

ALGORITHMS AND HARDWARE STRUCTURES
FOR REAL-TIME COMPRESSION OF PROGRAM TRACES

by

VLADIMIR UZELAC

A DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

in
The Department of Electrical & Computer Engineering

to
The School of Graduate Studies

of
The University of Alabama in Huntsville

HUNTSVILLE, ALABAMA

2010

 ii

In presenting this dissertation in partial fulfillment of the requirements for a doctoral
degree from The University of Alabama in Huntsville, I agree that the Library of this
University shall make it freely available for inspection. I further agree that permission for
extensive copying for scholarly purposes may be granted by my advisor or, in his/her
absence, by the Chair of the Department or the Dean of the School of Graduate Studies. It
is also understood that due recognition shall be given to me and to The University of
Alabama in Huntsville in any scholarly use which may be made of any material in this
dissertation.

____________________________ ___________

(student signature) (date)

 iii

DISSERTATION APPROVAL FORM

Submitted by Vladimir Uzelac in partial fulfillment of the requirements for the degree of Doctor
of Philosophy in Computer Engineering and accepted on behalf of the Faculty of the School of
Graduate Studies by the thesis committee.

We, the undersigned members of the Graduate Faculty of The University of Alabama in
Huntsville, certify that we have advised and/or supervised the candidate on the work described in
this dissertation. We further certify that we have reviewed the thesis manuscript and approve it in
partial fulfillment of the requirements for the degree of Doctor of Philosophy in Computer
Engineering.

__ Committee Chair
(Date)

__

__

__

__

__ Department Chair

__ College Dean

__ Graduate Dean

 iv

ABSTRACT

The School of Graduate Studies
The University of Alabama in Huntsville

Degree Doctor of Philosophy College/Dept. Engineering/Electrical and

Computer Engineering

Name of Candidate Vladimir Uzelac
Title Algorithms and Hardware Structures for Real-Time

 Compression of Program Traces

 Rising complexity of both hardware and software of modern embedded systems-on-a-chip

makes software development and system verification the most critical step in a system

development. To expedite system verification and program debugging chip manufacturers

increasingly pay attention to hardware infrastructure for program debugging and tracing. The

program tracing infrastructure includes logic to capture program execution traces, buffers to store

traces on the chip and a trace port through which the trace is read by the debug tools. In order to

cope with the size and bandwidth requirements for the real-time tracing, hardware compression of

traces is required. In this dissertation, we present and analyze methods for on-the-fly

compression of three components of the program (software) trace: addresses of executed

instructions, addresses of memory referencing instructions and results of memory load

instructions – the data brought to the system. We introduce a number of new algorithms for

compression of individual trace components and explore their design space. We demonstrate that

the proposed hardware trace compressors enable unobtrusive program tracing in real-time at the

minimal additional hardware cost.

Abstract Approval: Committee Chair _______________________________________

Department Chair _______________________________________

Graduate Dean _______________________________________

v

ACKNOWLEDGMENTS

I would like to express my deepest gratitude to my advisor, Dr. Aleksandar

Milenković, for his excellent guidance, care and patience from the very first day of my

graduate studies. He was a great advisor in my professional and private life, and he

helped me easily overcome all the hurdles and challenges during the four years of my

studies. He guided me on how to write conference and journal papers and he spent

countless hours proofreading my research papers and discussing the results of my

research.

Also, I would like to thank Dr. Emil Jovanov and Dr. Reza Adhami, for their

financial help and support I received from the very first day of my graduate studies.

While working as a teaching assistant for Dr. Jovanov, I had an opportunity to learn

many valuable skills in embedded system design. I would like to thank Dr. Jeffrey

Kulick who showed great interest in my education and research and helped me with his

expertise and advice. During my studies at The University at Alabama in Huntsville, I

have had contacts with many students, faculty and staff. Their friendly and supportive

attitude was of great help, and I thank all of them.

In the past four years my wife was responsible for managing all other aspects of

our life, enduring with me through the bad and good. Her patience and emotional

stability made my commitment to this research possible. Thank you Tijana for all your

support and love.

vi

TABLE OF CONTENTS

Page

LIST OF FIGURES .. x

LIST OF TABLES .. xii

CHAPTER

1 INTRODUCTION ... 1

1.1 Software Debugging Challenges ... 2

1.2 The Case for Hardware Tracing .. 4

1.3 The Case for Trace Compression .. 6

1.4 Contributions... 7

1.5 Outline... 8

2 PROGRAM TRACING: BACKGROUND ... 10

2.1 Types of Tracing ... 11

2.1.1 Software Tracing ... 11

2.1.2 Hardware Tracing ... 12

2.2 Hardware Supported Unobtrusive Tracing ... 14

2.2.1 CPU Trace Signals .. 15

2.2.2 Trace Module Details .. 16

2.2.3 Tracing and Debugging Protocols .. 18

2.3 Hardware Trace Infrastructure Examples ... 22

vii

2.3.1 OCP-IP Debug .. 22

2.3.2 Hardware/Software (Hybrid) Tracing ... 25

2.3.3 Hardware Based Debugging Infrastructure .. 26

3 TRACE COMPRESSION ALGORITHMS .. 29

3.1 General-Purpose Compression Algorithms .. 30

3.1.1 gzip .. 30

3.1.2 bzip2 .. 31

3.1.3 Sequitur ... 32

3.2 Specialized Algorithms for Instruction and Data Trace Compression 32

3.2.1 Instruction Address Trace Compression ... 33

3.2.2 Data Address Compression ... 34

3.2.3 Data Value Prediction ... 37

3.3 Compression Algorithms in Hardware ... 39

3.3.1 Architectural Support for Trace Compression .. 41

4 COMPRESSION OF PROGRAM EXECUTION TRACES .. 43

4.1 System View of the Proposed Tracing Mechanism .. 43

4.2 Characterization of Control Flow Changes ... 46

4.3 Double Move-To-Front Method ... 49

4.3.1 Move-to-Front Transformation ... 50

4.3.2 DMTF Method .. 53

4.3.3 Enhanced DMTF Method ... 58

4.3.4 Trace Port Bandwidth Analysis .. 62

4.3.5 Hardware Implementation and Complexity .. 64

viii

4.4 Stream Descriptor Cache and Last Stream Predictor .. 65

4.4.1 Compressor Organization ... 66

4.4.2 Design Space Exploration ... 73

4.4.3 Enhancements for Base SDC-LSP Scheme .. 78

4.4.4 Trace Port Bandwidth Analysis .. 83

4.4.5 Hardware Implementation and Complexity .. 86

4.5 Program Execution Tracing using Branch Predictors 88

4.5.1 Trace Module Branch Predictor .. 89

4.5.2 Trace Record Encoding ... 95

4.5.3 Trace Port Bandwidth Analysis .. 99

4.5.4 Hardware Implementation and Complexity .. 101

4.6 Comparative Analysis ... 102

5 COMPRESSION OF DATA ADDRESSES ... 107

5.1 Data Address Filtering .. 108

5.1.1 Data Address Filtering Details .. 109

5.1.2 Addressing Modes and Register Validation ... 114

5.1.3 Experimental Evaluation ... 117

5.2 Adaptive Data Address Cache .. 123

5.2.1 Variability of High-Order Data Address Bits ... 126

5.2.2 Adaptive Data Address Cache .. 130

5.2.3 Design Space Exploration and Trace Port Bandwidth Analysis 133

5.3 Comparative Analysis ... 137

6 LOAD VALUES COMPRESSION ... 140

ix

6.1 Data Values Compressibility .. 142

6.1.1 Entropy of Load Values .. 142

6.1.2 Variability of High-order Bits ... 145

6.1.3 Compression of Small Load Values Only .. 147

6.2 Compression Using First-Access Cache Track Mechanism 149

6.2.1 First-Access Track Mechanism Details .. 151

6.2.2 Results and Analysis ... 154

6.2.3 Dedicated First-Access Tracking Scheme .. 156

6.3 Putting It All Together .. 158

7 CONCLUSIONS AND FUTURE WORK .. 161

REFERENCES ... 165

x

LIST OF FIGURES

Figure Page

1.1 System-on-Chip Observabililty ... 3

1.2 Observability of SoC operation using different types of traces 6

2.1 System view of the hardware support for unobtrusive program tracing 13

2.2 Nexus system level organization ... 22

2.3 System view of BugNet architecture ... 26

2.4 System view of ARM’s CoreSight architecture ... 28

4.1 System view of the proposed program tracing and replay mechanism 45

4.2 MiBench branch related statistics .. 47

4.3 Stream Detector operation ... 48

4.4 DMTF operation .. 54

4.5 DMTF compression (a) and decompression (b) flow examples 57

4.6 An enhanced DMTF trace format .. 61

4.7 Trace port bandwidth as a function of the mtf1 size .. 62

4.8 MTF hardware implementation ... 65

4.9 System view of Stream Cache with Last Stream Predictor compressor 66

4.10 Trace module structures: Stream Descriptor Cache and Last Stream Predictor 67

4.11 Stream Descriptor Cache operation ... 68

xi

4.12 Last Stream Predictor operation ... 69

4.13 A compression/decompression example .. 72

4.14 SDC hit rate and trace port bandwidth as functions of its size and organization 75

4.15 Trace port bandwidth of all proposed schemes. ... 85

4.16 Trace reduction ratio vs. complexity for the three proposed schemes 87

4.17 Trace module: a system view ... 90

4.18 Trace module operation ... 91

4.19 Program execution replay in software debugger ... 93

4.20 Tracing and replaying program execution example ... 95

4.21 Trace record formats for branch misprediction events and exceptions 97

4.22 Trace port bandwidth evaluation for proposed and related mechanisms 104

4.23 Implementation complexity of proposed tracing mechanisms 105

5.1 Data address trace filtering: A system view .. 114

5.2 Trace bandwidth requirements (a) and compressor effectiveness (b) 125

5.3 Adaptive Data Address Cache organization .. 130

5.4 Adaptive Data Address Cache operation ... 132

5.5 Average hit rates for different DAC-based compressors ... 136

5.6 Average compression ratio and trace port bandwidth for ADAC 136

6.1 Compression ratio when using optimal length for load values encoding 149

6.2 System view of the first-load track mechanism ... 152

6.3 Cache Hit rate (a) and first-access flag set hit rate (b) for the first-access track

mechanism .. 154

6.4 Trace port bandwidth for dedicated first-load track mechanism 157

xii

LIST OF TABLES

Table Page

4.1 MiBench benchmark characteristics .. 49

4.2 Move-to-Front transformation effect on program streams in MiBench 52

4.3 Trace bandwidth for DMTF(128,X), X= 4-16 (a), distribution of the individual trace

components (b) .. 58

4.4 Compression ratios for xDMTF (x=b,h,e) ... 63

4.5 Trace records encoding .. 70

4.6 SDC hit rate as functions of its size and organization ... 76

4.7 LSP hit rates (a), and LSP trace port bandwidth (b), for the bSDC-LSP scheme 77

4.8 Distributions of individual trace components for two trace module configurations . 79

4.9 Fraction of the original miss trace component using LVSA 81

4.10 Trace port bandwidth of the eSDC-LSP scheme .. 84

4.11 Trace port bandwidth of the rSDC-LSP scheme .. 85

4.12 Trace module branch pred. events and trace records. .. 92

4.13 Trace port bandwidth for different TMBP organizations 100

4.14 Trace port bandwidth evaluation: A comparative analysis 103

5.1 Partial software replay filtering example ... 112

5.2 Distribution of load instruction types .. 118

5.3 Data address filtering rates for load instructions ... 119

xiii

5.4 Distribution of types of store instructions .. 121

5.5 Filtering results for store instructions .. 121

5.6 Filtering results and trace port bandwidth for all memory referencing instructions 123

5.7 Hit rate in a data address history table ... 127

5.8 Hit rate in a data address cache .. 128

5.9 Data address trace record encoding for ADAC compressor 133

5.10 Data address trace compression ... 138

6.1 Markov 0th order entropy for MiBench tests ... 144

6.2 Compression ratio achieved by measuring Markov 0th order entropy 145

6.3 Entropy of high-order load value bits. ... 146

6.4 The fraction of load values that fit in SIZE bits ... 148

6.5 First-access mechanism operation: L1 cache (a), trace module (b), software debugger

(c) .. 153

6.6 First-access set hit rate for cache with 64-byte block .. 155

6.7 Trace port bandwidth for first-load track mechanism .. 156

6.8 Load values compression rate comparison .. 160

 1

CHAPTER 1

INTRODUCTION

Embedded computing drives important aspects of our life including the modern

communications, transportation, medicine and entertainment. The number of embedded

processors by far surpasses the number of processors used for desktop and server

computing. For example, a 2009 smartphone typically includes several processor cores

[1] and a modern luxury car may have over 70 different processors and microcontrollers

[2]. With emergence of ubiquitous computing and wireless sensor networks, we expect

further diversification of embedded processors and their applications.

Current technology and economic trends pose unique challenges to the design and

the operation of embedded computer systems. Semiconductor technology continues to

provide cheaper, smaller, and faster transistors with each new technology generation, and

we can integrate more and more transistors on a single chip. However, more aggressive

technologies suffer from lower component reliability. Next, increased sophistication of

hardware blocks and an increased level of integration limit the observability of internal

signals. In result, the time spent in post-silicon debug and verification has grown steadily

2

as we move from one technology generation to the next [3]. On the other side, software

designer’s challenges are also on the rise: increased hardware complexity enables more

sophisticated applications. The software stack includes many layers, from hardware

bring-up, low-level software, OS/RTOS porting, application developing, system

integration and performance tuning & optimization, production tests, in-field

maintenance, and failure analysis. Growing software complexity often leads to project

failures or lost revenue if very tight time-to-market goals are not met. According to a

study published by the National Institutes of Standards, software developers typically

spend 50%-70% of their development time in program debugging [4]. This time is likely

to continue growing with a shift from single- to multi-threaded applications -- developing

parallel programs is known to be a more challenging task than developing sequential

programs. Hence, debugging and testing becomes one of the most critical steps in the

design and operation of modern embedded computer systems.

1.1 Software Debugging Challenges

Ideally, system designers and software developers would like to be able to answer

the simple question “What is my system doing?” at any point in the design and test cycle.

However, achieving complete visibility of all signals in real time in modern embedded

platforms is not feasible due to limited I/O bandwidth and high internal complexity.

Modern embedded computer systems are built as Systems-On-a-Chip (SOCs) as

illustrated in Figure 1.1. SOCs now replace traditional designs that consist of multiple

integrated circuits connected on a printed circuit board (PCB). This transition from

systems-on-a-board to systems-on-a-chip prevents system designers from observing and

controlling internal signals. One approach to addressing this problem is the development

3

of a dedicated In-Circuit-Emulator (ICE) with additional support for debugging.

However, this approach is cost-prohibitive. Furthermore, the ICE’s physical

characteristics such as chip floorplan, pin layout, and timing characteristics, differ from

the targeted SoC. An alternative approach is to incorporate a trace module on the chip –

a dedicated hardware resource solely devoted to debugging. The trace module captures,

buffers, and sends out a hardware trace – a recorded sequence of events related to

program execution, including program execution trace, data trace, and interconnect

signals.

Figure 1.1 System-on-Chip Observabililty
(Strikethroughs represent a change in observability when the identical system is built on a

printed circuit board)

Debugging and testing of embedded processors is traditionally done through a

JTAG port that supports two basic functions: stopping the processor at any instruction or

data access and examining the system state or changing it from outside. The problem

with this approach is that it is obtrusive – the order of events during debugging may

4

deviate from the order of events during “native” program execution when no interference

from debugging operations is present. These deviations can cause the original problem to

disappear in the debug run. For example, debugging operations may interfere with

program execution in such a way that the data races we are trying to locate disappear.

Moreover, stepping through the program is time-consuming for programmers and is

simply not an option for debugging real-time embedded systems. For example, setting a

breakpoint may be impossible or harmful in real-time systems such as a hard drive or a

vehicle engine controller. A number of even more challenging issues arise in multi-core

systems. They may have multiple clock and power domains, and we must be able to

support debugging of each core, regardless of what the other cores are doing. Debugging

through a JTAG port is not well suited to meet these challenges.

1.2 The Case for Hardware Tracing

Recognizing debugging challenges and issues, many vendors have developed

modules with tracing capabilities and integrated them into their embedded platforms, e.g.,

ARM’s Embedded Trace Macrocell [5], MIPS’s PDTrace [6] and OCDS from Infineon

[7] with a corresponding trace module from Freescale [8]. The IEEE’s Industry Standard

and Technology Organization has proposed a standard for a global embedded processor

debug interface (Nexus 5001) [9]. The trace and debug infrastructure on a chip typically

includes logic that captures address, data, and control signals, logic to filter and compress

the trace information, buffers to store the traces, and logic that emits the content of the

trace buffer through a trace port to an external trace unit or host machine.

Beside resolving debugging challenges and issues in single-core system, tracing is

essential in debugging of multi-core systems; various interdependencies and interactions

5

cannot be observed with the simple snapshot of the system state, but continual tracing is

needed in order to find bugs and other unwanted situations.

Hardware traces can be classified into three categories depending on the type of

information they contain: program (or instruction) traces, data traces (from the memory

bus) and system traces (various signals of interest in debugging the implemented

hardware or observing the inter-cores dependencies and so on). Figure 1.2 illustrates

how the tracing helps us to regain the observably into the system-on chip-behavior; real-

time traces from different subsystems can be analyzed offline in order to debug and

develop the system and compensate for the lack of observability through logic-scopes.

In this dissertation we focus on program traces which consist of instruction

address (program execution) traces, data address traces (addresses of memory referencing

instructions) and data value traces (data brought to the CPU using load instructions).

These traces are widely used for both hardware and software debugging as well as for

program optimization and tuning. While data value traces are sufficient to replay the

program offline and analyze its behavior, this type of tracing is often not favored due to

its high bandwidth requirements. On contrary, program execution traces have much

lower bandwidth requirements while allowing for simple debugging tasks which are

sufficient for many testing, debugging and verification purposes.

Tracing requires huge amount of data to be sent out of a chip. For example, a

processor running at 1GHz produces gigabytes of trace information for just one second of

execution time. Thus, the tracing process must rely on very large on-chip buffers to store

the traces of large program segments and/or on relatively wide trace ports that can

transfer a large amount of trace data in real-time.

6

Figure 1.2 Observability of SoC operation using different types of traces

1.3 The Case for Trace Compression

Many existing trace modules employ program trace compression and buffering to

achieve a bandwidth of about one bit/instruction/CPU on the trace port at the cost of

roughly 7,000 gates (for instruction addresses only) [10]. These modules often use very

rudimentary compression, such as differential encoding of consecutive instruction and

data addresses. However, they still rely on large on-chip buffers that can capture the

program trace in real-time for a relatively short program segment and wide trace ports to

read out trace information. If we want to capture program traces of larger program

segments, we will need larger trace buffers and/or wider trace ports. However, large

trace buffers and wide trace ports significantly increase the system complexity and cost.

Moreover, they do not scale well, which is a significant problem in the era of multi-core

chips, especially considering the rising need for data tracing, which has much larger

bandwidth requirements than the program execution traces. For example, the number of

7

package pins does not increase linearly with the increase of processor speed, or the

number of transistors on the chip, as we move from one generation to the next-one.

In this dissertation we argue that tracing can be significantly improved and the

debugging costs decreased by using cost-effective hardware structures that compress

program traces. The existing trace modules cannot guarantee unobtrusive tracing, rather

they strive to provide minimally obtrusive program tracing often providing incomplete

traces. However, this limits applicability of the trace modules in debugging real-time

embedded systems where interference from debugging operations often cannot be

tolerated. The proposed trace compression algorithms and hardware structures are

designed to reduce the cost of debugging infrastructure through reducing requirements

for large on-chip trace buffers and wide trace ports. In addition, the proposed trace

compressors allow for unobtrusive tracing in real-time.

1.4 Contributions

In this dissertation we introduce a number of cost-effective hardware-based and

real-time trace compression techniques. We characterize program and data traces of

embedded processors that run typical benchmark programs. Based on these

characteristics we develop several novel algorithms and trace compression structures that

can be used in trace modules of future embedded systems. We explore the design space

including trace port bandwidth requirements and implementation complexity and find the

optimal design strategies that guarantee unobtrusive tracing in real-time at minimal

hardware cost. More specifically, our contributions are as follows.

 We have performed characterization of program execution traces in order to draw

conclusions about the best approach for compression of these types of traces.

8

 We have developed a Double Move-To-Front method for compression of program

execution traces.

 We have developed a Stream Cache and Last Stream Predictor method for

compression of program execution traces.

 We have developed a Branch Predictor based method for compression of program

execution traces.

 We have developed a cost-effective filtering technique for reducing the size of

data address traces. The technique relies on reuse of register values to re-generate

data addresses in a software debugger.

 We have developed a technique for compression of high order data address bits.

The compression of higher-order bits requires a simple compressor while the

compressed traces have low variation in required bandwidth, eliminating the

possibility of dropping traces when the available bandwidth is saturated.

 We have characterized the behavior of data values in typical embedded systems

applications to gain insight into the compressibility of these types of traces.

 We modified and improved an existing scheme that relies on reusing data values

already residing in the processor’s cache to re-generate register file values during

the program execution in a software debugger.

1.5 Outline

The remainder of this dissertation is organized as follows. In Chapter 2 we

discuss the existing approaches and standards for software debugging and tracing in

embedded systems. In Chapter 3 we survey general-purpose compression algorithms as

well as a number of software-based and hardware-based trace-specific compression

9

algorithms. In Chapter 4 we describe the proposed mechanism for capturing and

compression of program execution traces. We introduce three methods for compression

of program execution traces, namely, (a) Double Move-To-Front (b) Stream Descriptor

Cache and Last Value Predictor, and (c) Branch Predictor Method. For each method we

describe algorithms and compressor structures and perform a detailed design space

exploration including trace port bandwidth and design complexity. In Chapter 5 we

introduce and explore the effectiveness of two methods for capturing and compressing

data address traces, namely, (a) Data Address Trace Filtering through a partial replay of

the register file, and (b) Data Address Trace Compression through exploiting low

variability of higher address bits. In Chapter 6 we analyze typical load value traces and

explore their amiability to compression. We propose several low-complexity approaches

to the compression of load value traces and explore their effectiveness. Finally, in

Chapter 7 we give concluding remarks.

10

CHAPTER 2

PROGRAM TRACING: BACKGROUND

Program traces encompass recorded sequences of instruction addresses, data

addresses, and data values captured during program execution. Program execution or

instruction traces are instrumental for software debugging and are also used in profiling

for tuning and optimization. However, some software bugs require a complete re-

creation of memory values. In such cases collection of data address and data value traces

is needed.

In Section 2.1 we discuss types of program tracing depending on how traces are

collected: software traces (Section 2.1.1) and hardware traces (Section 2.1.2). In

Section 2.2 we focus on hardware supported tracing and debug infrastructure needed to

support it because it is crucial in debugging embedded systems. Section 2.3 describes

several representative examples of commercial trace modules.

11

2.1 Types of Tracing

2.1.1 Software Tracing

The most common form of program traces are software traces. Software traces

are traditionally created using a trace collector process that runs on the same platform as

the traced program. Exception handlers with different granularity (e.g., single-step, step-

on-branch) are typically used to capture relevant trace data. The traces are then stored to

dedicated trace buffers in system memory. A separate process is responsible for

emptying the buffers to an external storage (e.g., hard disk) using available

communication channels. A software debugger then reads and analyzes the collected

trace. Software tracing has a relatively low implementation cost and offers flexibility in

selecting the type of events that are captured during tracing. The main drawback is its

obtrusiveness – the trace collector and trace transfer processes consume the CPU time,

system memory, and communication channel bandwidth. Thus, software tracing often

slows down the program execution by an order of magnitude or more.

A number of software tools for trace collection and analysis have been developed.

The best known tools are Shade [11] for instrumentation of SPARC and MIPS

architectures; Performance Inspector [12] for x86, x86_64 and PowerPC64 architectures;

and PIN [13, 14] for x86 and ARM architectures. Microsoft has developed a tool for

instruction level tracing [15] that also includes a compressor to reduce the trace storage

requirements. Here we will briefly discuss the PIN tool.

The PIN tool [13] performs run-time binary instrumentation of Linux and

Windows applications through a just-in-time compiler (JIT). PIN starts by intercepting

the execution of the first instruction of the executable and generating (“compiling”) new

12

code for the straight-line code sequence starting at the current instruction. It then

transfers control to the generated sequence. The generated code sequence is almost

identical to the original one, but PIN ensures that it regains control when a branch exits

the sequence. After regaining control, PIN generates more code for the branch target and

continues execution. Every time the JIT compiler fetches a code segment, a PIN analysis

tool (called Pintool) has the opportunity to instrument it before it is translated for

execution.

PIN implements different optimizations to reduce the number of handshaking

operations between the JIT and actual program executable, resulting in reduced tracing

overhead. For example, a branch predictor for indirect branches in a JIT compiler allows

for less frequent switching to the original code and obtaining the target from there [14].

In spite of these optimizations it imposes a significant slowdown (4 to 12 times just for a

simple counting of the number of executed instructions). This slowdown is acceptable

for tracing of different general-purpose applications but is not feasible for tracing of real-

time embedded systems.

2.1.2 Hardware Tracing

Hardware program traces are collected using dedicated on-chip logic that can

capture and store address, data, and control signals. The implementation cost of debug

infrastructure for hardware tracing varies depending on trace types that are being

collected and the level of obtrusiveness. With obtrusive hardware tracing, on-chip

resources are used to perform tracing, compression and qualification of traces, but

ultimately, the traces are transferred to system memory using system buses (thus

interfering with system operation). With minimally obtrusive or completely unobtrusive

13

tracing, dedicated on-chip buffers are used to store traces and a separate trace port is used

to transfer the collected traces off-chip.

Figure 2.1 gives a system view of a typical on-chip debug infrastructure for

unobtrusive hardware tracing. A target processor provides necessary internal signals to

the trace module (Trace Signals block). The trace module then selects what signals are of

interest in the current trace cycle based on debug control and configuration commands

received from the software debugger, it starts and stops tracing based on specified

external or internal triggers. The trace module optionally performs compression of

traces. Finally, traces are output through a trace port to the external trace storage

memory, using a trace communication protocol (Trace Protocol block). The trace

protocol block is used not only for tracing data off the chip, but it also serves as an access

point to the on-chip trace related resources from the software debugger side.

Figure 2.1 System view of the hardware support for unobtrusive program tracing

14

The trace module is controlled by Debug Control signals. Debug Control signals

can come from the trace protocol subsystem if the protocol implements control features

besides tracing the data only. Debug Control signals can also come from the CPU side.

For example, software interrupt routines can be used to setup the trace module operation.

The control signals can come from the system level access protocol, JTAG or Debug Bus

as shown in Figure 2.1, which allows for more flexible control of the trace module

operation (the unified system level debug bus accepts control signals from different

processors on the chip or from the software debugger). When reading out already stored

traces, the same set of Debug Control signals instruments the storage memory to output

traces out of the chip.

A Bus Trace Collection block serves as an additional source of traces for the trace

module. For example, in a multi-core system, traces collected directly from the shared

bus give better insight into inter-processor dependencies and allow for better correlation

of different processors’ execution.

2.2 Hardware Supported Unobtrusive Tracing

In this section we give more details on the debug infrastructure that supports

minimally obtrusive or unobtrusive hardware tracing as illustrated in Figure 2.1.

Section 2.2.1 gives examples of the existing implementations of the Trace Signals block.

Section 2.2.2 discusses typical operations of trace modules. Section 2.2.3 discusses

protocols used to access trace and debug resources on the chip from the software

debugger side, most notably the one specified by the IEEE-ISTO 5001 (Nexus) standard.

15

2.2.1 CPU Trace Signals

A processor’s trace signals reflect the processor’s internal state. They typically

include signals that carry information about the currently executing instruction (e.g.,

instruction word and address) and values on the memory buses (data addresses and data

values). In addition, various pipeline and system state information may be available.

For example, the Tensilica LX2 processor family implements a configurable trace

port with different number of trace signals [16]. The simplest processor trace port is

72-bit wide and includes a 32-bit program counter, 8-bit debug status field, and a 32-bit

debug data field. The debug status field contains information about the validity of the

current instruction and its type and size. Together with the debug data field, various

events can be encoded, for example, causes of pipeline bubbles (e.g., read-after-write

dependency, structural hazard, I-cache or D-cache miss), pipeline dependency

information, and stall information. Next, the debug status and data fields can signal

whether an instruction is not executed using the CPU but from the on-chip debugger

hardware (instrumented from software). If the data tracing option is enabled, a

processor’s port width ranges from 140 to 400 bits. Additional bits include the load/store

units address, data values, and status signals. Load/store data field size depends on the

memory bus width; Load/store status specifies the type of a memory or cache access and

the size of the memory referencing request. If the CPU implements two load/store units,

the load/store trace signals exist for each unit.

Similarly to the Tensilica’s processor trace port, the corresponding trace ports for

MIPS and Freescale include status signals that inform the trace module about what type

of data is presented on the unified trace port. The MIPS trace port [6] supports tracing of

16

out-of-order load and store instructions by sending out a signal which contains the

information of the load’s actual position in the load store queue (e.g., received load value

corresponds to the Nth oldest load instruction). In addition to memory addresses and data,

the Freescale MPC565 [8] trace port includes the ownership information (which device

on the bus issued a memory referencing instruction).

The Xilinx Microblaze processor [17] implements a trace port with approximately

200 signals [18]. In addition to detailed information on instruction traces and data traces

from different memory modules, it includes information about the executing process,

unmasked interrupt occurrences, pipeline halted information, exception type, information

of pipeline advance for each pipeline stage, debug mode operation, etc.

2.2.2 Trace Module Details

Trace modules today offer various features. The most important ones are related

to the qualification of traced data. Trace qualification assumes control on what to trace

and when to trace (implemented using various triggers). Other features include a certain

level of automatic processing of traces to reduce the amount of unnecessary data

presented to the user, compression of traces, and overall a tracing mechanism

implementation which allows for correlation of traces in a multi-core system (this may

also include timestamping of traces).

The minimum set of tracing triggers allows starting and stopping tracing when

certain instruction addresses occur. More advanced triggers may come from conditioning

other signals coming from the processor. Finally, the most advanced triggers may come

from the other processors or components on the chip (this is often referred to as cross-

17

triggering). The cross-triggering often requires additional considerations on

synchronization of traces coming from different processers and their correlation in time.

For example, Tensilica offers TRAX [16], a tracing module which connects to the

Tensilica CPU’s trace port and outputs the traced data to the embedded trace memory

according to Nexus format. Traced data can be read out through the JTAG. The current

TRAX version implements instruction tracing only. This indicates the importance of the

program execution tracing only, due to its small bandwidth and storage requirements

while enabling basic debugging tasks. In addition, TRAX implements cross-triggering

for stopping and starting tracing initiated from other cores in the system.

Xilinx offers the MDM and XTRACE debugging tracing modules [17-19]. The

XTRACE module encodes and multiplexes signals from the Microblaze trace port into

22 signals, which are output off the chip, or the trace session can be saved to the on-chip

trace memory. Internal cross-trigger functionality is used to setup the trace sessions. The

MDM module is used to control the XTRACE module. It is accessible through the JTAG

port. For basic debugging purposes, MDM can output information through the UART

and it also has access to the Microblaze fast main bus fabric (FSL).

Freescale offers READI [8], a trace and debug module which provides real-time

tracing capabilities for different Freescale processors. The module implements a Nexus

Class 3 interface which allows for instruction and data tracing and also allows the control

of various processor registers and on-chip memories from an external software

debugger.

The Embedded Trace Macrocell (ETM) module provides debug and trace

facilities for ARM processors [5]. They allow information on the processor's state to be

18

captured both before and after a specific event, unobtrusive to the processor execution.

The ETM can be configured in software to capture only select trace information and only

after a specific sequence of conditions. A trace port and FIFO, both configurable, allow

the compressed trace data to be read from the chip by an external trace port analyzer,

again unobtrusive to the processor execution. The trace port can be configured from a 1

to 32-bit data bus, with a trace clock independent to the core clock.

The functionality of any of the ETMs can be extended by the addition of an

Embedded Trace Buffer (ETB) [20]. The ETB, an on-chip memory, stores the captured

traces so that later they can be read out at a reduced clock rate. This can be done through

the JTAG port of the device without using expensive trace port pins.

2.2.3 Tracing and Debugging Protocols

The most widely used protocol to access on-chip resources is JTAG. JTAG

connects on-chip registers into a scan chain which allows the software debugger to

modify their values, which in turn, drive the logic internal signals according to predefined

test patterns. Each device within a chip has registers already included into the device’s

scan chain. In a system-on-a-chip with multiple logic devices all individual scan chains

are connected together allowing the software debugger to access any device on the chip.

Because of long scan chains and a serialized operation, JTAG is suitable only for run/stop

based debugging, where the software debugger halts the processor, or the whole system,

and then reads out registers in the scan chain to obtain information about the system state.

JTAG has been improved over time to offer more debugging capabilities. The IEEE

1149.7 standard [21] was introduced to improve JTAG debug by implementing a system

level bypass which allows for quicker accesses to a selected device using much shorter

19

scan chains. The IEEE P1687 (IJTAG) standard focuses on standardizing the way an

external system communicates with any form of internal design debug and test logic via

the JTAG port. IJTAG offers a standard way of connecting, accessing, analyzing, and

describing embedded instrumentation hardware. Instrumentation hardware includes not

only debug and test logic but any circuitry used for device characterization, monitoring,

configuration or functional use. The IJTAG infrastructure resides at the deeper level than

the JTAG and is accessible through JTAG. The standard defines access mechanisms to

the instruments and also defines their hardware and software description. This way, the

actual instrument details are hidden from the user allowing for better portability of

instruments across different systems and their use with different testing tools.

