4, r1] 
34.  @ 0x020001fc: ldr  r3,[r14, r1] 
35.  @ 0x02000200: mla  r0,r2,r8,r3 
36.  @ 0x02000204: add  r12,r12,#1 (1 >>> 0) 
37. @ 0x02000208: cmp  r12,#99 (99 >>> 0) 
38. @ 0x0200020c: add  r6,r6,r0 
39. @ 0x02000210: str  r0,[r5, r1] 
40. @ 0x02000214: ble  0x20001f4 
// Trace records emitted per loop iteration 
41. h=′0′; SI=′000000′; (SA,SL)=(0x020001f4, 9) 
42. h=′0′; SI=′011000′;  
43. h=′0′; SI=′011000′;  
44. h=′1′;  
45. h=′1′; 
46. . . . 
99. h=′1′; 
100. h=′0′; SI=′000000′; (SA,SL)=(0x020001f4, ?) 

Figure 4.13  A compression/decompression example 

The de-compressor on the debugger side reads the incoming bit stream from its 

trace buffer.  The first bit in the trace is h=′0′, indicating an LSP miss event.  The de-
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compressor then reads the next 6 bits from the traces that carry the SI=′000000′.  This 

index is reserved to indicate an SDC miss, and the de-compressor reads the next 40 bits 

from the trace to obtain the stream descriptor.  The debugger updates the software copies 

of the SDC and LSP accordingly and replays 9 instructions starting at address 

0x0x020001f4.  The next step is to read the next trace record.  It also starts with h=′0′, 

indicating an LSP miss.  The next 6 bits are non-zero, which means that we have an SDC 

hit.  The debugger retrieves the next stream descriptor from the SDC’s entry SI=′011000′ 

and updates the SDC and LSP structures accordingly.  The second iteration of the loop is 

replayed.  Similarly, the debugger replays the third loop iteration.  The fourth trace record 

starts with a header h=′1′.  This single-bit message is sufficient to replay the current 

stream.  The software debugger retrieves the stream index from the LSP maintained in 

software (SI=′011000′) and, using this stream index, it retrieves the stream descriptor 

from the software copy of the stream cache.  The debugger maintains its software copies 

of the compressor structures by updating the LSP’s history buffer and SDC’s replacement 

bits using the same policies as the hardware trace module does.  The process continues 

until all iterations of the loop have been replayed. 

4.4.2 Design Space Exploration 

The goal of this design space exploration is twofold.  First, we explore the design 

space to find good parameters for the proposed compressor structures and access 

functions.  As a measure of performance, we use the average number of bits emitted per 

instruction on the trace port.  We also report the hit rates of the stream descriptor cache 

and the last stream predictor, hrSDC and hrLSP, because they directly influence the size 

of the output trace as explained in Equation (4.3) and Equation (4.4).  Second, we 
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introduce several enhancements to the original mechanism and explore their effectiveness 

in further improving the compression ratio at minimal added complexity or in reducing 

the trace module complexity. 

SDC Access Function.  A good hash access function should minimize the 

number of collisions in the SDC.  Its efficacy depends on the program characteristics and 

SDC organization. We have evaluated a number of access functions while varying the 

SDC size and organization.  We have found that access functions that combine the SA 

and SL portions of the stream descriptor in general outperform those based solely on the 

SA because multiple streams can have the same starting address.  Our experiments 

indicate that the hash function shown in Equation (4.5) performs the best for different 

SDC sizes and configurations.  The SA is shifted by shift bits and then the result is 

XORed with the SL.  The lower log2NSET bits of the result are used as the set index, iSet.  

The optimal value for shift was found to be 4 for our benchmark suite. NSET has to be a 

power of two. 

  )1())((  SETNandSLxorshiftSAiSet      (4.5) 

SDC Size and Organization.  Figure 4.14 shows the average SDC hit rate and 

trace port bandwidth for the whole benchmark suite when varying the number of entries 

and the number of ways (NWAYS = 1, 2, 4, 8).  It should be noted that considering the 

SDC hit rate alone is not sufficient to make a definite design decision about the SDC 

organization.  Sometimes a suboptimal organization can result in a lower trace port 

bandwidth because of the last stream predictor and its access function.  The trace port 
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bandwidth is calculated assuming an LSP with the same number of entries as the SDC 

and a simple hash access function that uses the previous stream index to access the LSP. 
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Figure 4.14  SDC hit rate and trace port bandwidth as functions of its size and 
organization 

The results show that increasing the stream cache associativity helps reduce the 

trace port bandwidth and thus improves the compression ratio, but only up to a point.  

Increasing the associativity beyond 4 ways yields little or no benefit.  The results further 

indicate that even relatively small stream caches with as few as 32 entries perform well, 

achieving less than 0.5 bits/ins on the trace port.  Increasing the SDC and consequently 

the LSP size beyond 256 entries is not beneficial as it only yields diminishing returns in 

trace port bandwidth.  Based on these results, we choose a 4-way associative SDC with 

128 entries and a 128-entry LSP as a good configuration for our trace module.  This 

configuration represents a sweet spot in the trade-off between trace port bandwidth and 
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design complexity; with our benchmarks, it yields under 0.2 bits/ins at a modest cost.  

Table 4.6 shows the 4-way SDC hit rate as function of its size, for each benchmark. 

We have also evaluated several SDC replacement policies including Pseudo-

Random, FIFO (First-In First-Out), LRU (Least Recently Used), and several pseudo-

LRU implementations.  Our findings indicate that a pseudo-LRU replacement policy 

based on using MRU (Most Recently Used) bits performs the best, outperforming even 

the full LRU policy.  

Table 4.6  SDC hit rate as functions of its size and organization 

  hrSDC          

Test  \  Size  32 64 128 256 512 1024

adpcm_c  1.000 1.000 1.000 1.000 1.000 1.000

bf_e  0.985 0.996 1.000 1.000 1.000 1.000

cjpeg  0.952 0.991 0.998 0.999 1.000 1.000

djpeg  0.935 0.971 0.991 0.997 0.998 0.999

fft  0.482 0.685 0.859 0.952 0.985 1.000

ghostscript  0.456 0.778 0.987 0.993 0.997 0.999

gsm_d  0.972 0.980 0.989 0.996 0.999 1.000

lame  0.903 0.938 0.954 0.964 0.972 0.987

mad  0.833 0.972 0.984 0.993 0.998 1.000

rijndael_e  0.542 0.866 0.929 1.000 1.000 1.000

rsynth  0.848 0.923 0.966 0.997 1.000 1.000

sha  0.952 0.999 1.000 1.000 1.000 1.000

stringsearch 0.759 0.868 0.971 0.991 0.993 0.999

tiff2bw  0.971 0.979 0.992 0.998 1.000 1.000

tiff2rgba  0.935 0.969 0.996 1.000 1.000 1.000

tiffdither  0.824 0.904 0.963 0.988 0.997 1.000

tiffmedian  0.975 0.983 0.992 0.997 1.000 1.000

Average  0.838 0.921 0.969 0.988 0.994 0.998

 

 

Last Stream Predictor.  We have considered several LSP organizations.  The 

number of entries in the LSP may exceed the number of entries in the stream descriptor 
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cache.  In such a case, the LSP access function should be based on the program path 

taken to a particular stream.  The path information may be maintained in a history buffer 

as a function of previous stream cache indices.  However, our experimental analysis 

indicates that such an approach yields fairly limited improvements in trace port 

bandwidth.  The reason is that our workload has a relatively small number of indirect 

branches, and those branches mostly have a very limited number of targets taken during 

program execution.  Consequently, we chose the simpler solution of always having the 

same number of entries in the LSP and the SDC.  The LSP access function is based solely 

on the previous stream cache index.  We call this basic implementation of the proposed 

tracing mechanism bSDC-LSP. 

Table 4.7  LSP hit rates (a), and LSP trace port bandwidth (b), for the bSDC-LSP scheme 

  hrLSP            bits/ins 

Test  \  Size  32  64  128 256 512 1024 32 64 128 256  512  1024

adpcm_c  0.997  0.997  0.997 0.997 0.997 0.997 0.019 0.019 0.019 0.019  0.019  0.019

bf_e  0.824  0.838  0.843 0.843 0.843 0.843 0.405 0.359 0.357 0.384  0.410  0.437

cjpeg  0.894  0.916  0.921 0.922 0.922 0.922 0.204 0.138 0.131 0.134  0.140  0.146

djpeg  0.887  0.896  0.909 0.915 0.916 0.917 0.125 0.093 0.075 0.070  0.072  0.075

fft  0.522  0.674  0.762 0.827 0.850 0.870 1.492 1.007 0.616 0.354  0.256  0.219

ghostscript  0.518  0.696  0.865 0.868 0.869 0.870 1.585 0.823 0.232 0.227  0.229  0.234

gsm_d  0.946  0.946  0.947 0.951 0.952 0.954 0.103 0.094 0.086 0.077  0.076  0.075

lame  0.807  0.820  0.823 0.827 0.829 0.833 0.129 0.108 0.102 0.101  0.100  0.093

mad  0.715  0.825  0.830 0.832 0.835 0.836 0.295 0.136 0.129 0.124  0.124  0.128

rijndael_e  0.697  0.846  0.809 0.867 0.867 0.867 0.743 0.284 0.192 0.099  0.105  0.111

rsynth  0.843  0.843  0.860 0.883 0.887 0.887 0.382 0.245 0.175 0.116  0.115  0.122

sha  0.893  0.922  0.922 0.922 0.922 0.922 0.178 0.097 0.101 0.106  0.111  0.116

stringsearch  0.829  0.807  0.857 0.870 0.872 0.872 1.369 0.938 0.472 0.387  0.401  0.382

tiff2bw  0.996  0.993  0.992 0.992 0.994 0.994 0.151 0.135 0.104 0.087  0.083  0.084

tiff2rgba  0.991  0.978  0.989 0.989 0.989 0.989 0.114 0.077 0.045 0.040  0.040  0.040

tiffdither  0.834  0.823  0.848 0.864 0.870 0.873 0.332 0.249 0.190 0.164  0.157  0.160

tiffmedian  0.976  0.973  0.971 0.973 0.976 0.976 0.085 0.077 0.066 0.058  0.055  0.056

Average  0.819  0.856  0.881 0.893 0.897 0.899 0.426 0.272 0.174 0.142  0.136  0.135

  a)  b) 
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Table 4.7a shows the last stream predictor hit rate (hrLSP), and Table 4.7b shows 

trace port bandwidth for individual benchmarks and for different sizes of the SDC and 

LSP.  The trace port bandwidth for the trace module configuration [32x4, 128] (4-way 

set-associative 128-entry SDC and 128-entry LSP) varies between 0.019 bits/ins for 

adpcm_c and 0.616 bits/ins for fft, and is 0.174 bits/ins on average for the whole 

benchmark suite.  The fft benchmark significantly benefits from an increase in the SDC 

size and requires 0.354 bits/ins with the [64x4, 256] configuration.  Many of the 

remaining benchmarks perform well even with very small trace module configurations, 

e.g., adpcm_c, tiffmedian, and tiff2rgba. 

4.4.3 Enhancements for Base SDC-LSP Scheme  

The output trace records still contain a lot of redundant information that can be 

eliminated with low-cost enhancements.  The three components of the output trace are  

(i) LSP-hit records (hLSPt), (ii) LSP-miss with SDC-hit records (hSDCt), and (iii) LSP-

miss and SDC-miss records (mSDCt).  Table 4.8 shows distributions of the individual 

trace components for two trace module configurations: [16x4, 64] and [64x4, 256].  The 

mSDCt component dominates the output trace in smaller configuration; e.g., it is 

responsible for 41.3% of the total output for the [16x4, 64] configuration.  With larger 

configurations, the hLSPt component dominates the output trace with long runs of 

consecutive ones; e.g., the hSLPt represents 48.5% of the total output trace for the [64x4, 

256] configuration. 

By analyzing the mSDCt records we observe that the upper address bits of the 

starting address (SA) field rarely change.  To take advantage of this property, we slightly 

modify our bSDC-LSP compressor as follows.  An additional u-bit register called LVSA 
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is added to record the u upper bits of the SA field from the last miss trace record.  The 

upper u-bit field of the SA of the incoming miss trace record is compared to the LVSA.  

If there is a match, the new miss trace record will include only the lower (32-u) address 

bits.  Otherwise, the whole address is emitted and the LVSA register is updated.  To 

distinguish between these two cases, an additional bit in the trace record is needed to 

indicate whether all (SA[31:0]) or only the lower address bits (SA[31-u:0]) are emitted.   

Table 4.8  Distributions of individual trace components for two trace module 
configurations 

[SDC, LSP] Size  [16x4, 64]  [64x4, 256] 

Test  mSDCt  hSDCt  hLSPt  mSDCt  hSDCt  hLSPt 

adpcm_c  0.1%  1.9%  98.1%  0.1%  2.4%  97.5% 

bf_e  6.9%  53.6%  39.6%  0.0%  62.7%  37.3% 

cjpeg  12.0%  34.5%  53.5%  1.2%  42.9%  55.9% 

djpeg  32.2%  30.4%  37.5%  4.8%  43.3%  51.9% 

fft  80.8%  14.8%  4.4%  39.0%  39.8%  21.2% 

ghostscript  73.2%  20.2%  6.6%  9.5%  52.3%  38.1% 

gsm_d  29.4%  20.1%  50.5%  8.2%  29.0%  62.7% 

lame  44.4%  33.7%  21.9%  29.5%  46.0%  24.4% 

mad  29.1%  42.4%  28.5%  9.4%  58.4%  32.2% 

rijndael_e  72.0%  15.7%  12.3%  0.1%  58.0%  41.9% 

rsynth  58.3%  23.6%  18.1%  5.3%  51.5%  43.3% 

sha  1.6%  36.6%  61.8%  0.1%  43.1%  56.7% 

stringsearch  66.9%  20.7%  12.4%  13.4%  49.7%  36.9% 

tiff2bw  41.2%  2.8%  56.1%  5.3%  6.1%  88.6% 

tiff2rgba  48.5%  7.1%  44.4%  0.8%  8.7%  90.5% 

tiffdither  47.4%  31.6%  21.0%  11.6%  51.9%  36.6% 

tiffmedian  33.1%  10.8%  56.0%  6.6%  18.4%  74.9% 

Average  41.3%  23.7%  34.9%  11.9%  39.6%  48.5% 

 

 

The format of the trace record for an LSP miss with SDC miss event is modified 

to include this additional bit that precedes the stream descriptor field.  Note that SA[1:0] 



 

80 

 

is always '00' for the ARM ISA and is omitted from the mSDCt.  For the ARM Thumb 

ISA, only SA[0] can be omitted.  These two bits do not need to be kept in the stream 

descriptor cache.  In addition, we can also omit the address bits that can be inferred from 

the SDC index (this enhancement will be discussed further down).  

Increasing the width of the LVSA register reduces the number of bits in the miss 

trace in the case of LVSA hits; however, it also reduces the number of LVSA hit events.  

Table 4.9 shows the fraction of the original miss trace components for various values of 

the parameter u for the [32x4, 128] configuration.  For example, we find that the LVSA 

enhancement reduces the miss trace component by 18% when u=14.  It should be noted 

that the reduction in the total output trace is more significant for smaller trace module 

configurations and relatively insignificant for larger configurations because the miss trace 

component is relatively small in the latter case. 

The redundancy in the hLSPt component can be reduced using a counter that 

counts the number of consecutive bits with value '1'.  The counter is called one length 

counter or OLC for short.  Long runs of ones are replaced by the counter value preceded 

by a new header.  The number of bits used to encode this trace component is determined 

by the counter size.  A longer counter can capture longer runs of ones, but a counter 

which is too long results in wasted bits.  Our analysis of the hLSPt components shows a 

fairly large variation in the average number of consecutive ones, ranging from 5 in 

ghostscript and fft to hundreds in adpcm_c and tiff2bw.  In addition, these sequences of 

consecutive ones may vary across different program phases, meaning that an adaptive 

OLC length method would yield better results. 
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Table 4.9  Fraction of the original miss trace component using LVSA 

Test  \   u  21  20  19  18  17  16  15  14  13  12 

adpcm_c  0.83  0.82  0.83  0.83  0.83  0.82  0.79  0.79  0.81  0.82 

bf_e  0.87  0.85  0.74  0.72  0.73  0.75  0.76  0.77  0.79  0.81 

cjpeg  0.87  0.86  0.86  0.86  0.85  0.82  0.81  0.82  0.84  0.85 

djpeg  0.87  0.84  0.84  0.84  0.84  0.81  0.81  0.82  0.83  0.84 

fft  0.89  0.89  0.87  0.86  0.86  0.85  0.83  0.81  0.83  0.84 

ghostscript  0.87  0.86  0.86  0.85  0.86  0.85  0.84  0.85  0.84  0.84 

gsm_d  0.87  0.86  0.86  0.82  0.82  0.81  0.81  0.82  0.83  0.85 

lame  0.87  0.86  0.85  0.85  0.86  0.87  0.86  0.86  0.87  0.88 

mad  0.82  0.81  0.81  0.81  0.79  0.78  0.78  0.79  0.81  0.82 

rijndael_e  0.96  0.96  0.83  0.84  0.85  0.82  0.83  0.84  0.86  0.87 

rsynth  0.88  0.89  0.87  0.83  0.83  0.75  0.77  0.78  0.80  0.82 

sha  0.87  0.88  0.79  0.71  0.72  0.74  0.75  0.76  0.78  0.80 

stringsearch  0.83  0.84  0.84  0.85  0.78  0.77  0.79  0.80  0.82  0.83 

tiff2bw  0.88  0.85  0.83  0.84  0.83  0.80  0.82  0.78  0.80  0.82 

tiff2rgba  0.96  0.96  0.96  0.90  0.85  0.86  0.82  0.77  0.79  0.80 

tiffdither  0.95  0.94  0.93  0.93  0.93  0.92  0.93  0.93  0.93  0.94 

tiffmedian  0.88  0.88  0.83  0.83  0.83  0.81  0.81  0.78  0.80  0.82 

Average  0.88  0.87  0.85  0.84  0.84  0.83  0.82  0.82  0.84  0.85 

 

 

The adaptive one-length counter (AOLC) dynamically adjusts the OLC size to the 

program flow characteristics.  An additional 4-bit saturating counter monitors the hLSPt 

entries and is updated as follows.  It is incremented by 3 when the number of consecutive 

ones in the hLSPt trace exceeds the current size of the OLC.  The monitoring counter is 

decremented by 1 whenever the number of consecutive ones is smaller than half of the 

maximum OLC counter value.  When the monitoring counter reaches its maximum (15) 

or minimum (0), a change in the OLC size occurs.  If the maximum is reached, the OLC 

size is increased by one bit (if possible).  If the minimum is reached, the OLC size is 

decreased by one bit (if possible).  

Using an AOLC necessitates a slight modification of the trace output format.  We 

use a header bit '1' that is followed by log2(AOLC Size) bits.  The counter size is 
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automatically adjusted as described above.  Of course, the software decompressor needs 

to implement the same adaptive algorithm.  We call this scheme, which includes the 

LVSA and AOLC optimizations, eSDC-LSP. 

