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ABSTRACT 
Modern microprocessors integrate a growing number of compo-
nents on a single chip, such as processor cores, graphics proces-
sors, on-chip interconnects, shared caches, memory controllers, 
and I/O interfaces. An ever-increasing complexity and the number 
of components present new challenges to software developers 
interested in finding operating points that strike an optimal bal-
ance between performance and energy consumed. In this paper we 
analyze the impact of thread scaling and frequency scaling on 
performance and energy in modern multicores. By exploiting 
recent additions to microprocessors that support energy estimation 
and power management, we measure execution times and energy 
consumed on an Intel Xeon 1240 v2 microprocessor when run-
ning the PARSEC benchmark suite. We conduct a number of 
experiments by varying the number of threads, 1 ≤ N ≤ 16, and 
processor clock frequency, 1.6 ≤ F ≤ 3.4 GHz. We find that the 
maximum performance is achieved when the number of threads 
matches or slightly exceeds the number of logical processors 
(8 ≤ N ≤ 12) and the clock frequency is at maximum 
(F = 3.4 GHz). The minimum energy is consumed when the pro-
cessor clock frequency is in range 2.0 ≤ F ≤ 2.4 GHz. Finally, we 
find that the best performance at minimal energy is achieved when 
8 ≤ N ≤ 12 and 2.8 ≤ F ≤ 3.1 GHz. 

Categories and Subject Descriptors 
C.4 [Performance of Systems]: Measurement techniques.  

General Terms 
Measurement, Performance, Experimentation. 

Keywords 
Energy-efficiency, Power Profiling. 

1. INTRODUCTION 
Modern microprocessors have evolved into complex system-on-a-
chip (SoC) designs that integrate a growing number of general-
purpose processor cores, graphics processors, memory controllers, 

and other components on a single silicon die. They are often re-
ferred to as multicore processors or just multicores. Multicores 
continue to evolve by integrating an ever increasing number of 
new architectural structures and features aimed at achieving high-
performance. Such features include vector processing, tight inte-
gration with graphics, hardware acceleration of various time-
critical operations, and deep caching hierarchies. In such condi-
tions, exploiting the performance of modern multicores require 
intimate knowledge of underlying architecture. Software develop-
ers thus rely on modern software tools for software tuning and 
optimization to fully harness the capabilities of modern multi-
cores. 

In conditions when power and thermal envelopes of multicores 
are bounded, increasing levels of integration and core clock fre-
quencies pose new power and energy challenges. To address these 
challenges, the focus has shifted to highly energy-efficient de-
signs. In addition, a number of new power management schemes 
and power states have been introduced. They are geared toward 
achieving the maximum performance when needed and preserving 
power and energy when the maximum performance is not needed. 
For example, various components including processor cores can 
be selectively turned on or off to match workload, the processor 
core clocks can be adjusted “on-the-fly” in order to reduce power 
or temperature of the die (dynamic frequency scaling, DFS), and 
the power supply can also be adjusted “on-the-fly” (dynamic volt-
age scaling, DVS). Modern operating systems include utilities that 
allow users to set clock frequency or choose a particular power 
scheme that fits their application needs [1]. 

Modern Intel microprocessors, starting with SandyBridge archi-
tecture, include the Running Average Power Limit (RAPL) inter-
face [2]. Although the RAPL interface is designed to limit power 
usage on a chip while ensuring maximum performance, this inter-
face supports power and energy measurement capabilities. An on-
chip circuitry estimates energy usage based on a model driven by: 
(a) architectural event counters from all components, (b) tempera-
ture readings on the die, and (c) current leakage models. Estimates 
are available to users in a model-specific register (MSR), updated 
in the order of milliseconds. Energy estimates offered by RAPL 
have been validated by Intel and closely follow actual energy used 
[3]. A number of tools have been introduced [4]–[8] to allow 
software developers to estimate power and energy of running 
programs.  