MIPI Test & Debug. A Mobile Industry Processor Interface Test and Debug

working group adds the high bandwidth unidirectional trace interface to the IEEE

P1149.7 interface for use in smart phones and other network devices [22, 23]. The

tracing is implemented through a System Trace Module (STM), which collects software

and debug data from internal buses, encodes the data and sends it out of the chip through

a Parallel Trace Interface (PTI). The PTI is an external port of configurable width. A

protocol, System Trace Protocol (STP) is used for encoding trace information. MIPI

aims to offer a single debug and trace port for multi-core systems; thus, it allows tracing

from up to 256 sources (either OS processes or hardware sources, e.g., different

processors), offers automatic timestamping and has a configurable PTI width to conform

various tracing requirements.

IEEE 5001 (Nexus). The Nexus standard defines trace and debug interface,

including associated protocols and infrastructure that can serve tracing and controlling of

20

multiple cores on a chip from the software debugger. Communication between the Nexus

internal logic and a software debugger can be achieved through either a JTAG port

already included on-chip or through the dedicated and extensible AUX port. An AUX

output interface is typically used for tracing data out of chip. The Nexus employs a

packet-based messaging tracing scheme with packet headers providing information about

data source and destination and type of payload. An AUX input interface allows for

bypassing the JTAG control sequences, thus achieving faster response when configuring

and calibrating the system. Trace collection mechanisms are not addressed by the Nexus.

Nexus allows vendors to adopt the standard at four levels or classes of operation.

Higher classes include support for more complex debug operations, but in turn require

more on-chip resources:

 Class1: Basic Run Control. System implements read/write to user registers and

memories, single step debug through break-/watch- points and access to registers

and memory locations when the execution is halted.

 Class2: Instruction Trace. In addition to class 1, the system includes support for

capturing processor execution trace. Also, it allows for monitoring of process

ownership which is useful to correlate simultaneously executed threads in time.

 Class 3: Data Trace. In addition to class 2, the system includes support for

monitoring and read/write to data and memory locations, including the I/O reads

and writes. This mainly relates to implementation of full tracing capabilities.

 Class 4: Remote processor control and advanced trace. In addition to class 3,

the system includes support for direct processor control using memory

substitution. Memory substitution allows the processor to execute instructions

21

from the trace port rather than from the memory. Memory substitution is

implemented using address remapping for the I/O space (where the trace port is

located) and for the memory (where the original executing program resides). An

advanced trace includes tracing of parameters that are not only used to determine

program execution but also performance parameters and trace of interconnect

signals.

The Nexus packet-based messaging tracing scheme includes different types of

messages which follow different implementation classes. There are five main types of

messages:

 Status. Indicate status information messages from the target.

 General register read/write. Memory mapped reads and writes between

software tools and Nexus registers. These messages can be used for run control

and configuration of watchpoint/breakpoint operations.

 Program Trace. Trace of instruction addresses reduced to trace of branches only

(or other program discontinuities).

 Data Trace. Trace of data addresses and values. Nexus also supports data

acquisition instructions for streaming export of larger amounts of system

information (data from an on-chip trace buffer).

 Memory Access. Non-intrusive access to internal memory blocks.

Figure 2.2 shows the system level organization of the Nexus infrastructure. It

includes various FSM’s to access internal registers, registers to control the Nexus

operation and the TCODE formatting logic, which performs type-based packaging of

trace messages coming from the underlying system using TCODE header.

22

TCODE
Message

Formatting
&

Control

AUX In
FSM

AUX Out
FSM

JTAG
Port

AUX Out
Port

AUX In
Port

Nexus defined subsystem

Debug
Data In

Debug
Data Out

Debug
Control

JTAG
Registers

JTAG
FSM

Nexus
Register

Run / Trace
Control

Probe

Figure 2.2 Nexus system level organization

2.3 Hardware Trace Infrastructure Examples

In this section we focus on infrastructures that allow for collection of traces inside

of a chip and transferring the traces out of the chip. The examples do not necessarily

follow the unobtrusive tracing system description from Figure 2.1, but they describe

different important intricacies of trace collection and storage in real systems. For

example, the OCP-IP Debug in Section 2.3.1 focuses on collection of traces from the

main system bus in a multi-core system. The BugNet system in Section 2.3.2 is an

obtrusive mechanism which explains different mechanisms when tracing the shared

memory and presents some solutions to reduce the size of trace information carried out.

Finally, Section 2.3.3 describes the CoreSight infrastructure, a complete unobtrusive

system for real-time tracing of all cores in a multi-core environment.

2.3.1 OCP-IP Debug

Open Core Protocol (OCP) is a widely used standard IP core interface [24, 25].

OCP facilitates an IP cores plug-and- play approach by decoupling the cores from other

23

parts of the chip using a clearly specified core interface protocol. In an OCP system, any

proprietary component (e.g., processors, memory modules, and I/O devices) can become

OCP compliant by using a wrapper which implements the OCP interface. The wrapper

works as a socket, allowing any component to be easily attached and detached to/from an

existing port on the OCP interconnect. The socket-based approach also speeds up the

verification and optimization of a design.

Part of the OCP standard related to the debug has been developed by the OCP

Debug Working Group [26]. This group aims to provide a socket based debug standard

for OCP compliant SoC. OCP debug efforts focus on defining the set of debug signals, at

the OCP fabric level, which can be used by the external software tools for debugging,

testing and other verification purposes. The OCP debug socket is attached to the OCP

bus and thus, resides at the deepest level of the debugging infrastructure, and the standard

does not addresses how the debug data is traced out of the system (MIPI, Nexus or other

protocols can be used for that purpose). The OCP debug socket actual implementation

can be adapted to different debugging needs: software centric debugging requires basic

run control for cores and program and data tracing. Hardware centric debugging exposes

hardware logic signals used for hardware verification purposes. System centric

debugging allows for observation of interactions of different components on the chip,

such as comparative debugging of any two cores on the chip and operates independently

of implemented hardware in order to capture pre-reset and post-crash events and to

perform. A multi-core system debug greatly benefits from using the OCP bus and an

OCP debug socket. A debug socket, attached to the OCP fabric, has predefined

functionalities, such as monitoring of all transactions and responses on the bus in a cycle-

24

accurate manner and it also implements automatic trace qualification and performance

analysis. Various levels of support for debug are defined through basic and extended

debug signals:

Basic:

 Debug and run control for cores (run/stop/halt, watch/break- points…) as seen in

JTAG only debug solutions.

 Cross-triggering between multiple cores and events to allow global and

distributed event recognition across the multi-core system.

 Synchronized run control supports clock synchronized program execution of

two cores that run asynchronously in the normal case, allowing for time alignment

of their instruction streams in order to study interdependencies.

 Basic bus traffic observation through system trace with control of trace start/stop

using triggers. Tracing includes filtering based on OCP operations (e.g., Initiator,

thread, address range, DMA).

Extended:

 Performance Counters (single and multi-core enable observation of selected

parameters through summary only, which reduces the output bandwidth.

 Time-stamping allows for correlation of events in a distributed system or events

coming from asynchronous parts of system.

 Power Management Monitoring includes observation of gated clock domains and

voltage domains in aware architectures, where a debugging process must be

performed across all IPs even those that are disconnected at the time.

25

 Security monitoring requires selective enabling debug of sensitive locations at

different times and with different levels of authorization.

2.3.2 Hardware/Software (Hybrid) Tracing

Hybrid techniques rely on hardware structures to perform compression and

reduction of traces, but ultimately, they require the use of system memory as trace

storage. This also has an impact on processor execution due to the sharing of memory

resources and on-chip buses. One such technique is BugNet [27] which uses the main

memory to store traces.

BugNet specifically addresses inter-core dependencies by attaching a modest

hardware to a shared cache coherence protocol. By recording the outcomes of all

memory races, a debugger is supplied with sufficient information to correlate different

processes in time. BugNet additionally reduces the amount of data coming from this

coherence monitor by introducing a hardware algorithm that filters out the memory race

outcomes that can be inferred from other races that are already traced [28].

BugNet aims to reduce the amount of traced data needed for a debugger to find

the bug by recording only the last one second of program execution before the failure.

This is because usually program failure is often due to a bug just a few million

instructions away from the failure. To support this, BugNet uses Checkpoints – a

snapshot of system state – at each second and tracing of the system within last second.

Regular data traces from/to each of the processors are compressed using a simple

dictionary based compressor. Additionally, data traces are reduced by logging only the

first load into the cache; a load accessing a memory location needs to be logged only if it

is the first access to that memory location. The values of other loads can be re-generated

26

during replay in a software debugger that models caches and memories. To implement

this optimization, hardware extensions to L1 and L2 caches are necessary.

The basic architecture of BugNet is shown in Figure 2.3. Shaded parts of the

system are part of BugNet. BugNet attaches a logger to each shared cache to record

memory races outcomes and saves the traces to the Memory Race Buffer. The

Checkpoint buffer records system state. Both buffers are dumped to main memory on

error detection. BugNet limitations are the need for integration with the operational

system, detection of only the bugs that lead to the system failure and obtrusive tracing

due to usage of main memory.

PC Registers

Dictionary
Compressor

Control
Checkpoint

Buffer

L1

First-Load
bits

L2

First-Load
bits

Cache
coherence
controller

Pipeline

Trace Dump

Main
Memory

Memory
Race Buffer

Figure 2.3 System view of BugNet architecture

2.3.3 Hardware Based Debugging Infrastructure

CoreSight [29] provides a SoC architecture which enables a software engineer to

fully debug and trace an entire SoC in real-time (Figure 2.4). CoreSight specifically

27

targets multiprocessor systems where two or more cores have to be halted simultaneously

and tracing is required to be cycle accurate. The cross trigger matrix, similar to other

triggering mechanisms, enables simultaneous triggering of multiple cores including

breakpoints and interrupts. As a result, when a single core is halted (or triggered), all

connected cores and peripherals are halted (or triggered), thus providing the user with

both control and observability of the system state. To provide the user with correctly

correlated traces from different processors, a trace funnel puts data coming from different

ETMs in order to the AMBA Trace Bus (ATB). From here, data can be saved to the

Embedded Trace Buffers or can be driven directly to the output port. Together with the

RealView software analysis tool, ARM aims to provide users with full support for

correlations and synchronization of multi-processor executions.

CoreSight hardware is accessible through the Debug access port (DAP), which

can be also connected to the standard JTAG port. DAP accesses the AMBA APB bus,

which can communicate with all the debugging and tracing devices within the system

(ETM, Cross-triggering, directly with the CPUs). CoreSight also includes an

Instrumentation block, which is a simple hardware support for software based tracing

(e.g., printf style debugging, tracing of OS and application events and emitting diagnostic

system information).

While offering complete infrastructure for debugging complex systems on a chip,

CoreSight does not address the compression of trace data. With a growing number of

cores on a single chip, it’s a question how CoreSight can scale in a multi-core

environment due to the huge bandwidth requirements for tracing.

28

System Bus

Cross-trigger Matrix (between cores)

Cross-
trigger
Matrix

Core1

JTAG
Port Debug

Access
Port

(DAP)

Cross-
trigger
Matrix

Core2

Debug Bus (APB)

Trace Bus (ATB)

Trace Port
Interface

Embedded
Trace

Buffers

RealView
ICE

RealView
Trace Trace Port

1 Wire
Output

Instrumentation
Trace

2 Wire
I/O Bus

Trace

Trace
Funnel

ETM ETM

Figure 2.4 System view of ARM’s CoreSight architecture

29

CHAPTER 3

TRACE COMPRESSION ALGORITHMS

Trace compression algorithms are designed to exploit redundancies found in

program traces. Many of these redundancies can be extracted with general purpose

compressors too, but trace-specific compressors can achieve similar or better

compression ratios with less compute and storage resources. Hardware implementation

of either general purpose or trace specific compressors is a very challenging task. To

achieve high compression ratios, the compressors need large buffers, but they tend to be

costly. Efficient compression mechanisms with modest hardware resources exploit

unique features of program traces. For example, including architectural support for

tracing in a processor (e.g., caches, execution units, information on program execution)

and instruction set simulator in a software debugger enables significant reduction in the

number of required trace records.

The operation and principles behind the most widely used general-purpose

software compression applications are described in Section 3.1. Section 3.2 describes

specialized techniques and approaches for compression of program traces. In Section 3.3

30

we discuss hardware implementations of various trace compression techniques and

describe several existing compression techniques which can be implemented in hardware,

including those that rely on processor architectural state.

3.1 General-Purpose Compression Algorithms

In this section we briefly describe the most widely used software compression

applications, gzip , bzip2 and Sequitur. They are based on distinctly different approaches

to the compression of general data sets. gzip finds repeating patterns within a data set

and replaces them with identifiers which are then efficiently encoded [30]. bzip2 is based

on Burrow-Wheeler transformation [31], and it reorganizes data before compression to

reduce the entropy within the individual data sets. Both mechanisms also use different

encoding techniques (Huffman coding [32, 33], arithmetic coding [34]) to produce a

more compact description of input data set values. We also describe the operation of

Sequitur, a relatively new mechanism with a novel approach to compression which builds

hierarchies of patterns.

3.1.1 gzip

gzip is based on a variant of the lz77 pattern match mechanism [30]. The lz77

algorithm tries to find repeated patterns in the data set by comparing the incoming, yet to

be processed, data with already processed data. Whenever a pattern match occurs, the

repeating pattern is replaced with an identifier consisting of two values: distance, which

indentifies the start position where the previous occurrence of the same pattern starts, and

length, which indentifies the length of repeated pattern. To reduce the size of (distance,

length) pairs, gzip uses two Huffman trees separately for distance and length in order to

31

encode more frequent values with less bits. To improve efficiency, adaptive Huffman

coding is used, where a new Huffman tree is built for each new block of data. A new

block starts when the internal logic determines that the current Huffman tree is no longer

the optimal one.

The gzip is important in this dissertation as the pattern repetitions are common

within instruction and data addresses and a relatively simple pattern matching algorithm

can be employed in hardware to compress the traces.

3.1.2 bzip2

bzip2 is a complex compression algorithm which uses different concepts from

data encoding and the compression field. In its core, bzip2 implements a reversible

block-sort algorithm, or Burrow-Wheeler transformation [31]. The transformation does

not compress the data but re-organizes it in such a way that it reduces the entropy of data

in each separately processed block. For example, if the frequency of the different and

most frequent data values, A and B, is approximately the same in one data set, the data

set can be reorganized so that A values appear mostly in one part of the program

(block 1) while B values appear mostly in other part of the program (block 2). This leads

to lower entropy within the data set, when compressing block 1 and block 2 separately.

However, an increased compression ratio must be high enough to compensate for the

additional storage required to record the information about the reverse transformation.

bzip2 uses Move-to-Front (MTF) encoding in the second stage. MTF is a frequency

based table, where recent and most frequent data are in the front of the table. MTF does

not reduce the size of the input block, but adds additional reordering of data to decrease

the entropy even more. Huffman coding is the final stage in the bzip2 algorithm. A

32

complex scheme implements multiple Huffman tables and dynamically decides on the

most optimal one for currently processed data.

bzip is less amiable to hardware implementations because it relies on frequent

memory operations to reorganize data and it also works with extremely large data sets (up

to 900 KB). However, certain concepts, such as MTF, are used in this dissertation.

3.1.3 Sequitur

Sequitur [35] replaces two repeating symbols with a new one. For example,

repeating symbols a followed by b can be replaced by a new symbol A. Further on, if the

A is followed by symbol c repeatedly, the Ac pattern is replaced by, e.g., symbol D. In

this way a hierarchy of patterns is captured into a smaller number of symbols. Sequitur

has unique feature in that it preserves the context of original data; an original symbol or a

pattern is easily found and reconstructed (e.g., symbol D from the compressed file is

simply converted into a, b, c using the grammar file built during execution). Sequitur is

highly unsuitable for hardware implementation as the algorithm saves the context

information (grammar) for each new symbol built during the execution. Thus, the

memory requirements can increase linearly with the processed trace and are in fact

unbounded.

3.2 Specialized Algorithms for Instruction and Data Trace Compression

Various mechanisms exist which try to identify and exploit redundancies typical

for instruction and data traces. Several approaches are described here. Many of them use

one of the compression principles exploited by general purpose compressors and just

adapts them to the expected behavior of data or instruction traces. Others exploit the

33

correlation between data addresses (or values) with the instruction address in order to

achieve greater compression of data traces.

In this dissertation, the most important compressors are those built from value

predictors. Value predictors are used in a processor pipeline to improve latencies of

memory operations by predicting data addresses and load values of fetched, and not yet

processed load instruction.

3.2.1 Instruction Address Trace Compression

Instruction address compression techniques work by compressing only the

information from control-flow changing instructions. This is possible as a simple

decompressor, which has the basic information from program binary, can easily

reconstruct all other instructions.

The simplest approach to compression is to replace an address with the offset from

the last address, which is employed in Nexus [9]. This approach exploits the locality of

instruction addresses, where consecutive branching often changes just lower instruction

address bits, and thus, upper ones do not have to be traced.

Several techniques exist which try to replace the execution sequence with its

identifier. For example, Whole Program Path (WPP) [36] instruments a program to

produce a trace of acyclic paths. Then, a modification of the Sequitur algorithm is used

to compress acyclic paths, represented by unique identifiers. WPP successfully finds the

most frequent program paths, which is very useful for various types of analysis.

However, since the WPP is not a single-pass mechanism, as it requires code

instrumentation, its implementation in hardware is very limited. An advanced WPP

implementation, time stamped WPP [37], enables fast access to the trace produced by a

34

particular function. The mechanism separately performs WPP on traces belonging to

different functions. PDI [38] associates dictionary entries with the most frequent

instruction words. N-TUPLE [39] saves a number of control flow change identifiers per

dictionary entry. In this way, a whole group of repeated identifiers can be replaced with

the pointer to the dictionary entry. N-TUPLE exploits frequent patterns that exist among

dynamic basic blocks in common programs.

A more complex approach to compression is through building a control flow

graph, which together with information on transitions between graph nodes, describes the

control flow changes. One such a technique is QPT [40]. QPT records only information

about significant events and only transitions between basic blocks where a program

chooses between alternative paths and only those transitions that are not part of a

maximum spanning tree of a control flow graph. The actual instruction addresses can be

regenerated using the control flow graph.

3.2.2 Data Address Compression

The Nexus standard [9] uses the same offset based encoding for both instruction

addresses and data addresses. The compression benefits from spatial and temporal

locality of memory references where the consecutive memory addresses differ by only a

small value. Mache [41] replaces a data address with the offset from the last address of

the same type. Types are instruction reference, data read and data write. PDATS [38]

adds more complexity by introducing the variable length encoding of the offset field and

includes an optional repetition counter.

Data addresses can be compressed by linking them to the program loops. Various

mechanisms [42] [43] require two-pass mechanisms where first program loops are

35

detected either using the control-flow analysis or program instrumentation. In a second

pass, many of the data references are easily identified as being always constant per loop

or always having the same offset from loop to loop. However, all other data addresses,

with so-called chaotic behavior, are not compressed.

A special type of compressors tries to link the data addresses with the instruction

block. A technique described in [44] records all possible data offsets and repetitions for a

data address which is linked to an instruction block. Also, instruction blocks are

compressed by indentifying all instruction blocks’ successors and their repetition count.

The memory requirements for this mechanism are very high, and the mechanism can be

considered as only the first-pass reordering of memory and instruction addresses for an

easier compression using a general purpose compressor. Stream Based Compression

(SBC) [45] exploits the inherent characteristics of instruction and data address traces.

Instruction traces consist of a fairly low number of different streams (streams are

dynamic basic blocks described by their descriptor - starting address and the length, in

number of instructions). Newly occurred stream descriptors are allocated in a table and

the table search is performed upon each new stream occurrence. An index in a table

replaces the whole stream descriptor. Data addresses traces have strong spatial/local

locality which is exploited through a mechanism aware of frequent constant strides

between consecutive memory referencing addresses.

Value predictors for data addresses. Value predictors for data addresses or data

address predictors are cache like structures that store recently executed data addresses

(last several data addresses per instruction address). Data address predictors are used in

the processor’s pipeline for data pre-fetching [46] (prediction of future memory

36

references) and early load address calculation [47] (to enable issuing a load instruction

early in the pipeline instead of waiting for the address calculation). Data address

predictors can also be used for compression of data addresses. The compression is

achieved by replacing a data address with an identifier which points to the cache entry

which stores the correctly predicted address.

Data address predictors are usually organized as instruction pointer-indexed (IP-

indexed) caches or tables, which store different information on data addresses recently

issued by the load instruction. For example, last value (or address) predictors [48, 49]

store the last several addresses seen by a load instruction (predictors are named LVx

where x denotes the number of stored addresses). Stride based predictors are frequently

used for both load address prediction and hardware pre-fetching due to their modest

hardware requirements and the fact that many data addresses appear in strides (both

consecutively in program or per instruction). This is particularly true for scientific

applications where programs traverse large arrays of data [46, 50]. Context based

predictors [51-53] are trying to predict the next data address based on the value of

several last addresses. Context based predictors usually employ two caches (tables)

where the first one stores the hashed history of the previously seen addresses which is

used to access the second cache where the addresses are saved. Hybrid predictors [53,

54] combine last value stride and context predictors and implement a chooser which tries

to determine which of the implemented predictors should give the final prediction for a

given load.

A special context predictor named correlated predictor [55] tries to predict

addresses which are not easily predictable by last value or stride predictors. The

37

correlated address predictor splits the upper and lower part of each data address. Upper

bits are stored in an IP-indexed table (a table of so-called base addresses), while the

lower bits of several data addresses corresponding to the same base address are saved in

the second table. A hashed history of data addresses, for each base addresses, is used to

index into the second table. The lower data address bits change more frequently, and

reducing their storage requirements (32 to 8 bits in this case) allows for more information

to be added to a cache.

The compression of data addresses using address predictors is not a developed

field of research. One of the existing mechanisms, data address stride cache [56], focuses

on IP addressed, tagged and non tagged, caches of acceptable sizes. The technique

achieves good compression rates but only for programs with a significant amount of data

addresses which appear in strides.

For software based compression, the VPC mechanism [57, 58], combinations of

various predictors each covering different behaviors of data addresses, yields excellent

compression ratios that surpass the ones achieved by a general purposes compressor.

However, this approach is not suitable for hardware implementation as it is not scalable

to the point where implementable cache structures can perform any good.

3.2.3 Data Value Prediction

Mechanisms for compression of results of memory referencing instructions often

compress load values only. The load values are sufficient to replay the program in a

software debugger which employs an instruction set simulator while requiring less design

effort and hardware support. Fully functional simulators are often available, as they are

38

also used for system instrumentation, profiling and optimization purposes, and require

modest changes to include support to obtain information from traces.

Compression of load value traces is not a developed research field. Load values

are often considered as any other, random, data set which presumably requires a very

complex and expensive compressor. However, certain types of redundancies exist and

are typical for load value traces only. For example, the Value-Centric Data Cache [59]

focuses on statistically proven frequent values within the data set. It shows that certain

small values, such as -1, 0, 1, 4 …, are very frequently used in programs. An efficient

encoding achieves compression by encoding small values in the predetermined number of

bits (e.g., 4, 6, 8).

Value predictors (for load values). The research in compression of load values

benefits from the research on load value predictors [47]. Value predictors have similarity

with the techniques used in the processor’s pipeline for efficient data prefetching and

early load address calculation described in the previous section. Load value predictors

bring the whole prediction concept to another level and try to speculate on the value of

addressed memory location. If successful, the program execution can continue without

waiting for the time consuming memory access. The speculatively executed instructions

are confirmed once the predicted value is verified by the fetched one.

The driving force behind research in value predictors is the concept of value

locality. The concept of value locality is introduced in [48]. The value locality describes

the likelihood a load instruction will load a value that was recently loaded by the same

instruction. The value locality exists because of various reasons and several are

mentioned here: a) data redundancies, which exist due to small variations in input data

39

set, b) constant values, which are usually loaded from memory as opposed to encoding

them into the instruction word, c) branches, which are frequent instruction, often load

very predictable branch target address information, d) data address operands (registers

used to calculate data addresses), which are loaded from memory, often exhibit the same

strong spatial and temporal locality as the data addresses, e) register spill, which occurs

when a compiler runs out of registers, causes repeated reloading of the same value.

According to an analysis in [48], up to 50% of load instructions in SPEC92 programs

load the same value (unbound LV1 predictor) or up to 80% when the instruction loads

one of the last 16 loaded values (unbound LV16 predictor).

Value predictors are proven successful in the software compression of load

values. For example, the VPC3 mechanism [58] which employs 17 different value

predictors with overall memory requirements of 27MB achieves a compression ratio of

1.7x more than the Sequitur, the best performing general purpose mechanism analyzed.

3.3 Compression Algorithms in Hardware

Very few compression algorithms are proposed for compression of either

instruction or data traces. A hardware implementation of LZ77 pattern match algorithm

[60], specialized for the compression of branch addresses and their targets, achieves

relatively good compression rates under the enormous hardware cost. For example, a

configuration with 50,000 logic gates requires a trace port bandwidth of 0.45 bits/ins for

MiBench [61] programs. The mechanism suffers from the lack of any encoding of

(distance, length) pairs (see Section 3.1.1 on gzip) as it would require even more costly

implementation.

40

Stream cache (SC) is a mechanism that uses cache structures to store recently

executed streams. Stream cache achieves very high compression ratios. The indices

from the cache (information about the SC way and set where the hit occurred) are further

grouped into tuples of 8 and stored in a buffer (the buffer keeps several groups of tuples).

Each time a new tuple is found in the tuple buffer, an index in the buffer is output,

effectively replacing 8 stream descriptors. This mechanism suffers from relatively low

hit rates in the tuple history buffer which also requires expensive CAM memory.

Data addresses are not a focus of research in trace compression due to their

smaller significance when compared to both instruction trace and data value trace and

because of the lack of a practical need for unobtrusive tracing of data addresses in the

past. In single-core systems, real-time tracing of data addresses was not important, as the

memory access patterns, needed to simulate a program and optimize the memory, can be

extracted using functional simulators. Furthermore, in multi-core general purpose

systems, actual real-time unobtrusive tracing is usually not required. However, in the

rising field of multi-core embedded real-time systems, data address tracing is crucial to

observe correlations between cores and their communication with the shared memory.

Value predictors are proven to increase the processors performance, but due to

their hardware constraints, the use of value predictors as the compressor’s structures is

very limited. The differentiating point between value predictors (either data address or

load value) used for performance improvements and for the trace compression is the

usable hit rate or the prediction rate. For example, the maximum achievable

predictability for the data address for the SPEC95 test suite is between 21% and 79%

using the last value address predictor and 3% and 54% using the stride predictor [62].

41

Average correct prediction rates are 40% for data addresses reported in [55] for the last

value address predictor and 14% for the stride predictor. For prediction of load values, a

theoretical limit for a LV4 predictor is less than 70% for the SPEC95 test suite [48]. A

realistic, and improved LV4 load value predictor with 21KB of state achieves a

prediction rate of 32% for the SPEC95 test suite [49]. Reported prediction rates improve

a processor’s performance to the point where the use of value and address predictors is

justified. However, these prediction rates are very low concerning the compression. For

example, a prediction rate of approximately 50% yields very low maximum compression

ratios of only 2x. As mentioned earlier, VPC compressors [57, 58], a combination of

different predictors with very large structures, can achieve high compression rates, but

they are not suitable for hardware implementation.

3.3.1 Architectural Support for Trace Compression

Program traces have a unique feature that they can often be inferred by a software

debugger augmented by an architectural functional simulator. The results of any

instruction during program replay can be reconstructed as long as the target platform

provides load value traces. This approach can be taken one step further where the

functional simulator also simulates the state of memory. In that case, the software

debugger needs to know only the values which enter the memory for the first time. From

that point, any processor operation which stores and loads the known memory location

can be reconstructed by the software debugger. One such a scheme is implemented in

BugNet [27] (see Section 2.3.2), a debugging and tracing infrastructure for multi-core

systems. A similar mechanism is implemented in a Flight Data Recorder (FDR), a multi-

processor debugging and tracing infrastructure [63], which logs only the results of store

42

instructions. The FDR system tracks memory stores originating from the DMA and I/O

devices, which bring the new, and unknown, data to the system. Thus, any load

instruction that a processor issues, loads a known value from the memory.

The techniques described require an instruction set simulator at the software

debugger side and the architectural extensions on the target platform so that the

implemented tracing mechanism knows whether to trace results of memory referencing

instruction or not.

Both FDR and BugNet focus on general purpose systems built by one vendor.

These mechanisms include the support for tracing in the L1 cache, L2 cache and the main

memory, which is often not feasible in embedded and application specific systems where

the whole chip is built out of components provided by different vendors. However, these

mechanisms are important in this dissertation as they can be adapted for different

purposes, including the required compression of data traces in embedded systems.

43

CHAPTER 4

COMPRESSION OF PROGRAM EXECUTION TRACES

In this chapter we describe the proposed mechanism for program execution

tracing and introduce three algorithms and the corresponding hardware structures for

compression of program execution traces. The chapter is organized as follows.

Section 4.1 describes a system view of the proposed tracing mechanism. Section 4.2

discusses the program execution trace characteristics and different approaches for

capturing program flow changes. In the next three sections we introduce three program

execution trace compression techniques, namely, Double Move To Front (DMTF)

(Section 4.3), Stream Descriptor Cache and Last Stream Predictor (SDC-LSP)

(Section 4.4), and Branch Predictor Based Trace Compressor (Section 4.5). Section 4.6

gives the results of a comparative analysis of the proposed compression techniques and

several recent academic proposals from the open literature.

4.1 System View of the Proposed Tracing Mechanism

Program execution traces are created by recording the addresses of executed

instructions. However, to replay a program flow offline, we do not need to record each

44

instruction address. Instead, we only have to record program flow changes, which can be

caused by either control-flow instructions or exceptions. When a change in the program

flow occurs, we need to know the address of the next instruction in the sequence; it is

either the target address of the current branch instruction or the starting address of an

exception handler.

Figure 4.1 shows a system view of the proposed tracing mechanism. The target

platform encompasses a CPU core running a program and a trace module capturing the

changes in the program control flow. Therefore, the trace module is coupled with the

CPU core through a simple interface that consists of the program counter, branch type

information (direct/indirect, conditional/unconditional), and an exception control signal.

The trace module consists of relatively simple hardware structures and logic dedicated to

capturing and compressing program execution traces. A trace encoding block receives a

set of events from the trace compressor structures and encodes them in such a way to

reduce the size of trace records. The trace records are stored into a trace buffer. The

trace buffer serves to store trace records for significant portions of the traced program, or

to amortize sudden bursts of trace records in case of real-time tracing. The recorded trace

is read out of the chip through a trace port. The trace records can be collected on an

external trace unit for later analysis or forwarded to a host machine running a software

debugger.

The software debugger, running on a host machine, reads, decodes, and

decompresses the trace records. To decompress the trace records, the debugger maintains

exact software copies of the state in the trace module compressor structures. They are

updated during program replay by emulating the operation of the hardware trace module.

45

Decompression produces a sequence of control flow descriptors that, in conjunction with

the program binary, provide enough information for a complete program replay off-line.

CPU
Core

Trace
Compressor

Trace
Buffer

Trace
Buffer Program

Binary

Software
Debbuger

Debug HostCPU / Target
system

External
Trace

Storage

PC Branch
type

Trace
Port

Trace
Encoder

Events

Exception

Trace Module

Trace
Decompressor

Trace
Decoder

Figure 4.1 System view of the proposed program tracing and replay mechanism

The goal of the trace module designer is to minimize the size of the trace buffer

and to minimize trace port bandwidth requirements. Thus, as a measure of performance

of compression techniques, we use the average number of bits emitted per instruction on

the trace port, which is equivalent to 32/(Compression Ratio), assuming 4-byte addresses.

The compression ratio (CR) is defined as the ratio of the raw instruction address trace

size, calculated as the number of instructions multiplied by the address size, and the size

of the total compressor output during program execution. To summarize trace port

bandwidth for multiple benchmarks, we use a weighted average mean. A benchmark

weight is directly proportional to the number of instructions executed in the benchmark.

46

4.2 Characterization of Control Flow Changes

Capturing program flow changes can be done using stream (dynamic basic block)

descriptors or by recording branch/target pairs. Both techniques are used to describe the

very same changes in the control flow but in a different way. An instruction stream is a

sequential run of instructions, from the target of a taken branch to the first taken branch

in the sequence. Each instruction stream can be uniquely represented by its starting

address (SA) and its length (SL). Thus, the complete trace of instruction addresses from

an instruction stream can be replaced by the corresponding stream descriptor, i.e., the

(SA, SL) pair.

A sequence of stream descriptors is sufficient to enable program reply off-line.

However, the sequence of stream descriptors (SA, SL) includes some redundant

information that can be omitted in order to reduce trace port bandwidth or storage

requirements. If a control flow is changed as a result of an unconditional direct branch

(target encoded within the instruction word), we do not need to end the current

instruction stream. This is because the software debugger is able to follow the program

execution across the control flow changes in case of unconditional direct branches. This

modification reduces the number of program streams and thus the number of trace

records that needs to be sent out through the trace port. In addition, when an instruction

stream starts with the target of a direct branch, the SA field does not have to be traced out

because it can be inferred by the software debugger. Figure 4.2 shows the distribution of

branch types in the MiBench benchmark suite [61], collected using SimpleScalar [64]

while running ARM binaries. The results indicate that only a small fraction of control

47

flow changes require the SA field to be traced: on average only 1% of the total number of

instructions are indirect taken branches.