Reducing Hardware Complexity by eliminating upper bits.  The LVSA 

enhancement could be slightly modified to reduce the overall size of the trace module 

implementation.  For example, the uppermost 12 bits of the stream starting address do not 

change with a probability of 0.99 in our benchmarks.  Consequently, we may opt not to 

keep the upper address bits SA[31:20] in the stream descriptor cache, thus reducing its 

size.  Instead, the upper address bits are handled entirely by a last value predictor in a 

manner similar to the LVSA enhancement discussed above.  The mechanism used in the 

eSDC-LSP scheme can be modified as follows.  In the eSDC-LSP scheme, we only 

considered trace records in the miss trace (mSDCt), updating the LVSA register only 

when an LSP miss with SDC miss event occurs.  Here we need to continuously update 

the LVSA register, regardless of whether we have a hit or a miss in the SDC and LSP 

structures.  Moreover, a miss in the LVSA register results in sending a stream descriptor 

to the output trace; the SDC and LSP are updated accordingly.  To determine the optimal 

number of upper bits that should be handled by the LVSA predictor, we need to consider 

the SDC performance.  Reducing the number of address bits that are stored in the SDC 

reduces its size, but may result in an increased miss rate and thus increase the trace port 

bandwidth.  A modified eSDC-LSP with the uppermost 12 address bits handled by the 

LVSA appears optimal on our benchmarks.  

Reducing Hardware Complexity by eliminating indexing bits.  We can further 

reduce the number of bits kept in the stream descriptor cache without any negative impact 
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on the trace module performance.  The bits of the starting address SA[shift+log2(NSET)-

1:shift] that are used in the calculation of the SDC index function (Equation 3) do not 

need to be kept in the SDC.  This information can be inferred based on the known index 

function and SL bits that are stored in the SDC.  (Alternatively, we can keep all address 

bits in the stream cache and eliminate the portion of the SL bits that are used for the SDC 

index.)  For example, in the [32x4, 128] configuration, the iSet is calculated as the XOR 

result of SA[8:4] and SL[4:0].  Consequently, we can infer the value of SA[8:4] as 

SA[8:4] = iSet XOR SL[4:0].  The eSDC-LSP scheme with modified LVSA enhancement 

and reduced complexity of the SDC is called rSDC-LSP scheme.  

4.4.4 Trace Port Bandwidth Analysis 

Table 4.10 shows the trace port bandwidth of the eSDC-LSP scheme for 

individual programs and for different sizes of the SDC and LSP.  We observe relatively 

high improvements for small trace module configurations, mainly due to a reduction in 

the mSDCt size; for example, the average trace port bandwidth for the [8x4, 32] 

configuration is 0.35 bits/ins, down from 0.43 bits/ins in the bSDC-LSP scheme (18% 

lower).  Similarly, for large trace module configurations, the hLSPt size is significantly 

reduced; for example, the trace port bandwidth for the [64x4, 245] configuration is 

0.12 bits/ins, versus 0.142 bits/ins in the bSDC-LSP scheme (a 15% reduction).  Some 

programs benefit significantly from this enhancement, especially those with a high LSP 

hit rate, such as adpcm_c (over 14 times lower bandwidth), tiff2bw (3.45), and tiff2rgba 

(3.67). 

Table 4.11 shows the trace port bandwidth of the rSDC-LSP scheme for different 

sizes of the SDC and LSP.  The upper twelve address bits SA[31:20] are predicted using 
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the last value predictor and an entry in the stream cache consists of the lower 13 address 

bits SA[19:9] and SA[3:2] and the stream length field SL[7:0].  The rSDC-LSP scheme 

requires slightly higher bandwidth on the trace port than eSDC-LSP.  For example, the 

trace module configuration [32x4, 128] achieves 0.15 bits/ins at the trace port versus 

0.146 bits/ins for the eSDC-LSP scheme.  However, this degradation due to aliasing in 

the SDC is less than 3%, which is probably an acceptable loss for a significant reduction 

in the size of the stream descriptor cache (we keep 13 instead of 30 bits for stream 

starting addresses). 

Table 4.10  Trace port bandwidth of the eSDC-LSP scheme 

eSDC‐LSP  bits/ins         

Test  \  Size  32  64  128  256  512  1024 

adpcm_c  0.001  0.001  0.001  0.001  0.001  0.001 

bf_e  0.378  0.342  0.345  0.372  0.398  0.425 

cjpeg  0.154  0.095  0.088  0.092  0.098  0.104 

djpeg  0.092  0.068  0.053  0.048  0.050  0.053 

fft  1.235  0.851  0.542  0.327  0.237  0.196 

ghostscript  1.358  0.760  0.216  0.214  0.217  0.224 

gsm_d  0.062  0.057  0.051  0.045  0.043  0.042 

lame  0.110  0.094  0.090  0.090  0.090  0.085 

mad  0.254  0.120  0.116  0.114  0.115  0.120 

rijndael_e  0.599  0.239  0.183  0.090  0.096  0.103 

rsynth  0.297  0.200  0.147  0.097  0.097  0.103 

sha  0.141  0.070  0.074  0.079  0.084  0.089 

stringsearch  1.082  0.789  0.412  0.344  0.358  0.345 

tiff2bw  0.062  0.052  0.030  0.016  0.011  0.012 

tiff2rgba  0.066  0.041  0.012  0.007  0.008  0.008 

tiffdither  0.279  0.213  0.158  0.135  0.129  0.133 

tiffmedian  0.039  0.035  0.027  0.021  0.017  0.018 

Average  0.349  0.230  0.146  0.120  0.114  0.114 
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Table 4.11  Trace port bandwidth of the rSDC-LSP scheme 

rSDC‐LSP  bits/ins         

Test  \  Size  32  64  128  256  512  1024 

adpcm_c  0.001  0.001  0.001  0.001  0.001  0.001 

bf_e  0.381  0.343  0.345  0.372  0.398  0.425 

cjpeg  0.156  0.096  0.088  0.092  0.098  0.104 

djpeg  0.094  0.068  0.054  0.048  0.050  0.053 

fft  1.276  0.874  0.554  0.331  0.237  0.196 

ghostscript  1.377  0.758  0.216  0.214  0.217  0.224 

gsm_d  0.064  0.058  0.052  0.045  0.043  0.042 

lame  0.128  0.113  0.109  0.109  0.110  0.106 

mad  0.259  0.121  0.117  0.114  0.115  0.120 

rijndael_e  0.623  0.246  0.185  0.090  0.096  0.103 

rsynth  0.308  0.205  0.149  0.097  0.097  0.103 

sha  0.143  0.070  0.074  0.079  0.084  0.089 

stringsearch  1.118  0.807  0.416  0.346  0.359  0.345 

tiff2bw  0.064  0.054  0.031  0.016  0.011  0.012 

tiff2rgba  0.069  0.042  0.012  0.007  0.008  0.008 

tiffdither  0.282  0.214  0.159  0.135  0.129  0.133 

tiffmedian  0.040  0.035  0.028  0.021  0.017  0.018 

Average  0.359  0.235  0.150  0.123  0.117  0.117 

0.001

0.010

0.100

1.000

10.000

32 64 128 256 512 1024

b
it
s/
in
s

SDC‐LSP Size

bSDC‐LSP

eSDC‐LSP

rSDC‐LSP

 

Figure 4.15  Trace port bandwidth of all proposed schemes. 
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Figure 4.15 shows the trace port bandwidth for a range of trace module 

configurations for the three proposed schemes, bSDC-LSP, eSDC-LSP, and rSDC-LSP.  

As we pointed out before, the low-cost enhancements discussed in the previous sections 

indeed reduce the required trace port bandwidth.  The rSDC-LSP scheme trails a little 

behind the eSDC-LSP scheme, but offers a significant cost reduction.  Consequently, we 

consider rSDC-LSP to be the most cost-effective scheme striking a good balance between 

trace port bandwidth and implementation complexity. 

4.4.5 Hardware Implementation and Complexity 

Both SDC and LSP use simple cache-like structures (multi-way or direct-

mapped).  Cache implementation techniques are well known and are not addressed here.  

We focus on finding the complexity, in number of logic gates, of different proposed 

SDC-LSP configurations. 

To estimate the size of different proposed configurations, we first need to 

determine the minimum sizes of the trace output buffer.  The size of this structure should 

be such that the traces are never dropped due to the finite capacity of the trace structures 

and that no trace record is lost.  To determine the size, we use a cycle-accurate processor 

model similar to Intel’s XScale processor [67].  The trace module is modeled as follows. 

We assume that it requires one clock cycle to service an LSP with SDC hit or an LSP 

miss with an SDC hit event and two clock cycles for an SDC miss event.  The trace 

records are stored in the trace output buffer.  If the output buffer is not empty, a single bit 

is sent out through the trace data port each clock cycle. The processor is never stalled and 

no trace records are lost if the following conditions are met: the number of entries in the 

stream descriptor buffer is at least 2 and the minimum trace output buffer size is 80 bits. 
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The estimation of the SDC and LSP compressing structures is straightforward.  

As an example, let us assess the complexity of the rSDC-LSP scheme for the [32x4, 128] 

configuration.  The stream descriptor includes a register pair for the starting address and 

stream length with a total of 38 bits of storage (30 bits for the SA and 8 bits for the SL).  

An entry in the stream descriptor cache requires 13 bits for the SA (30 - 12 - 5), 8 bits for 

the SL, a valid bit, and one replacement bit (MRU-based LRU).  The total amount of 

storage is thus (128 - 1)*(13 + 8 + 2) = 2921 bits.  Similarly, we find that the LSP 

requires 903 bits of storage.  Assuming 1.5 logic gates per memory bit, we estimate the 

complexity of our rSDC-LSP scheme to be fewer than 6,100 gates.    
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Figure 4.16  Trace reduction ratio vs. complexity for the three proposed schemes  
(higher is better) 
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Figure 4.16 shows the trace reduction ratio as a function of trace module 

complexity.  The trace reduction ratio is calculated as the ratio of the average trace port 

bandwidth for the uncompressed stream descriptors ( (SA/-, SL) pairs coming from the 

stream detector) and the average trace port bandwidth for the proposed schemes xSDC-

LSP, where x = (b, e, r).  Different points represent different trace module configurations, 

varied from 32 entries [8x4, 32] to 1024 entries [256x4, 1024].  For example, rSDC-LSP 

reduces the trace port bandwidth over 7 times, at the cost of less than 6,100 gates 

(configuration [32x4, 128]) or 8.6 times at the cost of 11,900 gates.  At the low end of 

complexity, which is what we are interested in, rSDC-LSP emerges as the best solution 

and is therefore our recommended implementation. 

4.5 Program Execution Tracing using Branch Predictors 

Almost all modern mid- to high-end embedded processors include branch 

predictors in their front-ends.  Branch predictors detect branches and predict the branch 

target address and the branch outcome in the early pipeline stages, thus reducing the 

number of wasted clock cycles in the pipeline due to control hazards.  The target of a 

branch is predicted using a branch target buffer (BTB) – a cache structure indexed by a 

portion of the branch address [68] that keeps target addresses of taken branches.  A 

separate hardware structure named an indirect branch target buffer (iBTB) can be used to 

better predict indirect branches that may have multiple target addresses [69].  A dedicated 

stack-like hardware structure called the Return Address Stack (RAS) is often used to 

predict return addresses.  The branch outcome predictors range from a simple linear 

branch history table (BHT) with 2-bit saturating counters (2bc) to very sophisticated 

hybrid branch outcome predictor structures found in recent commercial microprocessors 
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[70].  Branch predictors proved to be very effective in predicting branch outcomes and 

target addresses with high probability (over 95%).  

As described in the introduction to this chapter, a program flow change can be 

captured by recording branch address/target pairs and this is the exactly what the branch 

predictor does.  However, we do not need to send information about all the branches to 

the trace port to be able to replay the program offline.  If the software debugger maintains 

the exact software copy of the Trace Module branch predictor and uses the same policies 

for the branch predictor update, the control flow information can come from the local 

predictor, rather than traced out from the target platform.  The trace module thus needs to 

report only misprediction events which are relatively rare.   

The rest of this section is organized as follows.  In Section 4.5.1 we describe 

operation of the trace module based on branch predictor.  Section 4.5.2 describes our 

approach to encoding of branch predictor related trace events.  In Section 4.5.3 we give 

the results of our trace port bandwidth analysis, and Section 4.5.4 estimates hardware 

implementation cost.  

4.5.1 Trace Module Branch Predictor 

Our key observation is that the program execution can be replayed off-line using a 

branch predictor trace instead of a branch instruction trace.  We implement a trace 

module that consists of branch predictor structures that are solely dedicated to trace 

compression.  To distinguish it from the processor branch predictor, we name it Trace 

Module Branch Predictor (TMBP).  TMPB includes structures for predicting branch 

targets and branch outcomes.  Unlike regular branch predictors, TMBP does not need to 

include a large BTB because direct branch targets can be inferred from the binary, but it 
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may include an iBTB for predicting targets of indirect branches and a RAS for predicting 

return addresses.   

The TMBP structures are updated similarly to those in a regular branch predictor, 

but only when a branch instruction is retired.  As long as the prediction from the TMBP 

corresponds to the actual program flow, the trace module does not need to send any trace 

records.  It records only misprediction events and they are encoded and sent via a trace 

port to the software debugger.  The software debugger maintains an exact software copy 

of the TMBP structures.  It reads the branch predictor trace records, replays the program 

instruction-by-instruction, and updates the software structures in the same way TMBP is 

updated during program execution. 

 

Figure 4.17  Trace module: a system view 

Figure 4.17 shows a system view of the proposed tracing mechanism.  The trace 

module is coupled with the CPU core through an interface that carries relevant branch 

related information.  The trace module includes two counters: an instruction counter 

(iCnt) that counts the number of instructions executed since the last trace event has been 
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reported, and a branch counter (bCnt) that counts the number of relevant control-flow 

instructions executed since the last trace event has been reported (see Figure 4.18 for 

TMBP operation). 

 

47.  // For each committed instruction 
48.  iCnt++; // increment the iCnt 
49.  if ((iType==IndBr)||(iType==DirCB)) { 
50.    bCnt++;// increment bCnt 
51.    if (TMBP mispredicts) { 
52.   Encode an BPM event; 
53.   Place record into the Trace Buffer; 
54.    iCnt = 0; bCnt = 0;  
55.    }  
56.  } 
57.  if (Exception event) { 
58.      Encode an exception event; 
59.      Place record into the Trace Buffer;  
60.      iCnt = 0; bCnt = 0; 
61.  } 

Figure 4.18  Trace module operation 

The counters are being updated upon completion of an instruction in its retirement 

phase; iCnt is incremented after each instruction and bCnt is incremented only upon 

retirement of control-flow instructions of certain types, namely, after direct conditional 

branches (DirCB) and all indirect branches (IndB).  (Unconditional direct branches are 

not of our interest as their target can be inferred by the software debugger.)  These branch 

instructions may be either correctly predicted or mispredicted by TMBP.  In the case of a 

correct prediction, the trace module does nothing beyond the counter and branch 

structures updates.  In the case of a misprediction, the trace module generates a trace 

record that needs to be traced out to the software debugger.  The type and format of the 

trace record depends on the misprediction event type (Table 4.12).  An outcome 

misprediction trace record includes the bCnt value only, so that the software debugger 
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can replay the program execution until the mispredicted branch is reached.  In the case of 

an indirect branch misprediction, we can have an outcome misprediction or the target 

address misprediction (or both).  For an indirect branch incorrectly predicted as taken, a 

trace record includes the bCnt and the information that the branch is not taken (NT bit).  

In the case of a target address misprediction, a trace record includes the bCnt, the 

outcome bit taken (T), and the actual target address (TA).  Finally, in the case that an 

exception occurs, the trace module prepares a trace record that includes the iCnt and the 

starting address of the corresponding exception handler. 

Table 4.12  Trace module branch pred. events and trace records.  
[T – Taken, NT – Not Taken] 

Branch Type  TMBP Event  Trace Record 

DirCB  Outcome mispred.  (header, bCnt) 

IndB (NT)  Outcome mispred.  (header, bCnt, NT) 

IndB (T) /Uncond.  Target mispred.  (header, bCnt, T, TA) 

Exception  ‐‐  (header, iCnt, ET) 

 

 

The software debugger replays all instructions updating its software copy of the 

branch predictor and the trace module counters in the same way the hardware 

counterparts are updated (Figure 4.19).  The debugger reads a trace record and then 

replays the program instruction-by-instruction.  If it processes a non-exception trace 

record, the counter bCnt is decremented on retirement of direct conditional and indirect 

branch instructions.  When the counter bCnt reaches a zero, the software debugger 

processes the instruction depending on its type.  If the current instruction is a direct 
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conditional branch, the debugger takes the opposite outcome from the one provided by 

the predictor.  The predictor is updated and a new trace record is read to continue 

program replay.  If the current instruction is an indirect branch, the debugger reads the 

target address from the trace record, redirects the program execution, and updates its 

predictor accordingly.  Similarly, if the debugger processes an exception trace record, the 

iCnt counter is decremented on each instruction until the instruction on which the 

exception has occurred is reached. 

 

62. // For each instruction  
63. Replay the current instruction;  
64. if (An ETR is being processed) { 
65.  iCnt--; 
66.  if (iCnt == 0) { 
67.   Goto Exception Handler Routine; 
68.   Read the next trace record;  
69.    }  
70. } 
71. if (iType = AnyBranch) {  
72.  Update software copy of the TMBP;  
73.  if ((iType==IndBr)||(iType==DirCon)) { 
74.    bCnt--; 
75.    if (bCnt==0)  
76.           Read the next trace record;  
77.    }  
78. } 

Figure 4.19  Program execution replay in software debugger 

An Example.  Let us first illustrate the program tracing using an example.  A 

code segment consists of 4 basic blocks W, X, Y, and Z as illustrated in Figure 4.20a.  Let 

us consider three iterations of the program loop with the following execution pattern 

{WXZ}2{WYZ}.  The code sequence includes only direct branches and only two basic 

blocks W and Z end with conditional branches (jle Y and jge W).  Let us assume 

that the branch predictor initial state predicts the branch jle Y to be not taken (P=NT), 
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and the branch jge W to be taken (P=T).  The program execution starts from the first 

instruction in the block W (i1); the trace module keeps incrementing the iCnt and bCnt 

counters as shown in Figure 4.20b (the execution table).  In the first two loop iterations, 

conditional branches are correctly predicted.  In the third iteration, the branch predictor 

predicts the branch jle Y as not taken when it is actually taken (A=T), so we have an 

outcome misprediction event.  The trace module emits a trace record that includes 

information about the misprediction type (outcome misprediction) and the number of 

branches that have been correctly predicted since the last trace event, bCnt=5.  The 

counters are cleared and the program execution continues with block Y.  In the last 

iteration, the instruction jge W is predicted taken (P=T), but it is actually not taken 

(A=NT).  A new trace record due to outcome misprediction is emitted and the counter 

value is bCnt=1.  

