
Impact of Thread and Frequency Scaling on Performance
and Energy in Modern Multicores:

A Measurement-based Study

Armen Dzhagaryan
Electrical and Computer Engineering

The University of Alabama in Huntsville
301 Sparkman Dr, Huntsville, AL 35899

aad0002@uah.edu

Aleksandar Milenković
Electrical and Computer Engineering

The University of Alabama in Huntsville
301 Sparkman Dr, Huntsville, AL 35899

milenka@uah.edu

ABSTRACT
Modern microprocessors integrate a growing number of compo-
nents on a single chip, such as processor cores, graphics proces-
sors, on-chip interconnects, shared caches, memory controllers,
and I/O interfaces. An ever-increasing complexity and the number
of components present new challenges to software developers
interested in finding operating points that strike an optimal bal-
ance between performance and energy consumed. In this paper we
analyze the impact of thread scaling and frequency scaling on
performance and energy in modern multicores. By exploiting
recent additions to microprocessors that support energy estimation
and power management, we measure execution times and energy
consumed on an Intel Xeon 1240 v2 microprocessor when run-
ning the PARSEC benchmark suite. We conduct a number of
experiments by varying the number of threads, 1 ≤ N ≤ 16, and
processor clock frequency, 1.6 ≤ F ≤ 3.4 GHz. We find that the
maximum performance is achieved when the number of threads
matches or slightly exceeds the number of logical processors
(8 ≤ N ≤ 12) and the clock frequency is at maximum
(F = 3.4 GHz). The minimum energy is consumed when the pro-
cessor clock frequency is in range 2.0 ≤ F ≤ 2.4 GHz. Finally, we
find that the best performance at minimal energy is achieved when
8 ≤ N ≤ 12 and 2.8 ≤ F ≤ 3.1 GHz.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Measurement techniques.

General Terms
Measurement, Performance, Experimentation.

Keywords
Energy-efficiency, Power Profiling.

1. INTRODUCTION
Modern microprocessors have evolved into complex system-on-a-
chip (SoC) designs that integrate a growing number of general-
purpose processor cores, graphics processors, memory controllers,

and other components on a single silicon die. They are often re-
ferred to as multicore processors or just multicores. Multicores
continue to evolve by integrating an ever increasing number of
new architectural structures and features aimed at achieving high-
performance. Such features include vector processing, tight inte-
gration with graphics, hardware acceleration of various time-
critical operations, and deep caching hierarchies. In such condi-
tions, exploiting the performance of modern multicores require
intimate knowledge of underlying architecture. Software develop-
ers thus rely on modern software tools for software tuning and
optimization to fully harness the capabilities of modern multi-
cores.

In conditions when power and thermal envelopes of multicores
are bounded, increasing levels of integration and core clock fre-
quencies pose new power and energy challenges. To address these
challenges, the focus has shifted to highly energy-efficient de-
signs. In addition, a number of new power management schemes
and power states have been introduced. They are geared toward
achieving the maximum performance when needed and preserving
power and energy when the maximum performance is not needed.
For example, various components including processor cores can
be selectively turned on or off to match workload, the processor
core clocks can be adjusted “on-the-fly” in order to reduce power
or temperature of the die (dynamic frequency scaling, DFS), and
the power supply can also be adjusted “on-the-fly” (dynamic volt-
age scaling, DVS). Modern operating systems include utilities that
allow users to set clock frequency or choose a particular power
scheme that fits their application needs [1].

Modern Intel microprocessors, starting with SandyBridge archi-
tecture, include the Running Average Power Limit (RAPL) inter-
face [2]. Although the RAPL interface is designed to limit power
usage on a chip while ensuring maximum performance, this inter-
face supports power and energy measurement capabilities. An on-
chip circuitry estimates energy usage based on a model driven by:
(a) architectural event counters from all components, (b) tempera-
ture readings on the die, and (c) current leakage models. Estimates
are available to users in a model-specific register (MSR), updated
in the order of milliseconds. Energy estimates offered by RAPL
have been validated by Intel and closely follow actual energy used
[3]. A number of tools have been introduced [4]–[8] to allow
software developers to estimate power and energy of running
programs.

When executing a parallel program on a multicore machine we
can vary a number of parameters, such as the number of threads
and the processor clock frequencies. These parameters have a
direct impact on performance and energy consumed. What is the
optimal number of threads for a given program on a given ma-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for com-
ponents of this work owned by others than ACM must be honored. Ab-
stracting with credit is permitted. To copy otherwise, or republish, to post
on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
ACM SE '14, March 28 - 29 2014, Kennesaw, GA, USA
Copyright 2014 ACM 978-1-4503-2923-1/14/03…$15.00.
http://dx.doi.org/10.1145/2638404.2638473

mailto:Permissions@acm.org
http://dx.doi.org/10.1145/2638404.2638473

chine if we want to achieve the maximum performance? What is
the optimal clock frequency if we want to minimize energy con-
sumed? To answer these questions we perform a measurement
based study that explores the impact of thread and frequency scal-
ing on performance and energy consumed in modern multicores.