0%

5%

10%

15%

20%

25%

%
 o
f
to
ta
l
n
u
m
b
e
r
o
f
in
st
ru
ct
io
n
s

Unconditional Direct = 1.8%

Indirect Not Taken = 0.04%

Indirect Taken = 1%

Conditional Direct = 7.1%

Figure 4.2 MiBench branch related statistics

Figure 4.3 gives a sequence of steps carried out by a stream detector logic that

captures instruction streams. The stream detector tracks the current program execution

by monitoring the program counter and control signals coming from the CPU core. For

each new instruction, the SL register is incremented. The new stream signal is asserted

when one of the following conditions is met: (a) the processor executes a control-flow

instruction of a particular type, namely, direct conditional, indirect conditional, indirect

unconditional, or return; or (b) an exception signal is asserted causing the program flow

to depart from sequential execution. After forwarding the stream descriptor into the trace

48

compressor, the stream detector prepares itself for the beginning of a new program stream

by recording the starting address in the SA register and zeroing out the SL register.

1. if (NewStream) {
 SA = PC; SL = 0; NewStream = False;
2. }
3. if ((not ControlFlowChange)or(ControlFlowChange &&
 (BranchType==DirectUncond)){
4. SL++;
5. if (SL == MaxSL) {
6. Terminate Stream;
7. Send (SA, SL) to the trace compressor;
8. NewStream = True;
9. }
10. } else {
11. SL++;
 Terminate Stream and place (SA, SL) to the Stream compressor;
12. NewStream = True;
13. }

Figure 4.3 Stream Detector operation

Most programs have only a small number of unique program streams, with just a

fraction of them responsible for majority of program execution. Table 4.1 shows some

important characteristics of MiBench. The columns (a-d) show the number of executed

instructions (in millions), the number of unique streams, and the maximum and average

stream length, respectively. The number of unique streams ranges from 341 to 6871, and

the average dynamic stream length is between 5.9 (bf_e) and 54.7 (adpcm_c) instructions.

The fifth column (e) shows the number of unique program streams that constitute 90% of

dynamically executed streams. This number ranges between 1 and 235, and it is 78 on

average. Note: all calculations assume weighted average, where weights are determined

based on the number of executed instructions. The maximum stream length never

exceeds 256, thus we choose to use 8 bits to represent SL. In addition to this, it can be

49

shown that these frequently executed program streams create repeating patterns with

strong local correlation.

Table 4.1 MiBench benchmark characteristics
[Legend: IC – Instruction Count, SC – Stream Count, SL – Stream Length

CDF – Cumulative Distribution Function]

 IC SC Max Avg CDF

Test (mil.) SL SL 90%

adpcm_c 733 341 71 54.7 1

bf_e 544 403 70 5.9 22

cjpeg 105 1590 239 12.3 47

djpeg 23 1261 206 25.1 31

fft 631 846 94 10.5 209

ghostscript 708 6871 251 10.0 67

gsm_d 1299 711 165 19.5 33

lame 1285 3229 237 32.4 235

mad 287 1528 206 20.7 42

rijndael_e 320 513 77 21.0 45

rsynth 825 1238 180 17.6 49

stringsearch 4 436 65 6.0 48

sha 141 519 65 15.4 10

tiff2bw 143 1038 43 12.8 2

tiff2rgba 152 1131 75 27.7 2

tiffmedian 541 1335 92 22.3 5

tiffdither 833 1777 67 14.3 63

Average 816 1791 145 21.6 77.8

 (a) (b) (c) (d) (e)

4.3 Double Move-To-Front Method

In this section we discuss a method for program execution trace compression called

the Double Move to Front Method (DMTF). First we describe the Move-to-Front

transformation used in general-purpose compression algorithms (Section 4.3.1). Then,

we introduce the proposed DMTF method (Section 4.3.2) and several enhancements

50

designed to increase its effectiveness and/or reduce its implementation complexity

(Section 4.3.3). Finally, we discuss the results of our trace port bandwidth analysis

(Section 4.3.4) and the results of our hardware implementation cost analysis

(Section 4.3.5).

4.3.1 Move-to-Front Transformation

Move-to-Front (MTF) [65] is an encoding of data designed to reduce the entropy

of symbols in a data message by exploiting the local correlation between symbols. It is

used in conjunction with the Burrows-Wheeler transform in the bzip2 utility program

[31]. The MTF algorithm encodes an input data message as follows. If an incoming

input symbol is found in a history table ht, it is replaced with its index i in the ht, and the

symbol is moved at the top of the table (the entry with index 0). The ht is updated by

shifting down first i-1 entries by one position, such that ht[i]=ht[i-1], ..., ht[1]=ht[0]. To

illustrate the MTF operation, let us consider an input message AABC, and a history table

ht=[C, B, A] (symbol C is at the position 0). The MTF transforms the 3-symbol input

message into a new 2-symbol message 2022.

The original MTF transformation can be easily extended to allow operation

starting from an empty history table. The history table is searched for an incoming input

symbol. If the symbol is not found in the table (we call this event an ht miss), the

original symbol is output and the table is updated by shifting its content by one position

and by placing the incoming symbol in the ht[0]. If the symbol is found in the history

table (an ht hit event), its index is output and the table is updated as described above. The

MTF allows for an effective encoding of frequently executed program sections. Let us

consider several typical examples of program loops where symbols A, B, and C represent

51

unique instruction streams characterized by their respective (SA, SL) pairs, for example,

a program loop consisting of a sequence of two streams A and B repeating many times,

illustrated as {AB}, is transformed into a hit pattern {11}; similarly, a loop with a

repeating pattern {ABC} is transformed into {222}.

A relatively small history table will suffice to achieve a good hit rate due to a

strong temporal locality of instruction streams in common programs. When a stream

descriptor (SA, SL) is found in the history table, it is replaced with its index in the history

table. Otherwise, the full stream descriptor of 40 bits is output in case the SA is a target

of an indirect branch. If the SA is a target of a direct branch, it can be inferred from the

program binary, and we output only 8 bits for SL. The effectiveness of the MTF

transformation on program execution traces consisting of a sequence of stream

descriptors is shown in Table 4.2a. We measure the frequency of the output symbols

after the MTF transformation is applied. The average number of unique MTF output

symbols that constitute 90% of all dynamically executed program streams is only 14.5,

down from 78 before the MTF transformation in Table 4.1e, ranging from 1 (adpcm_c) to

38 (stringsearch). Note: the experiments are conducted assuming a history table with

128 entries; the hit rate is over 97%, so a very small number of streams are not

transformed with the MTF.

A perfect trace compression without stream pattern recognition would replace

each stream with just a single bit. As described above, the MTF transformation

significantly reduces the number of trace symbols. To come close to a one bit per stream

goal, we need to identify the most frequent entry and encode it with a single bit.

Table 4.2b shows the percentage of the hit events in the most frequent ht entry. Although

52

this percentage is fairly high for many benchmarks (e.g., adpcm_c, tiff2bw), it is

relatively modest for others (e.g, 17% for fft, and 46% on average across all benchmarks).

An additional problem is how to identify the most frequent entry in the ht because it

varies across benchmarks.

Table 4.2 Move-to-Front transformation effect on program streams in MiBench

 ht CDF ht[most freq.] ht2[0]

Test 90% HR HR

adpcm_c 1 0.99 1.00

bf_e 5 0.41 0.69

cjpeg 11 0.46 0.90

djpeg 11 0.69 0.87

fft 32 0.17 0.66

ghostscript 22 0.20 0.76

gsm_d 6 0.48 0.90

lame 21 0.23 0.74

mad 25 0.30 0.75

rijndael_e 2 0.57 0.79

rsynth 10 0.26 0.77

stringsearch 38 0.62 0.81

sha 2 0.86 0.92

tiff2bw 1 0.97 0.99

tiff2rgba 1 0.92 0.99

tiffmedian 1 0.91 0.97

tiffdither 38 0.45 0.78

Average 14.5 0.46 0.82

 (a) (b) (c)

In order to resolve these two problems, we introduce an additional, second level

move-to-front transformation. Let us consider the following repeating stream pattern

{ABAC}. The hit pattern at the output from the first-level MTF is {1212}. If we supply

this pattern to the second-level MTF history table, the hit pattern at the output is {1111},

53

with even lower entropy of information. Because the MTF transformation lowers the

number of frequent symbols, the level 2 history table can be significantly smaller.

This approach can be further extended by introducing another level of MTF

transformation; in general, we could introduce a hierarchy of MTF history tables. The

size of the MTF history tables will exponentially decrease as we move toward the upper

levels. However, an increase in the number of MTF levels will reach the point of

diminishing returns, and will not yield expected gains. In general, the optimal

configuration is application specific. Our analysis shows that a 2-level MTF

configuration appears to be optimal. Table 4.2c shows a high percentage of program

streams that end up in the entry ‘0’ of the level 2 history table (ht2), from 66% to 100%.

By encoding this entry with a single bit, we approach the goal of having one bit per

instruction stream. Note: the experiments are conducted using ht2 with 16 entries

achieving 94% hit rate.

4.3.2 DMTF Method

The analysis from the previous section suggests the use of a 2-level move-to-front

transformation as optimal in compressing program instruction traces. Consequently, we

design an instruction trace compressor with two history tables in sequence. We name this

scheme Double Move-to-Front (DMTF). The first- and the second-level history tables

are named mtf1 and mtf2, respectively.

Figure 4.4 illustrates the operation of the proposed trace compressor. When a

new stream is detected, its descriptor (SA, SL) is forwarded to mtf1. As described before,

the mtf1 table is searched for the stream descriptor. If we find a match, we have an mtf1

hit; the index of the matching entry is output to the next stage, and mtf1 is updated

54

accordingly. Otherwise, we have an mtf1 miss; the mtf1 content is shifted down by one

position, and mtf1[0] is loaded with the stream descriptor. In the case of an mtf1 hit, the

index i1 is sent to the mtf2 history table; mtf2 is searched for the index i1. If we find a

match in the entry 0, mtf2[0], we have an mtf2 zero entry hit. If we find a match in the

remaining mtf2 entries, we have an mtf2 non-zero entry hit. Otherwise, we have an mtf2

miss event.

Figure 4.4 DMTF operation

We can distinguish four different events in the DMTF scheme, and they are

encoded as follows. An mtf2[0] hit is encoded with a single bit '0'. An mtf2 non-zero

entry hit is encoded with a one-bit header '1' and the mtf2 index i2 ('1'+i2). An mtf1 hit

with a miss in mtf2 is encoded with ('1'+i2miss+i1); note that the last index in the mtf2

table, i2miss, is reserved to indicate a miss event in the mtf2. Finally, a miss in mtf1 is

55

encoded with a header ('1'+i2miss+i1miss) followed by a full or a partial stream

descriptor ([SA], SL) – 40 or 8 bits. Note: the last index in the mtf1 table, i1miss, is

reserved to indicate a miss in the mtf1.

The compression ratio that can be achieved using the DMTF scheme can be

expressed analytically as follows. Equation (4.1) shows the number of bits needed to

encode a single stream after DMTF compression, as a function of five parameters: mtf2

zero-entry hit rate, mtf2.zhr; mtf2 non-zero entry hit rate, mtf2.ohr; mtf1 hit rate, mtf1.hr;

mtf1 size, mtf1.size; and mtf2 size, mtf2.size. Note: mtf2.hr=mtf2.zhr + mtf2.ohr.

Equation (4.2) shows the compression ratio as a function of the number of instructions in

a program, the number of executed instruction streams, and the number of bits per one

instruction stream.

])32[8.1log.2log1(*).11(

).1log.2log1(*).2.1(

).2(log1(*.2(

.2

22

22

2







sizemtfsizemtfhrmtf

sizemtfsizemtfhrmtfhrmtf

sizemtfohrmtf

zhrmtfStreamBitsPer

(4.1)

eamBitsPerStr

tStreamCounnCountInstructio
CR

/*32
 (4.2)

An Example Compression/Decompression. Let us illustrate the compression

flow using an example from Figure 4.5a. We consider the following sequence of

instruction streams ABCAABABAC, where A, B, and C denote 3 instruction streams

with distinct stream descriptors. Let us assume a 64-entry mtf1 and an 8-entry mtf2.

56

Note that the actual number of entries is 63 and 7, respectively, since the last indices are

reserved to indicate miss events. The first three instruction streams are not found in the

mtf1 and are output with the header '1', followed by a 3-bit index in the mtf2 reserved for

miss events ('111'), a 6-bit index in the mtf1 reserved for miss events ('111111'), and

individual stream descriptors ([SA], SL). Next, the stream A is found in mtf1[2], but

index 2 is not found in the mtf2 resulting in an mtf2 miss with mtf1 hit event; we emit a

header '1'+'111' followed by the mtf1 index '000010'. The next stream in sequence is A,

resulting again in an mtf2 miss with mtf1 hit event; this event is encoded with

'1+'111'+'000000'. The rest of the compression flow continues as illustrated in

Figure 4.5a.

The decompression flow is a reversed compression flow, and it requires the same

configuration of the history tables. The compressed trace is read, headers are analyzed

and the history tables updated according to the DMTF method described above. The

decompression flow is illustrated in Figure 4.5b. The first item starts with the header

'1'+'111'+'111111', which indicates that the next 40 bits represent the first stream

descriptor (SA, SL). The stream descriptor is loaded into mtf1[0]. The de-compressor

now can recreate a complete instruction trace for this stream. The next two items in the

trace are decompressed in the same way. The next trace record '1+'111'+'000010' directs

the de-compressor to find the original stream descriptor in mtf1[2] (instruction stream A).

The following trace record '1'+'111'+'000000' directs the de-compressor to find the stream

in mtf1[0], which is stream A. The rest of the decompression process is illustrated in

Figure 4.5b.

57

Steps: 1 2 3 4 5 6 7 8 9 10

Input: A B C A A B A B A C

… mtf1
2 A B B C C C C B

1 A B C C A B A B A
0 A B C A A B A B A C

mtf1

output -- -- -- 2 0 2 1 1 1 2

… mtf2
2 0 0 0 0

1 2 0 2 2 2 1
0 2 0 2 1 1 1 2

1+7+ 1+7+ 1+7+

Output: 63+A 63+B 63+C 1+7+2 1+7+0 1+1 1+7+1 0 0 1+1
(a)

Steps: 1 2 3 4 5 6 7 8 9 10

Input: 1+7+ 1+7+ 1+7+ 1+7+2 1+7+0 1+1 1+7+1 0 0 1+1
63+A 63+B 63+C

… mtf1
2 A C B C C C C B

1 A B B C A B A B A

0 A B C A A B A B A C

mtf1

output -- -- -- 2 0 2 1 1 1 2

… mtf2
2 0 0 0 0

1 2 0 2 2 2 1
0 2 0 2 1 1 1 2

Output: A B C A A B A B A C
(b)

Figure 4.5 DMTF compression (a) and decompression (b) flow examples

Performance Analysis. Table 4.3a shows the trace port bandwidth for MiBench

benchmarks; the size of the mtf1 is fixed to 128 entries and the mtf2 size is varied from 4

to 16 entries. The last row (Average) shows the total bits per instruction calculated as the

weighted mean of individual program results. The results show that we are able to

achieve an excellent compression with bandwidth ranging from 0.714 to 0.018. The

results also indicate that a DMTF configuration with only 4-entry mtf2 will outperform

configurations with larger mtf2.

58

Table 4.3 Trace bandwidth for DMTF(128,X), X= 4-16 (a), distribution of the individual
trace components (b)

 bits/ins (mtf1 size = 128) Distribution per component for DMTF(128,4)

Test \ mtf2 size 4 8 16 zht mtf2ht mtf1ht mtf1mt

adpcm_c 0.018 0.018 0.019 99% 1% 0% 0%

bf_e 0.292 0.340 0.380 40% 52% 8% 0%

cjpeg 0.128 0.127 0.127 57% 10% 31% 2%

djpeg 0.074 0.074 0.074 47% 12% 30% 11%

fft 0.714 0.734 0.749 9% 3% 10% 78%

ghostscript 0.299 0.301 0.299 25% 7% 55% 13%

gsm_d 0.089 0.093 0.098 52% 13% 4% 32%

lame 0.098 0.097 0.099 23% 12% 28% 37%

mad 0.153 0.153 0.151 24% 8% 48% 20%

rijndael_e 0.099 0.078 0.088 38% 17% 45% 0%

rsynth 0.153 0.161 0.172 29% 18% 13% 41%

stringsearch 0.394 0.411 0.426 34% 7% 58% 2%

sha 0.075 0.080 0.085 79% 20% 0% 0%

tiff2bw 0.082 0.082 0.082 95% 2% 3% 0%

tiff2rgba 0.038 0.038 0.038 95% 3% 0% 1%

tiffmedian 0.061 0.062 0.063 71% 5% 2% 22%

tiffdither 0.189 0.199 0.207 29% 9% 44% 18%

Average 0.176 0.183 0.190 42.8% 12.3% 20.0% 25.0%

 (a) (b)

4.3.3 Enhanced DMTF Method

The output of the DMTF trace compressor contains a lot of redundant

information. We introduce two low-cost enhancements that exploit this redundancy

and/or reduce the complexity of the compressor implementation. The four components

of the output trace, mtf2 zero hit trace (zht), mtf2 non-zero hit trace (mtf2ht), mtf2 miss

with mtf1 hit trace (mtf1ht), and mtf1 miss trace (mtf1mt) are analyzed separately.

Table 4.3b shows the contribution of each component to the total trace size for

DMTF(128,4) (128-entry mtf1 and 4-entry mtf2). The results show the mtf1mt

component is responsible for 25% of the total size, in spite of high hit rates in the mtf1.

59

Fortunately, the redundant information in this trace can be easily exploited using a simple

last-value predictor on upper address bits that stay constant during program execution.

Next, the zero trace occupies 43% of the total trace. We expect it to contain long runs of

'0's, and its size can be reduced by replacing them by a counter.

Last-Value Predictor for Upper Address Bits. The upper address bits of the

starting address (SA) field in the stream descriptor rarely change during program

execution. We analyzed the locality of the stream starting addresses; the SA field of the

incoming stream is compared bit by bit to the SA of the previous instruction stream or to

SAs of the several last instruction streams. The results indicate that the upper 12 address

bits, SA[31:20], stay constant during program execution in 99% of cases. Therefore, we

divide the SA field into two parts: the lower 20 address bits SA[19:0] that are compressed

through the DMTF, and the upper 12 bits that are handled using a simple last value

predictor (HLV). Note: SA[1:0] is '00' for the ARM ISA and could be omitted; SA[0]= '0'

for the ARM Thumb ISA, so the SA[0] could be omitted. Here we keep the whole

address.

A 12-bit last value (LV) register keeps the upper 12 bits of the last stream’s SA.

The upper 12 address bits of an incoming stream are compared to the LV. If they match,

we have an HLV hit. The lower 20 address bits SA[19:0] and SL are used in a mtf1

lookup. We adopt a scheme where mtf1 hits are conditional upon the corresponding HLV

hits. An HLV miss will cause a miss trace record to be emitted regardless of mtf1 hits.

When we have an HLV hit with mtf1 miss event, the upper address bits are not emitted (in

case a full stream descriptor is required). Finally, in cases when both mtf1 and HLV have

60

a hit, a regular DMTF record is emitted. The miss trace format is consequently extended

to support these modifications.

The effectiveness of this enhancement is analyzed below. In general, it is

beneficial in DMTF configurations with a relatively small mtf1 and lesser so with a larger

mtf1. The performance benefits are somewhat limited because direct branches dominate

in the MiBench suite (92% of all branches on average) and all stream descriptors that

start with targets of direct branches do not require the SA field. However, it significantly

reduces the complexity of the DMTF implementation, as we do not need to keep the

upper 12 address bits in the mtf1 history table.

Zero Hit Trace Counters. We now show that the DMTF method ensures that

the mtf2 zero hit event is the most frequent one, and thus it is encoded with a single bit '0'.

In many benchmarks the output trace will consist of long runs of zeros. The redundancy

in this trace can be exploited by utilizing a zero-length counter (ZLC for short); it counts

the consecutive zeros and replaces them with a counter value preceded by a new header.

The number of bits used to encode this trace component is determined by the counter

size. A longer counter can capture longer runs of zeros, but a counter which is too long

results in wasted bits. Our analysis of the zht trace component shows a fairly large

variation in the average number of consecutive zeros, ranging from 5 in ghostscript and

fft to hundreds in adpcm_c and tiff2bw. In addition, zero runs in a program may vary

across different program phases. This implies that an adaptive ZLC length method would

be optimal.

The adaptive zero-length counter (AZLC) tries to dynamically adjust the ZLC

size to the program flow characteristics. An additional 4-bit saturating counter monitors

61

the zht component, and it is updated as follows. It is incremented by 3 when the number

of consecutive zeros in the trace (mtf2[0] hits) exceeds the current size of the ZLC. The

monitoring counter is decremented by 1 when a detected zero sequence is smaller than

the ZLC counter maximum value. When the monitoring counter reaches the maximum

(15) or minimum (0) values, a change in the ZLC size occurs.

The AZLC requires a slight modification of the trace output format. A header bit

'0' is followed by log2(AZLC Size) bits. The counter size is automatically adjusted as

described above. The decompressor needs to implement the same adaptive algorithm.

Figure 4.6 shows a modified trace format that supports two enhancements, HLV

and AZLC.

SA&SL Detector

PC

HLV

SA[31:20]

mtf2

mtf1
index

ZLC

Counter

Set
Size

'0' |
AZLC

mtf2[0]
hit

mtf2[>0] hit

'1' |
mtf2 index

AZLC

'1' |
mtf2 max. index |

mtf1 index

mtf1 hit and
mtf2 miss

SA[19:0]&SL[7:0]

HLV hit and
mtf1 miss

SA&SL
inc/dec

mtf1

Branch
Type

HLV miss

'1' |
mtf2 max. index |
mtf1 max. index |

SL | '0' |
SA[31:0] (if needed)

'1' |
mtf2 max. index |
mtf1 max. index |

SL | '1' |
SA[19:0] (if needed)

Figure 4.6 An enhanced DMTF trace format

62

4.3.4 Trace Port Bandwidth Analysis

Figure 4.7 shows the average trace port bandwidth (bits/ins) of several DMTF

configurations as a function of the mtf1 size (64-320). The basic DMTF (bDMTF) with

mtf2=4 performs better than with mtf2=8 for any mtf1 size as previously indicated in

Figure 4.4. The DMTF with HLV predictor and mtf2=4 (hDMTF) performs better than

bDMTF only for small mtf1 sizes. When mtf1=192, bDMTF slightly outperforms

hDMTH primarily due to significant performance degradation for the lame benchmark.

Finally, the enhanced DMTF with mtf2=4 (eDMTF) with both improvements performs

the best. For all configurations, the compression ratio saturates for the mtf1 with

256 entries, and the mtf1 with 192 entries strikes an optimal balance between the

complexity and compression ratio. Figure 4.7 gives a design guideline and shows how

one can trade compression ratio for complexity (the most complex resource in the

enhanced DMTF module is the mtf1 table).

0.000

0.050

0.100

0.150

0.200

0.250

64 128 192 256 320

b
it

s
/in

s

MTF1 size

bDMTF, mtf2=4
bDMTF, mtf2=8
hDMTF, mtf2=4
eDMTF, mtf2=4

Figure 4.7 Trace port bandwidth as a function of the mtf1 size

63

Table 4.4 Compression ratios for xDMTF (x=b,h,e)

 mtf1=192, mtf2=4 mtf1=64, mtf2=4

 CR CR CR bits/ins. CR CR CR bits/ins

Test bDMTF hDMTF eDMTF eDMTF bDMTF hDMTF eDMTF eDMTF

adpcm_c 1738 1738 29389 0.001 1738 1738 29441 0.001

bf_e 108.8 108.8 112.7 0.284 110.5 110.5 114.5 0.279

cjpeg 245.3 245.7 353.1 0.091 245.6 248.7 360.5 0.089

djpeg 448.9 451.6 612.9 0.052 421.9 433.6 582.4 0.055

fft 151.7 151.9 159.1 0.201 26.9 31.1 31.6 1.012

ghostscript 104.7 106.1 104.6 0.306 104.8 108.4 106.9 0.299

gsm_d 495.4 495.4 808.4 0.040 363.2 381.2 547.8 0.058

lame 317.1 274.2 283.2 0.113 318.6 279.7 289.8 0.110

mad 202.7 208.8 217.0 0.147 219.0 227.6 237.4 0.135

rijndael_e 308.9 308.9 333.5 0.096 333.7 334.5 363.4 0.088

rsynth 307.2 307.4 296.3 0.108 159.1 176.6 173.8 0.184

stringsearch 77.0 77.2 82.7 0.387 32.9 37.2 38.8 0.825

sha 424.9 425.1 654.3 0.049 425.1 425.2 654.7 0.049

tiff2bw 390.2 390.4 2807.6 0.011 221.3 241.0 521.8 0.061

tiff2rgba 852.5 853.8 5334.6 0.006 348.8 393.5 637.7 0.050

tiffmedian 653.1 653.4 2712.9 0.012 386.1 418.7 819.1 0.039

tiffdither 167.8 169.6 193.2 0.166 140.9 144.8 162.7 0.197

Average 242.5 239.5 268.1 0.119 143.1 153.1 165.1 0.193

Table 4.4 shows a detailed evaluation for bDMTF, hDMTF, and eDMTF with

two configurations (192,4) and (64,4), x={b,h,e}. The hDMTF configuration achieves

7% higher compression ratio than bDMTF for mtf1=64. This improvement is due to

reducing the size of the miss trace. For mtf1=192, we see a decrease in hDMTF

performance over bDMTF as explained above. The eDMTF configuration achieves 15%

higher CR over bDMTF for mtf1=64 and 11% for mtf1=192. This improvement is

unevenly distributed over benchmarks and is useful for tests such as adpcm_c (17x) or

tiff2rgba (6x). The best performing configuration (eDMTF with mtf1=192) achieves the

total weighted average bandwidth on the trace port of only 0.12 bits per instruction.

64

4.3.5 Hardware Implementation and Complexity

The mtf1 and mtf2 history tables can be implemented as custom fully associative

structures with a single-clock cycle lookup and additional hardware needed to support the

move-to-front update operation. Instead, we propose a cost-effective implementation that

combines a standard content addressable memory (CAM) and a most-recently used

(MRU) stack (Figure 4.8). The MRU stack has the same number of entries as the history

table, but its contents are indices in the CAM memory. Each MRU stack entry points to a

particular CAM location, and thus has [log2(MTF_Size)] bits.

The mtf lookup operation encompasses a lookup into the CAM with (SA, SL) pair

and a lookup into the MRU stack. In the case of a CAM hit, the corresponding CAM

index is forwarded to the MRU stack and the MRU lookup is performed. The selected

entry is moved to the top of the MRU stack, and the top (i-1) locations are shifted down.

In the case of a CAM miss, the MRU stack provides the address of the CAM location

where the new stream is going to be stored (the index at the bottom of the MRU stack),

and the MRU stack is updated accordingly. Figure 4.8 shows a block diagram of a single

level MTF history buffer. The lookup and update together require two processor clock

cycles and are performed only when a new instruction stream is detected. Hence, the

compression can be done at the full processor speed without ever slowing the processor.

To estimate the complexity of the proposed implementation, we consider

enhanced DMTF(192,4) configuration. The mtf1 CAM memory has 191 entries, each

with 28 bits (20 for SA, and 8 for SL). With 3 gates per CAM bit [66], the CAM

complexity is estimated at 3x28x191 ~ 16000 logic gates. The mtf1 MRU stack has 191

8-bit entries, plus comparators attached to each of them. Registers use latches that

65

occupy approximately 2.5 logic gates per bit, comparators use 2.5 logic gates per bit

while a tri-state buffer uses 0.5 logic gates per bit. The mtf1 MRU stack size is estimated

at approximately 8400 gates. Similarly the mtf2 size is estimated to be approximately

150 logic gates. Together with the LV predictor (12-bit register + comparator) and the

AZLC counter (4 bits), the total complexity of the DMTF(192,4) is about 24,600 gates.

Figure 4.8 MTF hardware implementation

4.4 Stream Descriptor Cache and Last Stream Predictor

In this section we describe a trace compression method based on hardware

structures called a stream descriptor cache (SDC) and a last stream predictor (LSP).

First, we describe the trace compressor structure and compression algorithms

(Section 4.4.1). Next, we explore the design space including the size and organization of

the proposed compressor structures (Section 4.4.2). In Section 4.4.3 we describe several

enhancements designed to further reduce the trace port bandwidth and reduce the

66

complexity of the compressor structures. Finally, we give the results of the trace port

bandwidth analysis in Section 4.4.4 and estimate hardware implementation cost in

Section 4.4.5.

4.4.1 Compressor Organization

The proposed mechanism performs the compression of program execution traces

in two stages. In the first stage, we perform a stream cache transformation using a

structure called the stream descriptor cache (SDC). This transformation translates a

stream descriptor into a stream index (SI). The stream index is used as an input to a

predictor structure called a last stream predictor (LSP) in the second stage.

Consequently, a sequence of stream descriptors coming from the stream detector is

translated into a sequence of hit and miss events at the output of the SDC and LSP

compressor structures. These events are efficiently encoded, thus significantly reducing

the size of trace records that are stored in the trace buffer before they are sent to the trace

port. A high level architecture of the compressor is given in Figure 4.9.

Stream descriptor cache. The stream cache is organized into NWAY ways and

NSET sets as shown in Figure 4.10. An entry in the stream descriptor cache holds a

complete stream descriptor (SA, SL).

Stream
Cache

Last Stream
Predictor

(SA, SL)

(SA/-, SL) SCI Hit / Miss

Trace Record Encoder
To Trace Buffer

SI

Hit / Miss

Figure 4.9 System view of Stream Cache with Last Stream Predictor compressor

67

Figure 4.10 Trace module structures: Stream Descriptor Cache and Last Stream
Predictor

Figure 4.11 describes the sequence of steps carried out during the stream cache

transformation by the SDC controller. The next stream descriptor is received from the

Stream Detector and an SDC lookup is performed. A set in the stream descriptor cache is

calculated as a simple function of the stream descriptor, e.g., bit-wise XOR of selected

bits from the SA and SL fields. If the incoming stream descriptor matches an entry in the

selected set, we have an SDC hit event; otherwise, we have an SDC miss event. In the

case of an SDC hit, the corresponding stream index, determined by concatenating the set

and way indices (SI = {iSet, iWay}), is forwarded to the LSP. In the case of an SDC

miss, the reserved index zero is forwarded (SI = 0). If all entries of the selected set are

occupied, an entry is evicted based on the replacement policy (e.g., LRU, FIFO), and it is

updated with the incoming stream descriptor.

The compression ratio achieved by our stream detector and stream detector cache,

CR(SDC), is defined as the ratio of the raw instruction address trace size, calculated as

68

the number of instructions multiplied by the address size, and the size of the SDC output

(Equation (4.3)). It can be expressed analytically as a function of the average dynamic

stream length (avgSL), the SDC hit rate (hrSDC), the SDC size (NSET*NWAY), and the

probability that a stream starts with a target of an indirect branch (pIND). For each

program stream, log2(NSET*NWAY) bits are emitted to the SI output. On each SDC miss, a

5-byte (SA, SL) or 1-byte (-, SL) stream descriptor is outputted, depending on whether

the corresponding stream starts with the target of an indirect or direct branch,

respectively. The parameters avgSL and pIND are benchmark dependent and cannot be

changed except maybe through program optimization – e.g., favoring longer streams

using loop unrolling or trace scheduling. Smaller stream caches require shorter indices

but likely have a lower hit rate, which negatively affects the compression ratio. Thus, a

detailed exploration of the stream cache design space is necessary to determine a good

hash function as well as a good stream cache size and organization (NSET and NWAY).

1. Get the next stream descriptor, (SA, SL), from the Stream Detector
2. Lookup in the stream descriptor cache with iSet = F(SA, SL);
3. if (SDC hit)
4. SI = (iSet concatenate iWay);
5. else {
6. SI = 0;
7. if (SA is reached via an indirect branch)
8. Prepare stream descriptor (SA, SL) for output;
9. else
10. Prepare stream descriptor (-, SL) for output;
11. Select an entry (iWay) in the iSet set to be replaced;
12. Update stream descriptor cache entry:
13. SDC[iSet][iWay].Valid = 1;
14. SDC[iSet][iWay].SA = SA,
15. SDC[iSet][iWay].SL = SL;
16. }
17. Update replacement indicators in the selected set;

Figure 4.11 Stream Descriptor Cache operation

69

 1)1(5)1()(log125.0

4

)(

4
)(

2 






INDINDWAYSSET pphrSDCNN

avgSL

OutputSDCSize

IC
SDCCR

(4.3)

Last Stream Predictor. The second stage uses a simple last value predictor as

shown in Figure 4.10 and described in Figure 4.12, to exploit redundancy in the SI

component caused by repeating sequences of stream indices. A linear predictor table

with NP entries is indexed by a hash function that is based on the history of previous

stream indices. If the selected predictor entry matches the incoming stream index, we

have an LSP hit. Otherwise, we have an LSP miss, and the selected predictor entry is

updated with the incoming stream index. The hit/miss information (1 bit) and, in the case

of an LSP miss, SI (log2(NSET*NWAYS) bits) are forwarded to the trace encoder.