The software debugger on its side is ready to replay the program starting with the 

instruction i1.  It receives a trace record that indicates that the program should be 

replayed until the fifth conditional branch is reached (Figure 4.20c, the replay table).  The 

program is replayed instruction-by-instruction and the software copy of the TMBP and 

the replay counters are updated accordingly.  When the counter bCnt reaches zero (at the 

instruction jle Y in the 3rd iteration), the debugger knows that the branch outcome of 

the currently replayed direct branch is different from the one suggested by the software 

TMBP.  The debugger needs to update its predictor structures according to the update 

policies.  It then reads the next trace record and continues program replay from the first 

instruction in block Y. 
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Execution  Replay 

Instr.  Iteration 1 Iteration 2 Iteration 3  Iteration 1  Iteration 2  Iteration 3 

  P/A  {i/b}
Cnt

P/A  {i/b}
Cnt

P/A  {i/b}
Cnt

P/A  {i/b} 
Cnt 

P/A  {i/b} 
Cnt 

P/A  {i/b}
Cnt

W: i1    1/0   11/2   21/4   ‐/5    ‐/3    ‐/1 

  i2    2/0   12/2   22/4   ‐/5    ‐/3    ‐/1 

  jle Y  nT/nT 3/1 nT/nT 13/3 nT/nT* 23/5 nT/nT ‐/4  nT/nT  ‐/2  nT/nT* ‐/0 

X:   i4    4/1   14/3       ‐/4    ‐/2     

  i5    5/1   15/3       ‐/4    ‐/2     

  i6    6/1   16/3       ‐/4    ‐/2     

     jmp Z    7/1   17/3       ‐/4    ‐/2     

Y:  i8            1/0           ‐/1 

  i9            2/0           ‐/1 

  i10            3/0           ‐/1 

  i11    8/1   18/3   4/0   ‐/4    ‐/2    ‐/1 

  i12    9/1   19/3   5/0   ‐/4    ‐/2    ‐/1 

     jge W  T/T  10/2 T/T  20/4 T/nT* 6/1 T/T  ‐/3  T/T  ‐/1  nT/T* ‐/0   
             (a)               (b)                          (c) 

Figure 4.20  Tracing and replaying program execution example 

4.5.2 Trace Record Encoding 

Trace records should be encoded in such a way to minimize storage requirements 

due to buffering inside the trace module and trace port bandwidth requirements.  The 

proposed mechanism requires four main types of trace records as shown in Table 4.12 

and the software debugger has to be able to distinguish between them.  The trace record 

length depends on the event type and can vary from several bits to several dozen of bits.  

Having a fixed number of bits in the trace record for bCnt and iCnt counter values would 

not be an optimal solution because the distance between two consecutive branch predictor 

mispredictions may vary widely between programs, as well as within a single program as 

it moves through different program phases.  Typical values found in bCnt and iCnt 

counters are also heavily influenced by the misprediction rate, which is a function of the 



 

96 

 

type and organization of the branch predictor.  Thus, finding a theoretical optimal 

solution for encoding is not feasible.  Rather, we opt for an empirical approach in 

determining trace record formats. 

We employ a variable-length encoding scheme that minimizes trace record 

lengths for the most frequent bCnt and iCnt values.  All trace records start with a header 

field, followed by a variable length field that carries the bCnt counter value.  The header 

(bh) has variable length (bhLen) and it always ends with a zero bit, i.e., bh=′111...10′.  Its 

length determines the length of the bCnt counter field as follows: (bSize+(bhLen-

1)*bStepSize).  The single-bit header, bh=′0′, specifies bSize bits in the bCnt counter field 

(encoding values from 0 to 2bSize-1).  The two-bit header, bh=′10′, specifies 

bSize+1*bStepSize bits in the bCnt counter field (encoding values from 0 to  

2bSize+bStepSize - 1), three-bit header, bh=′110′, specifies bSize+2*bStepSize bits (0 to 

2bSize+2*bStepSize - 1), and so on.  

A trace record emitted on a direct branch outcome misprediction event consists of 

the header (bh) and the bCnt counter field (Figure 4.21a).  A similar trace record format 

is used for indirect conditional branches.  If an indirect branch is predicted as taken, but it 

is actually not taken, a trace record with the format shown in Figure 4.21b is used.  An 

additional one-bit field O carries information that the outcome of the branch is not 

correct.  A similar format shown in Figure 4.21c is used for indirect conditional branches 

that are predicted as not taken, but are actually taken.  Indirect unconditional 

mispredictions are encoded as shown in Figure 4.21d.  The last two trace records shown 

in Figure 4.21c and Figure 4.21d carry information about the bCnt counter and the branch 

target address TA.  A naïve approach would be to just append an additional 32-bit field 
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with the target address to the original trace record.  An alternative approach is to encode 

only the difference between subsequent target addresses.  The trace module maintains the 

previous target address (PTA) – that is, the target address of the last mispredicted indirect 

branch.  When a new target misprediction event is detected, the trace module calculates 

the difference diffTA as follows: diffTA = TA – PTA, where the TA is the target address of 

the current branch.  The trace module then updates the PTA, PTA=TA.  By profiling the 

absolute value of the diffTA, |diffTA|, for several programs with a significant number of 

indirect branches, we find that we can indeed shorten trace records by using difference 

encoding.  

0

a. Direct Branch Outcome Misprediction

bhLen

1…10 xx...xx

bSize+ (bhLen‐1)*bStepSize

bh bCnt

thLen

1...10 xx...x
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th |diffTA|/TA
c. Indirect Conditional Branch Misprediction (T)
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1

b. Indirect Cond. Branch Outcome Misprediction (NT)

bhLen

1…10 xx...xx
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0

thLen

1...10 xx...x

taSize+ (thLen‐1)*taStepSize

th ts

1bhLen

1…10 xx...xx
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bh bCnt

1

0 00...0

bSize

bh bCnt

ehLen

11...10 xx...xx

eh iCnt
e. Exception Event

eSize+ (ehLen‐1)*eStepSize 32

xx...x

ETA

|diffTA|/TA

 

Figure 4.21  Trace record formats for branch misprediction events and exceptions 
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We employ variable encoding for the difference/target address field 

(|diffTA|/TA).  Its length is specified by the number of header bits.  We adopt the 

following scheme: a single header bit (th = ′0′) specifies taSize bits in the |diffTA|/TA 

filed.  The two-bit header (th = ′10′) specifies taSize+1*taStepSize bits, three-bit header 

(th = ′110′) specifies taSize+2*taStepSize bits, and so on.  If the |diffTA|/TA field 

requires less than 32 bits, we also need to provide information about the sign bit (ts) of 

the difference; otherwise, the whole 32-bit address is sent (without the sign bit). 

Figure 4.21e shows the format of trace records used to report exception events.  

An exception trace record includes information about the iCnt counter and the starting 

address of the exception handler (ETA).  It is an extension of the base format used for 

direct conditional branch mispredictions.  The bh field indicates the shortest bCnt field of 

bSize bits.  The bCnt field consists of all zeros indicating that this is an exception event 

trace record.  The next two fields, the exception header (eh) and the instruction counter 

(iCnt), are used to specify the number of instructions since the last branch predictor 

misprediction event.  We use the same variable encoding as before - the ehLen-bit header 

specifies the eSize+(ehLen-1)*eStepSize bits in the iCnt field.  Finally, the last portion of 

the message includes the whole exception address (ETA).  Note: we could use the same 

differential encoding described for indirect branches (eth and diffETA/ETA fields), but 

because of the low frequency of exception events, we opt for encoding the whole 

exception address of 32-bits.  

Determining the trace record parameters such as bSize, bStepSize, taSize, 

taStepSize, eSize, and eStepSize depends on benchmark profiles and characteristics of the 

branch predictor.  To determine suitable values for trace record parameters, we profiled 
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the behavior of MiBench benchmarks and analyzed the probability density function for 

the minimum bit-length of the bCnt counter.  We show that our proposed variable 

encoding scheme indeed reduces the size of the output trace and outperforms any fixed-

length encoding scheme.  Next, we analyzed several combinations of (bSize, bStepSize) 

pairs (bSize[2..6] and bStepSize[1..6]) to determine an optimal combination that 

results in the shortest program trace across our benchmark suite.  The results of this 

analysis indicate that the total trace size has a minimum when bSize=3 and bStepSize=2 

for bTMBP and sTMBP configurations and bSize=3 and bStepSize=1 for tTMBP 

configuration.   

Similarly we analyzed the minimum bit-length of the |diffTA| field.  The results 

clearly indicate that upper address bits of the subsequent mispredicted indirect branches 

rarely change, thus we can encode the difference diffTA instead of the whole target 

address.  We analyze several combinations for parameters taSize and taStepSize.  The 

results indicate that taSize=8 and taStepSize=6 give the shortest trace for the tTMBP 

configuration, and taSize=12, taStepSize=4 for sTMBP and bTMBP.  

In spite of a relatively low frequency of exception events, we analyze the profile 

for iCnt counters in order to determine the parameters eSize and eStepSize.  The profiles 

for software exceptions indicate that all iCnt values can be encoded with a 2-bit field.  

Thus, we adopt that eSize=2 and eStepSize=4.   

4.5.3 Trace Port Bandwidth Analysis 

In this section we evaluate the effectiveness of the proposed tracing mechanism 

by measuring the average trace port bandwidth (TPB) for several branch predictor 

configurations.  We consider three TMBP configurations, bTMBP, sTMBP, and tTMBP.  
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The base TMPB configuration (bTMPB) includes a 64-entry 2-way set associative iBTB, 

an 8-entry RAS for indirect branch target prediction, and a 512-entry GSHARE global 

outcome predictor.  Each entry in the iBTB includes the tag field and the target address.  

The tag and iBTB index are calculated based on the information contained in a path 

information register (PIR).  We assume a 13-bit PIR that is updated by relevant branch 

instructions as follows: PIR[12:0]=((PIR[12:0]<<2) xor PC[16:4]) | Outcome.  The iBTB 

tag and index are calculated as follows: iBTBTag = PIR[7:0] xor PC[17:10] and 

iBTBIndex = PIR[12:8] xor PC[8:4].  The outcome predictor index function is 

GSHAREIndex = BHR[8:0] xor PC[12:4], where the BHR register keeps the outcome 

history for last 8 conditional branches.  The sTMBP configuration includes a smaller, 32-

entry, iBTB and the tTMBP does not include iBTB at all. 

Table 4.13  Trace port bandwidth for different TMBP organizations 

Test  tTMBP sTMBP bTMBP

adpcm_c  0.001 0.001 0.001

bf_e  0.011 0.009 0.009

cjpeg  0.062 0.044 0.04

djpeg  0.035 0.024 0.021

fft  0.166 0.096 0.091

ghostscript  0.513 0.230 0.127

gsm_d  0.013 0.013 0.013

lame  0.028 0.029 0.029

mad  0.035 0.033 0.033

rijndael_e  0.078 0.070 0.016

rsynth  0.023 0.021 0.021

sha  0.029 0.02 0.022

stringsearch 0.303 0.183 0.164

tiff2bw  0.013 0.011 0.007

tiff2rgba  0.015 0.011 0.008

tiffdither  0.062 0.062 0.062

tiffmedian  0.009 0.008 0.007

Average  0.076  0.047  0.036 
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Table 4.13 shows the results of trace port bandwidth analysis for 

three configurations of the proposed trace module (tTMBP, sTMBP, and bTMBP).  We 

can see that the proposed technique requires a very small trace port bandwidth.  The 

smallest tTMBP configuration requires only 0.0764 bits/ins.  The sTMBP and bTMBP 

configurations benefit from the indirect branch target buffer requiring only 

0.0467 bits/ins and 0.0356 bits/ins, respectively.  When compared to 1 bit/ins that is the 

typical bandwidth of the commercial state-of-the-art trace modules, the proposed 

technique with the bTMBP configuration provides improvement of over 28 times.  

4.5.4 Hardware Implementation and Complexity 

To estimate the size of the proposed trace module, we need to estimate the size of 

all structures inside the trace module, including the outcome predictor, RAS, iBTB, PIR, 

BHR, the trace encoder, and the trace output buffer.  The estimation of the size of 

predictor structures is straightforward.  For iBTB and RAS, we implement an 

enhancement to reduce their complexity.  We find that uppermost 12 bits of the indirect 

branch targets remain unchanged relative to the previous target in 99.99% of cases.  

Consequently, we can use a last value (LV) predictor for the upper 12 bits of the target 

address, and keep only the lower 18 address bits in the iBTB address entry (the last two 

bits are always 0 in ARM architecture).  A miss in the LV predictor causes a whole target 

address to be included in the trace record.  This way we reduce the complexity 

significantly with negligible degradation in the TMBP’s iBTB hit rates.  

To determine the size of the trace output buffer, we use a cycle-accurate processor 

model to find the maximum number of bits in this buffer at any point in time during 

benchmark execution.  We assume the trace buffer is emptied through the trace port at the 
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rate of a one bit per processor clock cycle.  The worst case happens during the TMBP 

warm-up when we experience a number of consecutive mispredictions.  We find that a 

buffer of 128 bits ensures that the processor is never stalled due to tracing and that no 

trace records are lost.  

The estimates for hardware complexity measure in logic gates for 

three configurations are as follows (assuming 1.5 logic gates per memory bit): tTMBP 

requires 2,800 gates, sTMBP requires 4,000, and bTMBP requires slightly over  

5,200 gates.  

4.6 Comparative Analysis 

In this section we compare the performance of the proposed compression 

techniques (DMTF, SDC-LSP, and TMBP) with several alternative approaches.  We 

show the average trace port bandwidth requirements and complexity.  For trace port 

bandwidth comparison, we use four different schemes described below.  BASE is the 

output from the stream detector, and it shows us the compression rate after transforming 

the instruction addresses into partial stream descriptors (SA/-, SL).  HWLZ is a hardware 

implementation of Lempel-Ziv compression algorithm that is specifically tailored to 

program execution traces [60].  SW-GZIP is the software compression utility gzip that 

implements the Lempel-Ziv compression algorithm, and is used here to underline the 

effectiveness of all proposed schemes.  This algorithm uses large memory buffers and its 

implementation in a hardware trace module would be cost-prohibitive.  NEXS 

implements a simple trace reduction technique inspired by the NEXUS standard [9].  The 

starting address from the incoming stream descriptor is XORed with the starting address 

from the previous stream descriptor, producing DiffSA = Incoming.SA[31:0] xor 
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Previous.SA[31:0].  The difference is split into groups of 6 bits, DiffSA[5:0], 

DiffSA[11:6], DiffSA[17:12], etc.  The leading zeros in the DiffSA are not sent to the 

trace port, thus reducing the trace port bandwidth.  For example, if the DiffSA[31:6] 

consists only of zeros, then only the DiffSA[5:0] is sent to the trace port, together with a 

2-bit header indicating that this is the terminating byte for the stream address field.  The 

SL field is always sent to the trace port without further reduction. 

Trace port bandwidth results are given in Table 4.14 and a summary for several 

configurations of proposed compression methods is given in Figure 4.22.  The 

complexity of these configurations measured in the number of logic gates is given in 

Figure 4.23. 

Table 4.14  Trace port bandwidth evaluation: A comparative analysis 

      HWLZ  HWLZ eDMTF eDMTF bSDC eSDC rSDC         

Test  BASE  NEXS  256  1024  (64,4)  (192,4) 128  128  128  tTMBP  sTMBP  bTMBP SW‐GZIP

adpcm_c  0.150  0.149  0.024  0.025 0.001 0.001 0.019 0.001 0.001 0.001  0.001  0.001 0.001

bf_e  4.913  4.010  0.354  0.367 0.279 0.284 0.357 0.345 0.345 0.011  0.009  0.009 0.038

cjpeg  0.790  0.752  0.431  0.138 0.089 0.091 0.131 0.088 0.088 0.062  0.044  0.04 0.050

djpeg  0.390  0.366  0.230  0.176 0.055 0.052 0.075 0.053 0.054 0.035  0.024  0.021 0.019

fft  1.895  1.554  1.921  1.036 1.012 0.201 0.616 0.542 0.554 0.166  0.096  0.091 0.065

ghostscript  1.814  1.578  1.394  0.187 0.299 0.306 0.232 0.216 0.216 0.513  0.230  0.127 0.038

gsm_d  0.621  0.567  0.152  0.151 0.058 0.040 0.086 0.051 0.052 0.013  0.013  0.013 0.009

lame  0.452  0.391  0.171  0.148 0.110 0.113 0.102 0.090 0.109 0.028  0.029  0.029 0.040

mad  0.785  0.668  0.268  0.144 0.135 0.147 0.129 0.116 0.117 0.035  0.033  0.033 0.042

rijndael_e  1.013  0.840  0.043  0.038 0.088 0.096 0.192 0.183 0.185 0.078  0.070  0.016 0.013

rsynth  0.883  0.747  0.271  0.247 0.184 0.108 0.175 0.147 0.149 0.023  0.021  0.021 0.018

sha  0.602  0.567  0.441  0.036 0.049 0.049 0.101 0.074 0.074 0.029  0.02  0.022 0.005

stringsearch  2.157  1.932  1.962  1.135 0.825 0.387 0.472 0.412 0.416 0.303  0.183  0.164 0.104

tiff2bw  0.668  0.654  0.146  0.137 0.061 0.011 0.104 0.030 0.031 0.013  0.011  0.007 0.006

tiff2rgba  0.349  0.330  0.160  0.095 0.050 0.006 0.045 0.012 0.012 0.015  0.011  0.008 0.005

tiffdither  0.692  0.659  0.573  0.301 0.197 0.166 0.190 0.158 0.159 0.062  0.062  0.062 0.080

tiffmedian  0.380  0.374  0.081  0.073 0.039 0.012 0.066 0.027 0.028 0.009  0.008  0.007 0.007

Average  1.055  0.907  0.446  0.233 0.194 0.119 0.174 0.146 0.150 0.076  0.047  0.036 0.031
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The average trace port bandwidth required for the NEXS scheme is 0.907 bits/ins, 

ranging from 0.149 bits/ins (adpmc_c) to 4.01 bits/ins (bf_e).  This relatively small 

improvement compared to the BASE scheme is due to the fact that the number of indirect 

branches is small, resulting in a small number of trace records that include a full stream 

descriptor.  Another reason is the relatively high overhead in header bits. 

The average trace port bandwidth required for the NEXS scheme is 0.907 bits/ins, 

ranging from 0.149 bits/ins (adpmc_c) to 4.01 bits/ins (bf_e).  This relatively small 

improvement compared to the BASE scheme is due to the fact that the number of indirect 

branches is small, resulting in a small number of trace records that include a full stream 

descriptor.  Another reason is the relatively high overhead in header bits. 
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Figure 4.22  Trace port bandwidth evaluation for proposed and related mechanisms 
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HWLZ with a search buffer with 256 12-bit entries (HWLZ-256) achieves 

average trace port bandwidth of 0.446 bits/ins, ranging from 0.024 bits/ins to 

1.96 bits/ins.  The drawback of this scheme is a relatively high cost in both trace module 

complexity and compression time.  Also, this scheme has very poor compression on 

certain programs (e.g., fft and stringsearch require more than 1.9 bits/ins).  HWLZ-1K 

shows the results for the same scheme when the search buffer size is increased to 

1024 entries.  We see that certain programs are still poorly compressed (e.g., fft and 

stringsearch require more than 1 bits/ins), requiring wider trace ports. 
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Figure 4.23  Implementation complexity of proposed tracing mechanisms 

The best DMTF configuration, eDMTF (192, 4), achieves trace port bandwidth of 

0.12 bits/ins on average, ranging from 0.001 to 0.39 bits/ins.  Its estimated complexity is 

equivalent to 25,000 logic gates, which is half of the complexity reported for the HWLZ 
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trace compressor (HWLZ-256).  The smaller configuration, DMTF (64, 4), achieves 

0.2 bits/ins on average (ranging from 0.001 to 1) at the cost of 8,200 logic gates. 