In this paper we present the results of our study performed on an
Intel’s Xeon E3-1240 v2 microprocessor when running parallel
programs from the PARSEC benchmark suite [9]. We measure
benchmark execution times and energy consumed using LIKWID
tool suite, while varying the number of threads from N = 1 to
N = 16 and processor clock frequency from a maximum F = 3.4
GHz to a minimum F = 1.6 GHz. Section 2 describes our experi-
mental methodology, including measuring setup, benchmarks,
experiments, and metrics.
We find that majority of Parsec benchmarks achieve the maxi-
mum performance when the number of threads matches or slightly
exceeds the number of logical processors on a test machine
(8 ≤ N ≤ 12) and when the clock frequency is at maximum F = 3.4
GHz. We find that the minimum energy is consumed when clock
frequency is in range 2.0 ≤ F ≤ 2.4 GHz for almost all bench-
marks. Finally, we find that an optimal performance-energy ratio
is achieved when 8 ≤ N ≤ 12 and 2.8 ≤ F ≤ 3.1 GHz. Section 3

describes the detailed results of our experimental evaluation, and
Section 4 concludes the paper.

2. EXPERIMENTAL METHODOLOGY
In this section we describe our experimental methodology, includ-
ing hardware and software setup (2.1), benchmarks (2.2), and
experiments and metrics (2.3).

2.1 Hardware and Software Setup
Our experimental setup includes a Dell PowerEdge T110 II server
with a single Intel Xeon E3-1240 v2 processor and 16 Gbytes of
memory. The Xeon E3-1240 v2 processor consists of a single
monolithic die with four 2-way threaded physical processor cores
for a total of 8 logical processor cores, a shared 8 Mbytes L3/LLC
cache memory, an integrated memory controller, PCI and DMI
interfaces, a graphics processor, and a system agent (Figure 1).
The system agent encompasses a module responsible for power
management called the Package Control Unit (PCU). The PCU
connects to individual processor cores and other functional blocks
via power management agents that collect information about pow-
er consumption and junction temperature. The PCU runs firmware
that constantly monitors power and thermal conditions and per-
forms various power-management functions, e.g., turn on or off a
processor core or portions of the LLC cache or dynamically scale
voltage and frequency.

The server runs the CentOS 6.3 operating system with 2.6.32
Linux kernel. To change the processor clock frequency we use a
set of utilities called cpufrequtils. The cpufreq-info utility allows a
user to inspect the current clock frequency setup on each of the
processor cores. The cpufreq-set utility allows a user to set the
minimum, the maximum, and the current clock frequency, as well
as a governor that specifies a power scheme for each processor
core. The power schemes, such as Performance, Powersave, Us-
erspace, Ondemand, and Conservative [1], dictate to the Linux
kernel how to dynamically adjust the processor frequencies. For
example, the Performance governor forces processor cores to
constantly run at the maximum allowed frequency. The Xeon E3-
1240 v2 processor supports a total of 18 frequencies, ranging from
the minimum 1.6 GHz to the maximum 3.4 GHz. In our experi-
ments we force all processor cores to run at a specific clock fre-
quency, which remains fixed during a benchmark run.

Table 1. PARSEC Benchmark suite.
 Benchmark Application Domain Parallelism Model Working Set Communication

1 blackscholes Computational finance application data-parallel small low

2 bodytrack Computer vision application pipeline medium medium

3 canneal Electronic Design Automation (EDA) kernel data-parallel huge high

4 dedup Enterprise storage kernel pipeline huge high

5 facesim Computer animation application data-parallel large medium

6 ferret Similarity Search application pipeline huge high

7 fluidanimate Computer animation application data-parallel large medium

8 freqmine Data mining application data-parallel huge medium

9 raytrace Computer animation application data-parallel medium high

10 streamcluster Machine learning application data-parallel medium medium

11 swaptions Computational finance application data-parallel medium low

12 vips Media application data-parallel medium medium

13 x264 Media application pipeline medium high

Figure 1. Block diagram of an Intel Xeon E3-1240 v2.

2.2 Benchmarks
The Princeton Application Repository for Shared-Memory Com-
puters (PARSEC) [9] is a benchmark suite composed of a diverse
set of multithreaded programs. The suite focuses on emerging
workloads and was designed to be representative of the next-
generation shared-memory programs for chip-multiprocessors. It
is frequently used in research as well as in performance measure-
ments on real machines.

Table 1 gives the PARSEC benchmark names, as well as addi-
tional information including application domain, parallelism
mode, working set size, and communication intensity between
threads. The PARSEC benchmarks cover a wide range of comput-
er tasks such as financial analysis (1, 11), computer vision (2),
engineering (3), enterprise storage (4), animation (5, 7 and 9),
similarity search (6), data mining (8), machine learning (10), and
media processing (12, 13). Benchmarks vary in type of parallel-
ization model (data-parallel or pipelined), working set (ranging
from small to huge), and communication intensity (varying be-
tween low and high). For each benchmark several data input sets
are available, including Test, Simdev, Simsmall, Simmedium, Sim-
large, and Native (with Test being the smallest and Native being
the largest input set). In our experiments we use PARSEC 3.0
benchmarks compiled using the gcc 4.4.7 compiler. The Native
input set is used as the workload.