18. Get the incoming index, SI;
19. Calculate the LSP index: pIndex = G(indices in the History Buffer);
20. Perform lookup in the Last Stream Predictor with pIndex;
21. if(LSP[pIndex] == SI)
22. Emit(’1’);
23. else {
24. Emit(’0’ + SI);
25. LSP[pIndex] = SI;
26. }
27. Shift SI into the History Buffer;

Figure 4.12 Last Stream Predictor operation

The compression ratio achievable by the LSP stage alone, CR(LSP), can be

calculated as shown in Equation (4.4). It depends on the stream index size and the LSP

hit rate, hrLSP. The maximum compression ratio that can be achieved in this stage is

log2(NSET*NWAY). The design space exploration for the last stream predictor includes

determining a good hash function and a good number of entries in the predictor NP.

70

)(log/1)1(

1

)(

)(
)(

2 WAYSSET NNhrLSPOutputLSPSize

SISize
LSPCR




(4.4)

Trace Record Encoder. The trace encoder assembles output trace messages

based on the events in SDC and LSP as shown in Table 4.5. We distinguish

three combinations of events in the compressor structures: (a) an LSP hit with a SDC hit,

(b) an LSP miss with an SDC hit, and (c) an LSP miss with an SDC miss. The LSP

cannot hit if the SDC misses. In the case of an LSP hit with an SDC hit, the single-bit

trace record ′1′ is placed into the trace buffer. In the case of an LSP miss with an SDC

hit, the trace record starts with a ′0′ single-bit header and is followed by the value of the

stream index that missed in the LSP. Finally, in the case of an LSP miss with an SDC

miss, the trace record consists of a ′0′ single-bit header, followed by a zero stream index

that indicates a miss in the SDC, and a 40-bit (SA, SL) or 8-bit (-, SL) stream descriptor,

depending on the type of branch that led to the beginning of the stream.

Table 4.5 Trace records encoding

Event Encoded Trace Record Trace Record Bit Width

 H SI Stream
Descriptor

LSP miss, SDC miss
(SA is the target of an indirect branch)

0 0 (SA, SL) 1+ log2(NSET*NWAY) + 40

LSP miss, SDC miss
(SA is the target of a direct branch)

0 0 (‐, SL) 1+ log2(NSET*NWAY) + 8

LSP miss, SDC hit 0 non‐zero ‐ 1+ log2(NSET*NWAY)

LSP hit, SDC hit 1 ‐ ‐ 1

71

An Example Compression/Decompression. Code snippet in Figure 4.13

includes a simple loop executing 100 iterations. The loop body consists of only one

instruction stream. When the first iteration completes on the target platform, the stream

detector captures the stream descriptor (SA, SL) = (0x020001f4, 9). Let us assume a

64-entry 4-way associative stream descriptor cache (NSET=16, NWAYS=4). The SDC

indexes are calculated as a function of certain bits of the stream descriptor; let us assume

we calculate the iSet as follows: iSet = SA[7:4] xor SL[3:0]; in our case iSet=0x6. A

lookup in the SDC set with index iSet=0x6 results in an SDC miss because the SDC

entries are initially invalid. The least recently used entry in the selected SDC set is

updated by the stream descriptor information (let us assume it is iWay=0), and the

reserved 6-bit index 0 is output to the next stage (SI=′000000′). A lookup in the LSP

entry with index pIndex =0 results in an LSP miss because the LSP entries are also

initially invalid. The LSP entry with index 0 is updated with the SI value. A complete

trace record for the first occurrence of the stream includes a header bit ′0′ followed by the

6-bit index ′000000′ and the 40-bit stream descriptor (47 bits in total; here we assume that

we need to output the starting address of the stream in spite of the fact that it can be

inferred from the program binary).

When we encounter the second iteration of the loop, the stream descriptor is

found in the selected SDC set (an SDC hit). The SI is iSet concatenated with iWay,

resulting in SI=′011000′ (iSet=′0110′ and iWay=′00′). If we assume that the LSP

predictor access is solely based on the previous SI (0 in our case), we will have another

LSP miss. A trace record ′0.011000′ (h=′0′, SI=′011000′) is output to the trace buffer,

and LSP’s entry 0 is now updated with the value ′011000′. The third loop iteration

72

results in an SDC hit, and SI=′011000′ is forwarded to the LSP stage. The LSP will again

miss (the entry pointed to by the previous SI is not initialized yet), and another trace

record ′0.011000′ is sent to the trace buffer. The LSP entry with index ′011000′ is

updated with the value ′011000′. The fourth iteration hits in both the SDC and the LSP

and only a single bit ′1′ is sent to the trace buffer. The next 95 iterations will also have

only a single bit trace record to indicate both SDC and LSP hits. The final iteration does

not hit because the loop end branch falls through and the stream length will therefore be

larger than that of the previous streams.

// Code Snippet
28. for(i=0; i<100; i++) {
29. c[i] = s*a[i] + b[i];
30. sum = sum + c[i];
31. }
// Assembly listing of the code snippet for the ARM ISA
32. @ 0x020001f4: mov r1,r12, lsl #2
33. @ 0x020001f8: ldr r2,[r4, r1]
34. @ 0x020001fc: ldr r3,[r14, r1]
35. @ 0x02000200: mla r0,r2,r8,r3
36. @ 0x02000204: add r12,r12,#1 (1 >>> 0)
37. @ 0x02000208: cmp r12,#99 (99 >>> 0)
38. @ 0x0200020c: add r6,r6,r0
39. @ 0x02000210: str r0,[r5, r1]
40. @ 0x02000214: ble 0x20001f4
// Trace records emitted per loop iteration
41. h=′0′; SI=′000000′; (SA,SL)=(0x020001f4, 9)
42. h=′0′; SI=′011000′;
43. h=′0′; SI=′011000′;
44. h=′1′;
45. h=′1′;
46. . . .
99. h=′1′;
100. h=′0′; SI=′000000′; (SA,SL)=(0x020001f4, ?)

Figure 4.13 A compression/decompression example

The de-compressor on the debugger side reads the incoming bit stream from its

trace buffer. The first bit in the trace is h=′0′, indicating an LSP miss event. The de-

73

compressor then reads the next 6 bits from the traces that carry the SI=′000000′. This

index is reserved to indicate an SDC miss, and the de-compressor reads the next 40 bits

from the trace to obtain the stream descriptor. The debugger updates the software copies

of the SDC and LSP accordingly and replays 9 instructions starting at address

0x0x020001f4. The next step is to read the next trace record. It also starts with h=′0′,

indicating an LSP miss. The next 6 bits are non-zero, which means that we have an SDC

hit. The debugger retrieves the next stream descriptor from the SDC’s entry SI=′011000′

and updates the SDC and LSP structures accordingly. The second iteration of the loop is

replayed. Similarly, the debugger replays the third loop iteration. The fourth trace record

starts with a header h=′1′. This single-bit message is sufficient to replay the current

stream. The software debugger retrieves the stream index from the LSP maintained in

software (SI=′011000′) and, using this stream index, it retrieves the stream descriptor

from the software copy of the stream cache. The debugger maintains its software copies

of the compressor structures by updating the LSP’s history buffer and SDC’s replacement

bits using the same policies as the hardware trace module does. The process continues

until all iterations of the loop have been replayed.

4.4.2 Design Space Exploration

The goal of this design space exploration is twofold. First, we explore the design

space to find good parameters for the proposed compressor structures and access

functions. As a measure of performance, we use the average number of bits emitted per

instruction on the trace port. We also report the hit rates of the stream descriptor cache

and the last stream predictor, hrSDC and hrLSP, because they directly influence the size

of the output trace as explained in Equation (4.3) and Equation (4.4). Second, we

74

introduce several enhancements to the original mechanism and explore their effectiveness

in further improving the compression ratio at minimal added complexity or in reducing

the trace module complexity.

SDC Access Function. A good hash access function should minimize the

number of collisions in the SDC. Its efficacy depends on the program characteristics and

SDC organization. We have evaluated a number of access functions while varying the

SDC size and organization. We have found that access functions that combine the SA

and SL portions of the stream descriptor in general outperform those based solely on the

SA because multiple streams can have the same starting address. Our experiments

indicate that the hash function shown in Equation (4.5) performs the best for different

SDC sizes and configurations. The SA is shifted by shift bits and then the result is

XORed with the SL. The lower log2NSET bits of the result are used as the set index, iSet.

The optimal value for shift was found to be 4 for our benchmark suite. NSET has to be a

power of two.

)1())(( SETNandSLxorshiftSAiSet (4.5)

SDC Size and Organization. Figure 4.14 shows the average SDC hit rate and

trace port bandwidth for the whole benchmark suite when varying the number of entries

and the number of ways (NWAYS = 1, 2, 4, 8). It should be noted that considering the

SDC hit rate alone is not sufficient to make a definite design decision about the SDC

organization. Sometimes a suboptimal organization can result in a lower trace port

bandwidth because of the last stream predictor and its access function. The trace port

75

bandwidth is calculated assuming an LSP with the same number of entries as the SDC

and a simple hash access function that uses the previous stream index to access the LSP.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

32 64 128 256 512 1024

Tr
ac
e
 P
o
rt
 B
an

d
w
id
th
 (b
it
s/
in
s)

SDC and LSP Size

Nways=1

Nways=2

Nways=4

Nways=8

0.70

0.75

0.80

0.85

0.90

0.95

1.00

32 64 128 256 512 1024

SD
C
 H
it
 R
at
e

SDC Size

Nways=1

Nways=2

Nways=4

Nways=8

Figure 4.14 SDC hit rate and trace port bandwidth as functions of its size and
organization

The results show that increasing the stream cache associativity helps reduce the

trace port bandwidth and thus improves the compression ratio, but only up to a point.

Increasing the associativity beyond 4 ways yields little or no benefit. The results further

indicate that even relatively small stream caches with as few as 32 entries perform well,

achieving less than 0.5 bits/ins on the trace port. Increasing the SDC and consequently

the LSP size beyond 256 entries is not beneficial as it only yields diminishing returns in

trace port bandwidth. Based on these results, we choose a 4-way associative SDC with

128 entries and a 128-entry LSP as a good configuration for our trace module. This

configuration represents a sweet spot in the trade-off between trace port bandwidth and

76

design complexity; with our benchmarks, it yields under 0.2 bits/ins at a modest cost.

Table 4.6 shows the 4-way SDC hit rate as function of its size, for each benchmark.

We have also evaluated several SDC replacement policies including Pseudo-

Random, FIFO (First-In First-Out), LRU (Least Recently Used), and several pseudo-

LRU implementations. Our findings indicate that a pseudo-LRU replacement policy

based on using MRU (Most Recently Used) bits performs the best, outperforming even

the full LRU policy.

Table 4.6 SDC hit rate as functions of its size and organization

 hrSDC

Test \ Size 32 64 128 256 512 1024

adpcm_c 1.000 1.000 1.000 1.000 1.000 1.000

bf_e 0.985 0.996 1.000 1.000 1.000 1.000

cjpeg 0.952 0.991 0.998 0.999 1.000 1.000

djpeg 0.935 0.971 0.991 0.997 0.998 0.999

fft 0.482 0.685 0.859 0.952 0.985 1.000

ghostscript 0.456 0.778 0.987 0.993 0.997 0.999

gsm_d 0.972 0.980 0.989 0.996 0.999 1.000

lame 0.903 0.938 0.954 0.964 0.972 0.987

mad 0.833 0.972 0.984 0.993 0.998 1.000

rijndael_e 0.542 0.866 0.929 1.000 1.000 1.000

rsynth 0.848 0.923 0.966 0.997 1.000 1.000

sha 0.952 0.999 1.000 1.000 1.000 1.000

stringsearch 0.759 0.868 0.971 0.991 0.993 0.999

tiff2bw 0.971 0.979 0.992 0.998 1.000 1.000

tiff2rgba 0.935 0.969 0.996 1.000 1.000 1.000

tiffdither 0.824 0.904 0.963 0.988 0.997 1.000

tiffmedian 0.975 0.983 0.992 0.997 1.000 1.000

Average 0.838 0.921 0.969 0.988 0.994 0.998

Last Stream Predictor. We have considered several LSP organizations. The

number of entries in the LSP may exceed the number of entries in the stream descriptor

77

cache. In such a case, the LSP access function should be based on the program path

taken to a particular stream. The path information may be maintained in a history buffer

as a function of previous stream cache indices. However, our experimental analysis

indicates that such an approach yields fairly limited improvements in trace port

bandwidth. The reason is that our workload has a relatively small number of indirect

branches, and those branches mostly have a very limited number of targets taken during

program execution. Consequently, we chose the simpler solution of always having the

same number of entries in the LSP and the SDC. The LSP access function is based solely

on the previous stream cache index. We call this basic implementation of the proposed

tracing mechanism bSDC-LSP.

Table 4.7 LSP hit rates (a), and LSP trace port bandwidth (b), for the bSDC-LSP scheme

 hrLSP bits/ins

Test \ Size 32 64 128 256 512 1024 32 64 128 256 512 1024

adpcm_c 0.997 0.997 0.997 0.997 0.997 0.997 0.019 0.019 0.019 0.019 0.019 0.019

bf_e 0.824 0.838 0.843 0.843 0.843 0.843 0.405 0.359 0.357 0.384 0.410 0.437

cjpeg 0.894 0.916 0.921 0.922 0.922 0.922 0.204 0.138 0.131 0.134 0.140 0.146

djpeg 0.887 0.896 0.909 0.915 0.916 0.917 0.125 0.093 0.075 0.070 0.072 0.075

fft 0.522 0.674 0.762 0.827 0.850 0.870 1.492 1.007 0.616 0.354 0.256 0.219

ghostscript 0.518 0.696 0.865 0.868 0.869 0.870 1.585 0.823 0.232 0.227 0.229 0.234

gsm_d 0.946 0.946 0.947 0.951 0.952 0.954 0.103 0.094 0.086 0.077 0.076 0.075

lame 0.807 0.820 0.823 0.827 0.829 0.833 0.129 0.108 0.102 0.101 0.100 0.093

mad 0.715 0.825 0.830 0.832 0.835 0.836 0.295 0.136 0.129 0.124 0.124 0.128

rijndael_e 0.697 0.846 0.809 0.867 0.867 0.867 0.743 0.284 0.192 0.099 0.105 0.111

rsynth 0.843 0.843 0.860 0.883 0.887 0.887 0.382 0.245 0.175 0.116 0.115 0.122

sha 0.893 0.922 0.922 0.922 0.922 0.922 0.178 0.097 0.101 0.106 0.111 0.116

stringsearch 0.829 0.807 0.857 0.870 0.872 0.872 1.369 0.938 0.472 0.387 0.401 0.382

tiff2bw 0.996 0.993 0.992 0.992 0.994 0.994 0.151 0.135 0.104 0.087 0.083 0.084

tiff2rgba 0.991 0.978 0.989 0.989 0.989 0.989 0.114 0.077 0.045 0.040 0.040 0.040

tiffdither 0.834 0.823 0.848 0.864 0.870 0.873 0.332 0.249 0.190 0.164 0.157 0.160

tiffmedian 0.976 0.973 0.971 0.973 0.976 0.976 0.085 0.077 0.066 0.058 0.055 0.056

Average 0.819 0.856 0.881 0.893 0.897 0.899 0.426 0.272 0.174 0.142 0.136 0.135

 a) b)

78

Table 4.7a shows the last stream predictor hit rate (hrLSP), and Table 4.7b shows

trace port bandwidth for individual benchmarks and for different sizes of the SDC and

LSP. The trace port bandwidth for the trace module configuration [32x4, 128] (4-way

set-associative 128-entry SDC and 128-entry LSP) varies between 0.019 bits/ins for

adpcm_c and 0.616 bits/ins for fft, and is 0.174 bits/ins on average for the whole

benchmark suite. The fft benchmark significantly benefits from an increase in the SDC

size and requires 0.354 bits/ins with the [64x4, 256] configuration. Many of the

remaining benchmarks perform well even with very small trace module configurations,

e.g., adpcm_c, tiffmedian, and tiff2rgba.

4.4.3 Enhancements for Base SDC-LSP Scheme

The output trace records still contain a lot of redundant information that can be

eliminated with low-cost enhancements. The three components of the output trace are

(i) LSP-hit records (hLSPt), (ii) LSP-miss with SDC-hit records (hSDCt), and (iii) LSP-

miss and SDC-miss records (mSDCt). Table 4.8 shows distributions of the individual

trace components for two trace module configurations: [16x4, 64] and [64x4, 256]. The

mSDCt component dominates the output trace in smaller configuration; e.g., it is

responsible for 41.3% of the total output for the [16x4, 64] configuration. With larger

configurations, the hLSPt component dominates the output trace with long runs of

consecutive ones; e.g., the hSLPt represents 48.5% of the total output trace for the [64x4,

256] configuration.

By analyzing the mSDCt records we observe that the upper address bits of the

starting address (SA) field rarely change. To take advantage of this property, we slightly

modify our bSDC-LSP compressor as follows. An additional u-bit register called LVSA

79

is added to record the u upper bits of the SA field from the last miss trace record. The

upper u-bit field of the SA of the incoming miss trace record is compared to the LVSA.

If there is a match, the new miss trace record will include only the lower (32-u) address

bits. Otherwise, the whole address is emitted and the LVSA register is updated. To

distinguish between these two cases, an additional bit in the trace record is needed to

indicate whether all (SA[31:0]) or only the lower address bits (SA[31-u:0]) are emitted.

Table 4.8 Distributions of individual trace components for two trace module
configurations

[SDC, LSP] Size [16x4, 64] [64x4, 256]

Test mSDCt hSDCt hLSPt mSDCt hSDCt hLSPt

adpcm_c 0.1% 1.9% 98.1% 0.1% 2.4% 97.5%

bf_e 6.9% 53.6% 39.6% 0.0% 62.7% 37.3%

cjpeg 12.0% 34.5% 53.5% 1.2% 42.9% 55.9%

djpeg 32.2% 30.4% 37.5% 4.8% 43.3% 51.9%

fft 80.8% 14.8% 4.4% 39.0% 39.8% 21.2%

ghostscript 73.2% 20.2% 6.6% 9.5% 52.3% 38.1%

gsm_d 29.4% 20.1% 50.5% 8.2% 29.0% 62.7%

lame 44.4% 33.7% 21.9% 29.5% 46.0% 24.4%

mad 29.1% 42.4% 28.5% 9.4% 58.4% 32.2%

rijndael_e 72.0% 15.7% 12.3% 0.1% 58.0% 41.9%

rsynth 58.3% 23.6% 18.1% 5.3% 51.5% 43.3%

sha 1.6% 36.6% 61.8% 0.1% 43.1% 56.7%

stringsearch 66.9% 20.7% 12.4% 13.4% 49.7% 36.9%

tiff2bw 41.2% 2.8% 56.1% 5.3% 6.1% 88.6%

tiff2rgba 48.5% 7.1% 44.4% 0.8% 8.7% 90.5%

tiffdither 47.4% 31.6% 21.0% 11.6% 51.9% 36.6%

tiffmedian 33.1% 10.8% 56.0% 6.6% 18.4% 74.9%

Average 41.3% 23.7% 34.9% 11.9% 39.6% 48.5%

The format of the trace record for an LSP miss with SDC miss event is modified

to include this additional bit that precedes the stream descriptor field. Note that SA[1:0]

80

is always '00' for the ARM ISA and is omitted from the mSDCt. For the ARM Thumb

ISA, only SA[0] can be omitted. These two bits do not need to be kept in the stream

descriptor cache. In addition, we can also omit the address bits that can be inferred from

the SDC index (this enhancement will be discussed further down).

Increasing the width of the LVSA register reduces the number of bits in the miss

trace in the case of LVSA hits; however, it also reduces the number of LVSA hit events.

Table 4.9 shows the fraction of the original miss trace components for various values of

the parameter u for the [32x4, 128] configuration. For example, we find that the LVSA

enhancement reduces the miss trace component by 18% when u=14. It should be noted

that the reduction in the total output trace is more significant for smaller trace module

configurations and relatively insignificant for larger configurations because the miss trace

component is relatively small in the latter case.

The redundancy in the hLSPt component can be reduced using a counter that

counts the number of consecutive bits with value '1'. The counter is called one length

counter or OLC for short. Long runs of ones are replaced by the counter value preceded

by a new header. The number of bits used to encode this trace component is determined

by the counter size. A longer counter can capture longer runs of ones, but a counter

which is too long results in wasted bits. Our analysis of the hLSPt components shows a

fairly large variation in the average number of consecutive ones, ranging from 5 in

ghostscript and fft to hundreds in adpcm_c and tiff2bw. In addition, these sequences of

consecutive ones may vary across different program phases, meaning that an adaptive

OLC length method would yield better results.

81

Table 4.9 Fraction of the original miss trace component using LVSA

Test \ u 21 20 19 18 17 16 15 14 13 12

adpcm_c 0.83 0.82 0.83 0.83 0.83 0.82 0.79 0.79 0.81 0.82

bf_e 0.87 0.85 0.74 0.72 0.73 0.75 0.76 0.77 0.79 0.81

cjpeg 0.87 0.86 0.86 0.86 0.85 0.82 0.81 0.82 0.84 0.85

djpeg 0.87 0.84 0.84 0.84 0.84 0.81 0.81 0.82 0.83 0.84

fft 0.89 0.89 0.87 0.86 0.86 0.85 0.83 0.81 0.83 0.84

ghostscript 0.87 0.86 0.86 0.85 0.86 0.85 0.84 0.85 0.84 0.84

gsm_d 0.87 0.86 0.86 0.82 0.82 0.81 0.81 0.82 0.83 0.85

lame 0.87 0.86 0.85 0.85 0.86 0.87 0.86 0.86 0.87 0.88

mad 0.82 0.81 0.81 0.81 0.79 0.78 0.78 0.79 0.81 0.82

rijndael_e 0.96 0.96 0.83 0.84 0.85 0.82 0.83 0.84 0.86 0.87

rsynth 0.88 0.89 0.87 0.83 0.83 0.75 0.77 0.78 0.80 0.82

sha 0.87 0.88 0.79 0.71 0.72 0.74 0.75 0.76 0.78 0.80

stringsearch 0.83 0.84 0.84 0.85 0.78 0.77 0.79 0.80 0.82 0.83

tiff2bw 0.88 0.85 0.83 0.84 0.83 0.80 0.82 0.78 0.80 0.82

tiff2rgba 0.96 0.96 0.96 0.90 0.85 0.86 0.82 0.77 0.79 0.80

tiffdither 0.95 0.94 0.93 0.93 0.93 0.92 0.93 0.93 0.93 0.94

tiffmedian 0.88 0.88 0.83 0.83 0.83 0.81 0.81 0.78 0.80 0.82

Average 0.88 0.87 0.85 0.84 0.84 0.83 0.82 0.82 0.84 0.85

The adaptive one-length counter (AOLC) dynamically adjusts the OLC size to the

program flow characteristics. An additional 4-bit saturating counter monitors the hLSPt

entries and is updated as follows. It is incremented by 3 when the number of consecutive

ones in the hLSPt trace exceeds the current size of the OLC. The monitoring counter is

decremented by 1 whenever the number of consecutive ones is smaller than half of the

maximum OLC counter value. When the monitoring counter reaches its maximum (15)

or minimum (0), a change in the OLC size occurs. If the maximum is reached, the OLC

size is increased by one bit (if possible). If the minimum is reached, the OLC size is

decreased by one bit (if possible).

Using an AOLC necessitates a slight modification of the trace output format. We

use a header bit '1' that is followed by log2(AOLC Size) bits. The counter size is

82

automatically adjusted as described above. Of course, the software decompressor needs

to implement the same adaptive algorithm. We call this scheme, which includes the

LVSA and AOLC optimizations, eSDC-LSP.

Reducing Hardware Complexity by eliminating upper bits. The LVSA

enhancement could be slightly modified to reduce the overall size of the trace module

implementation. For example, the uppermost 12 bits of the stream starting address do not

change with a probability of 0.99 in our benchmarks. Consequently, we may opt not to

keep the upper address bits SA[31:20] in the stream descriptor cache, thus reducing its

size. Instead, the upper address bits are handled entirely by a last value predictor in a

manner similar to the LVSA enhancement discussed above. The mechanism used in the

eSDC-LSP scheme can be modified as follows. In the eSDC-LSP scheme, we only

considered trace records in the miss trace (mSDCt), updating the LVSA register only

when an LSP miss with SDC miss event occurs. Here we need to continuously update

the LVSA register, regardless of whether we have a hit or a miss in the SDC and LSP

structures. Moreover, a miss in the LVSA register results in sending a stream descriptor

to the output trace; the SDC and LSP are updated accordingly. To determine the optimal

number of upper bits that should be handled by the LVSA predictor, we need to consider

the SDC performance. Reducing the number of address bits that are stored in the SDC

reduces its size, but may result in an increased miss rate and thus increase the trace port

bandwidth. A modified eSDC-LSP with the uppermost 12 address bits handled by the

LVSA appears optimal on our benchmarks.

Reducing Hardware Complexity by eliminating indexing bits. We can further

reduce the number of bits kept in the stream descriptor cache without any negative impact

83

on the trace module performance. The bits of the starting address SA[shift+log2(NSET)-

1:shift] that are used in the calculation of the SDC index function (Equation 3) do not

need to be kept in the SDC. This information can be inferred based on the known index

function and SL bits that are stored in the SDC. (Alternatively, we can keep all address

bits in the stream cache and eliminate the portion of the SL bits that are used for the SDC

index.) For example, in the [32x4, 128] configuration, the iSet is calculated as the XOR

result of SA[8:4] and SL[4:0]. Consequently, we can infer the value of SA[8:4] as

SA[8:4] = iSet XOR SL[4:0]. The eSDC-LSP scheme with modified LVSA enhancement

and reduced complexity of the SDC is called rSDC-LSP scheme.

4.4.4 Trace Port Bandwidth Analysis

Table 4.10 shows the trace port bandwidth of the eSDC-LSP scheme for

individual programs and for different sizes of the SDC and LSP. We observe relatively

high improvements for small trace module configurations, mainly due to a reduction in

the mSDCt size; for example, the average trace port bandwidth for the [8x4, 32]

configuration is 0.35 bits/ins, down from 0.43 bits/ins in the bSDC-LSP scheme (18%

lower). Similarly, for large trace module configurations, the hLSPt size is significantly

reduced; for example, the trace port bandwidth for the [64x4, 245] configuration is

0.12 bits/ins, versus 0.142 bits/ins in the bSDC-LSP scheme (a 15% reduction). Some

programs benefit significantly from this enhancement, especially those with a high LSP

hit rate, such as adpcm_c (over 14 times lower bandwidth), tiff2bw (3.45), and tiff2rgba

(3.67).

Table 4.11 shows the trace port bandwidth of the rSDC-LSP scheme for different

sizes of the SDC and LSP. The upper twelve address bits SA[31:20] are predicted using

84

the last value predictor and an entry in the stream cache consists of the lower 13 address

bits SA[19:9] and SA[3:2] and the stream length field SL[7:0]. The rSDC-LSP scheme

requires slightly higher bandwidth on the trace port than eSDC-LSP. For example, the

trace module configuration [32x4, 128] achieves 0.15 bits/ins at the trace port versus

0.146 bits/ins for the eSDC-LSP scheme. However, this degradation due to aliasing in

the SDC is less than 3%, which is probably an acceptable loss for a significant reduction

in the size of the stream descriptor cache (we keep 13 instead of 30 bits for stream

starting addresses).

Table 4.10 Trace port bandwidth of the eSDC-LSP scheme

eSDC‐LSP bits/ins

Test \ Size 32 64 128 256 512 1024

adpcm_c 0.001 0.001 0.001 0.001 0.001 0.001

bf_e 0.378 0.342 0.345 0.372 0.398 0.425

cjpeg 0.154 0.095 0.088 0.092 0.098 0.104

djpeg 0.092 0.068 0.053 0.048 0.050 0.053

fft 1.235 0.851 0.542 0.327 0.237 0.196

ghostscript 1.358 0.760 0.216 0.214 0.217 0.224

gsm_d 0.062 0.057 0.051 0.045 0.043 0.042

lame 0.110 0.094 0.090 0.090 0.090 0.085

mad 0.254 0.120 0.116 0.114 0.115 0.120

rijndael_e 0.599 0.239 0.183 0.090 0.096 0.103

rsynth 0.297 0.200 0.147 0.097 0.097 0.103

sha 0.141 0.070 0.074 0.079 0.084 0.089

stringsearch 1.082 0.789 0.412 0.344 0.358 0.345

tiff2bw 0.062 0.052 0.030 0.016 0.011 0.012

tiff2rgba 0.066 0.041 0.012 0.007 0.008 0.008

tiffdither 0.279 0.213 0.158 0.135 0.129 0.133

tiffmedian 0.039 0.035 0.027 0.021 0.017 0.018

Average 0.349 0.230 0.146 0.120 0.114 0.114

85

Table 4.11 Trace port bandwidth of the rSDC-LSP scheme

rSDC‐LSP bits/ins

Test \ Size 32 64 128 256 512 1024

adpcm_c 0.001 0.001 0.001 0.001 0.001 0.001

bf_e 0.381 0.343 0.345 0.372 0.398 0.425

cjpeg 0.156 0.096 0.088 0.092 0.098 0.104

djpeg 0.094 0.068 0.054 0.048 0.050 0.053

fft 1.276 0.874 0.554 0.331 0.237 0.196

ghostscript 1.377 0.758 0.216 0.214 0.217 0.224

gsm_d 0.064 0.058 0.052 0.045 0.043 0.042

lame 0.128 0.113 0.109 0.109 0.110 0.106

mad 0.259 0.121 0.117 0.114 0.115 0.120

rijndael_e 0.623 0.246 0.185 0.090 0.096 0.103

rsynth 0.308 0.205 0.149 0.097 0.097 0.103

sha 0.143 0.070 0.074 0.079 0.084 0.089

stringsearch 1.118 0.807 0.416 0.346 0.359 0.345

tiff2bw 0.064 0.054 0.031 0.016 0.011 0.012

tiff2rgba 0.069 0.042 0.012 0.007 0.008 0.008

tiffdither 0.282 0.214 0.159 0.135 0.129 0.133

tiffmedian 0.040 0.035 0.028 0.021 0.017 0.018

Average 0.359 0.235 0.150 0.123 0.117 0.117

0.001

0.010

0.100

1.000

10.000

32 64 128 256 512 1024

b
it
s/
in
s

SDC‐LSP Size

bSDC‐LSP

eSDC‐LSP

rSDC‐LSP

Figure 4.15 Trace port bandwidth of all proposed schemes.

86

Figure 4.15 shows the trace port bandwidth for a range of trace module

configurations for the three proposed schemes, bSDC-LSP, eSDC-LSP, and rSDC-LSP.

As we pointed out before, the low-cost enhancements discussed in the previous sections

indeed reduce the required trace port bandwidth. The rSDC-LSP scheme trails a little

behind the eSDC-LSP scheme, but offers a significant cost reduction. Consequently, we

consider rSDC-LSP to be the most cost-effective scheme striking a good balance between

trace port bandwidth and implementation complexity.

4.4.5 Hardware Implementation and Complexity

Both SDC and LSP use simple cache-like structures (multi-way or direct-

mapped). Cache implementation techniques are well known and are not addressed here.

We focus on finding the complexity, in number of logic gates, of different proposed

SDC-LSP configurations.

To estimate the size of different proposed configurations, we first need to

determine the minimum sizes of the trace output buffer. The size of this structure should

be such that the traces are never dropped due to the finite capacity of the trace structures

and that no trace record is lost. To determine the size, we use a cycle-accurate processor

model similar to Intel’s XScale processor [67]. The trace module is modeled as follows.

We assume that it requires one clock cycle to service an LSP with SDC hit or an LSP

miss with an SDC hit event and two clock cycles for an SDC miss event. The trace

records are stored in the trace output buffer. If the output buffer is not empty, a single bit

is sent out through the trace data port each clock cycle. The processor is never stalled and

no trace records are lost if the following conditions are met: the number of entries in the

stream descriptor buffer is at least 2 and the minimum trace output buffer size is 80 bits.

87

The estimation of the SDC and LSP compressing structures is straightforward.

As an example, let us assess the complexity of the rSDC-LSP scheme for the [32x4, 128]

configuration. The stream descriptor includes a register pair for the starting address and

stream length with a total of 38 bits of storage (30 bits for the SA and 8 bits for the SL).

An entry in the stream descriptor cache requires 13 bits for the SA (30 - 12 - 5), 8 bits for

the SL, a valid bit, and one replacement bit (MRU-based LRU). The total amount of

storage is thus (128 - 1)*(13 + 8 + 2) = 2921 bits. Similarly, we find that the LSP

requires 903 bits of storage. Assuming 1.5 logic gates per memory bit, we estimate the

complexity of our rSDC-LSP scheme to be fewer than 6,100 gates.

2

4

6

8

10

0 10000 20000 30000 40000 50000 60000 70000

Tr
ac
e
 R
e
d
u
ct
io
n
 R
at
io

Complexity [gates]

rSDC‐LSP

eSDC‐LSP

bSDC‐LSP

Figure 4.16 Trace reduction ratio vs. complexity for the three proposed schemes
(higher is better)

88

Figure 4.16 shows the trace reduction ratio as a function of trace module

complexity. The trace reduction ratio is calculated as the ratio of the average trace port

bandwidth for the uncompressed stream descriptors ((SA/-, SL) pairs coming from the

stream detector) and the average trace port bandwidth for the proposed schemes xSDC-

LSP, where x = (b, e, r). Different points represent different trace module configurations,

varied from 32 entries [8x4, 32] to 1024 entries [256x4, 1024]. For example, rSDC-LSP

reduces the trace port bandwidth over 7 times, at the cost of less than 6,100 gates

(configuration [32x4, 128]) or 8.6 times at the cost of 11,900 gates. At the low end of

complexity, which is what we are interested in, rSDC-LSP emerges as the best solution

and is therefore our recommended implementation.