The rSDC with 128 entries requires 0.15 bits/ins of trace port bandwidth, ranging 

from 0.0013 to 0.551 bits/ins at the cost of 6,061 logic gates.  The bSDC requires 

0.174 bits/ins, ranging from 0.019 to 0.616 bits/ins at the cost of 8,311 logic gates.  The 

eSDC requires 0.146 bit/ins, ranging from 0.001 to 0.542 bits/ins at the cost of 8311 logic 

gates.  The worst performing benchmark requires less than 1 bit/ins in the rSDC-128 

scheme, allowing us to trace the program execution through just a single bit on the trace 

port (e.g., a JTAG port is sufficient).  

The tTMBP configuration requires 0.0764 bits/ins on average at the trace port, 

ranging from 0.0013 to 0.551 bits/ins.  The sTMBP and bTMBP configurations benefit 

from the indirect branch target buffer requiring only 0.0467 bits/ins. and 0.0356 bits/ins. 

on average, respectively.  When compared to 1 bit/ins that is the typical bandwidth of the 

commercial state-of-the-art trace modules, the proposed technique with the bTMBP 

configuration provides improvement of over 28 times.  We can also observe that the 

compression ratio achieved by the bTMBP configuration is close to that achieved by the 

software gzip utility, which further underscores the strength of the proposed mechanism.  

Note: The SW-GZIP compresses the partial stream descriptors only, not the whole stream 

of instruction addresses.  This is more realistic for comparison purposes as the proposed 

compressor mechanisms also compress stream descriptors, although this approach favors 

the gzip.  The estimates for hardware complexity for these three configurations are as 

follows: tTMBP requires 2,800 gates, sTMBP requires 4,000, and bTMBP requires 

slightly over 5,200 gates. 
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CHAPTER 5    

 

 

COMPRESSION OF DATA ADDRESSES  

 

 

Data address traces are widely used in trace-driven computer architecture 

simulators for evaluation and optimization of a processor’s caches or the whole memory 

subsystem.  In multi-core systems, data address traces offer valuable information about 

shared memory performance.  Correlated traces offer insights into the order of memory 

accesses and into the number of collisions on the memory bus, and thus allow system 

designers to optimize the memory subsystem. 

The Nexus standard [9] includes data addresses as a part of data trace.  Although 

data values, already included in the data trace, are sufficient to reconstruct the program 

execution in a fully functional offline simulator, data addresses offer an additional level 

of security into correct reconstruction and can be used for trace synchronization purposes.  

Trace synchronization is needed when a part of the data trace is dropped due to the 

saturation of available bandwidth or due to errors in the communication channel.  When a 

fully functional simulator is not available in the software debugger, data address traces 

are necessary to capture memory access patterns, which are especially important in the 
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debugging of multi-core systems.  The importance of data address traces is further 

emphasized by ever-tightening time-to-market pressures – system designers may not have 

enough time to develop sophisticated software debuggers that include fully functional 

simulators. 

Data address trace compression is crucial for reducing the overall cost of the data 

tracing.  Unfortunately, data addresses are much harder to compress than instruction 

address traces.  The existing compressor structures are often very complex [57, 58, 71] as 

they include large caches for storing data addresses of recently executed memory 

referencing instructions.  In this section, we introduce two cost-effective techniques to 

reduce the size of data address traces.  Section 5.1 describes our data address filtering 

method which identifies and traces out only data addresses that cannot be inferred by a 

software debugger.  The proposed trace module and the software debugger both maintain 

the list of general-purpose registers with known content in order to minimize the number 

of data addresses that are traced out.  Section 5.2 presents our data address trace 

compression technique that focuses on the compression of high-order address bits that 

exhibit low variability. 

5.1 Data Address Filtering  

The proposed data address filtering method tries to identify data addresses that 

can be inferred by the software debugger during the program replay.  Data addresses that 

can be inferred are thus not traced out of the chip which helps reduce trace port 

bandwidth requirements.  Let us consider a memory referencing instruction specifying a 

memory direct addressing mode.  In this case the data address is directly encoded in the 

instruction, and thus can be inferred by the software debugger during program replay.  
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However, the memory direct addressing modes are not that frequently used in modern 

RISC architectures.  Fortunately, data addresses can be inferred in case of other 

addressing modes, e.g., register indirect with displacement which is the most frequently 

used in modern RISC architectures [72].  For example, the software debugger can 

maintain the content of general-purpose registers in the register file; the content is 

updated during a partial program replay offline using the data addresses that cannot be 

inferred and are thus traced out by the trace module.  Similarly to the program execution 

tracing, both the trace module and the software debugger maintain similar structures that 

are synchronized during program tracing.  It should be noted that here we do not consider 

a complete program replay (we do not trace data values, rather only data addresses).  The 

proposed method requires a close integration of the trace module and processor, but in 

turn requires no additional storage resources.  In Section 5.1 we describe a register 

validation mechanism that is used to identify what addresses need to be traced out and 

what addresses can be inferred by the software debugger that supports the proposed 

mechanism.  In Section 5.2, we describe a mechanism for compression of only the high-

order data address bits.  Section 5.3 gives the results of a comparative analysis of the 

proposed compression techniques and several other data address compression techniques. 

5.1.1 Data Address Filtering Details 

The software debugger can perform a full program replay if all program inputs are 

made available.  The software debugger maintains its local copy of the processor’s 

register file that is updated during program execution.  To be able to replay the program 

execution offline, the trace module needs to record and trace out all the data values 

brought to the processor chip from memory or input peripheral devices (loads from 
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memory or peripheral devices).  If we opt to trace only data addresses, the software 

debugger cannot perform a full program replay, rather only a partial replay is feasible.  

Similarly to the full program replay, the software debugger maintains its own local copy 

of the register file.  However, in this case we may not know the content of individual 

registers; the content of some registers can be inferred from the previously traced data 

addresses, while the content of others is not known.  Thus, the software debugger needs 

to know the list of registers with the known content and the list of registers with the 

unknown content.  Thus, each register can be associated with a flag that indicates whether 

its value is known (Valid) or not known (Invalid).  Based on this information, the 

software debugger determines whether a particular data address can be calculated locally 

or if data address trace records are required.  Both the trace module and the software 

debugger need to maintain the status information about individual registers (Valid or 

Invalid).  We call this mechanism a register validation.   

There exists three possible ways for a register content to become valid (known): 

 From a received data address, DA, e.g., an instruction {LDR, R5, [R4,#2]} loads 

a value into register R5 from the memory address calculated DA = R4+2.  Once 

the data address DA is received, R4 can be set valid and its value is {DA-2}.  

Oppositely, if R4 is valid, DA can be calculated locally by the software debugger, 

DA=R4+2, and thus needs not be traced out. 

 From an instruction that specifies an immediate operand, e.g., an instruction 

{MOV R4, #2} sets value of register R4 to 2.  Therefore, register R4 is marked as 

Valid, and initialized R4=2.  
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 From an instruction that performs an operation on valid source registers, e.g., an 

instruction {MOV R4, R5} copies value from R5 to R4; if R5 is Valid, R4 is 

marked as Valid too, and R4 is loaded with the value of R5, R4=R5.  This rule 

can be extended to instructions with multiple source operands (up to four in the 

ARM’s instruction set).  In general, an instruction destination register can be 

marked as Valid if it is the result of an operation on source registers that are all 

marked as Valid.  

The software debugger is responsible for maintaining and updating its local copy 

of the register file during program replay and maintaining and updating the status of each 

register (Valid/Invalid).  To keep the register file up to date, the software debugger 

performs operations that are reverse to those of address calculations performed inside the 

processor.  It takes traced data addresses as an input and tries to determine the content of 

individual registers using the information available in the program binary.  To be able to 

perform this task, the software debugger should be able to decode instructions from the 

binary.   

Table 5.1 illustrates this process using a sequence of instructions.  We assume that 

all registers are initially invalid (both in the trace module and software debugger).  The 

first instruction loads an immediate constant #0 to register R1.  Both the trace module and 

the software debugger set R1 as valid and the software debugger sets R1 to zero.  The 

next instruction loads an operand from memory from the address calculated as DA=R2+5.  

The register R2 is not valid and thus the data address, DA, is traced out of the processor.  

On the other side, the software debugger cannot calculate the data address and it expects 

it from the trace port; upon receiving the data address, DA, it calculates the value of 
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register R2, R2=DA-5, and sets its valid bit.  The register R5 is loaded from memory, so 

its content is not known, so its valid bit has to be reset.  The third instruction calculates 

R4, R4=R2+R1; the valid bit of register R4 is set because both the input operands R2 and 

R1 are valid.  The fourth instruction loads the register R8 with an operand from memory 

at the address DA=R2+R1.  The trace module does not need to trace out the DA because 

the software debugger can calculate it based on R2 and R1 that are both valid.  The 

register R8 is marked as invalid.  Finally, the last instruction moves the content of R7 to 

R2; the source register is invalid, and the register R2 is thus marked as invalid.  

Table 5.1  Partial software replay filtering example 

Instruction  CPU: Reg. File  CPU: Trace Output  Debugger: 
Trace Input 

Debugger: 
Reg. File 

MOV R1, #0  R1: Valid  —  — 
 

R1: Valid, R1=0 

LDR R5, R2, #5 
 

R2: Valid 
R5: Invalid 

Trace DA 
(DA=R2+5) 
 

DA expected 
 

R2: Valid, R2=DA–5 
R5: Invalid 

ADD R4, R2, R1 
 

R4: Valid 
(R1 and R2 are Valid)

— 
 

—  R4: Valid,  
R4=R1+R2 

LDR R8, R2, R1 
 

R8: Invalid  — (no trace)  ‐‐ (DA is inferred,
DA=R2+R1) 

R8: Invalid  

MOV R2, R7  R2: Invalid    —  R2: Invalid 

 

 

Figure 5.1 shows a system view of the proposed data address filtering.  The trace 

module (Figure 5.1 left) receives the relevant information from the processor core about 

the instruction type (memory referencing ins., load/store), the destination and source 

registers, and the data address itself.  It also receives a signal indicating an entrance into 

an exception or system call routine.  The register validation process depends on whether 

the instruction is a memory-referencing or a non memory-referencing instruction.   
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 For a non-memory referencing instruction, the trace module marks destination 

registers valid only if all source registers are valid.  For the ARM architecture set, 

we can have up to 4 source registers and up to 3 destination registers.   

 For a memory referencing instruction, source registers are used to calculate the 

data address.  In the case that all source registers are valid, the data address is not 

traced as it can be inferred by the software debugger (the data address is filtered 

out); otherwise, the data address is traced out.  In the case that all but one source 

register is valid, the only invalid register can be marked as valid in both the trace 

module and the software debugger (it can be calculated based on the data address 

and the content of other known source registers).  For load instruction, the 

destination register is always invalidated as its value is unknown after the load.  

The exception control signal serves to disable the control logic for register 

validation.  If the software debugger is unable to trace the system calls or exception 

service routines, the trace module should disable the register validation unit in the trace 

module.  

Figure 5.1 right shows the block diagram of the software debugger and its 

corresponding data address trace structures.  It maintains a software copy of the register 

file status bits (valid/invalid) as well as the software copy of the register file.  The 

debugger replays the program by fetching the instructions from the source binary.  A 

replayed instruction is decoded in the functional simulator for the given architecture; it 

provides an identical set of signals as the processor to the trace module.  The functional 

simulator is extended with the register calculation and validation unit (RCVU).  The 

RCVU maintains and updates the content and the status of the general-purpose register 



 

114 

 

based on the received data address and control signals from the functional simulator.  As 

the final data address, RCVU selects one calculated in the instruction set simulator if all 

the source registers are valid, or takes the traced one if the data address cannot be 

calculated.  To calculate a register value, the functional simulator replays all instructions 

that do not require traced data addresses.  For register value calculations that require data 

addresses, RCVU implements the needed functionality. 

 

Figure 5.1  Data address trace filtering: A system view 

5.1.2 Addressing Modes and Register Validation  

The process of register validation is architecture dependant.  In this section we 

specifically address the implications of the ARM addressing modes on the register 

validation process. 

Effects of offset mode.  In general, a data address is calculated as a sum of 

two source operands specified by the instruction word: a base and an offset.  The base 

operand corresponds to the value of a specified base register.  The offset operand can be 
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an immediate value, the value of a specified index register, or the result of an operation 

performed on a specified index register.  For example, in the instruction {LDR R5, [R2, 

R4, lsl #2]}, the base corresponds to the value of register R2 (R2 is a base register), while 

the offset corresponds to the value in register R4 that is shifted for two bits left (R4 is an 

offset register).  Below we discuss the register validation process depending on the type 

of the address offset.  

 In the case of an immediate offset (the offset field is specified in the instruction 

itself), the base register is always marked as valid as its value is known since the 

data address is known.  For example, the validation process for the instruction  

{LD R2, [R4, #5]}, which loads R2 from the memory address {R4+5}, will mark 

R4 as valid; the software debugger will set its value to {DA-5}.   

 In the case of a register offset (the offset field specifies a register and an operation 

on it), the base register can be validated only if the offset register is valid.  For 

example, the register validation for the instruction {LD R2, [R4, R5]}, which 

loads R2 from the memory address {R4+R5}, will mark R4 as valid and the 

software debugger will set its value to {DA-R5} only if R5 is valid.   

To validate the offset register, the process is similar, but may involve additional 

steps in the case of a calculated offset (the offset is the result of an operation on the offset 

register).  For example, if the data address is calculated as{DA = R2 + f(R4)}, where R2 

is the base and R4 is the offset register and f is an operation on the index register, the 

software debugger can calculate R4 as f-1(DA - R2).  Thus, function f() must be reversible.  

For the ARM architecture, function f() is usually a shift operation on an offset register.  

Shift operations are as follows: 
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 Shift left:  Shift to the left for a certain number of bits. 

 Shift right:  Shift to the right for a certain number of bits. 

  Ror:  Rotate register.  Shift for one bit to the right is performed while the most 

significant bit of the register gets the value of the carry flag from the status 

register. 

 No Shift:  Original value is returned. 

 Zero:  This type specifies that the actual shift value should be zero. 

Some shifting operations are not reversible.  For example, the shift right or left 

operation can drop some bits and the reversed shift operation cannot recreate the original 

register values.  In several special cases, it is possible to preserve these values, but for 

simplicity of implementation, we do not consider them.  The rotate operation uses 

information from the status register, thus the validation process must be performed on the 

status register too.  Memory referencing instructions in our benchmarks do not use the 

rotate operation, thus we do not consider them in the validation process.  Note: The 

filtering mechanism is actually unusually complex in the ARM instruction set due to a 

rich set of addressing modes.  In other architectures, such as MIPS [73], the 

implementation of the register validation is quite straightforward. 

Effects of indexing.  The ARM instruction set architecture uses three basic 

indexing modes: Pre-, Post- and Auto- Indexing.  Both data address calculation and the 

register validation depend on the indexing type. 

In the Pre-Indexing mode, the data address is calculated from the base register 

and the result of an operation on an offset register, e.g., for instruction {LD, R5, [R4, 

R3]}, which uses Pre-Indexing mode, the DA is calculated as {DA = R4 + R3}.  Thus, 
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the DA can be calculated only if both the base and offset registers are valid.  The base 

register R4 is marked as valid if the register R3 is valid, and vice versa, the offset register 

R3 is marked valid if the register R4 is valid. 

In the Auto-Indexing mode, the data address is also created from the base register 

and the result of an operation on the offset register.  Upon completion of the instruction, 

the base register is updated, e.g., in instruction {LD, R5, [R4, R3, lsl #2]!}, which uses an 

Auto-Indexing mode, the data address DA is {DA = R4 + (R3<<2)} and R4 takes the 

value of DA, {R4 = DA}.  Thus, the DA can be calculated only if both the offset and the 

base registers are valid.  The base register is always marked as valid. 

In the Post-Indexing mode, the data address is calculated from the base register 

only.  The base register is updated with information from both the base and the offset 

registers, e.g., in instruction {LD, R5, [R4], R3, lsl #2}, which uses the Post-Indexing 

mode, the data address is {DA = R4 + (R3<<2)} and R4 is updated as follows: {R4 <= 

R4 +(R3<<2)}.  Thus, the DA can be calculated only if the base register is known (R4).  

The base register can be validated only if both the base and offset registers are valid. 

The ARM instruction set also includes multiple load and store instructions.  These 

instructions specify a set of general-purpose registers that are loaded or stored from 

multiple consecutive memory locations defined by the starting address.  These 

instructions use the immediate offset addressing mode.  Once the starting data address is 

known, the remaining data addresses are calculated relative to this address (fixed stride).  

5.1.3 Experimental Evaluation  

The goal of our experimental evaluation is to determine the percentage of memory 

referencing instructions whose data addresses can be filtered out using the proposed 
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mechanism.  Our first step is to analyze the distribution of memory-referencing 

instruction types. We consider the following types of memory-referencing instructions:  

 NotValid – the instruction condition is not satisfied and instruction is not 

executed (Note: ARM ISA supports conditional execution of all instructions). 

 PreImm, PostImm, AutoImm – Pre-, Post-, Auto-indexing with immediate offset.  

 PreReg, PostReg, AutoReg – Pre-, Post-, Auto-indexing with register offset.  

 LDM – multiple loads. 

 PC relative – PC as the base register with immediate offset; the resulting data 

address is always known. 

Table 5.2  Distribution of load instruction types 

Test  NotValid  PreImm PostImm AutoImm PreReg PostReg AutoReg  LDM  PC relative

adpcm_c  0.0%  71.4% 0.0% 0.0% 28.5% 0.0% 0.0%  0.0%  42.9%

bf_e  0.0%  29.7% 8.0% 0.0% 29.4% 0.0% 0.0%  32.8%  5.8%

cjpeg  0.2%  67.1% 1.1% 0.0% 30.8% 0.0% 0.0%  0.9%  3.2%

djpeg  0.4%  52.2% 7.6% 0.0% 38.7% 0.0% 0.0%  1.1%  1.2%

fft  1.1%  75.1% 5.2% 0.1% 5.7% 0.0% 0.0%  12.8%  9.8%

ghostscript  2.1%  80.1% 4.9% 0.1% 5.6% 0.0% 0.0%  7.2%  8.2%

gsm_d  0.0%  97.3% 0.0% 0.0% 0.6% 0.0% 0.0%  2.1%  18.2%

lame  0.0%  71.4% 4.1% 0.0% 8.3% 0.0% 0.0%  16.2%  4.7%

mad  0.0%  87.8% 1.7% 0.0% 8.2% 0.0% 0.0%  2.3%  2.3%

rijndael_e  0.2%  52.5% 2.6% 0.2% 41.6% 0.0% 0.0%  2.9%  23.2%

rsynth  0.1%  94.1% 1.5% 0.0% 1.1% 0.0% 0.0%  3.2%  29.0%

sha  0.0%  20.1% 0.0% 0.0% 78.7% 0.0% 0.0%  1.1%  0.9%

stringsearch  4.1%  51.3% 14.7% 15.3% 5.5% 0.0% 0.0%  9.2%  5.4%

tiff2bw  0.0%  25.4% 74.3% 0.0% 0.1% 0.0% 0.0%  0.2%  0.0%

tiff2rgba  0.0%  85.8% 0.0% 0.0% 0.1% 0.0% 13.9%  0.2%  0.0%

tiffdither  0.0%  78.6% 11.1% 0.0% 9.3% 0.0% 0.0%  1.0%  13.0%

tiffmedian  0.0%  51.3% 34.2% 0.0% 14.4% 0.0% 0.0%  0.1%  0.5%

Average  0.3%  73.5% 7.3% 0.0% 11.4% 0.0% 0.4%  7.1%  13.2%
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Table 5.2 shows the distribution of load instruction types.  The information about 

load instruction types helps us identify the most common types that have the potential to 

benefit from the proposed filtering the most.  The results indicate that the Pre-Indexing 

loads with an immediate offset dominate – overall 73.5% of the total number of loads.  