When executing a parallel program on a multicore machine we 
can vary a number of parameters, such as the number of threads 
and the processor clock frequencies. These parameters have a 
direct impact on performance and energy consumed. What is the 
optimal number of threads for a given program on a given ma-
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chine if we want to achieve the maximum performance? What is 
the optimal clock frequency if we want to minimize energy con-
sumed? To answer these questions we perform a measurement 
based study that explores the impact of thread and frequency scal-
ing on performance and energy consumed in modern multicores.  

In this paper we present the results of our study performed on an 
Intel’s Xeon E3-1240 v2 microprocessor when running parallel 
programs from the PARSEC benchmark suite [9]. We measure 
benchmark execution times and energy consumed using LIKWID 
tool suite, while varying the number of threads from N = 1 to 
N = 16 and processor clock frequency from a maximum F = 3.4 
GHz to a minimum F = 1.6 GHz. Section 2 describes our experi-
mental methodology, including measuring setup, benchmarks, 
experiments, and metrics.  
We find that majority of Parsec benchmarks achieve the maxi-
mum performance when the number of threads matches or slightly 
exceeds the number of logical processors on a test machine 
(8 ≤ N ≤ 12) and when the clock frequency is at maximum F = 3.4 
GHz. We find that the minimum energy is consumed when clock 
frequency is in range 2.0 ≤ F ≤ 2.4 GHz for almost all bench-
marks. Finally, we find that an optimal performance-energy ratio 
is achieved when 8 ≤ N ≤ 12 and 2.8 ≤ F ≤ 3.1 GHz. Section 3 

describes the detailed results of our experimental evaluation, and 
Section 4 concludes the paper.  

2. EXPERIMENTAL METHODOLOGY 
In this section we describe our experimental methodology, includ-
ing hardware and software setup (2.1), benchmarks (2.2), and 
experiments and metrics (2.3).  

2.1 Hardware and Software Setup 
Our experimental setup includes a Dell PowerEdge T110 II server 
with a single Intel Xeon E3-1240 v2 processor and 16 Gbytes of 
memory. The Xeon E3-1240 v2 processor consists of a single 
monolithic die with four 2-way threaded physical processor cores 
for a total of 8 logical processor cores, a shared 8 Mbytes L3/LLC 
cache memory, an integrated memory controller, PCI and DMI 
interfaces, a graphics processor, and a system agent (Figure 1). 
The system agent encompasses a module responsible for power 
management called the Package Control Unit (PCU). The PCU 
connects to individual processor cores and other functional blocks 
via power management agents that collect information about pow-
er consumption and junction temperature. The PCU runs firmware 
that constantly monitors power and thermal conditions and per-
forms various power-management functions, e.g., turn on or off a 
processor core or portions of the LLC cache or dynamically scale 
voltage and frequency.  

The server runs the CentOS 6.3 operating system with 2.6.32 
Linux kernel. To change the processor clock frequency we use a 
set of utilities called cpufrequtils. The cpufreq-info utility allows a 
user to inspect the current clock frequency setup on each of the 
processor cores. The cpufreq-set utility allows a user to set the 
minimum, the maximum, and the current clock frequency, as well 
as a governor that specifies a power scheme for each processor 
core. The power schemes, such as Performance, Powersave, Us-
erspace, Ondemand, and Conservative [1], dictate to the Linux 
kernel how to dynamically adjust the processor frequencies. For 
example, the Performance governor forces processor cores to 
constantly run at the maximum allowed frequency. The Xeon E3-
1240 v2 processor supports a total of 18 frequencies, ranging from 
the minimum 1.6 GHz to the maximum 3.4 GHz. In our experi-
ments we force all processor cores to run at a specific clock fre-
quency, which remains fixed during a benchmark run.  