4.5 Program Execution Tracing using Branch Predictors

Almost all modern mid- to high-end embedded processors include branch

predictors in their front-ends. Branch predictors detect branches and predict the branch

target address and the branch outcome in the early pipeline stages, thus reducing the

number of wasted clock cycles in the pipeline due to control hazards. The target of a

branch is predicted using a branch target buffer (BTB) – a cache structure indexed by a

portion of the branch address [68] that keeps target addresses of taken branches. A

separate hardware structure named an indirect branch target buffer (iBTB) can be used to

better predict indirect branches that may have multiple target addresses [69]. A dedicated

stack-like hardware structure called the Return Address Stack (RAS) is often used to

predict return addresses. The branch outcome predictors range from a simple linear

branch history table (BHT) with 2-bit saturating counters (2bc) to very sophisticated

hybrid branch outcome predictor structures found in recent commercial microprocessors

89

[70]. Branch predictors proved to be very effective in predicting branch outcomes and

target addresses with high probability (over 95%).

As described in the introduction to this chapter, a program flow change can be

captured by recording branch address/target pairs and this is the exactly what the branch

predictor does. However, we do not need to send information about all the branches to

the trace port to be able to replay the program offline. If the software debugger maintains

the exact software copy of the Trace Module branch predictor and uses the same policies

for the branch predictor update, the control flow information can come from the local

predictor, rather than traced out from the target platform. The trace module thus needs to

report only misprediction events which are relatively rare.

The rest of this section is organized as follows. In Section 4.5.1 we describe

operation of the trace module based on branch predictor. Section 4.5.2 describes our

approach to encoding of branch predictor related trace events. In Section 4.5.3 we give

the results of our trace port bandwidth analysis, and Section 4.5.4 estimates hardware

implementation cost.

4.5.1 Trace Module Branch Predictor

Our key observation is that the program execution can be replayed off-line using a

branch predictor trace instead of a branch instruction trace. We implement a trace

module that consists of branch predictor structures that are solely dedicated to trace

compression. To distinguish it from the processor branch predictor, we name it Trace

Module Branch Predictor (TMBP). TMPB includes structures for predicting branch

targets and branch outcomes. Unlike regular branch predictors, TMBP does not need to

include a large BTB because direct branch targets can be inferred from the binary, but it

90

may include an iBTB for predicting targets of indirect branches and a RAS for predicting

return addresses.

The TMBP structures are updated similarly to those in a regular branch predictor,

but only when a branch instruction is retired. As long as the prediction from the TMBP

corresponds to the actual program flow, the trace module does not need to send any trace

records. It records only misprediction events and they are encoded and sent via a trace

port to the software debugger. The software debugger maintains an exact software copy

of the TMBP structures. It reads the branch predictor trace records, replays the program

instruction-by-instruction, and updates the software structures in the same way TMBP is

updated during program execution.

Figure 4.17 Trace module: a system view

Figure 4.17 shows a system view of the proposed tracing mechanism. The trace

module is coupled with the CPU core through an interface that carries relevant branch

related information. The trace module includes two counters: an instruction counter

(iCnt) that counts the number of instructions executed since the last trace event has been

91

reported, and a branch counter (bCnt) that counts the number of relevant control-flow

instructions executed since the last trace event has been reported (see Figure 4.18 for

TMBP operation).

47. // For each committed instruction
48. iCnt++; // increment the iCnt
49. if ((iType==IndBr)||(iType==DirCB)) {
50. bCnt++;// increment bCnt
51. if (TMBP mispredicts) {
52. Encode an BPM event;
53. Place record into the Trace Buffer;
54. iCnt = 0; bCnt = 0;
55. }
56. }
57. if (Exception event) {
58. Encode an exception event;
59. Place record into the Trace Buffer;
60. iCnt = 0; bCnt = 0;
61. }

Figure 4.18 Trace module operation

The counters are being updated upon completion of an instruction in its retirement

phase; iCnt is incremented after each instruction and bCnt is incremented only upon

retirement of control-flow instructions of certain types, namely, after direct conditional

branches (DirCB) and all indirect branches (IndB). (Unconditional direct branches are

not of our interest as their target can be inferred by the software debugger.) These branch

instructions may be either correctly predicted or mispredicted by TMBP. In the case of a

correct prediction, the trace module does nothing beyond the counter and branch

structures updates. In the case of a misprediction, the trace module generates a trace

record that needs to be traced out to the software debugger. The type and format of the

trace record depends on the misprediction event type (Table 4.12). An outcome

misprediction trace record includes the bCnt value only, so that the software debugger

92

can replay the program execution until the mispredicted branch is reached. In the case of

an indirect branch misprediction, we can have an outcome misprediction or the target

address misprediction (or both). For an indirect branch incorrectly predicted as taken, a

trace record includes the bCnt and the information that the branch is not taken (NT bit).

In the case of a target address misprediction, a trace record includes the bCnt, the

outcome bit taken (T), and the actual target address (TA). Finally, in the case that an

exception occurs, the trace module prepares a trace record that includes the iCnt and the

starting address of the corresponding exception handler.

Table 4.12 Trace module branch pred. events and trace records.
[T – Taken, NT – Not Taken]

Branch Type TMBP Event Trace Record

DirCB Outcome mispred. (header, bCnt)

IndB (NT) Outcome mispred. (header, bCnt, NT)

IndB (T) /Uncond. Target mispred. (header, bCnt, T, TA)

Exception ‐‐ (header, iCnt, ET)

The software debugger replays all instructions updating its software copy of the

branch predictor and the trace module counters in the same way the hardware

counterparts are updated (Figure 4.19). The debugger reads a trace record and then

replays the program instruction-by-instruction. If it processes a non-exception trace

record, the counter bCnt is decremented on retirement of direct conditional and indirect

branch instructions. When the counter bCnt reaches a zero, the software debugger

processes the instruction depending on its type. If the current instruction is a direct

93

conditional branch, the debugger takes the opposite outcome from the one provided by

the predictor. The predictor is updated and a new trace record is read to continue

program replay. If the current instruction is an indirect branch, the debugger reads the

target address from the trace record, redirects the program execution, and updates its

predictor accordingly. Similarly, if the debugger processes an exception trace record, the

iCnt counter is decremented on each instruction until the instruction on which the

exception has occurred is reached.

62. // For each instruction
63. Replay the current instruction;
64. if (An ETR is being processed) {
65. iCnt--;
66. if (iCnt == 0) {
67. Goto Exception Handler Routine;
68. Read the next trace record;
69. }
70. }
71. if (iType = AnyBranch) {
72. Update software copy of the TMBP;
73. if ((iType==IndBr)||(iType==DirCon)) {
74. bCnt--;
75. if (bCnt==0)
76. Read the next trace record;
77. }
78. }

Figure 4.19 Program execution replay in software debugger

An Example. Let us first illustrate the program tracing using an example. A

code segment consists of 4 basic blocks W, X, Y, and Z as illustrated in Figure 4.20a. Let

us consider three iterations of the program loop with the following execution pattern

{WXZ}2{WYZ}. The code sequence includes only direct branches and only two basic

blocks W and Z end with conditional branches (jle Y and jge W). Let us assume

that the branch predictor initial state predicts the branch jle Y to be not taken (P=NT),

94

and the branch jge W to be taken (P=T). The program execution starts from the first

instruction in the block W (i1); the trace module keeps incrementing the iCnt and bCnt

counters as shown in Figure 4.20b (the execution table). In the first two loop iterations,

conditional branches are correctly predicted. In the third iteration, the branch predictor

predicts the branch jle Y as not taken when it is actually taken (A=T), so we have an

outcome misprediction event. The trace module emits a trace record that includes

information about the misprediction type (outcome misprediction) and the number of

branches that have been correctly predicted since the last trace event, bCnt=5. The

counters are cleared and the program execution continues with block Y. In the last

iteration, the instruction jge W is predicted taken (P=T), but it is actually not taken

(A=NT). A new trace record due to outcome misprediction is emitted and the counter

value is bCnt=1.

The software debugger on its side is ready to replay the program starting with the

instruction i1. It receives a trace record that indicates that the program should be

replayed until the fifth conditional branch is reached (Figure 4.20c, the replay table). The

program is replayed instruction-by-instruction and the software copy of the TMBP and

the replay counters are updated accordingly. When the counter bCnt reaches zero (at the

instruction jle Y in the 3rd iteration), the debugger knows that the branch outcome of

the currently replayed direct branch is different from the one suggested by the software

TMBP. The debugger needs to update its predictor structures according to the update

policies. It then reads the next trace record and continues program replay from the first

instruction in block Y.

95

Execution Replay

Instr. Iteration 1 Iteration 2 Iteration 3 Iteration 1 Iteration 2 Iteration 3

 P/A {i/b}
Cnt

P/A {i/b}
Cnt

P/A {i/b}
Cnt

P/A {i/b}
Cnt

P/A {i/b}
Cnt

P/A {i/b}
Cnt

W: i1 1/0 11/2 21/4 ‐/5 ‐/3 ‐/1

 i2 2/0 12/2 22/4 ‐/5 ‐/3 ‐/1

 jle Y nT/nT 3/1 nT/nT 13/3 nT/nT* 23/5 nT/nT ‐/4 nT/nT ‐/2 nT/nT* ‐/0

X: i4 4/1 14/3 ‐/4 ‐/2

 i5 5/1 15/3 ‐/4 ‐/2

 i6 6/1 16/3 ‐/4 ‐/2

 jmp Z 7/1 17/3 ‐/4 ‐/2

Y: i8 1/0 ‐/1

 i9 2/0 ‐/1

 i10 3/0 ‐/1

 i11 8/1 18/3 4/0 ‐/4 ‐/2 ‐/1

 i12 9/1 19/3 5/0 ‐/4 ‐/2 ‐/1

 jge W T/T 10/2 T/T 20/4 T/nT* 6/1 T/T ‐/3 T/T ‐/1 nT/T* ‐/0
 (a) (b) (c)

Figure 4.20 Tracing and replaying program execution example

4.5.2 Trace Record Encoding

Trace records should be encoded in such a way to minimize storage requirements

due to buffering inside the trace module and trace port bandwidth requirements. The

proposed mechanism requires four main types of trace records as shown in Table 4.12

and the software debugger has to be able to distinguish between them. The trace record

length depends on the event type and can vary from several bits to several dozen of bits.

Having a fixed number of bits in the trace record for bCnt and iCnt counter values would

not be an optimal solution because the distance between two consecutive branch predictor

mispredictions may vary widely between programs, as well as within a single program as

it moves through different program phases. Typical values found in bCnt and iCnt

counters are also heavily influenced by the misprediction rate, which is a function of the

96

type and organization of the branch predictor. Thus, finding a theoretical optimal

solution for encoding is not feasible. Rather, we opt for an empirical approach in

determining trace record formats.

We employ a variable-length encoding scheme that minimizes trace record

lengths for the most frequent bCnt and iCnt values. All trace records start with a header

field, followed by a variable length field that carries the bCnt counter value. The header

(bh) has variable length (bhLen) and it always ends with a zero bit, i.e., bh=′111...10′. Its

length determines the length of the bCnt counter field as follows: (bSize+(bhLen-

1)*bStepSize). The single-bit header, bh=′0′, specifies bSize bits in the bCnt counter field

(encoding values from 0 to 2bSize-1). The two-bit header, bh=′10′, specifies

bSize+1*bStepSize bits in the bCnt counter field (encoding values from 0 to

2bSize+bStepSize - 1), three-bit header, bh=′110′, specifies bSize+2*bStepSize bits (0 to

2bSize+2*bStepSize - 1), and so on.

A trace record emitted on a direct branch outcome misprediction event consists of

the header (bh) and the bCnt counter field (Figure 4.21a). A similar trace record format

is used for indirect conditional branches. If an indirect branch is predicted as taken, but it

is actually not taken, a trace record with the format shown in Figure 4.21b is used. An

additional one-bit field O carries information that the outcome of the branch is not

correct. A similar format shown in Figure 4.21c is used for indirect conditional branches

that are predicted as not taken, but are actually taken. Indirect unconditional

mispredictions are encoded as shown in Figure 4.21d. The last two trace records shown

in Figure 4.21c and Figure 4.21d carry information about the bCnt counter and the branch

target address TA. A naïve approach would be to just append an additional 32-bit field

97

with the target address to the original trace record. An alternative approach is to encode

only the difference between subsequent target addresses. The trace module maintains the

previous target address (PTA) – that is, the target address of the last mispredicted indirect

branch. When a new target misprediction event is detected, the trace module calculates

the difference diffTA as follows: diffTA = TA – PTA, where the TA is the target address of

the current branch. The trace module then updates the PTA, PTA=TA. By profiling the

absolute value of the diffTA, |diffTA|, for several programs with a significant number of

indirect branches, we find that we can indeed shorten trace records by using difference

encoding.

0

a. Direct Branch Outcome Misprediction

bhLen

1…10 xx...xx

bSize+ (bhLen‐1)*bStepSize

bh bCnt

thLen

1...10 xx...x

taSize+ (thLen‐1)*taStepSize

th |diffTA|/TA
c. Indirect Conditional Branch Misprediction (T)

ts

1

b. Indirect Cond. Branch Outcome Misprediction (NT)

bhLen

1…10 xx...xx

bSize+ (bhLen‐1)*bStepSize

bh bCnt

0

1

O

bhLen

1…10 xx...xx

bSize+ (bhLen‐1)*bStepSize

bh bCnt

1

1

O

d. Indirect Unconditional Branch Misprediction

0

thLen

1...10 xx...x

taSize+ (thLen‐1)*taStepSize

th ts

1bhLen

1…10 xx...xx

bSize+ (bhLen‐1)*bStepSize

bh bCnt

1

0 00...0

bSize

bh bCnt

ehLen

11...10 xx...xx

eh iCnt
e. Exception Event

eSize+ (ehLen‐1)*eStepSize 32

xx...x

ETA

|diffTA|/TA

Figure 4.21 Trace record formats for branch misprediction events and exceptions

98

We employ variable encoding for the difference/target address field

(|diffTA|/TA). Its length is specified by the number of header bits. We adopt the

following scheme: a single header bit (th = ′0′) specifies taSize bits in the |diffTA|/TA

filed. The two-bit header (th = ′10′) specifies taSize+1*taStepSize bits, three-bit header

(th = ′110′) specifies taSize+2*taStepSize bits, and so on. If the |diffTA|/TA field

requires less than 32 bits, we also need to provide information about the sign bit (ts) of

the difference; otherwise, the whole 32-bit address is sent (without the sign bit).

Figure 4.21e shows the format of trace records used to report exception events.

An exception trace record includes information about the iCnt counter and the starting

address of the exception handler (ETA). It is an extension of the base format used for

direct conditional branch mispredictions. The bh field indicates the shortest bCnt field of

bSize bits. The bCnt field consists of all zeros indicating that this is an exception event

trace record. The next two fields, the exception header (eh) and the instruction counter

(iCnt), are used to specify the number of instructions since the last branch predictor

misprediction event. We use the same variable encoding as before - the ehLen-bit header

specifies the eSize+(ehLen-1)*eStepSize bits in the iCnt field. Finally, the last portion of

the message includes the whole exception address (ETA). Note: we could use the same

differential encoding described for indirect branches (eth and diffETA/ETA fields), but

because of the low frequency of exception events, we opt for encoding the whole

exception address of 32-bits.

Determining the trace record parameters such as bSize, bStepSize, taSize,

taStepSize, eSize, and eStepSize depends on benchmark profiles and characteristics of the

branch predictor. To determine suitable values for trace record parameters, we profiled

99

the behavior of MiBench benchmarks and analyzed the probability density function for

the minimum bit-length of the bCnt counter. We show that our proposed variable

encoding scheme indeed reduces the size of the output trace and outperforms any fixed-

length encoding scheme. Next, we analyzed several combinations of (bSize, bStepSize)

pairs (bSize[2..6] and bStepSize[1..6]) to determine an optimal combination that

results in the shortest program trace across our benchmark suite. The results of this

analysis indicate that the total trace size has a minimum when bSize=3 and bStepSize=2

for bTMBP and sTMBP configurations and bSize=3 and bStepSize=1 for tTMBP

configuration.

Similarly we analyzed the minimum bit-length of the |diffTA| field. The results

clearly indicate that upper address bits of the subsequent mispredicted indirect branches

rarely change, thus we can encode the difference diffTA instead of the whole target

address. We analyze several combinations for parameters taSize and taStepSize. The

results indicate that taSize=8 and taStepSize=6 give the shortest trace for the tTMBP

configuration, and taSize=12, taStepSize=4 for sTMBP and bTMBP.

In spite of a relatively low frequency of exception events, we analyze the profile

for iCnt counters in order to determine the parameters eSize and eStepSize. The profiles

for software exceptions indicate that all iCnt values can be encoded with a 2-bit field.

Thus, we adopt that eSize=2 and eStepSize=4.

4.5.3 Trace Port Bandwidth Analysis

In this section we evaluate the effectiveness of the proposed tracing mechanism

by measuring the average trace port bandwidth (TPB) for several branch predictor

configurations. We consider three TMBP configurations, bTMBP, sTMBP, and tTMBP.

100

The base TMPB configuration (bTMPB) includes a 64-entry 2-way set associative iBTB,

an 8-entry RAS for indirect branch target prediction, and a 512-entry GSHARE global

outcome predictor. Each entry in the iBTB includes the tag field and the target address.

The tag and iBTB index are calculated based on the information contained in a path

information register (PIR). We assume a 13-bit PIR that is updated by relevant branch

instructions as follows: PIR[12:0]=((PIR[12:0]<<2) xor PC[16:4]) | Outcome. The iBTB

tag and index are calculated as follows: iBTBTag = PIR[7:0] xor PC[17:10] and

iBTBIndex = PIR[12:8] xor PC[8:4]. The outcome predictor index function is

GSHAREIndex = BHR[8:0] xor PC[12:4], where the BHR register keeps the outcome

history for last 8 conditional branches. The sTMBP configuration includes a smaller, 32-

entry, iBTB and the tTMBP does not include iBTB at all.

Table 4.13 Trace port bandwidth for different TMBP organizations

Test tTMBP sTMBP bTMBP

adpcm_c 0.001 0.001 0.001

bf_e 0.011 0.009 0.009

cjpeg 0.062 0.044 0.04

djpeg 0.035 0.024 0.021

fft 0.166 0.096 0.091

ghostscript 0.513 0.230 0.127

gsm_d 0.013 0.013 0.013

lame 0.028 0.029 0.029

mad 0.035 0.033 0.033

rijndael_e 0.078 0.070 0.016

rsynth 0.023 0.021 0.021

sha 0.029 0.02 0.022

stringsearch 0.303 0.183 0.164

tiff2bw 0.013 0.011 0.007

tiff2rgba 0.015 0.011 0.008

tiffdither 0.062 0.062 0.062

tiffmedian 0.009 0.008 0.007

Average 0.076 0.047 0.036

101

Table 4.13 shows the results of trace port bandwidth analysis for

three configurations of the proposed trace module (tTMBP, sTMBP, and bTMBP). We

can see that the proposed technique requires a very small trace port bandwidth. The

smallest tTMBP configuration requires only 0.0764 bits/ins. The sTMBP and bTMBP

configurations benefit from the indirect branch target buffer requiring only

0.0467 bits/ins and 0.0356 bits/ins, respectively. When compared to 1 bit/ins that is the

typical bandwidth of the commercial state-of-the-art trace modules, the proposed

technique with the bTMBP configuration provides improvement of over 28 times.

4.5.4 Hardware Implementation and Complexity

To estimate the size of the proposed trace module, we need to estimate the size of

all structures inside the trace module, including the outcome predictor, RAS, iBTB, PIR,

BHR, the trace encoder, and the trace output buffer. The estimation of the size of

predictor structures is straightforward. For iBTB and RAS, we implement an

enhancement to reduce their complexity. We find that uppermost 12 bits of the indirect

branch targets remain unchanged relative to the previous target in 99.99% of cases.

Consequently, we can use a last value (LV) predictor for the upper 12 bits of the target

address, and keep only the lower 18 address bits in the iBTB address entry (the last two

bits are always 0 in ARM architecture). A miss in the LV predictor causes a whole target

address to be included in the trace record. This way we reduce the complexity

significantly with negligible degradation in the TMBP’s iBTB hit rates.

To determine the size of the trace output buffer, we use a cycle-accurate processor

model to find the maximum number of bits in this buffer at any point in time during

benchmark execution. We assume the trace buffer is emptied through the trace port at the

102

rate of a one bit per processor clock cycle. The worst case happens during the TMBP

warm-up when we experience a number of consecutive mispredictions. We find that a

buffer of 128 bits ensures that the processor is never stalled due to tracing and that no

trace records are lost.

The estimates for hardware complexity measure in logic gates for

three configurations are as follows (assuming 1.5 logic gates per memory bit): tTMBP

requires 2,800 gates, sTMBP requires 4,000, and bTMBP requires slightly over

5,200 gates.

4.6 Comparative Analysis

In this section we compare the performance of the proposed compression

techniques (DMTF, SDC-LSP, and TMBP) with several alternative approaches. We

show the average trace port bandwidth requirements and complexity. For trace port

bandwidth comparison, we use four different schemes described below. BASE is the

output from the stream detector, and it shows us the compression rate after transforming

the instruction addresses into partial stream descriptors (SA/-, SL). HWLZ is a hardware

implementation of Lempel-Ziv compression algorithm that is specifically tailored to

program execution traces [60]. SW-GZIP is the software compression utility gzip that

implements the Lempel-Ziv compression algorithm, and is used here to underline the

effectiveness of all proposed schemes. This algorithm uses large memory buffers and its

implementation in a hardware trace module would be cost-prohibitive. NEXS

implements a simple trace reduction technique inspired by the NEXUS standard [9]. The

starting address from the incoming stream descriptor is XORed with the starting address

from the previous stream descriptor, producing DiffSA = Incoming.SA[31:0] xor

103

Previous.SA[31:0]. The difference is split into groups of 6 bits, DiffSA[5:0],

DiffSA[11:6], DiffSA[17:12], etc. The leading zeros in the DiffSA are not sent to the

trace port, thus reducing the trace port bandwidth. For example, if the DiffSA[31:6]

consists only of zeros, then only the DiffSA[5:0] is sent to the trace port, together with a

2-bit header indicating that this is the terminating byte for the stream address field. The

SL field is always sent to the trace port without further reduction.

Trace port bandwidth results are given in Table 4.14 and a summary for several

configurations of proposed compression methods is given in Figure 4.22. The

complexity of these configurations measured in the number of logic gates is given in

Figure 4.23.

Table 4.14 Trace port bandwidth evaluation: A comparative analysis

 HWLZ HWLZ eDMTF eDMTF bSDC eSDC rSDC

Test BASE NEXS 256 1024 (64,4) (192,4) 128 128 128 tTMBP sTMBP bTMBP SW‐GZIP

adpcm_c 0.150 0.149 0.024 0.025 0.001 0.001 0.019 0.001 0.001 0.001 0.001 0.001 0.001

bf_e 4.913 4.010 0.354 0.367 0.279 0.284 0.357 0.345 0.345 0.011 0.009 0.009 0.038

cjpeg 0.790 0.752 0.431 0.138 0.089 0.091 0.131 0.088 0.088 0.062 0.044 0.04 0.050

djpeg 0.390 0.366 0.230 0.176 0.055 0.052 0.075 0.053 0.054 0.035 0.024 0.021 0.019

fft 1.895 1.554 1.921 1.036 1.012 0.201 0.616 0.542 0.554 0.166 0.096 0.091 0.065

ghostscript 1.814 1.578 1.394 0.187 0.299 0.306 0.232 0.216 0.216 0.513 0.230 0.127 0.038

gsm_d 0.621 0.567 0.152 0.151 0.058 0.040 0.086 0.051 0.052 0.013 0.013 0.013 0.009

lame 0.452 0.391 0.171 0.148 0.110 0.113 0.102 0.090 0.109 0.028 0.029 0.029 0.040

mad 0.785 0.668 0.268 0.144 0.135 0.147 0.129 0.116 0.117 0.035 0.033 0.033 0.042

rijndael_e 1.013 0.840 0.043 0.038 0.088 0.096 0.192 0.183 0.185 0.078 0.070 0.016 0.013

rsynth 0.883 0.747 0.271 0.247 0.184 0.108 0.175 0.147 0.149 0.023 0.021 0.021 0.018

sha 0.602 0.567 0.441 0.036 0.049 0.049 0.101 0.074 0.074 0.029 0.02 0.022 0.005

stringsearch 2.157 1.932 1.962 1.135 0.825 0.387 0.472 0.412 0.416 0.303 0.183 0.164 0.104

tiff2bw 0.668 0.654 0.146 0.137 0.061 0.011 0.104 0.030 0.031 0.013 0.011 0.007 0.006

tiff2rgba 0.349 0.330 0.160 0.095 0.050 0.006 0.045 0.012 0.012 0.015 0.011 0.008 0.005

tiffdither 0.692 0.659 0.573 0.301 0.197 0.166 0.190 0.158 0.159 0.062 0.062 0.062 0.080

tiffmedian 0.380 0.374 0.081 0.073 0.039 0.012 0.066 0.027 0.028 0.009 0.008 0.007 0.007

Average 1.055 0.907 0.446 0.233 0.194 0.119 0.174 0.146 0.150 0.076 0.047 0.036 0.031

104

The average trace port bandwidth required for the NEXS scheme is 0.907 bits/ins,

ranging from 0.149 bits/ins (adpmc_c) to 4.01 bits/ins (bf_e). This relatively small

improvement compared to the BASE scheme is due to the fact that the number of indirect

branches is small, resulting in a small number of trace records that include a full stream

descriptor. Another reason is the relatively high overhead in header bits.

The average trace port bandwidth required for the NEXS scheme is 0.907 bits/ins,

ranging from 0.149 bits/ins (adpmc_c) to 4.01 bits/ins (bf_e). This relatively small

improvement compared to the BASE scheme is due to the fact that the number of indirect

branches is small, resulting in a small number of trace records that include a full stream

descriptor. Another reason is the relatively high overhead in header bits.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

Tr
ac
e
 P
o
rt
 B
an
d
w
id
th
 (
b
it
s/
in
s)

4.91 4.01 1.96 1.14

Figure 4.22 Trace port bandwidth evaluation for proposed and related mechanisms

105

HWLZ with a search buffer with 256 12-bit entries (HWLZ-256) achieves

average trace port bandwidth of 0.446 bits/ins, ranging from 0.024 bits/ins to

1.96 bits/ins. The drawback of this scheme is a relatively high cost in both trace module

complexity and compression time. Also, this scheme has very poor compression on

certain programs (e.g., fft and stringsearch require more than 1.9 bits/ins). HWLZ-1K

shows the results for the same scheme when the search buffer size is increased to

1024 entries. We see that certain programs are still poorly compressed (e.g., fft and

stringsearch require more than 1 bits/ins), requiring wider trace ports.

0

5000

10000

15000

20000

25000

C
o
m
p
le
xi
ty
 [
ga
te
s]

Figure 4.23 Implementation complexity of proposed tracing mechanisms

The best DMTF configuration, eDMTF (192, 4), achieves trace port bandwidth of

0.12 bits/ins on average, ranging from 0.001 to 0.39 bits/ins. Its estimated complexity is

equivalent to 25,000 logic gates, which is half of the complexity reported for the HWLZ

106

trace compressor (HWLZ-256). The smaller configuration, DMTF (64, 4), achieves

0.2 bits/ins on average (ranging from 0.001 to 1) at the cost of 8,200 logic gates.

The rSDC with 128 entries requires 0.15 bits/ins of trace port bandwidth, ranging

from 0.0013 to 0.551 bits/ins at the cost of 6,061 logic gates. The bSDC requires

0.174 bits/ins, ranging from 0.019 to 0.616 bits/ins at the cost of 8,311 logic gates. The

eSDC requires 0.146 bit/ins, ranging from 0.001 to 0.542 bits/ins at the cost of 8311 logic

gates. The worst performing benchmark requires less than 1 bit/ins in the rSDC-128

scheme, allowing us to trace the program execution through just a single bit on the trace

port (e.g., a JTAG port is sufficient).

The tTMBP configuration requires 0.0764 bits/ins on average at the trace port,

ranging from 0.0013 to 0.551 bits/ins. The sTMBP and bTMBP configurations benefit

from the indirect branch target buffer requiring only 0.0467 bits/ins. and 0.0356 bits/ins.

on average, respectively. When compared to 1 bit/ins that is the typical bandwidth of the

commercial state-of-the-art trace modules, the proposed technique with the bTMBP

configuration provides improvement of over 28 times. We can also observe that the

compression ratio achieved by the bTMBP configuration is close to that achieved by the

software gzip utility, which further underscores the strength of the proposed mechanism.

Note: The SW-GZIP compresses the partial stream descriptors only, not the whole stream

of instruction addresses. This is more realistic for comparison purposes as the proposed

compressor mechanisms also compress stream descriptors, although this approach favors

the gzip. The estimates for hardware complexity for these three configurations are as

follows: tTMBP requires 2,800 gates, sTMBP requires 4,000, and bTMBP requires

slightly over 5,200 gates.

107

CHAPTER 5

COMPRESSION OF DATA ADDRESSES

Data address traces are widely used in trace-driven computer architecture

simulators for evaluation and optimization of a processor’s caches or the whole memory

subsystem. In multi-core systems, data address traces offer valuable information about

shared memory performance. Correlated traces offer insights into the order of memory

accesses and into the number of collisions on the memory bus, and thus allow system

designers to optimize the memory subsystem.

The Nexus standard [9] includes data addresses as a part of data trace. Although

data values, already included in the data trace, are sufficient to reconstruct the program

execution in a fully functional offline simulator, data addresses offer an additional level

of security into correct reconstruction and can be used for trace synchronization purposes.

Trace synchronization is needed when a part of the data trace is dropped due to the

saturation of available bandwidth or due to errors in the communication channel. When a

fully functional simulator is not available in the software debugger, data address traces

are necessary to capture memory access patterns, which are especially important in the

108

debugging of multi-core systems. The importance of data address traces is further

emphasized by ever-tightening time-to-market pressures – system designers may not have

enough time to develop sophisticated software debuggers that include fully functional

simulators.

Data address trace compression is crucial for reducing the overall cost of the data

tracing. Unfortunately, data addresses are much harder to compress than instruction

address traces. The existing compressor structures are often very complex [57, 58, 71] as

they include large caches for storing data addresses of recently executed memory

referencing instructions. In this section, we introduce two cost-effective techniques to

reduce the size of data address traces. Section 5.1 describes our data address filtering

method which identifies and traces out only data addresses that cannot be inferred by a

software debugger. The proposed trace module and the software debugger both maintain

the list of general-purpose registers with known content in order to minimize the number

of data addresses that are traced out. Section 5.2 presents our data address trace

compression technique that focuses on the compression of high-order address bits that

exhibit low variability.

5.1 Data Address Filtering

The proposed data address filtering method tries to identify data addresses that

can be inferred by the software debugger during the program replay. Data addresses that

can be inferred are thus not traced out of the chip which helps reduce trace port

bandwidth requirements. Let us consider a memory referencing instruction specifying a

memory direct addressing mode. In this case the data address is directly encoded in the

instruction, and thus can be inferred by the software debugger during program replay.

109

However, the memory direct addressing modes are not that frequently used in modern

RISC architectures. Fortunately, data addresses can be inferred in case of other

addressing modes, e.g., register indirect with displacement which is the most frequently

used in modern RISC architectures [72]. For example, the software debugger can

maintain the content of general-purpose registers in the register file; the content is

updated during a partial program replay offline using the data addresses that cannot be

inferred and are thus traced out by the trace module. Similarly to the program execution

tracing, both the trace module and the software debugger maintain similar structures that

are synchronized during program tracing. It should be noted that here we do not consider

a complete program replay (we do not trace data values, rather only data addresses). The

proposed method requires a close integration of the trace module and processor, but in

turn requires no additional storage resources. In Section 5.1 we describe a register

validation mechanism that is used to identify what addresses need to be traced out and

what addresses can be inferred by the software debugger that supports the proposed

mechanism. In Section 5.2, we describe a mechanism for compression of only the high-

order data address bits. Section 5.3 gives the results of a comparative analysis of the

proposed compression techniques and several other data address compression techniques.

5.1.1 Data Address Filtering Details

The software debugger can perform a full program replay if all program inputs are

made available. The software debugger maintains its local copy of the processor’s

register file that is updated during program execution. To be able to replay the program

execution offline, the trace module needs to record and trace out all the data values

brought to the processor chip from memory or input peripheral devices (loads from

110

memory or peripheral devices). If we opt to trace only data addresses, the software

debugger cannot perform a full program replay, rather only a partial replay is feasible.

Similarly to the full program replay, the software debugger maintains its own local copy

of the register file. However, in this case we may not know the content of individual

registers; the content of some registers can be inferred from the previously traced data

addresses, while the content of others is not known. Thus, the software debugger needs

to know the list of registers with the known content and the list of registers with the

unknown content. Thus, each register can be associated with a flag that indicates whether

its value is known (Valid) or not known (Invalid). Based on this information, the

software debugger determines whether a particular data address can be calculated locally

or if data address trace records are required. Both the trace module and the software

debugger need to maintain the status information about individual registers (Valid or

Invalid). We call this mechanism a register validation.

There exists three possible ways for a register content to become valid (known):

 From a received data address, DA, e.g., an instruction {LDR, R5, [R4,#2]} loads

a value into register R5 from the memory address calculated DA = R4+2. Once

the data address DA is received, R4 can be set valid and its value is {DA-2}.

Oppositely, if R4 is valid, DA can be calculated locally by the software debugger,

DA=R4+2, and thus needs not be traced out.

 From an instruction that specifies an immediate operand, e.g., an instruction

{MOV R4, #2} sets value of register R4 to 2. Therefore, register R4 is marked as

Valid, and initialized R4=2.