For several programs, the Post-Indexed with an immediate offset addressing is significant 

(e.g., tiff2bw, tiffmedian), and it is responsible for 7.3% loads on average.  The Pre-

Indexing mode is significant in the register offset loads (11.4% of the total number of 

loads).  Finally, for some benchmarks (e.g., adpcm_c), a significant number of data 

addresses, 13.2% on average, use the PC as its base register, so they can always be 

validated. 

Table 5.3  Data address filtering rates for load instructions 

Test  PreImm  PostImm  AutoImm  PreReg  PostReg  AutoReg  LDM  Total 

adpcm_c  40.0%  66.1%  86.1%  0.0%  nan  nan  0.0%  71.4% 

bf_e  58.0%  26.4%  86.2%  8.6%  nan  nan  1.3%  28.1% 

cjpeg  75.5%  82.8%  92.0%  25.0%  nan  nan  0.2%  62.4% 

djpeg  95.3%  91.1%  90.6%  17.5%  nan  nan  0.4%  64.7% 

fft  60.1%  78.5%  44.5%  6.1%  nan  nan  31.4%  63.4% 

ghostscript  63.8%  61.6%  81.3%  0.4%  nan  nan  1.0%  62.5% 

gsm_d  65.9%  69.0%  97.2%  0.6%  nan  nan  0.0%  82.3% 

lame  75.9%  88.2%  96.3%  55.0%  nan  100.0%  12.6%  69.1% 

mad  89.9%  2.3%  98.4%  24.4%  nan  nan  0.3%  83.2% 

rijndael_e  51.9%  93.7%  100.0%  0.0%  nan  nan  0.0%  53.0% 

rsynth  34.8%  92.7%  99.7%  42.9%  nan  nan  33.0%  64.7% 

sha  92.1%  64.7%  85.4%  98.0%  nan  nan  19.7%  96.8% 

stringsearch  56.5%  71.7%  87.6%  12.2%  nan  nan  1.0%  59.1% 

tiff2bw  99.2%  99.9%  1.9%  4.5%  nan  0.0%  0.0%  99.5% 

tiff2rgba  99.8%  30.4%  1.1%  2.9%  nan  nan  0.0%  99.5% 

tiffdither  62.3%  99.9%  97.2%  0.0%  nan  nan  0.0%  73.1% 

tiffmedian  98.7%  99.9%  97.1%  15.9%  nan  nan  0.0%  87.6% 

Average  65.2%  77.4%  87.7%  21.4%  –  –  9.6%  69.8% 
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Table 5.3 shows the percentage of loads that can be filtered out, that is, the 

percentage of load instructions that do not require being traced out.  The overall filtering 

rate is approximately 70%, which is an excellent result.  However, it varies widely 

depending on the benchmark, e.g., from 28.1% for bf_e to 99.5% for tiff2bw and 

tiff2rgba.  It also depends significantly depending on the load type.  For example, the 

Pre- and Post- immediate offset indexing modes have a hit rate of 65.2% and 77.4% 

respectively, while the Pre- register indexing success rate is only 21.4% on average.  

Table 5.4 shows the distribution of store instruction types.  From left to right, the 

following columns are shown:  

 NotValid – instruction condition is not satisfied and the instruction is not 

executed. 

 PreImm, PostImm, AutoImm – Pre-, Post-, Auto-indexing with an immediate 

offset.  

 PreReg, PostReg, AutoReg – Pre-, Post-, Auto-indexing with register offset. 

 STM – multiple stores. 

The results indicate that the Pre-Indexed with an immediate offset store type 

dominates – the overall 68.5% of the total number of stores belong to this type.  Several 

benchmarks have a significant number of the Post-Indexed with the immediate offset 

store types (e.g., tiff2bw and  adpcm_c), and it is responsible for 9.2% stores on average.  

Multiple stores are significant for bf_e and fft benchmarks.  Surprisingly, several 

benchmarks have a significant number of stores that are not executed – 60% for 

tiffmedian and 50% for adpcm_c.  
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Table 5.4  Distribution of types of store instructions 

Test  NotValid  PreImm PostImm AutoImm PreReg PostReg AutoReg  STM 

adpcm_c  49.9%  0.2% 49.8% 0.0% 0.0% 0.0% 0.0%  0.1% 

bf_e  0.0%  25.9% 14.4% 0.0% 11.1% 0.0% 0.0%  48.6% 

cjpeg  1.0%  58.1% 6.7% 0.0% 32.0% 0.0% 0.0%  2.3% 

djpeg  0.1%  75.1% 18.1% 0.0% 2.4% 0.0% 0.0%  4.3% 

fft  2.2%  50.9% 8.9% 6.9% 8.5% 0.0% 0.0%  22.5% 

ghostscript  4.2%  73.7% 6.4% 4.1% 0.0% 0.0% 0.0%  11.6% 

gsm_d  0.0%  94.8% 0.9% 0.0% 1.1% 0.0% 0.0%  3.3% 

lame  0.2%  88.1% 2.4% 0.9% 2.9% 0.0% 0.0%  5.6% 

mad  0.0%  72.7% 6.2% 0.0% 16.0% 0.0% 0.0%  5.1% 

rijndael_e  0.0%  63.5% 12.4% 0.0% 12.4% 0.0% 0.0%  11.6% 

rsynth  0.3%  84.1% 1.6% 5.0% 1.3% 0.0% 0.0%  7.7% 

sha  0.0%  64.4% 0.0% 0.0% 34.3% 0.0% 0.0%  1.3% 

stringsearch  0.8%  28.2% 6.8% 0.0% 56.7% 0.0% 0.0%  7.4% 

tiff2bw  0.0%  49.9% 49.7% 0.0% 0.1% 0.0% 0.0%  0.4% 

tiff2rgba  0.0%  76.3% 23.4% 0.0% 0.0% 0.0% 0.0%  0.3% 

tiffdither  0.0%  63.2% 33.6% 0.0% 0.0% 0.0% 0.0%  3.1% 

tiffmedian  60.0%  17.9% 10.0% 0.0% 11.9% 0.0% 0.0%  0.1% 

Average  7.2%  68.5% 9.2% 1.6% 4.7% 0.0% 0.0%  8.8% 

Table 5.5  Filtering results for store instructions 

Test  PreImm  PostImm  AutoImm  PreReg  STM  Total 

adpcm_c  99.8%  99.8%  70.0%  50.0%  0.4%  49.9% 

bf_e  93.4%  22.7%  80.0%  48.2%  34.7%  49.7% 

cjpeg  93.8%  95.0%  90.9%  16.5%  17.5%  66.5% 

djpeg  95.7%  99.6%  75.0%  16.8%  90.8%  94.3% 

fft  75.1%  64.7%  81.7%  22.5%  65.7%  66.4% 

ghostscript  96.4%  52.5%  99.5%  44.1%  40.2%  83.2% 

gsm_d  88.0%  0.0%  80.0%  0.5%  31.7%  84.5% 

lame  90.3%  99.7%  66.4%  75.1%  89.0%  89.6% 

mad  97.1%  47.1%  53.5%  25.7%  27.9%  79.0% 

rijndael_e  96.3%  93.7%  80.0%  0.0%  40.1%  77.5% 

rsynth  80.3%  99.2%  45.9%  100.0%  77.6%  78.7% 

sha  98.0%  68.9%  86.7%  98.8%  33.5%  97.4% 

stringsearch  96.0%  67.7%  80.0%  98.1%  45.3%  90.7% 

tiff2bw  99.9%  99.9%  83.0%  67.7%  58.1%  99.7% 

tiff2rgba  99.9%  99.9%  85.7%  51.3%  56.6%  99.8% 

tiffdither  96.6%  95.9%  33.3%  48.9%  10.2%  93.6% 

tiffmedian  99.9%  99.8%  36.4%  15.9%  58.7%  29.9% 

Average  91.3%  72.6%  67.6%  47.8%  55.3%  76.9% 

 



 

122 

 

Table 5.5 shows the filtering rates for different benchmarks and store types.  The 

overall filtering rate is approximately 77% ranging from 29.9% for tiffmedian to 99.8% 

for tiff2rgba.  Again, the filtering rate varies widely depending on the benchmark and 

store type.  For example, the Pre- and Post-indexing with an immediate offset addressing 

achieve filtering rates of 91.3% and 72.6% respectively, while the Pre-indexing with the 

register offset achieves only 47.8% on average.  The main contributor to the low filtering 

rates for some benchmarks is the relatively small number of the filtered data addresses for 

multiple store instruction and the Pre-indexing with the register offset addressing.  

Table 5.6 shows the total filtering rate for all memory referencing instructions and 

the number of data address bits per each instruction.  The filtering rates range from 

35.8% to 99.6%, and it is 72% on average.  Some benchmarks (e.g., bf_e and tiffmedian) 

do not benefit much from the proposed filtering and still require a significant bandwidth 

on the trace port (6.57 bits/ins for bf_e and 5.19 bits/ins for tiffmedian).  On other hand, 

several benchmarks benefit greatly from the proposed filtering (e.g., tiff2bw and tiffrgba) 

and require a very small trace port bandwidth of 0.058 bits/ins.  The proposed filtering 

mechanism requires close integration with the processor core to be able to carry out 

register validation in hardware.  However, it does not require any additional compression 

structures and its implementation cost is negligible.  In addition, the proposed filtering 

scheme could be combined with the additional compression structures – e.g., the data 

addresses that need to be traced can be encoded using a variant of differential encoding 

similar to the Nexus standard.  
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Table 5.6  Filtering results and trace port bandwidth for all memory referencing 
instructions 

Test  Total bits/ins

adpcm_c  68.7% 1.457

bf_e  35.8% 6.565

cjpeg  63.4% 4.061

djpeg  72.7% 3.986

fft  64.4% 3.092

ghostscript  70.1% 3.591

gsm_d  83.2% 1.397

lame  76.4% 3.511

mad  82.3% 1.981

rijndael_e  57.2% 6.479

rsynth  68.3% 5.491

sha  97.0% 0.233

stringsearch 75.0% 2.204

tiff2bw  99.6% 0.058

tiff2rgba  99.6% 0.075

tiffdither  78.4% 1.913

tiffmedian  66.7% 5.189

Average  72.0% 3.566

 

 

5.2 Adaptive Data Address Cache 

The existing hardware compressors for data address traces rely on either predictor 

structures [57] or cache-like structures that can detect regular strides [56].  A system 

designer typically faces a challenging task in making design trade-offs between the size 

of the compressor structures and the compression ratio.  Larger structures help achieve 

higher compression ratios, but may be costly or not practical to implement.  The existing 

techniques demonstrate good compression ratios for benchmarks with memory-

referencing instruction that exhibit regular data address patterns (fixed data addresses or 

data addresses with fixed address strides).  However, the compression of data addresses 

for memory-referencing instructions with irregular patterns remains a challenging task.   
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In designing data address trace compressors, we should exploit common 

characteristics of memory access patterns.  For example, the simplest approach is to 

apply a differential encoding of the stream of data addresses.  Instead of tracing out a 

complete data address, we could trace only the difference between subsequent data 

addresses.  It can help reduce the number of traced bits at a minimal implementation cost.  

To better exploit program characteristics, we can use caches or predictors that try to 

capture data address patterns and/or temporal and spatial locality of data for each 

memory referencing instruction.  For example, a data address stride cache can be trained 

to detect a fixed data address stride.  However, it is very challenging to design a 

compressor structure that will exhibit a stable performance for all benchmark programs or 

throughout the entire execution of a particular benchmark.  Compressor structures often 

perform well when a desirable type of memory access patterns prevails; however, they 

perform poorly on other types of memory access patterns.   

A nearly constant compression ratio is an important feature of trace compressors.  

Designers use this information to determine minimum buffering and trace port bandwidth 

requirements so that no trace records are lost and tracing is done unobtrusively in real-

time.  Figure 5.2a illustrates trace port bandwidth requirements for two hypothetical 

compressors A and B.  Compressor A requires higher trace port bandwidth on average 

but demonstrates a nearly constant compression ratio.  On the other side, compressor B 

requires lower trace port bandwidth than compressor A, but its bandwidth varies widely 

over time.  Compressor B thus will require much larger trace buffers to smooth out these 

peaks in the bandwidth; without these buffers some trace records are likely to be lost.  

Figure 5.2b illustrates the behavior of compressors A and B: while compressor A reduces 
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the number of address bits for all instructions, compressor B performs very well for some 

data addresses while for the others require complete data addresses.  

     
a)                    b)  

Figure 5.2  Trace bandwidth requirements (a) and compressor effectiveness (b)  

In this section we introduce a data address trace compression technique that tries 

to exploit redundancy in programs caused by temporal and spatial locality.  The proposed 

technique shares the common tracing mechanism with previously described compressors.  

The trace module and software debugger maintain identical compressor structures (the 

trace module in the hardware and the software debugger in the software) that are updated 

during program execution and program replay, respectively, using the same set of update 

policies.  We propose a cache-like compressor that keeps the most recently used data 

addresses.  The data address cache (DAC) is indexed based on the program counter.  If 

we find an incoming data address in the DAC, we need to trace out only several bits to 
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indicate a DAC hit event.  In the case of a DAC miss, the whole data address needs to be 

traced out.  However, data addresses rarely stay constant, so the DAC would have a 

relatively low hit rate.  To alleviate this problem, we modify the DAC to allow lookups 

that consider only upper address bits of the data addresses that rarely change.  

Section 5.2.1 discusses redundancy in high-order address bits.  Section 5.2.2 introduces 

the adaptive data address cache, while Section 5.2.3 gives the results of experimental 

evaluation.  

5.2.1 Variability of High-Order Data Address Bits  

In this section we explore the variability of high-order data address bits.  We can 

identify two types of variability of high-order address bits: a global and a local.  The 

global variability considers the sequence of data addresses as they appear during program 

execution.  The local variability considers variability of data addresses for individual 

memory-referencing instructions.   

Let us first discuss the global locality of high-order data address bits.  We 

consider a history buffer that keeps n most recent unique data addresses encountered 

during program execution.  We perform a lookup in this buffer with an incoming data 

address to find if there is a data address match.  The lookup is performed on high-order 

address bits only.  For example, we consider upper address bits DA[32:SHIFT], assuming 

32-bit data addresses.  Table 5.7 shows the hit rate in the history table for each 

benchmark as a function of the history table size (16, 32, and 64 entries) and the 

parameter SHIFT (0, 4, and 8).  
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Table 5.7  Hit rate in a data address history table   

  SHIFT = 0  SHIFT = 4  SHIFT = 8 

Test     \    Size  16  32  64  16  32  64  16  32  64 
adpcm_c  0.765  0.839  0.887  0.967  0.976  0.978  0.999  1.000  1.000 
bf_e  0.751  0.753  0.761  0.816  0.826  0.850  0.976  1.000  1.000 
cjpeg  0.563  0.668  0.694  0.871  0.900  0.954  0.990  0.998  0.999 
djpeg  0.552  0.697  0.718  0.820  0.901  0.928  0.983  0.991  0.996 
fft  0.575  0.750  0.801  0.852  0.887  0.943  0.965  0.993  1.000 
ghostscript  0.444  0.592  0.841  0.727  0.899  0.988  0.945  0.997  0.999 
gsm_d  0.920  0.956  0.966  0.986  0.989  0.995  0.999  0.999  1.000 
lame  0.279  0.393  0.549  0.710  0.774  0.862  0.974  0.987  0.997 
mad  0.332  0.434  0.570  0.796  0.876  0.883  0.991  0.998  0.999 
rijndael_e  0.285  0.439  0.526  0.608  0.652  0.680  0.886  0.944  1.000 
rsynth  0.417  0.535  0.571  0.813  0.849  0.984  0.996  0.998  1.000 
sha  0.448  0.684  0.689  0.910  0.949  0.994  1.000  1.000  1.000 
stringsearch  0.343  0.406  0.513  0.730  0.825  0.860  0.955  1.000  1.000 
tiff2bw  0.498  0.499  0.499  0.872  0.872  0.872  0.991  0.991  0.993 
tiff2rgba  0.215  0.216  0.216  0.802  0.802  0.802  0.987  0.987  0.987 
tiffdither  0.800  0.871  0.886  0.925  0.967  0.973  0.998  0.998  0.999 
tiffmedian  0.682  0.691  0.699  0.886  0.897  0.907  0.971  0.982  0.988 

Average  0.523  0.578  0.64  0.817  0.863  0.916  0.977  0.991  0.998 

 

 

The results indicate that the hit rate increases with an increase of the SHIFT 

parameter, as expected.  For a very small history table with 16 entries, the average hit rate 

increases from 52.3% with SHIFT=0 to 97.7% with SHIFT=8.  Some benchmark 

programs see a significant increase in the hit rate with an increase of the SHIFT 

parameter (e.g., rijndeal_e), while others see more modest improvements (e.g., gsm_d).  

The results thus clearly indicate that there exists a lot of redundant information in a 

sequence of data addresses, and that the redundancy is higher if we focus on upper 

address bits only (larger SHIFT parameter).   

The local variability of the upper-address bits is evaluated using a tagless cache 

structure that is addressed using the program counter (PC).  We call this structure a data 

address cache or DAC.  The DAC’s index function should minimize the probability of 
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having multiple memory-referencing instructions mapping into a single DAC entry.  

While PC-based tags in the DAC could reduce the problem of aliasing, they would 

significantly increase the implementation cost, and are thus not considered in our 

proposal.  The DAC is a multi-way cache structure, and in our work we use 4-way set-

associative DAC because it showed a good performance.  A DAC lookup is performed as 

follows.  The DAC controller receives the program counter and data address for the 

currently executing memory referencing instruction.  A DAC set is calculated based on 

the program counter.  We compare the incoming data address (DA) with the entries in the 

selected DAC set.  If there is a match of the upper address bits, we say we have a DAC 

hit event.  Otherwise, we have a DAC miss event.   