Table 1. PARSEC Benchmark suite. 
 Benchmark Application Domain Parallelism Model Working Set Communication 

1 blackscholes Computational finance application data-parallel small low 

2 bodytrack Computer vision application pipeline medium medium 

3 canneal Electronic Design Automation (EDA) kernel data-parallel huge high 

4 dedup Enterprise storage kernel pipeline huge high 

5 facesim Computer animation application data-parallel large medium 

6 ferret Similarity Search application pipeline huge high 

7 fluidanimate Computer animation application data-parallel large medium 

8 freqmine Data mining application data-parallel huge medium 

9 raytrace Computer animation application data-parallel medium high 

10 streamcluster Machine learning application data-parallel medium medium 

11 swaptions Computational finance application data-parallel medium low 

12 vips Media application data-parallel medium medium 

13 x264 Media application pipeline medium high 

 

 
Figure 1. Block diagram of an Intel Xeon E3-1240 v2. 



2.2 Benchmarks  
The Princeton Application Repository for Shared-Memory Com-
puters (PARSEC) [9] is a benchmark suite composed of a diverse 
set of multithreaded programs. The suite focuses on emerging 
workloads and was designed to be representative of the next-
generation shared-memory programs for chip-multiprocessors. It 
is frequently used in research as well as in performance measure-
ments on real machines.  

Table 1 gives the PARSEC benchmark names, as well as addi-
tional information including application domain, parallelism 
mode, working set size, and communication intensity between 
threads. The PARSEC benchmarks cover a wide range of comput-
er tasks such as financial analysis (1, 11), computer vision (2), 
engineering (3), enterprise storage (4), animation (5, 7 and 9), 
similarity search (6), data mining (8), machine learning (10), and 
media processing (12, 13). Benchmarks vary in type of parallel-
ization model (data-parallel or pipelined), working set (ranging 
from small to huge), and communication intensity (varying be-
tween low and high). For each benchmark several data input sets 
are available, including Test, Simdev, Simsmall, Simmedium, Sim-
large, and Native (with Test being the smallest and Native being 
the largest input set). In our experiments we use PARSEC 3.0 
benchmarks compiled using the gcc 4.4.7 compiler. The Native 
input set is used as the workload.  

2.3 Experiments and Metrics 
To evaluate the impact of the thread and frequency scaling on 
performance and energy efficiency, we conduct a number of ex-
periments while varying the number of threads (from N = 1 to 
N = 16) and the clock frequency (F = 3.4, 3.3, 3.1, 3.0, 2.8, 2.6, 
2.5. 2.4, 2.2, 2.1, 2.0, 1.9, 1.7, 1.6 GHz). Using the cpufrequtils 
the clock frequency is set to a chosen value, and the benchmarks 
are run under the likwid-powermeter tool [6]–[8].  

To illustrate the running of PARSEC benchmarks, an example run 
script for blackscholes is shown in Figure 2. The outer loop sets 
the number of threads (N) and the inner loop defines a number of 
runs for each experiment (set to 3 for each benchmark/thread 
combination). The command line specifies the benchmark execut-
able (blackscholes), its input (in_10M.txt) and output (prices.txt). 
The likwid-powermeter tool captures the benchmark run time (or 
wall-clock execution time, ET) and the energy consumed in joules 
(E). getResults is a script based on the grep and awk Linux utili-

ties that filters the output report to extract and record the bench-
mark execution time and the energy consumed. Similar scripts are 
prepared for all Parsec benchmarks.   

3. RESULTS 
3.1 Performance 
Execution times of benchmarks are affected by both the number 
of threads and processor frequency. We can expect that the execu-
tion time scales linearly with the processor clock cycles, though 
some deviations caused by benchmark characteristics (e.g., fre-
quency of memory references, data locality, and others) are possi-
ble. In addition, synchronization among multiple threads and data 
communication can impact the performance of multi-threaded 
programs. 
First, we consider the impact of thread scaling. Table 2 shows the 
execution times for all PARSEC benchmarks, as a function of the 
number of threads, ranging from N = 1 to N = 16, when the pro-
cessor clock is set to the maximum, F = 3.4 GHz. Figure 3 shows 
the speedup calculated as the ratio between the execution time for 
a single-threaded run and the execution time with N threads, 
1 ≤ N ≤ 16, ET(1)/ET(N). The performance increases as we in-
crease the number of threads up to a point. Some benchmarks 
such as freqmine, swaptions, and x264 scale very well, achieving 
maximum speedups of 6.7, 6.8, and 7.2, respectively. Somewhat 
surprisingly, several benchmarks achieve their maximum 
speedups when the number of threads exceeds the number of 
available threads on our machine (N = 8). Scaling beyond N = 12 
threads yields no significant performance benefits, and often re-
sults in a slight performance degradation (e.g., in bodytrack, 
freqmine, raytrace, streamcluster, swaptions).  
How does performance scale with clock frequency? To answer 