111

 From an instruction that performs an operation on valid source registers, e.g., an

instruction {MOV R4, R5} copies value from R5 to R4; if R5 is Valid, R4 is

marked as Valid too, and R4 is loaded with the value of R5, R4=R5. This rule

can be extended to instructions with multiple source operands (up to four in the

ARM’s instruction set). In general, an instruction destination register can be

marked as Valid if it is the result of an operation on source registers that are all

marked as Valid.

The software debugger is responsible for maintaining and updating its local copy

of the register file during program replay and maintaining and updating the status of each

register (Valid/Invalid). To keep the register file up to date, the software debugger

performs operations that are reverse to those of address calculations performed inside the

processor. It takes traced data addresses as an input and tries to determine the content of

individual registers using the information available in the program binary. To be able to

perform this task, the software debugger should be able to decode instructions from the

binary.

Table 5.1 illustrates this process using a sequence of instructions. We assume that

all registers are initially invalid (both in the trace module and software debugger). The

first instruction loads an immediate constant #0 to register R1. Both the trace module and

the software debugger set R1 as valid and the software debugger sets R1 to zero. The

next instruction loads an operand from memory from the address calculated as DA=R2+5.

The register R2 is not valid and thus the data address, DA, is traced out of the processor.

On the other side, the software debugger cannot calculate the data address and it expects

it from the trace port; upon receiving the data address, DA, it calculates the value of

112

register R2, R2=DA-5, and sets its valid bit. The register R5 is loaded from memory, so

its content is not known, so its valid bit has to be reset. The third instruction calculates

R4, R4=R2+R1; the valid bit of register R4 is set because both the input operands R2 and

R1 are valid. The fourth instruction loads the register R8 with an operand from memory

at the address DA=R2+R1. The trace module does not need to trace out the DA because

the software debugger can calculate it based on R2 and R1 that are both valid. The

register R8 is marked as invalid. Finally, the last instruction moves the content of R7 to

R2; the source register is invalid, and the register R2 is thus marked as invalid.

Table 5.1 Partial software replay filtering example

Instruction CPU: Reg. File CPU: Trace Output Debugger:
Trace Input

Debugger:
Reg. File

MOV R1, #0 R1: Valid — —

R1: Valid, R1=0

LDR R5, R2, #5

R2: Valid
R5: Invalid

Trace DA
(DA=R2+5)

DA expected

R2: Valid, R2=DA–5
R5: Invalid

ADD R4, R2, R1

R4: Valid
(R1 and R2 are Valid)

—

— R4: Valid,
R4=R1+R2

LDR R8, R2, R1

R8: Invalid — (no trace) ‐‐ (DA is inferred,
DA=R2+R1)

R8: Invalid

MOV R2, R7 R2: Invalid — R2: Invalid

Figure 5.1 shows a system view of the proposed data address filtering. The trace

module (Figure 5.1 left) receives the relevant information from the processor core about

the instruction type (memory referencing ins., load/store), the destination and source

registers, and the data address itself. It also receives a signal indicating an entrance into

an exception or system call routine. The register validation process depends on whether

the instruction is a memory-referencing or a non memory-referencing instruction.

113

 For a non-memory referencing instruction, the trace module marks destination

registers valid only if all source registers are valid. For the ARM architecture set,

we can have up to 4 source registers and up to 3 destination registers.

 For a memory referencing instruction, source registers are used to calculate the

data address. In the case that all source registers are valid, the data address is not

traced as it can be inferred by the software debugger (the data address is filtered

out); otherwise, the data address is traced out. In the case that all but one source

register is valid, the only invalid register can be marked as valid in both the trace

module and the software debugger (it can be calculated based on the data address

and the content of other known source registers). For load instruction, the

destination register is always invalidated as its value is unknown after the load.

The exception control signal serves to disable the control logic for register

validation. If the software debugger is unable to trace the system calls or exception

service routines, the trace module should disable the register validation unit in the trace

module.

Figure 5.1 right shows the block diagram of the software debugger and its

corresponding data address trace structures. It maintains a software copy of the register

file status bits (valid/invalid) as well as the software copy of the register file. The

debugger replays the program by fetching the instructions from the source binary. A

replayed instruction is decoded in the functional simulator for the given architecture; it

provides an identical set of signals as the processor to the trace module. The functional

simulator is extended with the register calculation and validation unit (RCVU). The

RCVU maintains and updates the content and the status of the general-purpose register

114

based on the received data address and control signals from the functional simulator. As

the final data address, RCVU selects one calculated in the instruction set simulator if all

the source registers are valid, or takes the traced one if the data address cannot be

calculated. To calculate a register value, the functional simulator replays all instructions

that do not require traced data addresses. For register value calculations that require data

addresses, RCVU implements the needed functionality.

Figure 5.1 Data address trace filtering: A system view

5.1.2 Addressing Modes and Register Validation

The process of register validation is architecture dependant. In this section we

specifically address the implications of the ARM addressing modes on the register

validation process.

Effects of offset mode. In general, a data address is calculated as a sum of

two source operands specified by the instruction word: a base and an offset. The base

operand corresponds to the value of a specified base register. The offset operand can be

115

an immediate value, the value of a specified index register, or the result of an operation

performed on a specified index register. For example, in the instruction {LDR R5, [R2,

R4, lsl #2]}, the base corresponds to the value of register R2 (R2 is a base register), while

the offset corresponds to the value in register R4 that is shifted for two bits left (R4 is an

offset register). Below we discuss the register validation process depending on the type

of the address offset.

 In the case of an immediate offset (the offset field is specified in the instruction

itself), the base register is always marked as valid as its value is known since the

data address is known. For example, the validation process for the instruction

{LD R2, [R4, #5]}, which loads R2 from the memory address {R4+5}, will mark

R4 as valid; the software debugger will set its value to {DA-5}.

 In the case of a register offset (the offset field specifies a register and an operation

on it), the base register can be validated only if the offset register is valid. For

example, the register validation for the instruction {LD R2, [R4, R5]}, which

loads R2 from the memory address {R4+R5}, will mark R4 as valid and the

software debugger will set its value to {DA-R5} only if R5 is valid.

To validate the offset register, the process is similar, but may involve additional

steps in the case of a calculated offset (the offset is the result of an operation on the offset

register). For example, if the data address is calculated as{DA = R2 + f(R4)}, where R2

is the base and R4 is the offset register and f is an operation on the index register, the

software debugger can calculate R4 as f-1(DA - R2). Thus, function f() must be reversible.

For the ARM architecture, function f() is usually a shift operation on an offset register.

Shift operations are as follows:

116

 Shift left: Shift to the left for a certain number of bits.

 Shift right: Shift to the right for a certain number of bits.

 Ror: Rotate register. Shift for one bit to the right is performed while the most

significant bit of the register gets the value of the carry flag from the status

register.

 No Shift: Original value is returned.

 Zero: This type specifies that the actual shift value should be zero.

Some shifting operations are not reversible. For example, the shift right or left

operation can drop some bits and the reversed shift operation cannot recreate the original

register values. In several special cases, it is possible to preserve these values, but for

simplicity of implementation, we do not consider them. The rotate operation uses

information from the status register, thus the validation process must be performed on the

status register too. Memory referencing instructions in our benchmarks do not use the

rotate operation, thus we do not consider them in the validation process. Note: The

filtering mechanism is actually unusually complex in the ARM instruction set due to a

rich set of addressing modes. In other architectures, such as MIPS [73], the

implementation of the register validation is quite straightforward.

Effects of indexing. The ARM instruction set architecture uses three basic

indexing modes: Pre-, Post- and Auto- Indexing. Both data address calculation and the

register validation depend on the indexing type.

In the Pre-Indexing mode, the data address is calculated from the base register

and the result of an operation on an offset register, e.g., for instruction {LD, R5, [R4,

R3]}, which uses Pre-Indexing mode, the DA is calculated as {DA = R4 + R3}. Thus,

117

the DA can be calculated only if both the base and offset registers are valid. The base

register R4 is marked as valid if the register R3 is valid, and vice versa, the offset register

R3 is marked valid if the register R4 is valid.

In the Auto-Indexing mode, the data address is also created from the base register

and the result of an operation on the offset register. Upon completion of the instruction,

the base register is updated, e.g., in instruction {LD, R5, [R4, R3, lsl #2]!}, which uses an

Auto-Indexing mode, the data address DA is {DA = R4 + (R3<<2)} and R4 takes the

value of DA, {R4 = DA}. Thus, the DA can be calculated only if both the offset and the

base registers are valid. The base register is always marked as valid.

In the Post-Indexing mode, the data address is calculated from the base register

only. The base register is updated with information from both the base and the offset

registers, e.g., in instruction {LD, R5, [R4], R3, lsl #2}, which uses the Post-Indexing

mode, the data address is {DA = R4 + (R3<<2)} and R4 is updated as follows: {R4 <=

R4 +(R3<<2)}. Thus, the DA can be calculated only if the base register is known (R4).

The base register can be validated only if both the base and offset registers are valid.

The ARM instruction set also includes multiple load and store instructions. These

instructions specify a set of general-purpose registers that are loaded or stored from

multiple consecutive memory locations defined by the starting address. These

instructions use the immediate offset addressing mode. Once the starting data address is

known, the remaining data addresses are calculated relative to this address (fixed stride).

5.1.3 Experimental Evaluation

The goal of our experimental evaluation is to determine the percentage of memory

referencing instructions whose data addresses can be filtered out using the proposed

118

mechanism. Our first step is to analyze the distribution of memory-referencing

instruction types. We consider the following types of memory-referencing instructions:

 NotValid – the instruction condition is not satisfied and instruction is not

executed (Note: ARM ISA supports conditional execution of all instructions).

 PreImm, PostImm, AutoImm – Pre-, Post-, Auto-indexing with immediate offset.

 PreReg, PostReg, AutoReg – Pre-, Post-, Auto-indexing with register offset.

 LDM – multiple loads.

 PC relative – PC as the base register with immediate offset; the resulting data

address is always known.

Table 5.2 Distribution of load instruction types

Test NotValid PreImm PostImm AutoImm PreReg PostReg AutoReg LDM PC relative

adpcm_c 0.0% 71.4% 0.0% 0.0% 28.5% 0.0% 0.0% 0.0% 42.9%

bf_e 0.0% 29.7% 8.0% 0.0% 29.4% 0.0% 0.0% 32.8% 5.8%

cjpeg 0.2% 67.1% 1.1% 0.0% 30.8% 0.0% 0.0% 0.9% 3.2%

djpeg 0.4% 52.2% 7.6% 0.0% 38.7% 0.0% 0.0% 1.1% 1.2%

fft 1.1% 75.1% 5.2% 0.1% 5.7% 0.0% 0.0% 12.8% 9.8%

ghostscript 2.1% 80.1% 4.9% 0.1% 5.6% 0.0% 0.0% 7.2% 8.2%

gsm_d 0.0% 97.3% 0.0% 0.0% 0.6% 0.0% 0.0% 2.1% 18.2%

lame 0.0% 71.4% 4.1% 0.0% 8.3% 0.0% 0.0% 16.2% 4.7%

mad 0.0% 87.8% 1.7% 0.0% 8.2% 0.0% 0.0% 2.3% 2.3%

rijndael_e 0.2% 52.5% 2.6% 0.2% 41.6% 0.0% 0.0% 2.9% 23.2%

rsynth 0.1% 94.1% 1.5% 0.0% 1.1% 0.0% 0.0% 3.2% 29.0%

sha 0.0% 20.1% 0.0% 0.0% 78.7% 0.0% 0.0% 1.1% 0.9%

stringsearch 4.1% 51.3% 14.7% 15.3% 5.5% 0.0% 0.0% 9.2% 5.4%

tiff2bw 0.0% 25.4% 74.3% 0.0% 0.1% 0.0% 0.0% 0.2% 0.0%

tiff2rgba 0.0% 85.8% 0.0% 0.0% 0.1% 0.0% 13.9% 0.2% 0.0%

tiffdither 0.0% 78.6% 11.1% 0.0% 9.3% 0.0% 0.0% 1.0% 13.0%

tiffmedian 0.0% 51.3% 34.2% 0.0% 14.4% 0.0% 0.0% 0.1% 0.5%

Average 0.3% 73.5% 7.3% 0.0% 11.4% 0.0% 0.4% 7.1% 13.2%

119

Table 5.2 shows the distribution of load instruction types. The information about

load instruction types helps us identify the most common types that have the potential to

benefit from the proposed filtering the most. The results indicate that the Pre-Indexing

loads with an immediate offset dominate – overall 73.5% of the total number of loads.

For several programs, the Post-Indexed with an immediate offset addressing is significant

(e.g., tiff2bw, tiffmedian), and it is responsible for 7.3% loads on average. The Pre-

Indexing mode is significant in the register offset loads (11.4% of the total number of

loads). Finally, for some benchmarks (e.g., adpcm_c), a significant number of data

addresses, 13.2% on average, use the PC as its base register, so they can always be

validated.

Table 5.3 Data address filtering rates for load instructions

Test PreImm PostImm AutoImm PreReg PostReg AutoReg LDM Total

adpcm_c 40.0% 66.1% 86.1% 0.0% nan nan 0.0% 71.4%

bf_e 58.0% 26.4% 86.2% 8.6% nan nan 1.3% 28.1%

cjpeg 75.5% 82.8% 92.0% 25.0% nan nan 0.2% 62.4%

djpeg 95.3% 91.1% 90.6% 17.5% nan nan 0.4% 64.7%

fft 60.1% 78.5% 44.5% 6.1% nan nan 31.4% 63.4%

ghostscript 63.8% 61.6% 81.3% 0.4% nan nan 1.0% 62.5%

gsm_d 65.9% 69.0% 97.2% 0.6% nan nan 0.0% 82.3%

lame 75.9% 88.2% 96.3% 55.0% nan 100.0% 12.6% 69.1%

mad 89.9% 2.3% 98.4% 24.4% nan nan 0.3% 83.2%

rijndael_e 51.9% 93.7% 100.0% 0.0% nan nan 0.0% 53.0%

rsynth 34.8% 92.7% 99.7% 42.9% nan nan 33.0% 64.7%

sha 92.1% 64.7% 85.4% 98.0% nan nan 19.7% 96.8%

stringsearch 56.5% 71.7% 87.6% 12.2% nan nan 1.0% 59.1%

tiff2bw 99.2% 99.9% 1.9% 4.5% nan 0.0% 0.0% 99.5%

tiff2rgba 99.8% 30.4% 1.1% 2.9% nan nan 0.0% 99.5%

tiffdither 62.3% 99.9% 97.2% 0.0% nan nan 0.0% 73.1%

tiffmedian 98.7% 99.9% 97.1% 15.9% nan nan 0.0% 87.6%

Average 65.2% 77.4% 87.7% 21.4% – – 9.6% 69.8%

120

Table 5.3 shows the percentage of loads that can be filtered out, that is, the

percentage of load instructions that do not require being traced out. The overall filtering

rate is approximately 70%, which is an excellent result. However, it varies widely

depending on the benchmark, e.g., from 28.1% for bf_e to 99.5% for tiff2bw and

tiff2rgba. It also depends significantly depending on the load type. For example, the

Pre- and Post- immediate offset indexing modes have a hit rate of 65.2% and 77.4%

respectively, while the Pre- register indexing success rate is only 21.4% on average.

Table 5.4 shows the distribution of store instruction types. From left to right, the

following columns are shown:

 NotValid – instruction condition is not satisfied and the instruction is not

executed.

 PreImm, PostImm, AutoImm – Pre-, Post-, Auto-indexing with an immediate

offset.

 PreReg, PostReg, AutoReg – Pre-, Post-, Auto-indexing with register offset.

 STM – multiple stores.

The results indicate that the Pre-Indexed with an immediate offset store type

dominates – the overall 68.5% of the total number of stores belong to this type. Several

benchmarks have a significant number of the Post-Indexed with the immediate offset

store types (e.g., tiff2bw and adpcm_c), and it is responsible for 9.2% stores on average.

Multiple stores are significant for bf_e and fft benchmarks. Surprisingly, several

benchmarks have a significant number of stores that are not executed – 60% for

tiffmedian and 50% for adpcm_c.

121

Table 5.4 Distribution of types of store instructions

Test NotValid PreImm PostImm AutoImm PreReg PostReg AutoReg STM

adpcm_c 49.9% 0.2% 49.8% 0.0% 0.0% 0.0% 0.0% 0.1%

bf_e 0.0% 25.9% 14.4% 0.0% 11.1% 0.0% 0.0% 48.6%

cjpeg 1.0% 58.1% 6.7% 0.0% 32.0% 0.0% 0.0% 2.3%

djpeg 0.1% 75.1% 18.1% 0.0% 2.4% 0.0% 0.0% 4.3%

fft 2.2% 50.9% 8.9% 6.9% 8.5% 0.0% 0.0% 22.5%

ghostscript 4.2% 73.7% 6.4% 4.1% 0.0% 0.0% 0.0% 11.6%

gsm_d 0.0% 94.8% 0.9% 0.0% 1.1% 0.0% 0.0% 3.3%

lame 0.2% 88.1% 2.4% 0.9% 2.9% 0.0% 0.0% 5.6%

mad 0.0% 72.7% 6.2% 0.0% 16.0% 0.0% 0.0% 5.1%

rijndael_e 0.0% 63.5% 12.4% 0.0% 12.4% 0.0% 0.0% 11.6%

rsynth 0.3% 84.1% 1.6% 5.0% 1.3% 0.0% 0.0% 7.7%

sha 0.0% 64.4% 0.0% 0.0% 34.3% 0.0% 0.0% 1.3%

stringsearch 0.8% 28.2% 6.8% 0.0% 56.7% 0.0% 0.0% 7.4%

tiff2bw 0.0% 49.9% 49.7% 0.0% 0.1% 0.0% 0.0% 0.4%

tiff2rgba 0.0% 76.3% 23.4% 0.0% 0.0% 0.0% 0.0% 0.3%

tiffdither 0.0% 63.2% 33.6% 0.0% 0.0% 0.0% 0.0% 3.1%

tiffmedian 60.0% 17.9% 10.0% 0.0% 11.9% 0.0% 0.0% 0.1%

Average 7.2% 68.5% 9.2% 1.6% 4.7% 0.0% 0.0% 8.8%

Table 5.5 Filtering results for store instructions

Test PreImm PostImm AutoImm PreReg STM Total

adpcm_c 99.8% 99.8% 70.0% 50.0% 0.4% 49.9%

bf_e 93.4% 22.7% 80.0% 48.2% 34.7% 49.7%

cjpeg 93.8% 95.0% 90.9% 16.5% 17.5% 66.5%

djpeg 95.7% 99.6% 75.0% 16.8% 90.8% 94.3%

fft 75.1% 64.7% 81.7% 22.5% 65.7% 66.4%

ghostscript 96.4% 52.5% 99.5% 44.1% 40.2% 83.2%

gsm_d 88.0% 0.0% 80.0% 0.5% 31.7% 84.5%

lame 90.3% 99.7% 66.4% 75.1% 89.0% 89.6%

mad 97.1% 47.1% 53.5% 25.7% 27.9% 79.0%

rijndael_e 96.3% 93.7% 80.0% 0.0% 40.1% 77.5%

rsynth 80.3% 99.2% 45.9% 100.0% 77.6% 78.7%

sha 98.0% 68.9% 86.7% 98.8% 33.5% 97.4%

stringsearch 96.0% 67.7% 80.0% 98.1% 45.3% 90.7%

tiff2bw 99.9% 99.9% 83.0% 67.7% 58.1% 99.7%

tiff2rgba 99.9% 99.9% 85.7% 51.3% 56.6% 99.8%

tiffdither 96.6% 95.9% 33.3% 48.9% 10.2% 93.6%

tiffmedian 99.9% 99.8% 36.4% 15.9% 58.7% 29.9%

Average 91.3% 72.6% 67.6% 47.8% 55.3% 76.9%

122

Table 5.5 shows the filtering rates for different benchmarks and store types. The

overall filtering rate is approximately 77% ranging from 29.9% for tiffmedian to 99.8%

for tiff2rgba. Again, the filtering rate varies widely depending on the benchmark and

store type. For example, the Pre- and Post-indexing with an immediate offset addressing

achieve filtering rates of 91.3% and 72.6% respectively, while the Pre-indexing with the

register offset achieves only 47.8% on average. The main contributor to the low filtering

rates for some benchmarks is the relatively small number of the filtered data addresses for

multiple store instruction and the Pre-indexing with the register offset addressing.

Table 5.6 shows the total filtering rate for all memory referencing instructions and

the number of data address bits per each instruction. The filtering rates range from

35.8% to 99.6%, and it is 72% on average. Some benchmarks (e.g., bf_e and tiffmedian)

do not benefit much from the proposed filtering and still require a significant bandwidth

on the trace port (6.57 bits/ins for bf_e and 5.19 bits/ins for tiffmedian). On other hand,

several benchmarks benefit greatly from the proposed filtering (e.g., tiff2bw and tiffrgba)

and require a very small trace port bandwidth of 0.058 bits/ins. The proposed filtering

mechanism requires close integration with the processor core to be able to carry out

register validation in hardware. However, it does not require any additional compression

structures and its implementation cost is negligible. In addition, the proposed filtering

scheme could be combined with the additional compression structures – e.g., the data

addresses that need to be traced can be encoded using a variant of differential encoding

similar to the Nexus standard.

123

Table 5.6 Filtering results and trace port bandwidth for all memory referencing
instructions

Test Total bits/ins

adpcm_c 68.7% 1.457

bf_e 35.8% 6.565

cjpeg 63.4% 4.061

djpeg 72.7% 3.986

fft 64.4% 3.092

ghostscript 70.1% 3.591

gsm_d 83.2% 1.397

lame 76.4% 3.511

mad 82.3% 1.981

rijndael_e 57.2% 6.479

rsynth 68.3% 5.491

sha 97.0% 0.233

stringsearch 75.0% 2.204

tiff2bw 99.6% 0.058

tiff2rgba 99.6% 0.075

tiffdither 78.4% 1.913

tiffmedian 66.7% 5.189

Average 72.0% 3.566

5.2 Adaptive Data Address Cache

The existing hardware compressors for data address traces rely on either predictor

structures [57] or cache-like structures that can detect regular strides [56]. A system

designer typically faces a challenging task in making design trade-offs between the size

of the compressor structures and the compression ratio. Larger structures help achieve

higher compression ratios, but may be costly or not practical to implement. The existing

techniques demonstrate good compression ratios for benchmarks with memory-

referencing instruction that exhibit regular data address patterns (fixed data addresses or

data addresses with fixed address strides). However, the compression of data addresses

for memory-referencing instructions with irregular patterns remains a challenging task.

124

In designing data address trace compressors, we should exploit common

characteristics of memory access patterns. For example, the simplest approach is to

apply a differential encoding of the stream of data addresses. Instead of tracing out a

complete data address, we could trace only the difference between subsequent data

addresses. It can help reduce the number of traced bits at a minimal implementation cost.

To better exploit program characteristics, we can use caches or predictors that try to

capture data address patterns and/or temporal and spatial locality of data for each

memory referencing instruction. For example, a data address stride cache can be trained

to detect a fixed data address stride. However, it is very challenging to design a

compressor structure that will exhibit a stable performance for all benchmark programs or

throughout the entire execution of a particular benchmark. Compressor structures often

perform well when a desirable type of memory access patterns prevails; however, they

perform poorly on other types of memory access patterns.

A nearly constant compression ratio is an important feature of trace compressors.

Designers use this information to determine minimum buffering and trace port bandwidth

requirements so that no trace records are lost and tracing is done unobtrusively in real-

time. Figure 5.2a illustrates trace port bandwidth requirements for two hypothetical

compressors A and B. Compressor A requires higher trace port bandwidth on average

but demonstrates a nearly constant compression ratio. On the other side, compressor B

requires lower trace port bandwidth than compressor A, but its bandwidth varies widely

over time. Compressor B thus will require much larger trace buffers to smooth out these

peaks in the bandwidth; without these buffers some trace records are likely to be lost.

Figure 5.2b illustrates the behavior of compressors A and B: while compressor A reduces

125

the number of address bits for all instructions, compressor B performs very well for some

data addresses while for the others require complete data addresses.

a) b)

Figure 5.2 Trace bandwidth requirements (a) and compressor effectiveness (b)

In this section we introduce a data address trace compression technique that tries

to exploit redundancy in programs caused by temporal and spatial locality. The proposed

technique shares the common tracing mechanism with previously described compressors.

The trace module and software debugger maintain identical compressor structures (the

trace module in the hardware and the software debugger in the software) that are updated

during program execution and program replay, respectively, using the same set of update

policies. We propose a cache-like compressor that keeps the most recently used data

addresses. The data address cache (DAC) is indexed based on the program counter. If

we find an incoming data address in the DAC, we need to trace out only several bits to

126

indicate a DAC hit event. In the case of a DAC miss, the whole data address needs to be

traced out. However, data addresses rarely stay constant, so the DAC would have a

relatively low hit rate. To alleviate this problem, we modify the DAC to allow lookups

that consider only upper address bits of the data addresses that rarely change.

Section 5.2.1 discusses redundancy in high-order address bits. Section 5.2.2 introduces

the adaptive data address cache, while Section 5.2.3 gives the results of experimental

evaluation.

5.2.1 Variability of High-Order Data Address Bits

In this section we explore the variability of high-order data address bits. We can

identify two types of variability of high-order address bits: a global and a local. The

global variability considers the sequence of data addresses as they appear during program

execution. The local variability considers variability of data addresses for individual

memory-referencing instructions.

Let us first discuss the global locality of high-order data address bits. We

consider a history buffer that keeps n most recent unique data addresses encountered

during program execution. We perform a lookup in this buffer with an incoming data

address to find if there is a data address match. The lookup is performed on high-order

address bits only. For example, we consider upper address bits DA[32:SHIFT], assuming

32-bit data addresses. Table 5.7 shows the hit rate in the history table for each

benchmark as a function of the history table size (16, 32, and 64 entries) and the

parameter SHIFT (0, 4, and 8).

127

Table 5.7 Hit rate in a data address history table

 SHIFT = 0 SHIFT = 4 SHIFT = 8

Test \ Size 16 32 64 16 32 64 16 32 64
adpcm_c 0.765 0.839 0.887 0.967 0.976 0.978 0.999 1.000 1.000
bf_e 0.751 0.753 0.761 0.816 0.826 0.850 0.976 1.000 1.000
cjpeg 0.563 0.668 0.694 0.871 0.900 0.954 0.990 0.998 0.999
djpeg 0.552 0.697 0.718 0.820 0.901 0.928 0.983 0.991 0.996
fft 0.575 0.750 0.801 0.852 0.887 0.943 0.965 0.993 1.000
ghostscript 0.444 0.592 0.841 0.727 0.899 0.988 0.945 0.997 0.999
gsm_d 0.920 0.956 0.966 0.986 0.989 0.995 0.999 0.999 1.000
lame 0.279 0.393 0.549 0.710 0.774 0.862 0.974 0.987 0.997
mad 0.332 0.434 0.570 0.796 0.876 0.883 0.991 0.998 0.999
rijndael_e 0.285 0.439 0.526 0.608 0.652 0.680 0.886 0.944 1.000
rsynth 0.417 0.535 0.571 0.813 0.849 0.984 0.996 0.998 1.000
sha 0.448 0.684 0.689 0.910 0.949 0.994 1.000 1.000 1.000
stringsearch 0.343 0.406 0.513 0.730 0.825 0.860 0.955 1.000 1.000
tiff2bw 0.498 0.499 0.499 0.872 0.872 0.872 0.991 0.991 0.993
tiff2rgba 0.215 0.216 0.216 0.802 0.802 0.802 0.987 0.987 0.987
tiffdither 0.800 0.871 0.886 0.925 0.967 0.973 0.998 0.998 0.999
tiffmedian 0.682 0.691 0.699 0.886 0.897 0.907 0.971 0.982 0.988

Average 0.523 0.578 0.64 0.817 0.863 0.916 0.977 0.991 0.998

The results indicate that the hit rate increases with an increase of the SHIFT

parameter, as expected. For a very small history table with 16 entries, the average hit rate

increases from 52.3% with SHIFT=0 to 97.7% with SHIFT=8. Some benchmark

programs see a significant increase in the hit rate with an increase of the SHIFT

parameter (e.g., rijndeal_e), while others see more modest improvements (e.g., gsm_d).

The results thus clearly indicate that there exists a lot of redundant information in a

sequence of data addresses, and that the redundancy is higher if we focus on upper

address bits only (larger SHIFT parameter).

The local variability of the upper-address bits is evaluated using a tagless cache

structure that is addressed using the program counter (PC). We call this structure a data

address cache or DAC. The DAC’s index function should minimize the probability of

128

having multiple memory-referencing instructions mapping into a single DAC entry.

While PC-based tags in the DAC could reduce the problem of aliasing, they would

significantly increase the implementation cost, and are thus not considered in our

proposal. The DAC is a multi-way cache structure, and in our work we use 4-way set-

associative DAC because it showed a good performance. A DAC lookup is performed as

follows. The DAC controller receives the program counter and data address for the

currently executing memory referencing instruction. A DAC set is calculated based on

the program counter. We compare the incoming data address (DA) with the entries in the

selected DAC set. If there is a match of the upper address bits, we say we have a DAC

hit event. Otherwise, we have a DAC miss event.

Table 5.8 Hit rate in a data address cache

 SHIFT=0 SHIFT=4 SHIFT=8

Test\Size 32 64 128 32 64 128 32 64 128
adpcm_c 0.507 0.507 0.521 0.944 0.944 0.949 0.997 0.997 0.998

bf_e 0.593 0.575 0.634 0.728 0.715 0.783 0.820 0.824 0.872

cjpeg 0.437 0.473 0.512 0.742 0.775 0.810 0.936 0.956 0.974

djpeg 0.342 0.368 0.386 0.700 0.726 0.739 0.920 0.915 0.918

fft 0.302 0.430 0.531 0.523 0.598 0.675 0.857 0.849 0.891

ghostscript 0.120 0.193 0.506 0.267 0.334 0.645 0.759 0.835 0.944

gsm_d 0.728 0.784 0.790 0.961 0.966 0.967 0.995 0.995 0.994

lame 0.147 0.320 0.539 0.273 0.412 0.615 0.848 0.861 0.880

mad 0.200 0.269 0.311 0.402 0.415 0.436 0.867 0.850 0.816

rijndael_e 0.050 0.047 0.046 0.265 0.236 0.218 0.509 0.470 0.421

rsynth 0.260 0.274 0.448 0.373 0.354 0.521 0.784 0.776 0.858

sha 0.088 0.101 0.124 0.716 0.711 0.750 0.978 0.987 0.995

stringsearch 0.058 0.112 0.224 0.465 0.525 0.631 0.774 0.786 0.841

tiff2bw 0.001 0.000 0.001 0.580 0.559 0.559 0.968 0.947 0.948

tiff2rgba 0.001 0.000 0.002 0.143 0.066 0.020 0.936 0.888 0.882

tiffdither 0.397 0.447 0.436 0.822 0.859 0.884 0.920 0.956 0.981

tiffmedian 0.392 0.389 0.390 0.682 0.677 0.678 0.914 0.907 0.907

Average 0.301 0.363 0.471 0.515 0.548 0.650 0.853 0.859 0.887

129

Table 5.8 shows the DAC hit rate for different sizes of the DAC (32, 64, and

128 entries) and different values of the SHIFT parameter (0, 4, and 8). Similarly to the

global locality analysis, we can observe that the DAC hit rate increases with an increase

of the SHIFT parameter. Several benchmark programs significantly benefit from

increases of the SHIFT parameter (e.g., tiff2bw hit rate increases from almost 0% with

SHIFT=0 to ~52% with SHIFT=4, and to 96.8% for SHIFT=8, assuming a DAC with 32

entries). Several other benchmark programs have little or no benefit when the SHIFT

parameter increases from 0 to 4 (e.g., tiff2rgba hit rate increases from almost 0% when

SHIFT=0 to 14% when SHIFT=4, and then to 93.6% when SHIFT=8).

The results for the global and local variability of the upper address bits indicate

that different benchmark programs benefit from different values of the SHIFT parameter.

An additional analysis indicates that an optimal value of the SHIFT parameter varies

during the execution of a single benchmark, as the program moves through different

execution stages. This conclusion motivates us to consider a DAC compressor structure

that allows for adaptive value of the SHIFT parameter. We extend the DAC structure to

include the field for the SHIFT parameter and an adaptive mechanism for its training.

The compression ratio can be expressed as a function of the DAC hit rate and a value of

the SHIFT parameter. The higher the DAC hit rate, the smaller number of DAC misses

that require tracing out of an entire data address. Higher DAC hit rates are usually

achieved for higher values of the SHIFT parameter. However, the larger value of the

SHIFT parameter means the larger portion of the uncompressed data address, which in

turn lowers the compression ratio. Thus, a detailed exploration of the design trade-offs is

required to find good values for the DAC size, organization, and SHIFT parameter.

130

5.2.2 Adaptive Data Address Cache

The data address cache (DAC) keeps the most recent data addresses encountered

during program execution. It is a set-associative structure, indexed by a hash function

based on the program counter of the corresponding memory-referencing instructions.

The DAC is a tagless structure to reduce the implementation complexity.

Figure 5.3 Adaptive Data Address Cache organization

Figure 5.3 illustrates a block diagram of the adaptive data address cache (ADAC).

Each entry in the DAC keeps a full data address (DA). Additional fields such as SHIFT

and TCNT are used to control DAC lookups. The SHIFT field keeps the current value of

the SHIFT parameter which determines the number of lower data address bits that will be

traced out with no compression. The TCNT field is a training counter that determines

whether the current SHIFT value should be increased in order to increase the DAC hit

131

rate, or decreased in order to reduce the number of bits that is traced out uncompressed.