Table 5.8  Hit rate in a data address cache  

  SHIFT=0  SHIFT=4  SHIFT=8 

Test\Size  32  64  128  32  64  128  32  64  128 
adpcm_c  0.507  0.507  0.521  0.944  0.944  0.949  0.997  0.997  0.998 

bf_e  0.593  0.575  0.634  0.728  0.715  0.783  0.820  0.824  0.872 

cjpeg  0.437  0.473  0.512  0.742  0.775  0.810  0.936  0.956  0.974 

djpeg  0.342  0.368  0.386  0.700  0.726  0.739  0.920  0.915  0.918 

fft  0.302  0.430  0.531  0.523  0.598  0.675  0.857  0.849  0.891 

ghostscript  0.120  0.193  0.506  0.267  0.334  0.645  0.759  0.835  0.944 

gsm_d  0.728  0.784  0.790  0.961  0.966  0.967  0.995  0.995  0.994 

lame  0.147  0.320  0.539  0.273  0.412  0.615  0.848  0.861  0.880 

mad  0.200  0.269  0.311  0.402  0.415  0.436  0.867  0.850  0.816 

rijndael_e  0.050  0.047  0.046  0.265  0.236  0.218  0.509  0.470  0.421 

rsynth  0.260  0.274  0.448  0.373  0.354  0.521  0.784  0.776  0.858 

sha  0.088  0.101  0.124  0.716  0.711  0.750  0.978  0.987  0.995 

stringsearch  0.058  0.112  0.224  0.465  0.525  0.631  0.774  0.786  0.841 

tiff2bw  0.001  0.000  0.001  0.580  0.559  0.559  0.968  0.947  0.948 

tiff2rgba  0.001  0.000  0.002  0.143  0.066  0.020  0.936  0.888  0.882 

tiffdither  0.397  0.447  0.436  0.822  0.859  0.884  0.920  0.956  0.981 

tiffmedian  0.392  0.389  0.390  0.682  0.677  0.678  0.914  0.907  0.907 

Average  0.301  0.363 0.471 0.515 0.548 0.650 0.853 0.859  0.887
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Table 5.8 shows the DAC hit rate for different sizes of the DAC (32, 64, and 

128 entries) and different values of the SHIFT parameter (0, 4, and 8).  Similarly to the 

global locality analysis, we can observe that the DAC hit rate increases with an increase 

of the SHIFT parameter.  Several benchmark programs significantly benefit from 

increases of the SHIFT parameter (e.g., tiff2bw hit rate increases from almost 0% with 

SHIFT=0 to ~52% with SHIFT=4, and to 96.8% for SHIFT=8, assuming a DAC with 32 

entries).  Several other benchmark programs have little or no benefit when the SHIFT 

parameter increases from 0 to 4 (e.g., tiff2rgba hit rate increases from almost 0% when 

SHIFT=0 to 14% when SHIFT=4, and then to 93.6% when SHIFT=8).  

The results for the global and local variability of the upper address bits indicate 

that different benchmark programs benefit from different values of the SHIFT parameter.  

An additional analysis indicates that an optimal value of the SHIFT parameter varies 

during the execution of a single benchmark, as the program moves through different 

execution stages.  This conclusion motivates us to consider a DAC compressor structure 

that allows for adaptive value of the SHIFT parameter.  We extend the DAC structure to 

include the field for the SHIFT parameter and an adaptive mechanism for its training.  

The compression ratio can be expressed as a function of the DAC hit rate and a value of 

the SHIFT parameter.  The higher the DAC hit rate, the smaller number of DAC misses 

that require tracing out of an entire data address.  Higher DAC hit rates are usually 

achieved for higher values of the SHIFT parameter.  However, the larger value of the 

SHIFT parameter means the larger portion of the uncompressed data address, which in 

turn lowers the compression ratio.  Thus, a detailed exploration of the design trade-offs is 

required to find good values for the DAC size, organization, and SHIFT parameter.  
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5.2.2 Adaptive Data Address Cache 

The data address cache (DAC) keeps the most recent data addresses encountered 

during program execution.  It is a set-associative structure, indexed by a hash function 

based on the program counter of the corresponding memory-referencing instructions.  

The DAC is a tagless structure to reduce the implementation complexity.   

  

Figure 5.3  Adaptive Data Address Cache organization 

 
Figure 5.3 illustrates a block diagram of the adaptive data address cache (ADAC).  

Each entry in the DAC keeps a full data address (DA).  Additional fields such as SHIFT 

and TCNT are used to control DAC lookups.  The SHIFT field keeps the current value of 

the SHIFT parameter which determines the number of lower data address bits that will be 

traced out with no compression.  The TCNT field is a training counter that determines 

whether the current SHIFT value should be increased in order to increase the DAC hit 
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rate, or decreased in order to reduce the number of bits that is traced out uncompressed.  

The TCNT is incremented by a miss and decremented by a hit in the DAC.  When it 

saturates, the external logic decides whether to increase or decrease the SHIFT parameter.  

The DAC with these extensions is called the Adaptive Data Address Cache (ADAC).  

Figure 5.4 describes the adaptive data address cache operation.  The ADAC 

controller receives a (PC, DA) pair and calculates a set index iSet based on the program 

counter.  It then performs a lookup into the selected ADAC.  The selected bits of the 

incoming data address DA[31:SHIFT] are compared with the corresponding data 

addresses in the selected entry of the ADAC.  The ADAC lookup differs from a regular 

comparison of DA[31:SHIFT] address bits.  In addition to this comparison, it also 

involves the comparison of upper address bits with different lengths (DA[31:SHIFT+1], 

DA[31:SHIFT+2], ... DA[31:SHIFT+window-1]).  The comparator gives the results of 

the comparison for window data addresses (SHIFT corresponds to j=0, SHIFT+1 to j=1, 

and so on).  The variable window is a pre-determined fixed parameter.  The outputs from 

the comparator are used to control the update mechanism for the SHIFT parameter.   

The outcome of the multi-try comparison is used to update the TCNT (training 

counter) as follows.  When an ADAC hit occurs with a window value of zero, the TCNT 

is decremented by TCNT_DEC.  When an ADAC hit occurs also on a data address field 

with (SHIFT+j, where j>0), it indicates that the current SHIFT field could possibly be 

increased.  Of course, making a premature decision about the SHIFT length may be 

detrimental for the compression ratio.  Consequently, a training TCNT is used.  When 

such a hit occurs, the TCNT is incremented by TCNT_INC (it is a miss regarding the 

current SHIFT).  When the TCNT saturates, the value of the SHIFT is incremented 
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(decrease the portion of the data address that will be compressed). When we have an 

ADAC miss (no j value gives a hit), the TCNT and SHIFT fields take the maximum 

possible values, TMAX and SHIFT_MAX.   

 

79. Get the next (PC, DA)pair; 
80. iSet = f(PC) 
81. Lookup in the data addres cache with iSet (*) 
82. if(DAC hit){ 
83.   if (WHit == 0){ 
84.    Decrement TCNT by TCNT_DEC 
85.    if (TCNT == 0){ 
86.     DAC[iset][iway].SHIFT--; #Decrement SHIFT value 
87.     DAC[iset][way].TCNT = TMAX;} 
88.   } else { 
89.    Increment TCNT by TCNT_INC 
90.    if (TCNT == TMAX){ 
91.     DAC[iset][iway].SHIFT++; #Increment SHIFT value 
92.     DAC[iset][way].TCNT = 0;} 
93.   } 
94.     if(DAC[iset].MRU_WAY == way) 
95.         MRU Way Hit = 1; 
96.     DAC[iset].MRU_WAY = way; 
97.  } else{  
98.   DAC[iset][way].SHIFT = SHIFT_MAX;  
99.   DAC[iset][way].TCNT = TMAX; } 
100. //Encode outputs 
101. // (*) DAC Lookup 
102. 1. for (i=0; i<Nways; i++) 
103. 2.  for (j=0; j<window; j++) 
104. 3.   if (DA >>(SHIFT + j) == DAC[iset][iway].DA >> (SHIFT + j)){ 
105. 4.    DAC hit = 1; 
106. 5.    WHit = j; 
107. 6.       way = i; 
108. 7.       exit;} 

Figure 5.4  Adaptive Data Address Cache operation 

Finally, let us discuss encoding of the compressed trace records.  Table 5.9 

describes relevant events on ADAC and encoding of these events.  The ADAC is a 

tagless cache, so to be able to recreate the trace record at the software debugger side, we 

need to trace out the way identifier in the case of an ADAC hit.  Like in regular caches, 

we observe that data addresses that are most recently accessed tend to be more likely 
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accessed again.  We can exploit this property by relying on the ADAC set replacement 

bits to identify the most recently used entry in an ADAC set.  Thus, a hit in the most 

recently used entry of an ADAC set can be encoded using just a single header bit (‘1’).  A 

hit in a non-MRU entry is encoded with a header bit ‘0’ followed by a way.id field.  In 

the case of an ADAC hit in a non-MRU entry with j>0, the trace record header includes a 

‘0’, followed by the most recently used way (to indicate that j>0), followed by the actual 

way identifier on which the hit is observed and the value of j (this information is used by 

the software debugger to train its own copy of the SHIFT parameter).  Finally, a miss is 

encoded by the reserved unique header followed by a full data address (32 bits in our 

case).  

Table 5.9  Data address trace record encoding for ADAC compressor 

Hit/Miss  MRU 
Way 

MIN {j}  Trace Record   Trace Length (bits) 

      Header  Data Address  Output Header 

Hit  Yes  Zero  “1”  DA[SHIFT‐1:0]  1 + shift 

Hit  No  Zero  “0” + “way.id”  DA[SHIFT‐1:0]  1 + log2(Nway) + shift 

Hit  ‐‐  > 0  “0” + “MRU.way.id” 
+ “way.id” + “j” 

DA[SHIFT‐1:0]  1 + 2*log2(Nway) + log2(window) + shift 

Miss  ‐‐  ‐‐  “0” + “MRU.way.id” 
+ “way.id=0” + “j=0” 

DA[31:0]  1 + 2*log2(Nway) + log2(window) + 32 

 

 

5.2.3 Design Space Exploration and Trace Port Bandwidth Analysis  

The design of the adaptive data address cache requires a thorough design space 

exploration to determine good values for the following parameters: the SHIFT field 

maximum and minimum limits (SHIFT_MAX and SHIFT_MIN), the training counter 
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TCNT maximum limit (TMAX), the TCNT increment and decrement steps (TCNT_INC 

and TCNT_DEC), and the value of the window parameter.  Each of these parameters 

influences the compression ratio and design complexity to a certain degree and discerning 

an impact of each of them independently from the other parameters is a challenging task.  

We have explored the design space by considering trace port bandwidth (compression 

ratio) as well as the stability of the trace port bandwidth.  We strive to find a 

configuration that will provide the minimum trace port bandwidth and yet exhibit very 

low variability at the trace port.  

The total number of possible configurations is very large and here we present the 

results for the overall best performing configuration: window=4, SHIFT_MAX=12, 

SHIFT_MIN=0, TMAX=8, TCNT_DEC=1.  For TCNT_INC, an ADAC miss actually 

sets TCNT to TMAX (which in return increments the SHIFT value).  This TCNT_INC 

value favors a higher ADAC hit rate over having smaller values for the SHIFT parameter.  

This approach balances the trade-offs between the hit rate (the higher the hit rate, the less 

the number of costly misses) and the number of uncompressed bits (SHIFT value may be 

slightly higher than absolutely necessary).  Figure 5.5 shows the average ADAC hit rates 

for different compressor schemes and configurations as a function of the data address 

cache size.  We consider several compressors: four compressors based on the DAC with 

the fixed SHIFT parameters (SHIFT=0, SHIFT=4, SHIFT=8, SHIFT=12), and 

two compressors with adaptive data address cache for different values of the parameter 

window (window=1 and window=4).  The number of entries in the DAC/ADAC is varied 

between 32 and 512 entries.  The number of ways is fixed to four.  The results for ADAC 

with window=1 are crucial to determine the effectiveness of the training mechanism for 
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the SHIFT parameter.  With the window=1, the hit rate is not inflated by possible matches 

on DA[31:SHIFT+j], where j>0.  Figure 5.5 also shows the average value of the SHIFT 

parameter during the program execution.  For example, the ADAC with 32 entries has the 

average SHIFT of 8.7, which is just slightly above the SHIFT value of 8.  This 

configuration achieves the hit rate of 92.8% on average (ranging from 80% for 

ghostscript to 99% for adpcm_c).  It should be noted that the DAC with the fixed 

SHIFT=8 achieves a lower hit rate of 85.3% on average (ranging from 50% for 

rijndael_e to 99% for adpcm_c).  Hence, we may conclude that the proposed adaptive 

mechanism is indeed beneficial for the overall performance of the ADAC compressor.   

The effects of the proposed mechanism are even more visible by allowing multi-

try comparison.  For example, the ADAC with window=4 achieves higher hit rates.  The 

ADAC with 128 entries achieves the hit rate of 98.2% on average with the average 

SHIFT value of just 6.5.  This result clearly illustrates the benefit of adaptive mechanisms 

– more high-order data address bits can be compressed on average, without reducing the 

ADAC hit rate.  In addition, this approach is applicable to almost all data addresses 

because we achieve consistently high hit rates in the ADAC.  Consequently, the ADAC 

compressor achieves stable trace port bandwidth requirements with relatively small 

variations. 

Figure 5.6 gives the compression ratio and the trace port bandwidth for the ADAC 

compressor.  While the average trace port bandwidth steadily declines when increasing 

the data address cache size, its maximum value, of approximately 7.5 bits/ins., does not 

change much.  This is caused by tiff2rgba test, which has over 60% of memory 
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referencing instructions and the compression rate does not improve much when 

increasing the ADAC size.   
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Figure 5.5  Average hit rates for different DAC-based compressors 
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Figure 5.6  Average compression ratio and trace port bandwidth for ADAC  
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The ADAC compressor has a good characteristic in that it is highly configurable.  

Its configurability allows users to set compressor parameters for each benchmark 

individually in order to further minimize trace port bandwidth requirements.  However, 

we limited our analysis to finding a good configuration that works well for the whole 

benchmark suite.  A number of enhancements could be considered for the ADAC 

targeting further reducing the trace port bandwidth requirements or the compressor 

complexity.  For example, the highest address bits may be handled separately by a global 

value predictor or a per-set value predictor.  Another direction is to combine the proposed 

compressor with the filtering method proposed in Section 5.1.  

5.3 Comparative Analysis 

In this section we discuss the trace port bandwidth requirements for two proposed 

data address compression techniques: the data address filtering and the adaptive data 

address cache.  For estimating quality of the proposed compressors, we compare their 

performance with the software utility program gzip that is supplied with a stream of raw 

data addresses.  Please note that the gzip relies on very large memory buffers and highly 

sophisticated encoding which is not practical for implementation in hardware.  

Table 5.10 shows the compression ratios for several data address trace 

compressors.  We consider the following configurations of the ADAC compressors: 

ADAC 16x4 and ADAC 128x4, configured according to findings in Section 5.2.3.  The 

bADAC 128x4 shows the results assuming the best possible configuration for each 

program. 

We can see that the method based on filtering outperforms the ADAC method on 

average by a large margin.  The filtering method outperforms the software gzip 
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compressor for many programs.  However, its performance varies widely for different 

benchmarks: the compression ratios range from 1.56 for bf_e to 250 for tiff2bw and 

tiff2rgba.   

Table 5.10  Data address trace compression  

Test  Filtering 
ADAC 
16x4 

ADAC 
128x4 

bADAC 
128x4 

 
Nexus  gzip ‐1 

adpcm_c  3.19  5.60  6.14  7.04  1.64  3.46 

bf_e  1.56  4.02  7.03  7.69  2.19  4.84 

cjpeg  2.73  4.31  6.25  6.53  1.34  4.48 

djpeg  3.66  3.24  4.57  5.18  1.34  3.77 

fft  2.81  2.74  4.14  6.53  2.14  19.9 

ghostscript  3.34  2.21  5.62  8.96  1.76  18.14 

gsm_d  5.95  4.69  12.27  12.78  1.54  23.3 

lame  4.24  2.71  4.2  4.62  1.49  5.7 

mad  5.65  2.89  3.49  3.59  1.43  3.54 

rijndael_e  2.34  1.99  2.59  2.70  1.4  3.2 

rsynth  3.15  2.61  5.26  7.50  1.41  21.53 

sha  33.33  3.99  4.49  4.75  2.27  8.35 

stringsearch  4.00  2.26  4.17  5.08  1.9  8.83 

tiff2bw  250.00  3.38  3.44  4.07  1.66  2.55 

tiff2rgba  250.00  2.85  2.9  3.11  1.02  2.79 

tiffdither  4.63  3.70  5.55  6.75  1.39  4.41 

tiffmedian  3.00  4.21  4.44  4.87  1.73  3.49 

Average  3.56  3.25  5.593  6.71  1.59  11.16 

 

 

Interestingly, the filtering method performs worse than the ADAC for 

two benchmarks cjpeg and djpeg.  The ADAC method achieves a more modest 

compression ratio from 1.99 for rijndael_e to 5.6 for adpcm_c, but its variations between 

benchmarks are much smaller.  With an increased size of the ADAC, the compression 

ratio increases, from 3.25 for 16x4 to 5.59 for 128x4.  The NEXS (column 6) technique 

implements a simple differential encoding of data addresses as described in the Nexus 
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standard [9].  The incoming data address is XORed with the previous data address and 

the difference is split into groups of 6 bits which are sent to the trace port in bytes (2 bits 

are header).  The leading zeros are not sent.  The NEXS compression ratio is rather small; 

it is 1.6 on average, ranging from 1 to 2.27. 

Assuming 1.5 logic gates per memory bit, we estimate the complexity of the 

ADAC configuration with 16 sets and 4 ways to be to less than 4000 logic gates, while 

the configuration with 128 sets and 4 ways occupies approximately 30,000 logic gates. 
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CHAPTER 6    

 

 

LOAD VALUES COMPRESSION 

 

 

When tracing data values we are primarily concerned with load values – data read 

from main memory by load instructions.  These values coupled with a check-pointing 

mechanism are sufficient to the software debugger to replay a program under test offline.  

The software debugger includes a functional processor simulator and maintains its 

software copies of the processor context (general and special purpose registers).  The 

check-pointing mechanism ensures that the software debugger synchronizes the content 

of general- and special-purpose registers maintained in the software with the content of 

the corresponding registers in the processor core.  Once the contexts are synchronized, 

the software debugger can replay the program execution based on only load values that 

are traced from the target processor.  Note:  in general this applies to all reads either from 

main memory or input peripheral devices.   

Tracing load values in real-time poses a very challenging task.  Programs may 

have a high frequency of load instructions (e.g., 40% of all instructions for tiff2rgba 

benchmark) and the amount of redundancy in load values is not nearly as close to the 
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redundancy observed in instruction and data address traces.  Thus, real-time tracing of 

load values would require both large on-chip trace buffers and wide trace ports for 

reading them out of the chip.  For example, an on-chip buffer of 64 KB would be 

sufficient to store data traces of only 20 microseconds of execution assuming a processor 

running at 1 GHz with only 10% of the load instructions.  To cope with excessive trace 

port bandwidth or storage requirements, full data tracing is applied only to short program 

segments.  The program execution trace with a checkpoint mechanism is used to run a 

program close to the place where a software bug occurs, and then the trace module 

triggers, capturing the data traces for a short period of time.  However, the size of the 

traced segment is limited by the size of on-chip trace buffers and may not be enough to 

capture the actual bug.  In addition, software developers need to spend a lot of time 

locating the likely location of the bug, and this process is likely to be obtrusive, and thus 

not appropriate for debugging real-time embedded systems.  

In this chapter we first explore the entropy of load values in the MiBench 

benchmark suite.  In Section 6.1 we analyze the entropy of load values using theoretical 

approaches and architectural approaches when we consider the compression of a certain 

portion of load values.  In considering load values, we may extend the processor 

resources or the trace module to track only the first occurrence of a data value.  In that 

case we need to trace only the first load instruction from a given memory location and 

thus dramatically reduce the number of loads that need to be traced.  In Section 6.2 we 

introduce two hardware implementations of a first-load track mechanism and evaluate its 

effectiveness.  In Section 6.3 we put everything together and discuss the effectiveness of 

different approaches.   
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6.1 Data Values Compressibility 

In this section we examine the compressibility of load values by finding the 

entropy of the load values data set. We also discuss the compression ratios of individual 

benchmarks achieved using general-purpose compressors. 