Table 2. Execution time (ET) in seconds as a function of the number of threads (F = 3.4GHz). 
Benchmark Number of Threads 

 
N=1 N=2 N=3 N=4 N=5 N=6 N=7 N=8 N=9 N=10 N=11 N=12 N=13 N=14 N=15 N=16 

blackscholes 150.9 84.5 62.3 52.4 50.6 47.3 44.8 41.7 42.7 42.3 42.7 42.6 42.2 42.1 42.0 41.6 

bodytrack 126.6 67.3 47.2 41.0 37.8 35.7 33.5 32.9 32.7 25.1 25.3 25.7 26.0 26.2 26.7 32.4 

canneal 193.8 123.0 98.7 91.7 94.8 87.8 82.8 78.0 90.0 62.5 61.4 60.7 60.7 61.0 62.1 84.7 

dedup 21.2 12.6 10.9 10.4 14.2 10.5 9.6 9.6 13.5 11.7 11.7 12.4 13.4 13.5 13.8 13.9 

facesim 338.1 175.7 124.4 114.5 NA 105.5 0.0 92.7 NA NA NA NA NA NA NA 113.7 

ferret 270.7 137.5 95.9 78.2 70.5 66.7 64.7 64.1 63.5 45.5 45.5 45.8 46.1 46.4 46.8 62.6 

fluidanimate 280.1 148.5 NA 91.4 NA NA NA 68.6 NA NA NA NA NA NA NA 76.1 

freqmine 404.4 203.0 150.3 130.2 99.4 95.3 89.2 85.5 86.7 60.5 61.8 62.4 62.4 63.3 63.5 87.1 

raytrace 211.5 137.7 111.7 100.7 97.3 94.3 91.7 90.2 90.4 63.4 63.5 63.6 64.1 64.9 64.7 89.6 

streamcluster 357.1 186.1 129.7 108.5 105.0 91.5 81.8 74.5 112.5 76.8 75.6 75.5 75.5 76.4 77.7 107.1 

swaptions 240.1 120.1 80.7 61.9 62.7 57.6 51.7 47.1 49.9 35.5 36.1 35.9 37.1 36.7 37.1 48.5 

vips 93.5 48.3 35.5 31.1 28.4 25.5 25.5 25.0 23.8 20.9 19.7 20.5 21.8 20.4 20.5 23.6 

x264 109.7 40.6 28.3 23.2 23.7 21.4 19.3 18.1 18.0 15.3 15.6 15.9 16.2 16.5 16.8 17.8 

 
 

 

1. for N in {1..16} # the number of threads     
2. do   
3.    echo "$N" | tee -a $path/likwid.txt;  
4.    for i in {1..3}  
5.    do  
6. likwid-powermeter $path2exe/blackscholes 

$N in_10M.txt prices.txt | getResults >> 
$path/likwid.txt 

7.    done 
8. done  

Figure 2. Run script for blackscholes. 
 

 