The TCNT is incremented by a miss and decremented by a hit in the DAC. When it

saturates, the external logic decides whether to increase or decrease the SHIFT parameter.

The DAC with these extensions is called the Adaptive Data Address Cache (ADAC).

Figure 5.4 describes the adaptive data address cache operation. The ADAC

controller receives a (PC, DA) pair and calculates a set index iSet based on the program

counter. It then performs a lookup into the selected ADAC. The selected bits of the

incoming data address DA[31:SHIFT] are compared with the corresponding data

addresses in the selected entry of the ADAC. The ADAC lookup differs from a regular

comparison of DA[31:SHIFT] address bits. In addition to this comparison, it also

involves the comparison of upper address bits with different lengths (DA[31:SHIFT+1],

DA[31:SHIFT+2], ... DA[31:SHIFT+window-1]). The comparator gives the results of

the comparison for window data addresses (SHIFT corresponds to j=0, SHIFT+1 to j=1,

and so on). The variable window is a pre-determined fixed parameter. The outputs from

the comparator are used to control the update mechanism for the SHIFT parameter.

The outcome of the multi-try comparison is used to update the TCNT (training

counter) as follows. When an ADAC hit occurs with a window value of zero, the TCNT

is decremented by TCNT_DEC. When an ADAC hit occurs also on a data address field

with (SHIFT+j, where j>0), it indicates that the current SHIFT field could possibly be

increased. Of course, making a premature decision about the SHIFT length may be

detrimental for the compression ratio. Consequently, a training TCNT is used. When

such a hit occurs, the TCNT is incremented by TCNT_INC (it is a miss regarding the

current SHIFT). When the TCNT saturates, the value of the SHIFT is incremented

132

(decrease the portion of the data address that will be compressed). When we have an

ADAC miss (no j value gives a hit), the TCNT and SHIFT fields take the maximum

possible values, TMAX and SHIFT_MAX.

79. Get the next (PC, DA)pair;
80. iSet = f(PC)
81. Lookup in the data addres cache with iSet (*)
82. if(DAC hit){
83. if (WHit == 0){
84. Decrement TCNT by TCNT_DEC
85. if (TCNT == 0){
86. DAC[iset][iway].SHIFT--; #Decrement SHIFT value
87. DAC[iset][way].TCNT = TMAX;}
88. } else {
89. Increment TCNT by TCNT_INC
90. if (TCNT == TMAX){
91. DAC[iset][iway].SHIFT++; #Increment SHIFT value
92. DAC[iset][way].TCNT = 0;}
93. }
94. if(DAC[iset].MRU_WAY == way)
95. MRU Way Hit = 1;
96. DAC[iset].MRU_WAY = way;
97. } else{
98. DAC[iset][way].SHIFT = SHIFT_MAX;
99. DAC[iset][way].TCNT = TMAX; }
100. //Encode outputs
101. // (*) DAC Lookup
102. 1. for (i=0; i<Nways; i++)
103. 2. for (j=0; j<window; j++)
104. 3. if (DA >>(SHIFT + j) == DAC[iset][iway].DA >> (SHIFT + j)){
105. 4. DAC hit = 1;
106. 5. WHit = j;
107. 6. way = i;
108. 7. exit;}

Figure 5.4 Adaptive Data Address Cache operation

Finally, let us discuss encoding of the compressed trace records. Table 5.9

describes relevant events on ADAC and encoding of these events. The ADAC is a

tagless cache, so to be able to recreate the trace record at the software debugger side, we

need to trace out the way identifier in the case of an ADAC hit. Like in regular caches,

we observe that data addresses that are most recently accessed tend to be more likely

133

accessed again. We can exploit this property by relying on the ADAC set replacement

bits to identify the most recently used entry in an ADAC set. Thus, a hit in the most

recently used entry of an ADAC set can be encoded using just a single header bit (‘1’). A

hit in a non-MRU entry is encoded with a header bit ‘0’ followed by a way.id field. In

the case of an ADAC hit in a non-MRU entry with j>0, the trace record header includes a

‘0’, followed by the most recently used way (to indicate that j>0), followed by the actual

way identifier on which the hit is observed and the value of j (this information is used by

the software debugger to train its own copy of the SHIFT parameter). Finally, a miss is

encoded by the reserved unique header followed by a full data address (32 bits in our

case).

Table 5.9 Data address trace record encoding for ADAC compressor

Hit/Miss MRU
Way

MIN {j} Trace Record Trace Length (bits)

 Header Data Address Output Header

Hit Yes Zero “1” DA[SHIFT‐1:0] 1 + shift

Hit No Zero “0” + “way.id” DA[SHIFT‐1:0] 1 + log2(Nway) + shift

Hit ‐‐ > 0 “0” + “MRU.way.id”
+ “way.id” + “j”

DA[SHIFT‐1:0] 1 + 2*log2(Nway) + log2(window) + shift

Miss ‐‐ ‐‐ “0” + “MRU.way.id”
+ “way.id=0” + “j=0”

DA[31:0] 1 + 2*log2(Nway) + log2(window) + 32

5.2.3 Design Space Exploration and Trace Port Bandwidth Analysis

The design of the adaptive data address cache requires a thorough design space

exploration to determine good values for the following parameters: the SHIFT field

maximum and minimum limits (SHIFT_MAX and SHIFT_MIN), the training counter

134

TCNT maximum limit (TMAX), the TCNT increment and decrement steps (TCNT_INC

and TCNT_DEC), and the value of the window parameter. Each of these parameters

influences the compression ratio and design complexity to a certain degree and discerning

an impact of each of them independently from the other parameters is a challenging task.

We have explored the design space by considering trace port bandwidth (compression

ratio) as well as the stability of the trace port bandwidth. We strive to find a

configuration that will provide the minimum trace port bandwidth and yet exhibit very

low variability at the trace port.

The total number of possible configurations is very large and here we present the

results for the overall best performing configuration: window=4, SHIFT_MAX=12,

SHIFT_MIN=0, TMAX=8, TCNT_DEC=1. For TCNT_INC, an ADAC miss actually

sets TCNT to TMAX (which in return increments the SHIFT value). This TCNT_INC

value favors a higher ADAC hit rate over having smaller values for the SHIFT parameter.

This approach balances the trade-offs between the hit rate (the higher the hit rate, the less

the number of costly misses) and the number of uncompressed bits (SHIFT value may be

slightly higher than absolutely necessary). Figure 5.5 shows the average ADAC hit rates

for different compressor schemes and configurations as a function of the data address

cache size. We consider several compressors: four compressors based on the DAC with

the fixed SHIFT parameters (SHIFT=0, SHIFT=4, SHIFT=8, SHIFT=12), and

two compressors with adaptive data address cache for different values of the parameter

window (window=1 and window=4). The number of entries in the DAC/ADAC is varied

between 32 and 512 entries. The number of ways is fixed to four. The results for ADAC

with window=1 are crucial to determine the effectiveness of the training mechanism for

135

the SHIFT parameter. With the window=1, the hit rate is not inflated by possible matches

on DA[31:SHIFT+j], where j>0. Figure 5.5 also shows the average value of the SHIFT

parameter during the program execution. For example, the ADAC with 32 entries has the

average SHIFT of 8.7, which is just slightly above the SHIFT value of 8. This

configuration achieves the hit rate of 92.8% on average (ranging from 80% for

ghostscript to 99% for adpcm_c). It should be noted that the DAC with the fixed

SHIFT=8 achieves a lower hit rate of 85.3% on average (ranging from 50% for

rijndael_e to 99% for adpcm_c). Hence, we may conclude that the proposed adaptive

mechanism is indeed beneficial for the overall performance of the ADAC compressor.

The effects of the proposed mechanism are even more visible by allowing multi-

try comparison. For example, the ADAC with window=4 achieves higher hit rates. The

ADAC with 128 entries achieves the hit rate of 98.2% on average with the average

SHIFT value of just 6.5. This result clearly illustrates the benefit of adaptive mechanisms

– more high-order data address bits can be compressed on average, without reducing the

ADAC hit rate. In addition, this approach is applicable to almost all data addresses

because we achieve consistently high hit rates in the ADAC. Consequently, the ADAC

compressor achieves stable trace port bandwidth requirements with relatively small

variations.

Figure 5.6 gives the compression ratio and the trace port bandwidth for the ADAC

compressor. While the average trace port bandwidth steadily declines when increasing

the data address cache size, its maximum value, of approximately 7.5 bits/ins., does not

change much. This is caused by tiff2rgba test, which has over 60% of memory

136

referencing instructions and the compression rate does not improve much when

increasing the ADAC size.

0.0

0.2

0.4

0.6

0.8

1.0

32 64 128 256 512

H
it
 R
at
e

SHIFT=0

SHIFT=4

SHIFT=8

SHIFT=12

ADAC[window=1]

ADAC[window=4]

Avg.SHIFT 0 4 8 12 8.7 7.6 0 4 8 12 8.2 7.0 0 4 8 12 7.3 6.5 0 4 8 12 6.0 5.6 0 4 8 12 4.7 4.6

Figure 5.5 Average hit rates for different DAC-based compressors

0

1

2

3

4

5

6

7

8

32 64 128 256 512 1024

Tr
a
ce
 P
o
rt
 B
an

d
w
it
h
 (
b
it
s/
in
s)

0

2

4

6

8

10

12

14

32 64 128 256 512 1024

C
o
m
p
re
ss
io
n
 R
at
io

Figure 5.6 Average compression ratio and trace port bandwidth for ADAC

137

The ADAC compressor has a good characteristic in that it is highly configurable.

Its configurability allows users to set compressor parameters for each benchmark

individually in order to further minimize trace port bandwidth requirements. However,

we limited our analysis to finding a good configuration that works well for the whole

benchmark suite. A number of enhancements could be considered for the ADAC

targeting further reducing the trace port bandwidth requirements or the compressor

complexity. For example, the highest address bits may be handled separately by a global

value predictor or a per-set value predictor. Another direction is to combine the proposed

compressor with the filtering method proposed in Section 5.1.

5.3 Comparative Analysis

In this section we discuss the trace port bandwidth requirements for two proposed

data address compression techniques: the data address filtering and the adaptive data

address cache. For estimating quality of the proposed compressors, we compare their

performance with the software utility program gzip that is supplied with a stream of raw

data addresses. Please note that the gzip relies on very large memory buffers and highly

sophisticated encoding which is not practical for implementation in hardware.

Table 5.10 shows the compression ratios for several data address trace

compressors. We consider the following configurations of the ADAC compressors:

ADAC 16x4 and ADAC 128x4, configured according to findings in Section 5.2.3. The

bADAC 128x4 shows the results assuming the best possible configuration for each

program.

We can see that the method based on filtering outperforms the ADAC method on

average by a large margin. The filtering method outperforms the software gzip

138

compressor for many programs. However, its performance varies widely for different

benchmarks: the compression ratios range from 1.56 for bf_e to 250 for tiff2bw and

tiff2rgba.

Table 5.10 Data address trace compression

Test Filtering
ADAC
16x4

ADAC
128x4

bADAC
128x4

Nexus gzip ‐1

adpcm_c 3.19 5.60 6.14 7.04 1.64 3.46

bf_e 1.56 4.02 7.03 7.69 2.19 4.84

cjpeg 2.73 4.31 6.25 6.53 1.34 4.48

djpeg 3.66 3.24 4.57 5.18 1.34 3.77

fft 2.81 2.74 4.14 6.53 2.14 19.9

ghostscript 3.34 2.21 5.62 8.96 1.76 18.14

gsm_d 5.95 4.69 12.27 12.78 1.54 23.3

lame 4.24 2.71 4.2 4.62 1.49 5.7

mad 5.65 2.89 3.49 3.59 1.43 3.54

rijndael_e 2.34 1.99 2.59 2.70 1.4 3.2

rsynth 3.15 2.61 5.26 7.50 1.41 21.53

sha 33.33 3.99 4.49 4.75 2.27 8.35

stringsearch 4.00 2.26 4.17 5.08 1.9 8.83

tiff2bw 250.00 3.38 3.44 4.07 1.66 2.55

tiff2rgba 250.00 2.85 2.9 3.11 1.02 2.79

tiffdither 4.63 3.70 5.55 6.75 1.39 4.41

tiffmedian 3.00 4.21 4.44 4.87 1.73 3.49

Average 3.56 3.25 5.593 6.71 1.59 11.16

Interestingly, the filtering method performs worse than the ADAC for

two benchmarks cjpeg and djpeg. The ADAC method achieves a more modest

compression ratio from 1.99 for rijndael_e to 5.6 for adpcm_c, but its variations between

benchmarks are much smaller. With an increased size of the ADAC, the compression

ratio increases, from 3.25 for 16x4 to 5.59 for 128x4. The NEXS (column 6) technique

implements a simple differential encoding of data addresses as described in the Nexus

139

standard [9]. The incoming data address is XORed with the previous data address and

the difference is split into groups of 6 bits which are sent to the trace port in bytes (2 bits

are header). The leading zeros are not sent. The NEXS compression ratio is rather small;

it is 1.6 on average, ranging from 1 to 2.27.

Assuming 1.5 logic gates per memory bit, we estimate the complexity of the

ADAC configuration with 16 sets and 4 ways to be to less than 4000 logic gates, while

the configuration with 128 sets and 4 ways occupies approximately 30,000 logic gates.

140

CHAPTER 6

LOAD VALUES COMPRESSION

When tracing data values we are primarily concerned with load values – data read

from main memory by load instructions. These values coupled with a check-pointing

mechanism are sufficient to the software debugger to replay a program under test offline.

The software debugger includes a functional processor simulator and maintains its

software copies of the processor context (general and special purpose registers). The

check-pointing mechanism ensures that the software debugger synchronizes the content

of general- and special-purpose registers maintained in the software with the content of

the corresponding registers in the processor core. Once the contexts are synchronized,

the software debugger can replay the program execution based on only load values that

are traced from the target processor. Note: in general this applies to all reads either from

main memory or input peripheral devices.

Tracing load values in real-time poses a very challenging task. Programs may

have a high frequency of load instructions (e.g., 40% of all instructions for tiff2rgba

benchmark) and the amount of redundancy in load values is not nearly as close to the

141

redundancy observed in instruction and data address traces. Thus, real-time tracing of

load values would require both large on-chip trace buffers and wide trace ports for

reading them out of the chip. For example, an on-chip buffer of 64 KB would be

sufficient to store data traces of only 20 microseconds of execution assuming a processor

running at 1 GHz with only 10% of the load instructions. To cope with excessive trace

port bandwidth or storage requirements, full data tracing is applied only to short program

segments. The program execution trace with a checkpoint mechanism is used to run a

program close to the place where a software bug occurs, and then the trace module

triggers, capturing the data traces for a short period of time. However, the size of the

traced segment is limited by the size of on-chip trace buffers and may not be enough to

capture the actual bug. In addition, software developers need to spend a lot of time

locating the likely location of the bug, and this process is likely to be obtrusive, and thus

not appropriate for debugging real-time embedded systems.

In this chapter we first explore the entropy of load values in the MiBench

benchmark suite. In Section 6.1 we analyze the entropy of load values using theoretical

approaches and architectural approaches when we consider the compression of a certain

portion of load values. In considering load values, we may extend the processor

resources or the trace module to track only the first occurrence of a data value. In that

case we need to trace only the first load instruction from a given memory location and

thus dramatically reduce the number of loads that need to be traced. In Section 6.2 we

introduce two hardware implementations of a first-load track mechanism and evaluate its

effectiveness. In Section 6.3 we put everything together and discuss the effectiveness of

different approaches.

142

6.1 Data Values Compressibility

In this section we examine the compressibility of load values by finding the

entropy of the load values data set. We also discuss the compression ratios of individual

benchmarks achieved using general-purpose compressors.

6.1.1 Entropy of Load Values

The amount of redundancy in a data set can be expressed through the measure of

entropy or the Shannon entropy [74]. Shannon entropy quantifies the information

contained in a data set and expresses it as a single number. If the data set is considered a

Markov process, meaning that the outcome (or a value) of the next data is completely

random and independent of previously outcomes (values) in the data set, the Shannon

entropy actually expresses the maximum possible compression achievable by a lossless

compression algorithm. Such entropy is also named Markov 0th order entropy [75].

 Since we examine the set of load values as a Markov process, or a set of

independent values, we calculate the Markov 0th order entropy for MiBench programs in

order to find the overall compressibility of load values. The Markov 0th order entropy

accounts for the probability of values within the data set and assigns fewer bits to more

frequent values. The entropy thus expresses the average number of bits that can be used

to represent a value in the data set. The total entropy, HM0, is expressed as

HM0 = –i [log(pi) pi], where pi is the probability of occurrence of an unique data i in the

data set. To calculate entropy, we do not evaluate all program generated load values as

one data set, but rather divide them into smaller sets of several kilobytes each. Each set

is then examined independently from the other sets. The goal of this approach is to better

represent the changes in load values and their occurrence frequencies through different

143

program phases. In addition, the actual evaluation of a data set which can contain

millions of different values would not be practical.

Table 6.1 shows the results for the Markov 0th order entropy. We consider four

block sizes: 1 KB, 8 KB, 64 KB and 128 KB. For each block size, four columns are

shown: column min is the minimum observed entropy across all blocks in a program,

column max is the maximum observed entropy across all blocks in a program, and

column avg is the average entropy across all blocks and the measure of entropy for a

program (represents the measure of entropy). Column #val shows the average number of

unique data values per block during the program execution. The results indicate large

variations of the entropy between programs and within a program as it moves through

different program stages. For example, for 64KB block size, the average entropy varies

between 0.2 and 13 and its overall average is 8.1. The maximum variation for a single

benchmark is observed in tigg2rgba, ranging between 0.2 (min) and 11 (max). In

addition to the entropy variation, we expectedly observe lower entropy values for smaller

block sizes: the average entropy is 6.3 for 1 KB, 7.2 for 8 KB, 8.1 for 64 KB and 8.3 for

128 KB blocks.

The variations observed above indicate that the number of more frequent values

and their occurrence frequencies are changing from block to block, and the compression

process would benefit from an adaptive compression algorithm.

To calculate compression ratios, we assume tracing HM0 bits for a data value

already logged in the table and 32 bits for its first occurrence; we have #val occurrences

per one block. We have already observed lower entropy for smaller blocks; in addition,

smaller blocks mean more frequently tracing entire sets of data values (32-bit for word

144

operands). Table 6.2 shows the compression ratios for different block sizes of 1 KB,

8 KB, 64 KB, and 128 KB. The compression ratio averages (last row in the table) are

calculated using a weighted arithmetic mean, where a program weight is directly

proportional to the number of loads in that program relative to the total number of loads

in all programs. The compression ratios range between 2.07 for lame to 5.65 for

adpcm_c assuming the large 128 KB blocks. It ranges between 1.78 for lame to 4.43 for

cjpeg for blocks of 1 KB. The overall results of this exercise indicate a limited

compressibility of data values, and thus information-theoretic approaches to load value

compression are not likely to be cost-effective.

Table 6.1 Markov 0th order entropy for MiBench tests

 Block = 1KB Block = 8KB Block = 64KB Block = 128KB

Test min avg max #val min avg max #val min avg max #val min avg max #val

adpcm_c 3.0 5.2 7.0 174 5.0 5.5 6.8 303 5.1 5.6 5.7 320 5.1 5.6 5.7 333

bf_e 4.7 6.4 8.9 298 7.1 7.3 9.6 1284 7.5 7.6 10.2 3977 7.6 7.7 9.4 6549

cjpeg 0.2 4.1 9.5 114 0.5 4.6 9.1 322 2.7 5.1 9.1 1155 2.7 5.2 9.0 1896

djpeg 0.1 4.1 8.2 127 2.7 4.8 8.0 493 3.0 5.2 7.5 1991 3.0 5.5 7.6 3559

fft 3.6 6.3 8.3 196 3.9 6.9 10.7 738 4.3 7.4 13.0 4482 4.4 7.6 13.5 8521

ghostscript 0.9 5.5 9.3 105 1.0 5.8 9.3 296 4.6 6.1 10.0 1621 5.6 6.1 10.2 3061

gsm_d 3.6 6.4 7.2 231 3.7 7.4 8.1 976 5.0 8.2 8.7 2805 4.9 8.3 8.8 3670

lame 0.0 7.7 10.0 434 3.4 9.3 11.2 2123 4.7 11.2 12.6 12407 5.7 11.9 13.1 23261

mad 2.9 7.7 9.4 420 4.4 8.8 10.9 1692 7.2 10.2 11.0 9154 7.8 10.5 11.2 15788

rijndael_e 6.5 8.1 8.3 542 9.1 9.1 9.2 1793 9.5 9.5 9.6 4864 9.6 9.6 9.6 7776

rsynth 0.0 6.8 7.6 223 0.1 7.9 8.5 1190 2.9 8.7 9.1 5937 3.3 8.9 9.3 10343

sha 5.6 8.0 8.1 302 9.5 10.2 10.3 1696 11.9 12.2 12.2 9699 12.2 12.5 12.6 14646

stringsearch 6.1 6.5 7.5 165 7.0 7.2 8.6 562 7.6 7.6 7.9 2859 7.6 7.7 7.8 4032

tiff2bw 0.0 4.1 10.0 215 0.0 4.9 10.4 1362 0.2 5.3 7.5 8592 0.4 5.5 7.5 15923

tiff2rgba 0.0 4.9 10.0 292 0.0 5.8 10.3 1626 0.2 6.2 11.1 7874 0.3 6.4 11.3 13556

tiffdither 0.9 4.8 9.8 116 1.5 5.3 8.3 397 2.1 5.9 7.0 2058 2.2 6.0 6.8 3490

tiffmedian 0.0 3.8 10.0 182 1.2 4.3 9.1 1053 1.6 4.8 8.8 6986 1.6 4.9 9.0 13108

Average 1.8 6.3 8.9 270 3.1 7.2 9.5 1197 4.5 8.1 10.0 5887 4.9 8.3 10.1 10483

145

Table 6.2 Compression ratio achieved by measuring Markov 0th order entropy

Test

Compression Ratio

1KB 8KB 64KB 128KB

adpcm_c 3.28 4.91 5.60 5.65

bf_e 2.31 2.87 3.53 3.60

cjpeg 4.43 5.62 5.79 5.72

djpeg 4.22 4.99 5.30 5.17

fft 2.85 3.48 3.52 3.49

ghostscript 3.88 4.74 4.78 4.74

gsm_d 2.63 3.10 3.48 3.58

lame 1.78 2.11 2.11 2.07

mad 1.81 2.35 2.41 2.44

rijndael_e 1.54 2.26 2.86 2.93

rsynth 2.60 2.80 2.96 2.98

sha 2.13 2.18 2.12 2.18

stringsearch 3.01 3.61 3.68 3.79

tiff2bw 3.22 3.41 3.62 3.68

tiff2rgba 2.54 2.92 3.43 3.55

tiffdither 4.06 4.88 4.73 4.79

tiffmedian 3.65 4.06 4.17 4.22

Average 2.47 2.97 3.16 3.17

6.1.2 Variability of High-order Bits

In this section we explore the potential of an approach that compresses only the

upper bits of data values; the lower bits are sent to the trace port uncompressed. The

rationale behind this approach is that short constants may dominate program data sets; the

upper bits are often zeros and thus need not be traced. To evaluate the compressibility of

high-order load value bits, we find the Markov 0th order entropy for load values when

lower bits are masked out. The MASK parameter determines the number of lower bits

that is masked out. We consider data values as a sequence of 32-bit words (byte size and

half-word size operands are expanded to 32-bits).

146

Table 6.3 shows the entropy for different values of the MASK parameter (0, 4, 8,

and 12), the average number of the unique non-masked data values (DV[31:MASK]), and

the compression ratio. We assume a large block size of 128 KB in this experiment. To

calculate compression ratios, we assume tracing HM0 + MASK bits if the non-masked

portion of the data value is already logged in the table and the entire 32-bits if it is not in

the table (first occurrence of a unique value).

Table 6.3 Entropy of high-order load value bits.

Test \ MASK

Entropy #val (Number of unique values) Compression Rate

0 4 8 12 0 4 8 12 0 8 4 12

adpcm_c 5.6 4.4 3.1 2.1 333 93 60 32 5.65 3.82 2.88 2.27

bf_e 7.7 6.6 5.0 4.4 6549 2383 2106 2079 3.60 2.92 2.41 1.92

cjpeg 5.2 3.9 2.6 2.0 1896 1276 1017 762 5.72 3.93 2.97 2.27

djpeg 5.5 4.4 3.1 2.4 3559 2762 2486 2036 5.17 3.60 2.78 2.18

fft 7.6 6.4 5.5 4.9 8521 7630 6652 4964 3.49 2.74 2.21 1.84

ghostscript 6.1 5.0 3.7 3.2 3061 744 295 132 4.74 3.51 2.73 2.10

gsm_d 8.3 6.5 5.2 4.3 3670 1470 952 798 3.58 2.98 2.40 1.95

lame 11.9 11.4 10.8 10.0 23261 21603 19632 13708 2.07 1.77 1.54 1.39

mad 10.5 9.1 7.0 4.8 15788 10996 9060 7519 2.44 2.18 1.98 1.81

rijndael_e 9.6 8.9 7.9 7.5 7776 7499 6922 6566 2.93 2.29 1.91 1.59

rsynth 8.9 8.2 7.0 6.5 10343 9243 8834 8381 2.98 2.36 1.99 1.65

sha 12.5 12.0 11.7 11.1 14646 14346 13792 10057 2.18 1.80 1.52 1.35

stringsearch 7.7 6.4 5.0 4.0 4032 1304 693 428 3.79 3.01 2.44 1.99

tiff2bw 5.5 4.2 2.8 2.5 15923 13148 10926 6785 3.68 3.02 2.54 2.08

tiff2rgba 6.4 5.0 3.7 2.9 13556 9448 6200 3267 3.55 2.99 2.54 2.09

tiffdither 6.0 4.1 2.6 1.7 3490 1593 1318 1012 4.79 3.80 2.96 2.31

tiffmedian 4.9 3.8 2.1 1.5 13108 6042 4646 3430 4.22 3.59 2.93 2.28

Average 8.3 7.2 6.0 5.3 10483 8220 7276 5600 3.17 2.58 2.15 1.79

The results show that by increasing the size of the MASK parameter, the entropy

goes down: it is 8.3 bits for MASK=0, 7.2 bits for MASK=4, 6.0 bits for MASK=8, and

5.3 bits when MASK=12. Also, we can observe that the number of unique non-masked

147

values goes down (#val columns). The lower #val and the lower entropy both lead to a

smaller number of bits needed to represent a value within a block which has a positive

effect on the compression ratio. However, this improvement is not sufficient to

compensate an increase in the number of bits that is sent uncompressed (MASK bits).

For example, an increase of the MASK parameter from 0 to 4 leads to a decrease of the

entropy for approximately 1.2 bits, while the #val parameter goes from 10483 to 8220.

This is not sufficient to compensate for sending MASK=4 lower value bits for each load

instruction. This fact is clearly illustrated by the compression ratios that decrease with an

increase in the number of MASK bits. Consequently, we conclude that this selective

masking of lower load value bits is not a practical solution for trace compression.

6.1.3 Compression of Small Load Values Only

Some data values are proven to occur more frequently than others in regular

programs [59]. These values are -1, 0, 1, 2, 4 and other small numbers. Thus, a

compressor can implement a simple encoding that uses fewer bits to encode smaller

values. Table 6.4 shows the fraction of load values that fit into SIZE bits, for different

values of the parameter SIZE (=4, 5, ..., 12 bits). The results indicate high variations

among programs. For example, cjpeg and djpeg have more than 40% and tiff2bw has

almost 60% of the load values that fit into 4 bits, while sha has only 14% that can fit into

12 bits. The results also indicate that the number of data values that can fit into a

relatively small number of bits quickly saturates. For example, 32.2% of load values can

fit into 8 bits on average; the percentage of load values that can fit into 12 bits is only

negligibly higher and it is 36.7%. This result indicates a limited potential of this

approach in exploiting load value redundancy. Figure 6.1 shows the compression ratio as

148

a function of the parameter SIZE. The best compression ratio is achieved when SIZE=8

(~1.4x) and has maximum for tiff2bw benchmark (~2.5x). Consequently, we conclude

that this approach would not be practical for the compression of load values.

Table 6.4 The fraction of load values that fit in SIZE bits

Test \ SIZE 4 5 6 7 8 9 10 11 12

adpcm_c 0.069 0.100 0.148 0.192 0.324 0.327 0.335 0.356 0.403

bf_e 0.053 0.069 0.130 0.173 0.197 0.197 0.197 0.197 0.197

cjpeg 0.428 0.469 0.659 0.671 0.704 0.713 0.723 0.725 0.728

djpeg 0.406 0.420 0.440 0.488 0.625 0.631 0.669 0.671 0.671

fft 0.285 0.291 0.307 0.315 0.316 0.316 0.317 0.329 0.330

ghostscript 0.291 0.301 0.378 0.400 0.451 0.454 0.460 0.463 0.466

gsm_d 0.214 0.233 0.257 0.285 0.302 0.305 0.314 0.326 0.343

lame 0.082 0.092 0.100 0.105 0.117 0.122 0.130 0.138 0.149

mad 0.179 0.205 0.242 0.256 0.270 0.300 0.323 0.348 0.392

rijndael_e 0.029 0.055 0.073 0.130 0.200 0.200 0.200 0.201 0.202

rsynth 0.107 0.111 0.120 0.159 0.189 0.219 0.226 0.228 0.230

sha 0.000 0.000 0.001 0.137 0.137 0.138 0.138 0.138 0.140

stringsearch 0.107 0.119 0.215 0.387 0.387 0.389 0.392 0.394 0.397

tiff2bw 0.595 0.674 0.755 0.801 0.818 0.818 0.820 0.823 0.827

tiff2rgba 0.374 0.424 0.476 0.506 0.516 0.517 0.518 0.519 0.521

tiffdither 0.307 0.361 0.435 0.493 0.569 0.572 0.579 0.589 0.763

tiffmedian 0.446 0.656 0.700 0.730 0.790 0.792 0.795 0.799 0.861

Average 0.189 0.220 0.256 0.286 0.322 0.330 0.335 0.342 0.367

149

0.5

1

1.5

2

2.5

4 5 6 7 8 9 10 11 12

VALUE

Figure 6.1 Compression ratio when using optimal length for load values encoding

6.2 Compression Using First-Access Cache Track Mechanism

Data caches are routinely used to reduce latency of memory-referencing

instructions. Data caches exploit temporal and spatial locality of data with more recently

used data kept in fast and small cache structures. Here we argue that they can be

augmented to help load value trace compression too. A software debugger with a full

functional simulator can also maintain a software copy of a data cache. Thus, our trace

module does not need to trace all load values. Instead, it can only trace load values that

miss in the processor data cache and are brought from the memory. To replay the

program off-line, the software debugger inspects its software copy of the data cache. If it

finds the requested data in the data cache, it can continue the program reply using the

value stored in the cache. Otherwise, the software debugger expects a trace record from

the target machine. Data caches have high hit rates, and consequently we can expect that

they can help significantly reduce the number of load values that need to be traced.

150

Narayanasamy et al. propose a mechanism [27] that traces only those loads that

access a memory location for the first time. They assume a software debugger that

maintains a software copy of the entire memory. Only first accesses to memory locations

need to be traced on the target machine. For all subsequent accesses, data can be

retrieved from the memory maintained by the software debugger. A data in a memory

location is known (valid) from the time the processor loads or stores the data to that

memory location until it is overwritten by some other device accessing the memory (e.g.,

DMA controller, cache controller that maintain coherence protocols, or from the

secondary storage). A flag is added to each memory location to mark whether it is valid

or not. The proposed mechanism is named first-load trace as only the first loads to the

memory location have to be traced.

We expand the mechanism proposed in [27] and name it first-access track

mechanism. Our first-access track scheme differs from the one in [27] as we track the

validity of L1 cache lines only, not the whole memory. The tracking of the L1 cache

only is more suitable for embedded systems and it also makes the mechanism hardware

implementation feasible. A vendor usually develops a processor’s subsystem which

includes the L1 cache. Also, the corresponding trace module is developed in parallel.

Other parts of the whole system-on-a-chip, such as the L2 cache or the main memory are

developed independently of the processor core. Developing a trace module for a

processor core (including L1 cache) allows developers a modular design and design

reuse. From the software debugger perspective, it is also easier to extend the functional

simulator with the L1 cache functionality only, rather than with the whole memory

simulator.

151

6.2.1 First-Access Track Mechanism Details

The key operation in the first access track scheme is updating (set/reset) first-

access flags attached to each L1 cache line. An L1 cache line can be replaced from the

upper memory hierarchy whenever the cache has a miss or some other device (cache

coherence controller, DMA) replaces a cache line with new data. When this happens, all

first-access flags in the selected cache line have to be reset.

A first-access mechanism system view is shown in Figure 6.2 and the summary of

various events of interest and corresponding action is given in Table 6.5. A program

executes on a target processor core. The processor includes an L1 data cache that

supports a first access track mechanism, and it is connected to a trace module. The L1

data cache is extended with first-access flags, one per minimum instruction set

addressable unit (e.g., byte, word). When a memory referencing instruction has a hit in

the cache, the first-access flag for a selected word is set (if not already set), indicating

that the value in the cache is known. When a memory referencing instruction has a miss

in the cache, a block of data is brought from the upper memory hierarchy and all first-

access flags are reset. Next, the selected word is traced out and its first-access flag is set.

The invalidation of a cache line from an external device also invalidates all first-access

flags in that cache line.