6.1.1 Entropy of Load Values 

The amount of redundancy in a data set can be expressed through the measure of 

entropy or the Shannon entropy [74].  Shannon entropy quantifies the information 

contained in a data set and expresses it as a single number.  If the data set is considered a 

Markov process, meaning that the outcome (or a value) of the next data is completely 

random and independent of previously outcomes (values) in the data set, the Shannon 

entropy actually expresses the maximum possible compression achievable by a lossless 

compression algorithm.  Such entropy is also named Markov 0th order entropy [75].  

 Since we examine the set of load values as a Markov process, or a set of 

independent values, we calculate the Markov 0th order entropy for MiBench programs in 

order to find the overall compressibility of load values.  The Markov 0th order entropy 

accounts for the probability of values within the data set and assigns fewer bits to more 

frequent values.  The entropy thus expresses the average number of bits that can be used 

to represent a value in the data set.  The total entropy, HM0, is expressed as  

HM0 = –i [log(pi) pi], where pi is the probability of occurrence of an unique data i in the 

data set.  To calculate entropy, we do not evaluate all program generated load values as 

one data set, but rather divide them into smaller sets of several kilobytes each.  Each set 

is then examined independently from the other sets.  The goal of this approach is to better 

represent the changes in load values and their occurrence frequencies through different 
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program phases.  In addition, the actual evaluation of a data set which can contain 

millions of different values would not be practical. 

Table 6.1 shows the results for the Markov 0th order entropy.  We consider four 

block sizes: 1 KB, 8 KB, 64 KB and 128 KB.  For each block size, four columns are 

shown: column min is the minimum observed entropy across all blocks in a program, 

column max is the maximum observed entropy across all blocks in a program, and 

column avg is the average entropy across all blocks and the measure of entropy for a 

program (represents the measure of entropy).  Column #val shows the average number of 

unique data values per block during the program execution.  The results indicate large 

variations of the entropy between programs and within a program as it moves through 

different program stages.  For example, for 64KB block size, the average entropy varies 

between 0.2 and 13 and its overall average is 8.1.  The maximum variation for a single 

benchmark is observed in tigg2rgba, ranging between 0.2 (min) and 11 (max).  In 

addition to the entropy variation, we expectedly observe lower entropy values for smaller 

block sizes: the average entropy is 6.3 for 1 KB, 7.2 for 8 KB, 8.1 for 64 KB and 8.3 for 

128 KB blocks.  

The variations observed above indicate that the number of more frequent values 

and their occurrence frequencies are changing from block to block, and the compression 

process would benefit from an adaptive compression algorithm.   

To calculate compression ratios, we assume tracing HM0 bits for a data value 

already logged in the table and 32 bits for its first occurrence; we have #val occurrences 

per one block.  We have already observed lower entropy for smaller blocks; in addition, 

smaller blocks mean more frequently tracing entire sets of data values (32-bit for word 
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operands).  Table 6.2 shows the compression ratios for different block sizes of 1 KB, 

8 KB, 64 KB, and 128 KB.  The compression ratio averages (last row in the table) are 

calculated using a weighted arithmetic mean, where a program weight is directly 

proportional to the number of loads in that program relative to the total number of loads 

in all programs.  The compression ratios range between 2.07 for lame to 5.65 for 

adpcm_c assuming the large 128 KB blocks.  It ranges between 1.78 for lame to 4.43 for 

cjpeg for blocks of 1 KB.  The overall results of this exercise indicate a limited 

compressibility of data values, and thus information-theoretic approaches to load value 

compression are not likely to be cost-effective.  

Table 6.1  Markov 0th order entropy for MiBench tests 

  Block = 1KB  Block = 8KB  Block = 64KB  Block = 128KB 

Test  min  avg  max  #val min avg max #val min avg max #val  min  avg  max #val

adpcm_c  3.0  5.2  7.0  174 5.0 5.5 6.8 303 5.1 5.6 5.7 320  5.1  5.6  5.7 333

bf_e  4.7  6.4  8.9  298 7.1 7.3 9.6 1284 7.5 7.6 10.2 3977  7.6  7.7  9.4 6549

cjpeg  0.2  4.1  9.5  114 0.5 4.6 9.1 322 2.7 5.1 9.1 1155  2.7  5.2  9.0 1896

djpeg  0.1  4.1  8.2  127 2.7 4.8 8.0 493 3.0 5.2 7.5 1991  3.0  5.5  7.6 3559

fft  3.6  6.3  8.3  196 3.9 6.9 10.7 738 4.3 7.4 13.0 4482  4.4  7.6  13.5 8521

ghostscript  0.9  5.5  9.3  105 1.0 5.8 9.3 296 4.6 6.1 10.0 1621  5.6  6.1  10.2 3061

gsm_d  3.6  6.4  7.2  231 3.7 7.4 8.1 976 5.0 8.2 8.7 2805  4.9  8.3  8.8 3670

lame  0.0  7.7  10.0  434 3.4 9.3 11.2 2123 4.7 11.2 12.6 12407  5.7  11.9  13.1 23261

mad  2.9  7.7  9.4  420 4.4 8.8 10.9 1692 7.2 10.2 11.0 9154  7.8  10.5  11.2 15788

rijndael_e  6.5  8.1  8.3  542 9.1 9.1 9.2 1793 9.5 9.5 9.6 4864  9.6  9.6  9.6 7776

rsynth  0.0  6.8  7.6  223 0.1 7.9 8.5 1190 2.9 8.7 9.1 5937  3.3  8.9  9.3 10343

sha  5.6  8.0  8.1  302 9.5 10.2 10.3 1696 11.9 12.2 12.2 9699  12.2  12.5  12.6 14646

stringsearch  6.1  6.5  7.5  165 7.0 7.2 8.6 562 7.6 7.6 7.9 2859  7.6  7.7  7.8 4032

tiff2bw  0.0  4.1  10.0  215 0.0 4.9 10.4 1362 0.2 5.3 7.5 8592  0.4  5.5  7.5 15923

tiff2rgba  0.0  4.9  10.0  292 0.0 5.8 10.3 1626 0.2 6.2 11.1 7874  0.3  6.4  11.3 13556

tiffdither  0.9  4.8  9.8  116 1.5 5.3 8.3 397 2.1 5.9 7.0 2058  2.2  6.0  6.8 3490

tiffmedian  0.0  3.8  10.0  182 1.2 4.3 9.1 1053 1.6 4.8 8.8 6986  1.6  4.9  9.0 13108

Average  1.8  6.3  8.9  270 3.1 7.2 9.5 1197 4.5 8.1 10.0 5887  4.9  8.3  10.1 10483
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Table 6.2  Compression ratio achieved by measuring Markov 0th order entropy 

Test 

Compression Ratio 

1KB  8KB  64KB  128KB 

adpcm_c  3.28  4.91  5.60  5.65 

bf_e  2.31  2.87  3.53  3.60 

cjpeg  4.43  5.62  5.79  5.72 

djpeg  4.22  4.99  5.30  5.17 

fft  2.85  3.48  3.52  3.49 

ghostscript  3.88  4.74  4.78  4.74 

gsm_d  2.63  3.10  3.48  3.58 

lame  1.78  2.11  2.11  2.07 

mad  1.81  2.35  2.41  2.44 

rijndael_e  1.54  2.26  2.86  2.93 

rsynth  2.60  2.80  2.96  2.98 

sha  2.13  2.18  2.12  2.18 

stringsearch  3.01  3.61  3.68  3.79 

tiff2bw  3.22  3.41  3.62  3.68 

tiff2rgba  2.54  2.92  3.43  3.55 

tiffdither  4.06  4.88  4.73  4.79 

tiffmedian  3.65  4.06  4.17  4.22 

Average  2.47  2.97  3.16  3.17 

 

 

6.1.2 Variability of High-order Bits  

In this section we explore the potential of an approach that compresses only the 

upper bits of data values; the lower bits are sent to the trace port uncompressed.  The 

rationale behind this approach is that short constants may dominate program data sets; the 

upper bits are often zeros and thus need not be traced.  To evaluate the compressibility of 

high-order load value bits, we find the Markov 0th order entropy for load values when 

lower bits are masked out.  The MASK parameter determines the number of lower bits 

that is masked out.  We consider data values as a sequence of 32-bit words (byte size and 

half-word size operands are expanded to 32-bits).   
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Table 6.3 shows the entropy for different values of the MASK parameter (0, 4, 8, 

and 12), the average number of the unique non-masked data values (DV[31:MASK]), and 

the compression ratio.  We assume a large block size of 128 KB in this experiment.  To 

calculate compression ratios, we assume tracing HM0 + MASK bits if the non-masked 

portion of the data value is already logged in the table and the entire 32-bits if it is not in 

the table (first occurrence of a unique value).   

Table 6.3  Entropy of high-order load value bits. 

Test  \  MASK 

Entropy  #val (Number of unique values)  Compression Rate 

0  4  8  12  0  4  8  12  0  8    4  12 

adpcm_c  5.6  4.4  3.1  2.1  333  93  60  32  5.65  3.82  2.88  2.27 

bf_e  7.7  6.6  5.0  4.4  6549  2383  2106  2079  3.60  2.92  2.41  1.92 

cjpeg  5.2  3.9  2.6  2.0  1896  1276  1017  762  5.72  3.93  2.97  2.27 

djpeg  5.5  4.4  3.1  2.4  3559  2762  2486  2036  5.17  3.60  2.78  2.18 

fft  7.6  6.4  5.5  4.9  8521  7630  6652  4964  3.49  2.74  2.21  1.84 

ghostscript  6.1  5.0  3.7  3.2  3061  744  295  132  4.74  3.51  2.73  2.10 

gsm_d  8.3  6.5  5.2  4.3  3670  1470  952  798  3.58  2.98  2.40  1.95 

lame  11.9  11.4  10.8  10.0  23261  21603  19632  13708  2.07  1.77  1.54  1.39 

mad  10.5  9.1  7.0  4.8  15788  10996  9060  7519  2.44  2.18  1.98  1.81 

rijndael_e  9.6  8.9  7.9  7.5  7776  7499  6922  6566  2.93  2.29  1.91  1.59 

rsynth  8.9  8.2  7.0  6.5  10343  9243  8834  8381  2.98  2.36  1.99  1.65 

sha  12.5  12.0  11.7  11.1  14646  14346  13792  10057  2.18  1.80  1.52  1.35 

stringsearch  7.7  6.4  5.0  4.0  4032  1304  693  428  3.79  3.01  2.44  1.99 

tiff2bw  5.5  4.2  2.8  2.5  15923  13148  10926  6785  3.68  3.02  2.54  2.08 

tiff2rgba  6.4  5.0  3.7  2.9  13556  9448  6200  3267  3.55  2.99  2.54  2.09 

tiffdither  6.0  4.1  2.6  1.7  3490  1593  1318  1012  4.79  3.80  2.96  2.31 

tiffmedian  4.9  3.8  2.1  1.5  13108  6042  4646  3430  4.22  3.59  2.93  2.28 

Average  8.3  7.2  6.0  5.3  10483  8220  7276  5600  3.17  2.58  2.15  1.79 

 

 

The results show that by increasing the size of the MASK parameter, the entropy 

goes down: it is 8.3 bits for MASK=0, 7.2 bits for MASK=4, 6.0 bits for MASK=8, and 

5.3 bits when MASK=12.  Also, we can observe that the number of unique non-masked 
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values goes down (#val columns).  The lower #val and the lower entropy both lead to a 

smaller number of bits needed to represent a value within a block which has a positive 

effect on the compression ratio.  However, this improvement is not sufficient to 

compensate an increase in the number of bits that is sent uncompressed (MASK bits).  

For example, an increase of the MASK parameter from 0 to 4 leads to a decrease of the 

entropy for approximately 1.2 bits, while the #val parameter goes from 10483 to 8220.  

This is not sufficient to compensate for sending MASK=4 lower value bits for each load 

instruction.  This fact is clearly illustrated by the compression ratios that decrease with an 

increase in the number of MASK bits.  Consequently, we conclude that this selective 

masking of lower load value bits is not a practical solution for trace compression. 

6.1.3 Compression of Small Load Values Only 

Some data values are proven to occur more frequently than others in regular 

programs [59].  These values are -1, 0, 1, 2, 4 and other small numbers.  Thus, a 

compressor can implement a simple encoding that uses fewer bits to encode smaller 

values.  Table 6.4 shows the fraction of load values that fit into SIZE bits, for different 

values of the parameter SIZE (=4, 5, ..., 12 bits).  The results indicate high variations 

among programs.  For example, cjpeg and djpeg have more than 40% and tiff2bw has 

almost 60% of the load values that fit into 4 bits, while sha has only 14% that can fit into 

12 bits.  The results also indicate that the number of data values that can fit into a 

relatively small number of bits quickly saturates.  For example, 32.2% of load values can 

fit into 8 bits on average; the percentage of load values that can fit into 12 bits is only 

negligibly higher and it is 36.7%.  This result indicates a limited potential of this 

approach in exploiting load value redundancy.  Figure 6.1 shows the compression ratio as 
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a function of the parameter SIZE.  The best compression ratio is achieved when SIZE=8 

(~1.4x) and has maximum for tiff2bw benchmark (~2.5x).  Consequently, we conclude 

that this approach would not be practical for the compression of load values. 

Table 6.4  The fraction of load values that fit in SIZE bits 

                   

Test  \  SIZE  4  5  6  7  8  9  10  11  12 

adpcm_c  0.069  0.100  0.148  0.192  0.324  0.327  0.335  0.356  0.403 

bf_e  0.053  0.069  0.130  0.173  0.197  0.197  0.197  0.197  0.197 

cjpeg  0.428  0.469  0.659  0.671  0.704  0.713  0.723  0.725  0.728 

djpeg  0.406  0.420  0.440  0.488  0.625  0.631  0.669  0.671  0.671 

fft  0.285  0.291  0.307  0.315  0.316  0.316  0.317  0.329  0.330 

ghostscript  0.291  0.301  0.378  0.400  0.451  0.454  0.460  0.463  0.466 

gsm_d  0.214  0.233  0.257  0.285  0.302  0.305  0.314  0.326  0.343 

lame  0.082  0.092  0.100  0.105  0.117  0.122  0.130  0.138  0.149 

mad  0.179  0.205  0.242  0.256  0.270  0.300  0.323  0.348  0.392 

rijndael_e  0.029  0.055  0.073  0.130  0.200  0.200  0.200  0.201  0.202 

rsynth  0.107  0.111  0.120  0.159  0.189  0.219  0.226  0.228  0.230 

sha  0.000  0.000  0.001  0.137  0.137  0.138  0.138  0.138  0.140 

stringsearch  0.107  0.119  0.215  0.387  0.387  0.389  0.392  0.394  0.397 

tiff2bw  0.595  0.674  0.755  0.801  0.818  0.818  0.820  0.823  0.827 

tiff2rgba  0.374  0.424  0.476  0.506  0.516  0.517  0.518  0.519  0.521 

tiffdither  0.307  0.361  0.435  0.493  0.569  0.572  0.579  0.589  0.763 

tiffmedian  0.446  0.656  0.700  0.730  0.790  0.792  0.795  0.799  0.861 

Average  0.189  0.220  0.256  0.286  0.322  0.330  0.335  0.342  0.367 
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Figure 6.1  Compression ratio when using optimal length for load values encoding 

6.2 Compression Using First-Access Cache Track Mechanism 

Data caches are routinely used to reduce latency of memory-referencing 

instructions.  Data caches exploit temporal and spatial locality of data with more recently 

used data kept in fast and small cache structures.  Here we argue that they can be 

augmented to help load value trace compression too.  A software debugger with a full 

functional simulator can also maintain a software copy of a data cache.  Thus, our trace 

module does not need to trace all load values.  Instead, it can only trace load values that 

miss in the processor data cache and are brought from the memory.  To replay the 

program off-line, the software debugger inspects its software copy of the data cache.  If it 

finds the requested data in the data cache, it can continue the program reply using the 

value stored in the cache. Otherwise, the software debugger expects a trace record from 

the target machine.  Data caches have high hit rates, and consequently we can expect that 

they can help significantly reduce the number of load values that need to be traced.  
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Narayanasamy et al. propose a mechanism [27] that traces only those loads that 

access a memory location for the first time.  They assume a software debugger that 

maintains a software copy of the entire memory.  Only first accesses to memory locations 

need to be traced on the target machine.  For all subsequent accesses, data can be 

retrieved from the memory maintained by the software debugger.  A data in a memory 

location is known (valid) from the time the processor loads or stores the data to that 

memory location until it is overwritten by some other device accessing the memory (e.g., 

DMA controller, cache controller that maintain coherence protocols, or from the 

secondary storage).  A flag is added to each memory location to mark whether it is valid 

or not.  The proposed mechanism is named first-load trace as only the first loads to the 

memory location have to be traced.  

We expand the mechanism proposed in [27] and name it first-access track 

mechanism.  Our first-access track scheme differs from the one in [27] as we track the 

validity of L1 cache lines only, not the whole memory.  The tracking of the L1 cache 

only is more suitable for embedded systems and it also makes the mechanism hardware 

implementation feasible.  A vendor usually develops a processor’s subsystem which 

includes the L1 cache.  Also, the corresponding trace module is developed in parallel.  

Other parts of the whole system-on-a-chip, such as the L2 cache or the main memory are 

developed independently of the processor core.  Developing a trace module for a 

processor core (including L1 cache) allows developers a modular design and design 

reuse.  From the software debugger perspective, it is also easier to extend the functional 

simulator with the L1 cache functionality only, rather than with the whole memory 

simulator. 
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6.2.1 First-Access Track Mechanism Details 

The key operation in the first access track scheme is updating (set/reset) first-

access flags attached to each L1 cache line.  An L1 cache line can be replaced from the 

upper memory hierarchy whenever the cache has a miss or some other device (cache 

coherence controller, DMA) replaces a cache line with new data.  When this happens, all 

first-access flags in the selected cache line have to be reset.  

A first-access mechanism system view is shown in Figure 6.2 and the summary of 

various events of interest and corresponding action is given in Table 6.5.  A program 

executes on a target processor core.  The processor includes an L1 data cache that 

supports a first access track mechanism, and it is connected to a trace module.  The L1 

data cache is extended with first-access flags, one per minimum instruction set 

addressable unit (e.g., byte, word).  When a memory referencing instruction has a hit in 

the cache, the first-access flag for a selected word is set (if not already set), indicating 

that the value in the cache is known.  When a memory referencing instruction has a miss 

in the cache, a block of data is brought from the upper memory hierarchy and all first-

access flags are reset.  Next, the selected word is traced out and its first-access flag is set.  

The invalidation of a cache line from an external device also invalidates all first-access 

flags in that cache line. 

The trace module operation is rather simple.  It looks for events in the L1 cache 

and decides whether to trace the load value out of the chip or not.  The trace module 

suppresses the tracing of load value only if the cache reports a hit and the flag-access bit 

for the addressed word is originally set.  For each load value, the trace module also traces 

a header (e.g., hit=1, miss=0) bit.  The software debugger knows whether to expect a load 
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value or not based on this header bit.  Note: here we assume that a data cache line can be 

invalidated using external events (those that are not caused by program execution).  If 

such events are not possible, we may avoid tracing the header bit.  