this question, we compare benchmark execution times at two 
clock frequencies. Figure 4 shows the ratio of the benchmark 
execution times for two distinct clock frequencies of F = 2.2 and 
F = 3.4 GHz, ET(2.2GHz)/ET(3.4GHz). The ratio of these two 
frequencies is 3.4/2.2=1.54, and we expect to see a similar ratio 
between the benchmark execution times. Indeed, the results from 
Figure 4 show that many benchmarks exhibit linear scaling inde-
pendent of the number of threads, e.g., blackscholes, bodytrack, 
freqmine, raytrace, and swaptions. Three notable exceptions are 
canneal, dedup, and streamcluster. For these three benchmarks 
the slowdown due to running at lower frequency is less than ex-
pected 1.54 times: ~1.3 times for canneal and 1.2 times for 
streamcluster. To explain this behavior, we take a closer look at 
characteristics of these benchmarks, especially their cache 
memory behavior.  
Cache memories in modern processors play a critical role in 
achieving high performance. In benchmarks where the number of 
of cache misses is relatively high, the processor clock frequency 
scaling may result in non-linear effects. For example, let as as-
sume that the processor is waiting on a cache miss to be serviced 
from main memory, which may take hundreds of processor clock 
cycles. Let us assume that it takes 100 ns to satisfy a cache miss. 
If a processor is running at F = 3.4 GHz, the stall time corre-
sponds to 340 clock cycles. However, when the processor is run-
ning at F = 2.2 GHz, the stall time corresponds to 220 processor 
clock cycles. Thus, the penalty due to cache misses expressed in 
clock cycles is relatively higher when the processor is running at a 
higher clock frequency. We expect these benchmarks to have a 
significant percentage of cache misses. 
To confirm this observation we profile the PARSEC benchmarks 
using the perf tool [10]. We measure an event called “cache miss-
es” that captures the number of memory accesses that cannot be 
served by any of the cache memories (L1, L2, and L3 caches). 

Table 3 shows the number of cache misses per 1,000 (1K) execut-
ed instructions. Two benchmarks, canneal and streamcluster 
show a very high number of misses, thus confirming our hypothe-
sis. However, cache misses cannot quite explain behavior of 
dedup – its number of cache misses is not that high, though it still 
scales non-linearly with the clock frequency. Unlike other bench-
marks, dedup spends a significant portion of its execution time in 
input/output operations as it is witnessed by a relatively large 
number of page faults. Again, the relative impact of these stalls on 
the benchmark execution time is higher when the processor is 
running at higher clock frequencies. 

3.2 Energy 
Similarly to execution time, the total energy a processor spends on 
a benchmark execution is affected by both the number of threads 
and processor frequency. In this section, we analyze the impact of 
these two parameters on the total energy. 
Table 4 shows the total energy in Joules for all benchmarks as a 
function of the number of threads (N = 1 to N = 16) for a fixed 
processor frequency of F = 3.4 GHz. Figure 5 shows energy sav-
ings as a function of the number of threads, calculated as the ratio 
of the energy consumed by a benchmark run as a single-threaded 
application, E(1), and the energy consumed by a benchmark run 
with N threads, E(N).  
The total energy is directly proportional to the benchmark execu-
tion time and power, E = ET*P. As the number of threads increas-
es (1 < N ≤ 12), the execution time decreases, and thus the total 
energy tends to go down. On the other side, multiple threads run-
ning in parallel result in an increase in the current drawn by the 
processor. This, in turn, results in an increased power and conse-
quently the total energy. Which of these two trends prevails is an 
open question and depends on benchmark characteristics as well 
as on processor design. Our results indicate that the parallel exe-
cution improves overall energy efficiency for all benchmarks. The 
energy efficiency is improved over 1.5 times for almost all 
benchmarks with a sufficiently large number of threads (N = 8 to 
N = 12). The largest energy savings over a single-threaded execu-
tion is recorded for x264 when N = 12, and it reaches a factor of 
2.2. Typically, the best energy efficiency is achieved when the 
number of threads is 8 ≤ N ≤ 12, which corresponds to or slightly 
exceeds the number of logical processor cores. For some bench-

 
Figure 3. Performance speedup: normalized execution times 

as a function of the number of threads (N=1-16). 
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Figure 4. Performance scaling with frequency:  

ET(N, 2.2GHz)/ET(N, 3.4GHz). 
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Table 3. Number of cache misses per 1K executed instruc-
tions as a function of the number of threads. 