The trace module operation is rather simple. It looks for events in the L1 cache

and decides whether to trace the load value out of the chip or not. The trace module

suppresses the tracing of load value only if the cache reports a hit and the flag-access bit

for the addressed word is originally set. For each load value, the trace module also traces

a header (e.g., hit=1, miss=0) bit. The software debugger knows whether to expect a load

152

value or not based on this header bit. Note: here we assume that a data cache line can be

invalidated using external events (those that are not caused by program execution). If

such events are not possible, we may avoid tracing the header bit.

On the software debugger side, a fully functional simulator is extended to accept

load values either from the L1 cache simulator or the trace port; for each load instruction,

the software debugger reads the header bit from the trace file. If the header bit is set, the

software debugger reads the selected word from its model of the L1 cache. If the header

bit is reset, the debugger reads a load value from the trace port. Also, the data cache is

updated with the incoming load value.

Software
Debugger

Type

Cache
organization
parameters

Data
Address Cache Access

Function

Cache Block

Cache Block

Data
Value

Load Result

Load Value from Cache

Load
Value

Cache
Hit/Miss

Trace
Module

Traced
Load Value

First-Access
Flag Set

&
Cache Hit?

Cache Block
First-Access

Flags

CPU Enable

Set/Reset
First-Access flags

System Bus

F-A
flag

Cache
Events First-Access

Flags
Cache Block

Hit/
Miss

Software
Debugger

Traced
Load Value

Hit/
Miss

Figure 6.2 System view of the first-load track mechanism

Note: While this mechanism supports the external invalidation of cache lines, the

single-threaded MiBench programs we use generate L1 cache invalidations only on cache

misses. This may produce skewed results when comparing to a realistic multi-core

153

system. However, we do not expect significant changes due to the following: The

majority of load values in a program is produced by the program itself and is not received

from other sources. For example, let us consider a MiBench cjpeg program that

processes an input picture that is 800 KB is size. Assume that this picture is brought into

the system memory using a DMA. The cjpeg program includes 28 million load

instructions for a total amount of load data brought to the chip by all load instructions

over 100 MB. Consequently, the input picture would account for less than 1% of the all

load data values. This practically means that the external device invalidations of cache

lines cannot have a noticeable impact on overall cache invalidation rate.

Table 6.5 First-access mechanism operation: L1 cache (a), trace module (b), software
debugger (c)

L1 events
(on load or store instruction)

L1 action

Cache Hit Set First‐Access flag

Cache Miss Reset all First‐Access flags in selected line
Set First‐Access flag for the selected word in line

External Invalidation Reset all First‐Access flags in addressed cache line

(a)

Trace Module Events
(on load instruction)

Trace Module Action Trace Record

Cache Hit &
First‐Access flag set

Trace hit bit only “1”

All others Trace miss bit followed
by data value

“0” + “N‐bit load value”
(N = size of transfer, e.g. 8, 16, 32 bits)

(b)

Software Debugger Events
(on load instruction)

Software Debugger Action

Trace hit/miss bit set Take load value from the cache

Trace hit/miss bit not set Take load results from the trace file
Allocate traced load value to the cache

(c)

154

6.2.2 Results and Analysis

The results for the first-access track mechanism are given in Figure 6.3.

Figure 6.3a shows the cache hit rate while the Figure 6.3b shows the percentage of load

instructions for which the corresponding first-access flag is set (first-access flag set hit

rate). The results are given for three block sizes (4, 16 and 64 bytes) and for cache sizes

from 1 KB to 128 KB; the number of cache ways is fixed to 4. We can observe that the

cache hit rate benefits from larger block sizes, while the first-access flag set hit rate

benefits from smaller ones, as the number of flags invalidated after cache line

invalidation is lower.

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1K 2K 4K 8K 16K 32K 64K 128K

C
ac
h
e
 H
it
 R
at
e

Cache Size

Block Size = 4b

Block Size = 16b

Block Size = 64b

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1K 2K 4K 8K 16K 32K 64K 128K

Fi
rs
t‐
A
cc
e
ss
 F
la
g
Se
t
H
it
 R
at
e

Cache Size

Block Size = 4b

Block Size = 16b

Block Size = 64b

(a) (b)

Figure 6.3 Cache Hit rate (a) and first-access flag set hit rate (b) for the first-access track
mechanism

Table 6.6 shows detailed results for first-access set hit rate when the block size is

64, which is more realistic in modern processors. Both the cache hit rate and the first-

access flag set hit rate are overall high, but some programs have poor performance even

155

for very large cache structures. For example, tiff2rgba achieves a first-access flag set hit

rate of only 68% for a cache size of 64 KB and approximately 0% for a cache size of

8 KB. The zero hit rate is caused by the sequential access to the cache, which represents

the worst-case scenario regarding the first-access mechanism.

Table 6.6 First-access set hit rate for cache with 64-byte block

 First‐access set hit rate

Test \ Size 1K 2K 4K 8K 16K 32K 64K 128K

adpcm_c 0.711 0.740 0.981 1.000 1.000 1.000 1.000 1.000

bf_e 0.773 0.801 0.905 0.983 0.999 1.000 1.000 1.000

cjpeg 0.595 0.669 0.728 0.798 0.831 0.851 0.858 0.871

djpeg 0.551 0.634 0.735 0.835 0.921 0.983 0.998 0.999

fft 0.841 0.910 0.979 0.993 0.993 0.993 0.993 0.993

ghostscript 0.758 0.928 0.982 0.986 0.988 0.990 0.991 0.991

gsm_d 0.964 0.984 0.993 0.999 1.000 1.000 1.000 1.000

lame 0.552 0.615 0.708 0.868 0.942 0.964 0.975 0.993

mad 0.592 0.641 0.780 0.948 0.977 0.995 0.997 0.999

rijndael_e 0.499 0.524 0.564 0.891 0.994 1.000 1.000 1.000

rsynth 0.704 0.868 0.961 0.976 0.982 0.982 0.983 0.985

sha 0.961 0.966 0.966 0.990 1.000 1.000 1.000 1.000

stringsearch 0.717 0.851 0.920 0.972 0.987 0.992 0.993 0.993

tiff2bw 0.007 0.007 0.007 0.045 0.626 0.996 1.000 1.000

tiff2rgba 0.007 0.007 0.007 0.007 0.229 0.612 0.685 0.685

tiffdither 0.668 0.815 0.825 0.869 0.941 0.999 1.000 1.000

tiffmedian 0.478 0.497 0.508 0.520 0.698 0.881 0.971 0.999

Average 0.648 0.726 0.793 0.863 0.924 0.966 0.978 0.985

To calculate the trace port bandwidth requirements, we assume tracing of the

first-access flag value as a hit or miss information, followed by an N-bit load value if the

flag is not set (N=8, 16 or 32 depending on size of the memory transfer). The results for

the 4-way cache with the 64-byte block are shown in Table 6.7. The results indicate high

variations in the required trace port bandwidth. While some benchmarks require small

156

tracing overhead with small cache sizes (gsm_d requires 0.27 bits/ins for 1 KB cache),

some other tests have high trace bandwidth requirements (tiff2rgba achieves 4.41 bits/ins

at lowest). Also, some programs (tiffrgba, tiffmedian , rijndael_e and tiff2bw) require

large cache sizes (8KB and above) for a noticeable decrease in required trace port

bandwidth.

Table 6.7 Trace port bandwidth for first-load track mechanism

 Trace Port Bandwidth (bits/ins)
Test \ Size 1K 2K 4K 8K 16K 32K 64K 128K

adpcm_c 0.43 0.40 0.15 0.13 0.13 0.13 0.13 0.13

bf_e 2.75 2.42 1.31 0.45 0.38 0.38 0.38 0.38

cjpeg 2.56 1.91 1.45 0.90 0.72 0.64 0.61 0.57

djpeg 2.89 2.23 1.61 0.98 0.62 0.40 0.35 0.34

fft 1.46 0.92 0.42 0.31 0.31 0.31 0.31 0.31

ghostscript 2.26 0.89 0.41 0.38 0.36 0.35 0.34 0.34

gsm_d 0.27 0.21 0.19 0.17 0.17 0.17 0.17 0.17

lame 5.08 4.37 3.32 1.71 0.93 0.70 0.59 0.43

mad 3.89 3.61 2.32 0.74 0.47 0.31 0.30 0.29

rijndael_e 7.35 7.05 6.49 1.96 0.52 0.44 0.44 0.44

rsynth 4.24 2.02 0.77 0.57 0.49 0.49 0.48 0.48

sha 0.38 0.35 0.35 0.22 0.17 0.17 0.17 0.17

stringsearch 1.48 0.78 0.46 0.33 0.24 0.21 0.21 0.21

tiff2bw 4.07 4.07 4.07 3.87 2.34 0.30 0.27 0.27

tiff2rgba 8.52 8.52 8.52 8.52 7.81 5.34 4.41 4.41

tiffdither 1.62 0.85 0.81 0.71 0.48 0.23 0.22 0.22

tiffmedian 2.72 2.58 2.50 2.43 1.86 0.95 0.48 0.32

Average 3.34 2.58 1.96 1.22 0.85 0.59 0.51 0.46

6.2.3 Dedicated First-Access Tracking Scheme

We can extend the first-access track mechanism to require hardware changes in

the trace module only while the data cache remains unchanged. The trace module

includes a cache that stores recently seen load and store values. By using this approach,

157

first-access flags are no longer needed. Instead, a load value is traced only when the

incoming load value is not found in the trace module cache. If it is found in the trace

module cache, the load value is not traced. This mechanism offers greater flexibility over

the first-access flag mechanism for an application specific processor as it allows changing

the configuration of the cache and its size to the application requirements. For example,

a gsm_d benchmark will achieve excellent compression rates for the cache size of only

1 KB, which actually requires less hardware than implementing first-access flags if, for

example, a 64 KB L1 cache is used (8 KB of first-access flags required).

Figure 6.4 compares the trace port bandwidth for an N-way cache with a 64-byte

block while the N takes values of 1, 2 and 4. We see a very small increase in the required

trace port bandwidth when we decrease the number of ways. This indicates that the trace

module may include a simple and smaller caches solely dedicated to tracing.

0

1

2

3

4

5

6

7

8

9

1K 2K 4K 8K 16K 32K 64K 128K

Tr
ac
e
 P
o
rt
 B
a
n
d
w
id
th
 (
b
it
s/
in
s)

WAYS=4, BSIZE=64

WAYS=2, BSIZE=64

WAYS=1, BSIZE=64

Figure 6.4 Trace port bandwidth for dedicated first-load track mechanism

158

6.3 Putting It All Together

In this chapter we examined the compressibility of load values by finding the

entropy of the load value data set. The results indicate a compression algorithm would

benefit from working with large sets of load values, which is not feasible for hardware

implementation. Also, by measuring the Markov 0th order entropy, we found the

compression limit is just over three times. Further, we examined the entropy of high-

order load value bits and found that the entropy does not decrease to compensate for the

lower bits that are traced without compression. This leads to a conclusion that the

compression of high-order bits only is not an efficient mechanism. We also examined the

possibility of compression of small load values as they are very frequent (values such as

-1, 0, 1, 4 …). We found that the compression ratios achieved using this approach are

very small (less than 2 times for almost all program).

The greater level of compressibility can be achieved by including the processor’s

architectural state to augment compression. We examined the first-access track

mechanism which tracks the state of the level one data cache in both the processor and

the software debugger. A load value is traced out of the chip only if the debugger cannot

find the correct value in its own cache. The main drawback of the first-access scheme is

its dependency on processor internals, and it must be implemented together with the

processor subsystem which is often not welcome by system architects. Also, it requires

the implementation of the L1 data cache, which may not be available in low-end

embedded processors. Fortunately, integration with the L1 cache offers a key advantage:

the designers may opt to increase the cache size (or to include one) to benefit both the

load value compression and the processor performance.

159

The first-access track scheme can be decoupled from the processor operation. In

this implementation, first-load flags are not attached to the cache but reside in the trace

module while all the necessary signals to access the cache come from the processor trace

port as usual. This is possible because the trace module has all the parameters needed to

organize first-load flags to follow the cache organization and program execution;

organization of a cache is a design parameter available to the trace module designer,

while the program execution (addressing into the cache, type of reference, hits/miss…) is

available on the trace port. However, additional implementation details are necessary;

the cache access decoder has to be duplicated to access first-access flags in the trace

module operation and the trace module must track the invalidations of cache lines from

an external device.

Finally, the first-access mechanism can be fully decoupled from the cache

operation; the trace module can implement the dedicated cache, which stores results of

load and store operations and traces a load value only if it does not match the one in the

addressed cache line. This mechanism can be useful for application specific systems,

where the static profiling of the application can help find the most efficient cache size

and parameters.

We compare compression ratios achieved using the first-access mechanism with

compression rate limits extracted from the Markov 0th order entropy and the compression

ratio achieved by the general purpose compressors (gzip, bzip). Table 6.8 shows the

results for the first-access mechanism with 8 KB and 64 KB cache sizes (64-byte block

and 4 ways) in the first two columns, compression ratios achieved using the Markov

0th order entropy for 128 KB data sets and the fast gzip (-1 option). The results indicate

160

the first-access mechanism with the 64 KB cache outperforms the other schemes for all

programs except for tiff2rgba. Compression using bzip-1 greatly improves the

compression for certain tests (e.g., cjpeg, djpeg, ghostscript and stringsearch) as it uses

an algorithm to reorder data within a large data set. However, even then, low

predictability of data set values leads to a decrease of compression rate for the sha

benchmark. In result, we can say that the first-access track mechanism is an excellent

approach for the compression of load values. It outperforms other mechanisms, even the

software ones, for almost all benchmarks.

Table 6.8 Load values compression rate comparison

 First‐Access Markov 0th

Test \ Size 8KB 64KB 128KB gzip‐1 bzip ‐1

adpcm_c 25.14 25.14 5.65 4.14 8.83

bf_e 25.56 30.11 3.60 3.81 5.04

cjpeg 8.47 12.55 5.72 6.54 14.11

djpeg 7.79 22.02 5.17 6.47 10.41

fft 25.16 25.41 3.49 4.73 6.32

ghostscript 23.59 25.95 4.74 13.63 20.40

gsm_d 27.53 28.12 3.58 3.64 5.36

lame 6.42 18.58 2.07 2.52 2.51

mad 11.52 28.58 2.44 2.44 2.70

rijndael_e 6.29 28.11 2.93 2.36 2.69

rsynth 23.34 27.65 2.98 3.32 3.77

sha 21.86 28.62 2.18 2.48 1.99

stringsearch 14.25 22.39 3.79 6.34 10.85

tiff2bw 1.00 14.23 3.68 3.47 4.61

tiff2rgba 0.96 1.86 3.55 3.43 4.21

tiffdither 7.52 23.96 4.79 4.55 8.21

tiffmedian 2.87 14.55 4.22 4.47 7.06

Average 6.69 17.20 3.17 4.12 5.72

161

CHAPTER 7

CONCLUSIONS AND FUTURE WORK

Our society relies on embedded computer systems that drive transportation,

communication, medicine, and all other aspects of our daily life. Semiconductor trends

have enabled embedded computer systems with ever-increasing functionality and

sophistication that are less costly and smaller. Developing and testing of software in

modern embedded systems becomes one of the most critical issues. At the time of

writing this dissertation, our society is going through costly recalls in the automotive

industry, some of which are caused by software bugs in cars. Software developers of

real-time embedded systems need appropriate hardware and software tools that will

enable them to gain insight into what their system is doing at any point in time. These

tools should not interfere with normal system operation and should be easy to use and

possibly reduce the time software developers spend on debugging (over 80% of their

development time according to some estimates).

Trace modules are crucial components of modern embedded systems that help

software debugging. Trace modules capture program traces and send them through trace

162

ports to a host machine running a software debugger. However, program traces are

extremely large (an embedded processor running at 1 GHz can generate more than 1 GB

of trace data per second, making program tracing in real-time impractical or impossible).

The current approaches to debugging require costly on-chip trace buffers and wide trace

ports that can capture program traces unobtrusively for short program segments.

However, these resources are rarely made available by processor vendors. These

problems are further exaggerated by the current trends toward complex multi-core

systems on a single chip and a scalability discrepancy between the on-chip logic

(growing exponentially with each new technology generation) and available I/O

bandwidth (does not grow exponentially). This dissertation is aimed at developing trace

modules that will dramatically reduce the amount of trace data by means of trace

compression.

This dissertation proposed a number of algorithms for the cost-effective

compression of program traces, including instruction address traces, data address traces,

and load data values. We explore characteristics of individual trace components,

introduce new compression algorithms, and explore the design space that includes trace

port bandwidth requirements and implementation cost. Our goal is to develop techniques

that will minimize the required trace port bandwidth (maximize the compression ratio)

and minimize the implementation cost, while allowing for unobtrusive program tracing in

real-time. To achieve this goal we characterize program traces and exploit their inherent

characteristics together with cost-effective architectural solutions. Typically, we apply

filtering to minimize the number of trace records needed for program replay at the

software debugger. Compression is carried out using architecture-inspired resources

163

(stream caches, predictors, adaptive data address caches) where a sequence of trace

records is translated into a sequence of a few hit/miss events on these structures. These

events are then encoded in cost-effective encoding methods.

For the compression of instruction address traces, we introduce three new

techniques, namely, Double Move-to-Front (DMTF), Stream Caches with Last Stream

Predictors (SC-LSP), and a Branch Predictor-based compression. All three techniques

guarantee unobtrusive tracing of instruction address traces with less than

0.15 bits/instruction on the trace port bandwidth. The best performing and the least

costly technique based on Branch Predictors requires 0.036 bits/ins at the trace port at the

cost of 5,200 additional gates. This is almost 28-fold improvement in the required

bandwidth over the commercial state-of-the-art at negligible hardware costs.

For compression of data addresses we introduce two new techniques. The first

technique uses new Data Address Filtering to reduce the number of data addresses that

need to be traced. The second technique performs compression using a new hardware

structure called Adaptive Data Address Cache. The data address filtering achieves

average compression ratios of 3.56, outperforming the software compression utility gzip

for many programs. The filtering method requires minimal hardware complexity

providing that certain signals from the processor core are made available. The adaptive

data address cache achieves a compression ratio of 5.6 at the cost of 30,000 logic gates.

State-of-the-art solutions achieve compression ratios on data addresses of only 1.6.

Consequently, the data address filtering provides 10-fold, and the adaptive data address

cache provides over 3.5-fold improvement over the currently used compression method

in the Nexus standard.

164

Finally for data values, we show that tracing only load values is sufficient

assuming sophisticated software debuggers. We expanded previously proposed

techniques for software trace capturing and made them suitable for embedded systems

and hardware trace capturing. Our technique is called first-access load tracking and we

offer two implementations – one closely coupled with the processor cache and the other

that is implemented in the trace module. Depending on cache size, the proposed

technique achieves compression ratios of 6.9 (assuming 8 KB data cache) and 17.2

(assuming 64 KB data cache). This method also outperforms the software compression

of all load values at the cost of relatively small additional complexity.

Our results indicate that real-time program tracing is possible in embedded

systems if our trace compression techniques are used. They significantly reduce the

required trace port bandwidth and eliminate the need for deep on-chip trace buffers to

capture traces before they are read out through narrow trace ports.

While we focused on developing compression algorithms and cost-effective

hardware implementations in uni-processor systems, the proposed compression

algorithms are applicable to multi-core systems too. Future research efforts should

address tracing of on-chip interconnect and trace synchronization in multi-core systems.

One direction for future research would be to explore combining different compressors:

for example, our data address filtering method can be combined with a second-level

compressor to further reduce the size of data addresses. In spite of excellent average

compression ratios, we noticed that certain benchmarks still pose high bandwidth

requirements. They may also benefit from further investigation focusing on combining

different compressors.

165

REFERENCES

[1] B. Dipert, "Inside Apple's Iphone: More Than Just a Dial Tone,"
<http://www.edn.com/article/CA6457065.html?nid=2551> (Available September 2007).

[2] C. J. Murray, "Automakers Aim to Simplify Electrical Architectures,"
<http://www.designnews.com/article/316784-
Automakers_Aim_to_Simplify_Electrical_Architectures.php> (Available September 2009).

[3] M. Abramovici, P. Bradley, K. Dwarakanath, P. Levin, G. Memmi, and D. Miller, "A
Reconfigurable Design-for-Debug Infrastructure for SoCs," in 43rd Design Automation
Conference, 2006, pp. 7-12.

[4] RTI-International, "The Economic Impacts of Inadequate Infrastructure for Software
Testing," <http://www.nist.gov/director/prog-ofc/report02-3.pdf> (Available July 2009).

[5] ARM, "Embedded Trace Macrocell, Architecture Specification,"
<http://infocenter.arm.com/help/topic/com.arm.doc.ihi0014o/IHI0014O_etm_v3_4_archite
cture_spec.pdf> (Available November 2009).

[6] MIPS, "The PDtrace™ Interface and Trace Control Block Specification "
<http://www.mips.com/products/product-materials/processor/mips-architecture/>
(Available November 2009).

[7] Infineon, "TC1775 System Units 32-Bit Single-Chip Microcontroller,"
<http://www.infineon.com/cms/en/product/channel.html?channel=ff80808112ab681d0112a
b6b7535083b> (Available November 2009).

[8] Freescale, "MPC555 / MPC556 User’s Manual,"
<http://www.freescale.com/files/microcontrollers/doc/user_guide/MPC555UM.pdf>
(Available November 2009).

[9] IEEE-ISTO, "The Nexus 5001 Forum Standard for a Global Embedded Processor Debug
Interface," IEEE- Industry Standards and Technology Organization (IEEE-ISTO), 2003.

[10] W. Orme, "Debug and Trace for Multicore SoCs," ARM White Paper, 2008.

[11] B. Cmelik and D. Keppel, "Shade: A Fast Instruction-Set Simulator for Execution
Profiling," in Joint International Conference on Measurement and Modeling of Computer
Systems, 1994, pp. 128-137.

[12] M. Milenkovic, S. T. Jones, F. Levine, and E. Pineda, "Performance Inspector Tools with
Instruction Tracing and Per-Thread / Function Profiling," in Proceedings of the Linux
Symposium, 2008.

166

[13] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J. Reddi,
and K. Hazelwood, "Pin: Building Customized Program Analysis Tools with Dynamic
Instrumentation," in Conference on Programming Language Design and Implementation,
2005, pp. 190-200.

[14] K. Hazelwood and A. Klauser, "A Dynamic Binary Instrumentation Engine for the ARM
Architecture," in Proceedings of the International Conference on Compilers, Architecture
and Synthesis for Embedded Systems, 2006.

[15] S. Bhansali, W.-K. Chen, S. d. Jong, A. Edwards, R. Murray, M. Drinic, D. Mihocka, and J.
Chau, "Framework for Instruction-Level Tracing and Analysis of Program Executions," in
2nd International Conference on Virtual Execution Environments, 2006, pp. 154-163.

[16] Tensilica, Xtensa LX2 Microprocessor Data Book for Xtensa® LX2 Processor Cores, 2008.

[17] Xilinx, "Microblaze Processor Reference Guide Embedded Development Kit EDK 11.4,”
UG081 (v10.3), 2009.

[18] Xilinx, "Xilinx Microblaze Trace Core (XMTC) Product Specification,” DS642, 2009.

[19] Xilinx, "Microblaze Debug Module (MDM) Product Specification,” DS641, 2009.

[20] ARM, "Embedded Trace Buffer Technical Reference Manual," ARM DDI 0242B, 2002.

[21] "IEEE P1149.7, Draft Standard for Reduced-Pin and Enhanced-Functionality Test Access
Port and Boundary Scan Architecture, ," IEEE Computer Society, 2008.

[22] "‘MIPI Test and Debug Interface Framework,’’ V3.2, White Paper," MIPI Test and Debug
Working Group, 2006.

[23] "MIPI Alliance Test and Debug - NIDnT-Port,’’ V1.0, White Paper, MIPI Test and Debug
Working Group," MIPI Test and Debug Working Group, 2007.

[24] OCP-IP, "The Importance of Sockets in SoC Design, White Paper,"
<http://www.ocpip.org/uploads/documents/sockets_socdesign.pdf> (Available 2010).

[25] OCP-IP, "Socket-Centric IP Core Interface Maximizes IP Applications, White Paper,"
<http://www.ocpip.org/uploads/documents/wp_pointofview_final.pdf> (Available 2010).

[26] N. Stollon, B. Uvacek, and G. Laurenti, "Standard Debug Interface Socket Requirements
for OCP-Compliant SoC, White Paper," 2007.

[27] S. Narayanasamy, G. Pokam, and B. Calder, "BugNet: Continuously Recording Program
Execution for Deterministic Replay Debugging," in International Symposium on Computer
Architecture, 2005, pp. 284-295.

[28] R. H. B. Netzer, "Optimal Tracing and Replay for Debugging Shared-Memory Parallel
Programs," in Proceedings of the ACM/ONR Workshop on Parallel and Distributed
Debugging, 1993.

[29] ARM, "Coresight on-Chip Debug and Trace Technology,"
<http://www.arm.com/products/solutions/CoreSight.html> (Available July 2004).

167

[30] J. Ziv and A. Lempel, "A Universal Algorithm for Sequential Data Compression," IEEE
Transactions on Information Theory 1977, pp. 337-343.

[31] M. Burrows and D. J. Wheeler, "A Block-Sorting Lossless Data Compression Algorithm,"
Digital SRC Research Report, 1994.

[32] D. A. Huffman, "A Method for the Construction of Minimum-Redundancy Codes," in
Proceedings of the I.R.E, 1952, pp. 1098-1102.

[33] J. S. Vitter, "Design and Analysis of Dynamic Huffman Codes," Journal of the ACM, vol.
34, 1987, pp. 825-845.

[34] I. H. Witten, R. M. Neal, and J. G. Cleary, "Arithmetic Coding for Data Compression,"
Communications of the ACM, vol. 30, 1987, pp. 520-540.

[35] C. G. Nevill-Manning and I. H. Witten, "Identifying Hierarchical Structure in Sequences: A
Linear-Time Algorithm," Journal of Artificial Intelligence Research, vol. 7, 1997, pp. 67-
82.

[36] J. R. Larus, "Whole Program Paths," ACM SIGPLAN Notices, vol. 34, 1999, pp. 259-269.

[37] Y. Zhang and R. Gupta, "Timestamped Whole Program Path Representation and Its
Applications," ACM SIGPLAN Notices, vol. 36, 2001, pp. 180-190.

[38] E. E. Johnson, J. Ha, and M. B. Zaidi, "Lossless Trace Compression," IEEE Transactions
on Computers, vol. 50, 2001, pp. 158-173.

[39] A. Milenkovic, M. Milenkovic, and J. Kulick, "N-Tuple Compression: A Novel Method for
Compression of Branch Instruction Traces. ," in 16th International Conference on Parallel
and Distributed Computing Systems, 2003, pp. 49-55.

[40] J. R. Larus, "Efficient Program Tracing," IEEE Computer, vol. 26, 1993, pp. 52-61.

[41] A. D. Samples, "Mache: No-Loss Trace Compaction," ACM SIGMETRICS Performance
Evaluation Review, vol. 17, 1989, pp. 89-97.

[42] E. N. Elnozahy, "Address Trace Compression through Loop Detection and Reduction,"
ACM SIGMETRICS Performance Evaluation Review, vol. 27, 1999, pp. 214-215.

[43] L. DeRose, K. Ekanadham, J. K. Hollingsworth, and S. Sbaraglia, "Sigma: A Simulator
Infrastructure to Guide Memory Analysis," in ACM/IEEE Supercomputing Conference, vol.
1-13, 2002.

[44] A. R. Pleszkun, "Techniques for Compressing Program Address Traces," in Proceedings of
the 27th International Symposium on Microarchitecture, 1994.

[45] A. Milenkovic and M. Milenkovic, "Stream-Based Trace Compression," IEEE Computer
Architecture Letters, vol. 2, 2003, pp. 4.

[46] S. Iacobovici, L. Spracklen, S. Kadambi, Y. Chou, and S. G. Abraham, "Effective Stream-
Based and Execution-Based Data Prefetching," in Proceedings of the 18th International
Conference on Supercomputing, 2004, pp. 1-11.

168

[47] G. Reinman and B. Calder, "Predictive Techniques for Aggressive Load Speculation," in
Proceedings of the 31st International Symposium on Microarchitecture, 1998, pp. 127-137.

[48] M. H. Lipasti, C. B. Wilkerson, and J. P. Shen, "Value Locality and Load Value
Prediction," in International Conference on Architectural Support for Programming
Languages and Operatings Systems, 1996.

[49] M. Burtscher and B. G. Zorn, "Exploring Last N Value Prediction," in Proceedings of the
1999 International Conference on Parallel Architectures and Compilation Techniques,
1999, p. 66.

[50] R. J. Eickemeyer and S. Vassiliadis, "A Load-Instruction Unit for Pipelined Processors,"
IBM Journal of Research and Development archive, vol. 37, 1993.

[51] Y. Sazeides and J. E. Smith, "The Predictability of Data Values," in Proceedings of the
30th International Symposium on Microarchitecture, 1997.

[52] Y. Sazeides and J. E. Smith, "Modeling Program Predictability," International Symposium
on Computer Architecture 1998 pp. 73-84.

[53] K. Wang and M. Franklin, "Highly Accurate Data Value Prediction Using Hybrid
Predictors," International Symposium on Microarchitecture 1997, pp. 281-290.

[54] B. Black, B. Mueller, S. Postal, R. Rakvic, N. Utamaphethai, and J. P. Shen, "Load
Execution Latency Reduction," in International Conference on Supercomputing ACM,
1998, pp. 29-36.

[55] M. Bekerman, S. Jourdan, R. Ronen, G. Kirshenboim, L. Rappoport, A. Yoaz, and U.
Weiser, "Correlated Load-Address Predictors," ACM SIGARCH Computer Architecture
News, vol. 27, 1999, pp. 54-63.

[56] M. Milenković, A. Milenković, and M. Burtscher, "Algorithms and Hardware Structures
for Unobtrusive Real-Time Compression of Instruction and Data Address Traces," in
Proceedings of the 2007 Data Compression Conference, 2007, pp. 55-65.

[57] M. Burtscher, I. Ganusov, S. J. Jackson, J. Ke, P. Ratanaworabhan, and N. B. Sam, "The
VPC Trace-Compression Algorithms," IEEE Transactions on Computers, vol. 54, 2005,
pp. 1329-1344.

[58] M. Burtscher, "VPC3: A Fast and Effective Trace-Compression Algorithm," in Joint
International Conference on Measurement and Modeling of Computer Systems, 2004, pp.
167-176.

[59] Y. Zhang, J. Yang, and R. Gupta, "Frequent Value Locality and Value-Centric Data Cache
Design," ACM SIGARCH Computer Architecture News, vol. 28, 2000, pp. 150-159.

[60] C.-F. Kao, S.-M. Huang, and I.-J. Huang, "A Hardware Approach to Real-Time Program
Trace Compression for Embedded Processors," IEEE Transaction on Circuits and Systems,
vol. 54, 2007, pp. 530-543.

169

[61] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B. Brown,
"Mibench: A Free, Commercially Representative Embedded Benchmark Suite," in
Proceedings of the IEEE 4th Workshop on Workload Characterization, 2001.

[62] E. Morancho, J. M. Llabería, and A. Olivé, "Split Last-Address Predictor," in Proceedings
of the 1998 International Conference on Parallel Architectures and Compilation
Techniques, 1998, pp. 230-239.

[63] M. Xu, R. Bodik, and M. D. Hill, "A "Flight Data Recorder" For Enabling Full-System
Multiprocessor Deterministic Replay," ACM SIGARCH Computer Architecture News, vol.
31, 2003, pp. 122-135.

[64] T. Austin, E. Larson, and D. Ernst, "Simplescalar: An Infrastructure for Computer System
Modeling," IEEE Computer, vol. 35, 2002, pp. 59-67.

[65] J. L. Bentley, D. D. Sleator, R. E. Tarjan, and V. K. Wei, "A Locally Adaptive Data
Compression Scheme," Communications of the ACM, vol. 29, 1986, pp. 320-330.

[66] K. Pagiamtzis and A. Sheikholeslami, "Content-Addressable Memory (CAM) Circuits and
Architectures: A Tutorial and Survey," IEEE Journal of Solid-State Circuits, vol. 41, 2006.

[67] Intel, "Intel Xscale® Core Developer’s Manual," 2004.

[68] J. K. F. Lee and A. J. Smith, "Branch Target Buffer Design and Optimization," IEEE
Transactions on Computers, vol. 42, 1993, pp. 396-412.

[69] K. Driesen and U. Hölze, "Accurate Indirect Branch Prediction," in Proceedings of the 25th
International Symposium on Computer Architecture, 1998, pp. 167-168.

[70] S. Gochman, R. Ronen, I. Anati, A. Berkovits, T. Kurts, and A. Naveh, "The Intel Pentium
M Processor: Microarhitecture and Performance," Intel Technology Journal, vol. 07, 2003,
pp. 21-36.

[71] M. Burtscher, "TCgen 2.0: A Tool to Automatically Generate Lossless Trace
Compressors," SIGARCH Computer Architecture News, vol. 34, 2006, pp. 1-8.

[72] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative Approach. San
Francisco: Morgan Kaufmann, 2007.

[73] "MIPS32 34k Processor Core Family Software User’s Manual Rev. 01.11," MIPS
Technologies, Inc., 2008.

[74] C. E. Shannon, "A Mathematical Theory of Communication," Bell System Technical
Journal, vol. 27, 1948, pp. 623-656.

[75] S. P. Meyn and R. L. Tweedie, Markov Chains and Stochastic Stability: Springer-Verlag,
London, 1993.