On the software debugger side, a fully functional simulator is extended to accept 

load values either from the L1 cache simulator or the trace port; for each load instruction, 

the software debugger reads the header bit from the trace file.  If the header bit is set, the 

software debugger reads the selected word from its model of the L1 cache.  If the header 

bit is reset, the debugger reads a load value from the trace port.  Also, the data cache is 

updated with the incoming load value. 
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Figure 6.2  System view of the first-load track mechanism 

Note:  While this mechanism supports the external invalidation of cache lines, the 

single-threaded MiBench programs we use generate L1 cache invalidations only on cache 

misses. This may produce skewed results when comparing to a realistic multi-core 
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system.  However, we do not expect significant changes due to the following:  The 

majority of load values in a program is produced by the program itself and is not received 

from other sources.  For example, let us consider a MiBench cjpeg program that 

processes an input picture that is 800 KB is size.  Assume that this picture is brought into 

the system memory using a DMA.  The cjpeg program includes 28 million load 

instructions for a total amount of load data brought to the chip by all load instructions 

over 100 MB.  Consequently, the input picture would account for less than 1% of the all 

load data values. This practically means that the external device invalidations of cache 

lines cannot have a noticeable impact on overall cache invalidation rate. 

Table 6.5  First-access mechanism operation: L1 cache (a), trace module (b), software 
debugger (c) 

L1 events 
(on load or store instruction) 

L1 action 

Cache Hit  Set First‐Access flag 

Cache Miss  Reset all First‐Access flags in selected line 
Set First‐Access flag for the selected word in line 

External Invalidation  Reset all First‐Access flags in addressed cache line 

(a) 

Trace Module Events  
(on load instruction) 

Trace Module Action  Trace Record 

Cache Hit &  
First‐Access flag set 

Trace hit bit only  “1” 

All others   Trace miss bit followed 
by data value  

“0” + “N‐bit load value” 
(N = size of transfer, e.g. 8, 16, 32 bits) 

(b) 

Software Debugger Events 
(on load instruction) 

Software Debugger Action 

Trace hit/miss bit set  Take load value from the cache 

Trace hit/miss bit not set  Take load results from the trace file 
Allocate traced load value to the cache 

(c) 
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6.2.2 Results and Analysis 

The results for the first-access track mechanism are given in Figure 6.3.  

Figure 6.3a shows the cache hit rate while the Figure 6.3b shows the percentage of load 

instructions for which the corresponding first-access flag is set (first-access flag set hit 

rate).  The results are given for three block sizes (4, 16 and 64 bytes) and for cache sizes 

from 1 KB to 128 KB; the number of cache ways is fixed to 4.  We can observe that the 

cache hit rate benefits from larger block sizes, while the first-access flag set hit rate 

benefits from smaller ones, as the number of flags invalidated after cache line 

invalidation is lower. 
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(a)                     (b)  

Figure 6.3  Cache Hit rate (a) and first-access flag set hit rate (b) for the first-access track 
mechanism 

Table 6.6 shows detailed results for first-access set hit rate when the block size is 

64, which is more realistic in modern processors.  Both the cache hit rate and the first-

access flag set hit rate are overall high, but some programs have poor performance even 
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for very large cache structures.  For example, tiff2rgba achieves a first-access flag set hit 

rate of only 68% for a cache size of 64 KB and approximately 0% for a cache size of 

8 KB.  The zero hit rate is caused by the sequential access to the cache, which represents 

the worst-case scenario regarding the first-access mechanism. 

Table 6.6  First-access set hit rate for cache with 64-byte block 

  First‐access set hit rate 

Test   \   Size   1K   2K   4K   8K   16K   32K   64K   128K 

adpcm_c  0.711  0.740  0.981  1.000  1.000  1.000  1.000  1.000 

bf_e  0.773  0.801  0.905  0.983  0.999  1.000  1.000  1.000 

cjpeg  0.595  0.669  0.728  0.798  0.831  0.851  0.858  0.871 

djpeg  0.551  0.634  0.735  0.835  0.921  0.983  0.998  0.999 

fft  0.841  0.910  0.979  0.993  0.993  0.993  0.993  0.993 

ghostscript  0.758  0.928  0.982  0.986  0.988  0.990  0.991  0.991 

gsm_d  0.964  0.984  0.993  0.999  1.000  1.000  1.000  1.000 

lame  0.552  0.615  0.708  0.868  0.942  0.964  0.975  0.993 

mad  0.592  0.641  0.780  0.948  0.977  0.995  0.997  0.999 

rijndael_e  0.499  0.524  0.564  0.891  0.994  1.000  1.000  1.000 

rsynth  0.704  0.868  0.961  0.976  0.982  0.982  0.983  0.985 

sha  0.961  0.966  0.966  0.990  1.000  1.000  1.000  1.000 

stringsearch  0.717  0.851  0.920  0.972  0.987  0.992  0.993  0.993 

tiff2bw  0.007  0.007  0.007  0.045  0.626  0.996  1.000  1.000 

tiff2rgba  0.007  0.007  0.007  0.007  0.229  0.612  0.685  0.685 

tiffdither  0.668  0.815  0.825  0.869  0.941  0.999  1.000  1.000 

tiffmedian  0.478  0.497  0.508  0.520  0.698  0.881  0.971  0.999 

Average  0.648  0.726  0.793  0.863  0.924  0.966  0.978  0.985 

 

 

To calculate the trace port bandwidth requirements, we assume tracing of the 

first-access flag value as a hit or miss information, followed by an N-bit load value if the 

flag is not set (N=8, 16 or 32 depending on size of the memory transfer).  The results for 

the 4-way cache with the 64-byte block are shown in Table 6.7.  The results indicate high 

variations in the required trace port bandwidth.  While some benchmarks require small 
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tracing overhead with small cache sizes (gsm_d requires 0.27 bits/ins for 1 KB cache), 

some other tests have high trace bandwidth requirements (tiff2rgba achieves 4.41 bits/ins 

at lowest).  Also, some programs (tiffrgba, tiffmedian , rijndael_e and tiff2bw) require 

large cache sizes (8KB and above) for a noticeable decrease in required trace port 

bandwidth. 

Table 6.7  Trace port bandwidth for first-load track mechanism 

  Trace Port Bandwidth (bits/ins)   
Test  \ Size  1K  2K  4K  8K  16K  32K  64K  128K 

adpcm_c  0.43 0.40 0.15 0.13 0.13 0.13 0.13 0.13 

bf_e  2.75 2.42 1.31 0.45 0.38 0.38 0.38 0.38 

cjpeg  2.56 1.91 1.45 0.90 0.72 0.64 0.61 0.57 

djpeg  2.89 2.23 1.61 0.98 0.62 0.40 0.35 0.34 

fft  1.46 0.92 0.42 0.31 0.31 0.31 0.31 0.31 

ghostscript  2.26 0.89 0.41 0.38 0.36 0.35 0.34 0.34 

gsm_d  0.27 0.21 0.19 0.17 0.17 0.17 0.17 0.17 

lame  5.08 4.37 3.32 1.71 0.93 0.70 0.59 0.43 

mad  3.89 3.61 2.32 0.74 0.47 0.31 0.30 0.29 

rijndael_e  7.35 7.05 6.49 1.96 0.52 0.44 0.44 0.44 

rsynth  4.24 2.02 0.77 0.57 0.49 0.49 0.48 0.48 

sha  0.38 0.35 0.35 0.22 0.17 0.17 0.17 0.17 

stringsearch 1.48 0.78 0.46 0.33 0.24 0.21 0.21 0.21 

tiff2bw  4.07 4.07 4.07 3.87 2.34 0.30 0.27 0.27 

tiff2rgba  8.52 8.52 8.52 8.52 7.81 5.34 4.41 4.41 

tiffdither  1.62 0.85 0.81 0.71 0.48 0.23 0.22 0.22 

tiffmedian  2.72 2.58 2.50 2.43 1.86 0.95 0.48 0.32 

Average  3.34 2.58 1.96 1.22 0.85 0.59 0.51 0.46 

 

 

6.2.3 Dedicated First-Access Tracking Scheme 

We can extend the first-access track mechanism to require hardware changes in 

the trace module only while the data cache remains unchanged.  The trace module 

includes a cache that stores recently seen load and store values.  By using this approach, 
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first-access flags are no longer needed.  Instead, a load value is traced only when the 

incoming load value is not found in the trace module cache.  If it is found in the trace 

module cache, the load value is not traced.  This mechanism offers greater flexibility over 

the first-access flag mechanism for an application specific processor as it allows changing 

the configuration of the cache and its size to the application requirements.  For example, 

a gsm_d benchmark will achieve excellent compression rates for the cache size of only 

1 KB, which actually requires less hardware than implementing first-access flags if, for 

example, a 64 KB L1 cache is used (8 KB of first-access flags required). 

Figure 6.4 compares the trace port bandwidth for an N-way cache with a 64-byte 

block while the N takes values of 1, 2 and 4.  We see a very small increase in the required 

trace port bandwidth when we decrease the number of ways.  This indicates that the trace 

module may include a simple and smaller caches solely dedicated to tracing. 

0

1

2

3

4

5

6

7

8

9

1K 2K 4K 8K 16K 32K 64K 128K

Tr
ac
e
 P
o
rt
 B
a
n
d
w
id
th
 (
b
it
s/
in
s)

WAYS=4, BSIZE=64

WAYS=2, BSIZE=64

WAYS=1, BSIZE=64

 

Figure 6.4  Trace port bandwidth for dedicated first-load track mechanism  
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6.3 Putting It All Together 

In this chapter we examined the compressibility of load values by finding the 

entropy of the load value data set.  The results indicate a compression algorithm would 

benefit from working with large sets of load values, which is not feasible for hardware 

implementation.  Also, by measuring the Markov 0th order entropy, we found the 

compression limit is just over three times.  Further, we examined the entropy of high-

order load value bits and found that the entropy does not decrease to compensate for the 

lower bits that are traced without compression.  This leads to a conclusion that the 

compression of high-order bits only is not an efficient mechanism.  We also examined the 

possibility of compression of small load values as they are very frequent (values such as  

-1, 0, 1, 4 …).  We found that the compression ratios achieved using this approach are 

very small (less than 2 times for almost all program). 

The greater level of compressibility can be achieved by including the processor’s 

architectural state to augment compression.  We examined the first-access track 

mechanism which tracks the state of the level one data cache in both the processor and 

the software debugger.  A load value is traced out of the chip only if the debugger cannot 

find the correct value in its own cache.  The main drawback of the first-access scheme is 

its dependency on processor internals, and it must be implemented together with the 

processor subsystem which is often not welcome by system architects.  Also, it requires 

the implementation of the L1 data cache, which may not be available in low-end 

embedded processors.  Fortunately, integration with the L1 cache offers a key advantage: 

the designers may opt to increase the cache size (or to include one) to benefit both the 

load value compression and the processor performance. 
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The first-access track scheme can be decoupled from the processor operation.  In 

this implementation, first-load flags are not attached to the cache but reside in the trace 

module while all the necessary signals to access the cache come from the processor trace 

port as usual.  This is possible because the trace module has all the parameters needed to 

organize first-load flags to follow the cache organization and program execution; 

organization of a cache is a design parameter available to the trace module designer, 

while the program execution (addressing into the cache, type of reference, hits/miss…) is 

available on the trace port.  However, additional implementation details are necessary; 

the cache access decoder has to be duplicated to access first-access flags in the trace 

module operation and the trace module must track the invalidations of cache lines from 

an external device.   

Finally, the first-access mechanism can be fully decoupled from the cache 

operation; the trace module can implement the dedicated cache, which stores results of 

load and store operations and traces a load value only if it does not match the one in the 

addressed cache line.  This mechanism can be useful for application specific systems, 

where the static profiling of the application can help find the most efficient cache size 

and parameters. 

We compare compression ratios achieved using the first-access mechanism with 

compression rate limits extracted from the Markov 0th order entropy and the compression 

ratio achieved by the general purpose compressors (gzip, bzip).  Table 6.8 shows the 

results for the first-access mechanism with 8 KB and 64 KB cache sizes (64-byte block 

and 4 ways) in the first two columns, compression ratios achieved using the Markov  

0th order entropy for 128 KB data sets and the fast gzip (-1 option).  The results indicate 
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the first-access mechanism with the 64 KB cache outperforms the other schemes for all 

programs except for tiff2rgba.  Compression using bzip-1 greatly improves the 

compression for certain tests (e.g., cjpeg, djpeg, ghostscript and stringsearch) as it uses 

an algorithm to reorder data within a large data set.  However, even then, low 

predictability of data set values leads to a decrease of compression rate for the sha 

benchmark.  In result, we can say that the first-access track mechanism is an excellent 

approach for the compression of load values.  It outperforms other mechanisms, even the 

software ones, for almost all benchmarks. 

Table 6.8  Load values compression rate comparison 

  First‐Access  Markov 0th  

Test  \  Size    8KB     64KB 128KB   gzip‐1 bzip ‐1 

adpcm_c  25.14 25.14 5.65  4.14 8.83 

bf_e  25.56 30.11 3.60  3.81 5.04 

cjpeg  8.47 12.55 5.72  6.54 14.11 

djpeg  7.79 22.02 5.17  6.47 10.41 

fft  25.16 25.41 3.49  4.73 6.32 

ghostscript  23.59 25.95 4.74  13.63 20.40 

gsm_d  27.53 28.12 3.58  3.64 5.36 

lame  6.42 18.58 2.07  2.52 2.51 

mad  11.52 28.58 2.44  2.44 2.70 

rijndael_e  6.29 28.11 2.93  2.36 2.69 

rsynth  23.34 27.65 2.98  3.32 3.77 

sha  21.86 28.62 2.18  2.48 1.99 

stringsearch  14.25 22.39 3.79  6.34 10.85 

tiff2bw  1.00 14.23 3.68  3.47 4.61 

tiff2rgba  0.96 1.86 3.55  3.43 4.21 

tiffdither  7.52 23.96 4.79  4.55 8.21 

tiffmedian  2.87 14.55 4.22  4.47 7.06 

Average  6.69 17.20 3.17  4.12 5.72 
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CHAPTER 7 

 

 

CONCLUSIONS AND FUTURE WORK 

 

 

Our society relies on embedded computer systems that drive transportation, 

communication, medicine, and all other aspects of our daily life.  Semiconductor trends 

have enabled embedded computer systems with ever-increasing functionality and 

sophistication that are less costly and smaller.  Developing and testing of software in 

modern embedded systems becomes one of the most critical issues.  At the time of 

writing this dissertation, our society is going through costly recalls in the automotive 

industry, some of which are caused by software bugs in cars.  Software developers of 

real-time embedded systems need appropriate hardware and software tools that will 

enable them to gain insight into what their system is doing at any point in time.  These 

tools should not interfere with normal system operation and should be easy to use and 

possibly reduce the time software developers spend on debugging (over 80% of their 

development time according to some estimates).   

Trace modules are crucial components of modern embedded systems that help 

software debugging.  Trace modules capture program traces and send them through trace 
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ports to a host machine running a software debugger.  However, program traces are 

extremely large (an embedded processor running at 1 GHz can generate more than 1 GB 

of trace data per second, making program tracing in real-time impractical or impossible).  

The current approaches to debugging require costly on-chip trace buffers and wide trace 

ports that can capture program traces unobtrusively for short program segments.  

However, these resources are rarely made available by processor vendors.  These 

problems are further exaggerated by the current trends toward complex multi-core 

systems on a single chip and a scalability discrepancy between the on-chip logic 

(growing exponentially with each new technology generation) and available I/O 

bandwidth (does not grow exponentially).  This dissertation is aimed at developing trace 

modules that will dramatically reduce the amount of trace data by means of trace 

compression.   

This dissertation proposed a number of algorithms for the cost-effective 

compression of program traces, including instruction address traces, data address traces, 

and load data values.  We explore characteristics of individual trace components, 

introduce new compression algorithms, and explore the design space that includes trace 

port bandwidth requirements and implementation cost.  Our goal is to develop techniques 

that will minimize the required trace port bandwidth (maximize the compression ratio) 

and minimize the implementation cost, while allowing for unobtrusive program tracing in 

real-time.  To achieve this goal we characterize program traces and exploit their inherent 

characteristics together with cost-effective architectural solutions.  Typically, we apply 

filtering to minimize the number of trace records needed for program replay at the 

software debugger.  Compression is carried out using architecture-inspired resources 
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(stream caches, predictors, adaptive data address caches) where a sequence of trace 

records is translated into a sequence of a few hit/miss events on these structures.  These 

events are then encoded in cost-effective encoding methods.   

For the compression of instruction address traces, we introduce three new 

techniques, namely, Double Move-to-Front (DMTF), Stream Caches with Last Stream 

Predictors (SC-LSP), and a Branch Predictor-based compression.  All three techniques 

guarantee unobtrusive tracing of instruction address traces with less than  

0.15 bits/instruction on the trace port bandwidth.  The best performing and the least 

costly technique based on Branch Predictors requires 0.036 bits/ins at the trace port at the 

cost of 5,200 additional gates.  This is almost 28-fold improvement in the required 

bandwidth over the commercial state-of-the-art at negligible hardware costs.  

For compression of data addresses we introduce two new techniques. The first 

technique uses new Data Address Filtering to reduce the number of data addresses that 

need to be traced.  The second technique performs compression using a new hardware 

structure called Adaptive Data Address Cache.  The data address filtering achieves 

average compression ratios of 3.56, outperforming the software compression utility gzip 

for many programs.  The filtering method requires minimal hardware complexity 

providing that certain signals from the processor core are made available.  The adaptive 

data address cache achieves a compression ratio of 5.6 at the cost of 30,000 logic gates.  

State-of-the-art solutions achieve compression ratios on data addresses of only 1.6.  

Consequently, the data address filtering provides 10-fold, and the adaptive data address 

cache provides over 3.5-fold improvement over the currently used compression method 

in the Nexus standard.   
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Finally for data values, we show that tracing only load values is sufficient 

assuming sophisticated software debuggers.  We expanded previously proposed 

techniques for software trace capturing and made them suitable for embedded systems 

and hardware trace capturing.  Our technique is called first-access load tracking and we 

offer two implementations – one closely coupled with the processor cache and the other 

that is implemented in the trace module.  Depending on cache size, the proposed 

technique achieves compression ratios of 6.9 (assuming 8 KB data cache) and 17.2 

(assuming 64 KB data cache).  This method also outperforms the software compression 

of all load values at the cost of relatively small additional complexity.  

Our results indicate that real-time program tracing is possible in embedded 

systems if our trace compression techniques are used.  They significantly reduce the 

required trace port bandwidth and eliminate the need for deep on-chip trace buffers to 

capture traces before they are read out through narrow trace ports.   

While we focused on developing compression algorithms and cost-effective 

hardware implementations in uni-processor systems, the proposed compression 

algorithms are applicable to multi-core systems too.  Future research efforts should 

address tracing of on-chip interconnect and trace synchronization in multi-core systems.  

One direction for future research would be to explore combining different compressors: 

for example, our data address filtering method can be combined with a second-level 

compressor to further reduce the size of data addresses.  In spite of excellent average 

compression ratios, we noticed that certain benchmarks still pose high bandwidth 

requirements.  They may also benefit from further investigation focusing on combining 

different compressors. 
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