Misses/1K ins Number of Threads 

 
1 2 4 8 16 

blackscholes 0.093 0.092 0.093 0.090 0.091 

bodytrack 0.029 0.030 0.031 0.032 0.033 

canneal 9.003 9.053 9.162 8.949 9.034 

dedup 0.790 0.449 0.461 0.503 0.660 

facesim 0.534 0.536 0.712 1.065 0.796 

ferret 1.104 1.144 1.191 1.222 1.257 

fluidanimate 0.763 0.825 0.999 1.128 1.193 

freqmine 0.091 0.112 0.141 0.174 0.195 

raytrace 0.294 0.305 0.310 0.335 0.354 

streamcluster 14.954 14.914 14.865 14.879 9.697 

swaptions 0.000 0.000 0.000 0.000 0.000 

vips 0.047 0.050 0.065 0.215 0.295 

x264 0.748 1.416 2.124 2.450 2.374 
 



marks the total energy savings tend to decrease if we keep in-
creasing the number of threads beyond N = 8. The dedup and 
streamcluster benchmarks show this type of behavior. On the 
other hand, benchmarks such as blackscholes, bodytrack, ferret, 
freqmine, raytrace, and x264 plateau at a certain level of energy 
savings.  
How does frequency scaling impacts the total energy? By lower-
ing the processor clock frequency, the benchmark execution times 
will increase. On the other side, the current drawn by the micro-
processor will decrease, resulting in a lower power during pro-
gram execution.  
To analyze the impact of frequency scaling we consider the total 
energy consumed by the Parsec benchmarks when the clock fre-
quency is F = 2.2 GHz and compare it with the total energy when 
the clock frequency is F = 3.4 GHz. Figure 6 shows the ratio of 
energies E(N, 2.2)/E(N, 3.4 GHz), when 1 ≤ N ≤ 16. We can see 
that running at the lower clock frequency reduces the the total 
energy for a fixed number of threads. For N = 1, the energy when 
running at F = 2.2 GHz is between 0.74 (streamcluster) and 0.92 
(blackscholes) of the energy when running at F = 3.4 GHz. For 
N = 8, the energy when running at F = 2.2 GHz is in range be-
tween 0.67 (streamcluster) and 0.80 (blackscholes) of the energy 
when running at F = 3.4 GHz. Thus, the energy is reduced when 
running at F = 2.2 GHz, regardless of the number of threads. In 
general, the savings tend to increase with an increase in the num-

ber of threads. Expectedly, the energy savings are relatively larger 
in benchmarks where performance slowdown due to running at a 
lower frequency is smaller (canneal, streamcluster). Similar ob-
servations can be made for other clock frequencies, though the 
range of energy savings varies with the clock frequency. Lower-
ing clock frequency to the minimum F=1.6 GHz does not yield the 
best energy savings. For example, x264 with N>1 requires the 
least energy when running at 2.0 GHz and the most when running 
at 3.4 GHz. 

3.3 Energy-Time 
So far we have discussed performance and energy as a function of 
the number of threads and processor frequency. The best perfor-
mance is achieved when running at the highest clock frequency 
with the number of threads typically in range between N = 8 and 
N = 12. The best energy efficiency is typically achieved for the 
clock frequencies in range of F = 2.0 and F = 2.2 GHz. Depending 
on user needs, we may opt to optimize for either performance or 
energy. An interesting question arises when one wants to optimize 
for both the performance and energy. What are N and F that will 
provide the best performance at minimal energy?  
Figure 7 shows an energy-time plot for x264. The y-axis repre-
sents the total energy in Joules, and the x-axis represents the exe-
cution time in seconds. We analyze benchmark runs when N = 4, 
N = 8, N = 12, and N = 16 for all frequencies supported on our 
machine. We can see that x264 achieves the best performance 
when N = 12. For N = 12, lowering the processor clock frequency 

Table 4. Energy (E) in Joules as a function of the number of threads (F=3.4 GHz). 
Benchmark Number of Threads 

 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

blackscholes 1992 1511 1357 1273 1238 1193 1157 1118 1130 1124 1129 1128 1124 1123 1122 1117 

bodytrack 1804 1382 1242 1185 1158 1138 1113 1103 1101 1099 1096 1099 1098 1093 1097 1095 

canneal 2499 2013 1847 1781 1785 1699 1641 1561 1676 1670 1665 1662 1660 1663 1691 1664 

dedup 334 261 236 226 263 232 219 218 277 272 273 288 291 287 292 290 

facesim 5045 3941 3578 3528 NA 3513 NA 3451 NA NA NA NA NA NA NA 3703 

ferret 4162 3123 2771 2590 2508 2468 2448 2443 2437 2433 2428 2431 2430 2430 2431 2429 

fluidanimate 3890 3060 NA 2713 NA NA NA 2584 NA NA NA NA NA NA NA 2768 

freqmine 5651 4181 3778 3647 3394 3371 3319 3290 3298 3288 3306 3306 3304 3311 3307 3303 

raytrace 2972 2444 2246 2152 2099 2058 2015 1988 1989 1984 1982 1978 1980 1989 1979 1979 

streamcluster 4801 3612 3298 3108 2975 2771 2639 2526 3277 3263 3257 3272 3277 3328 3386 3299 

swaptions 3280 2425 2136 1979 1979 1934 1872 1828 1853 1840 1845 1837 1848 1837 1839 1842 

vips 1404 1042 926 855 831 824 828 835 827 845 832 836 844 830 828 829 

x264 1608 903 821 790 791 768 744 729 729 729 728 728 728 729 727 728 

 
 

 

 
Figure 5. Energy savings as a function of the number of 

threads: E(1, 3.4GHz)/E(N, 3.4GHz). 
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Figure 6. Energy scaling as a function of frequency:  

E(N, 2.2GHz)/E(N, 3.4GHz). 
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from 3.4 GHz to 2.8 GHz increases execution time from 15.9 s to 
18.1 s (or ~13% degradation) and decreases energy from 728.5 to 
589.5 Joules (or ~19 % energy savings). Thus, an operating point 
of (N = 12, F = 2.8 GHz) is more desirable than (N = 12, F = 3.4 
GHz).  
Figure 8 shows the ratio of the energy-time product for single-
threaded execution at maximum clock frequency (N=1, F=3.4) 
and the energy-time product when N and F are varied. We sum-
marize this metric for all benchmarks using a geometric mean. 
When all PARSEC benchmarks are considered together, the opti-
mal operating point when both energy and execution time are 
considered equally is at (N = 10, F = 2.8 GHz) or (N = 10, F = 3.1 
GHz).  

 
Figure 7. Energy-Time for x264. 

 
Figure 8. Energy-Time speedup for PARSEC. 

4. CONCLUSIONS 
Growing complexity of modern multicores that integrate a number 
of processor cores, hardware accelerators, on-chip interconnect, 
and cache hierarchies, poses a number of challenges to software 
developers who are responsible for tuning and optimization of 
applications. In addition to performance, power and energy used 
by an application become critical in many application uses. A 
number of new power management schemes and tools are intro-
duced to support software developers to estimate power and ener-
gy.  
In conditions when a user can vary a number of parameters such 
as processor core clock frequency and the number of threads in a 

parallel benchmark, several practical questions arise: what is the 
optimal number of threads to achieve the best performance, what 
is the optimal clock frequency to achieve the best energy-
efficiency, and how these two can be optimized together.  
In this paper we presented the results of our measurement-based 
experimental study aimed at quantifying the impact of frequency 
scaling and thread scaling on performance and energy. We meas-
ured execution time and energy consumed by an Intel Xeon 1240 
v2 microprocessor while executing the Parsec benchmarks. We 
find that maximum performance is achieved when the number of 
threads matches or slightly exceeds the number of logical proces-
sors (8 ≤ N ≤ 12) and the clock frequency is at maximum (F = 3.4 
GHz). The minimum energy is consumed when clock frequency is 
in range 2.0 ≤ F ≤ 2.4 GHz. Finally, we find that an optimal Ener-
gy-Performance ratio is achieved when 8 ≤ N ≤ 12 and 
2.8 ≤ F ≤ 3.0 GHz. 
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