2.3 Experiments and Metrics
To evaluate the impact of the thread and frequency scaling on
performance and energy efficiency, we conduct a number of ex-
periments while varying the number of threads (from N = 1 to
N = 16) and the clock frequency (F = 3.4, 3.3, 3.1, 3.0, 2.8, 2.6,
2.5. 2.4, 2.2, 2.1, 2.0, 1.9, 1.7, 1.6 GHz). Using the cpufrequtils
the clock frequency is set to a chosen value, and the benchmarks
are run under the likwid-powermeter tool [6]–[8].

To illustrate the running of PARSEC benchmarks, an example run
script for blackscholes is shown in Figure 2. The outer loop sets
the number of threads (N) and the inner loop defines a number of
runs for each experiment (set to 3 for each benchmark/thread
combination). The command line specifies the benchmark execut-
able (blackscholes), its input (in_10M.txt) and output (prices.txt).
The likwid-powermeter tool captures the benchmark run time (or
wall-clock execution time, ET) and the energy consumed in joules
(E). getResults is a script based on the grep and awk Linux utili-

ties that filters the output report to extract and record the bench-
mark execution time and the energy consumed. Similar scripts are
prepared for all Parsec benchmarks.

3. RESULTS
3.1 Performance
Execution times of benchmarks are affected by both the number
of threads and processor frequency. We can expect that the execu-
tion time scales linearly with the processor clock cycles, though
some deviations caused by benchmark characteristics (e.g., fre-
quency of memory references, data locality, and others) are possi-
ble. In addition, synchronization among multiple threads and data
communication can impact the performance of multi-threaded
programs.
First, we consider the impact of thread scaling. Table 2 shows the
execution times for all PARSEC benchmarks, as a function of the
number of threads, ranging from N = 1 to N = 16, when the pro-
cessor clock is set to the maximum, F = 3.4 GHz. Figure 3 shows
the speedup calculated as the ratio between the execution time for
a single-threaded run and the execution time with N threads,
1 ≤ N ≤ 16, ET(1)/ET(N). The performance increases as we in-
crease the number of threads up to a point. Some benchmarks
such as freqmine, swaptions, and x264 scale very well, achieving
maximum speedups of 6.7, 6.8, and 7.2, respectively. Somewhat
surprisingly, several benchmarks achieve their maximum
speedups when the number of threads exceeds the number of
available threads on our machine (N = 8). Scaling beyond N = 12
threads yields no significant performance benefits, and often re-
sults in a slight performance degradation (e.g., in bodytrack,
freqmine, raytrace, streamcluster, swaptions).
How does performance scale with clock frequency? To answer

Table 2. Execution time (ET) in seconds as a function of the number of threads (F = 3.4GHz).
Benchmark Number of Threads

N=1 N=2 N=3 N=4 N=5 N=6 N=7 N=8 N=9 N=10 N=11 N=12 N=13 N=14 N=15 N=16

blackscholes 150.9 84.5 62.3 52.4 50.6 47.3 44.8 41.7 42.7 42.3 42.7 42.6 42.2 42.1 42.0 41.6

bodytrack 126.6 67.3 47.2 41.0 37.8 35.7 33.5 32.9 32.7 25.1 25.3 25.7 26.0 26.2 26.7 32.4

canneal 193.8 123.0 98.7 91.7 94.8 87.8 82.8 78.0 90.0 62.5 61.4 60.7 60.7 61.0 62.1 84.7

dedup 21.2 12.6 10.9 10.4 14.2 10.5 9.6 9.6 13.5 11.7 11.7 12.4 13.4 13.5 13.8 13.9

facesim 338.1 175.7 124.4 114.5 NA 105.5 0.0 92.7 NA NA NA NA NA NA NA 113.7

ferret 270.7 137.5 95.9 78.2 70.5 66.7 64.7 64.1 63.5 45.5 45.5 45.8 46.1 46.4 46.8 62.6

fluidanimate 280.1 148.5 NA 91.4 NA NA NA 68.6 NA NA NA NA NA NA NA 76.1

freqmine 404.4 203.0 150.3 130.2 99.4 95.3 89.2 85.5 86.7 60.5 61.8 62.4 62.4 63.3 63.5 87.1

raytrace 211.5 137.7 111.7 100.7 97.3 94.3 91.7 90.2 90.4 63.4 63.5 63.6 64.1 64.9 64.7 89.6

streamcluster 357.1 186.1 129.7 108.5 105.0 91.5 81.8 74.5 112.5 76.8 75.6 75.5 75.5 76.4 77.7 107.1

swaptions 240.1 120.1 80.7 61.9 62.7 57.6 51.7 47.1 49.9 35.5 36.1 35.9 37.1 36.7 37.1 48.5

vips 93.5 48.3 35.5 31.1 28.4 25.5 25.5 25.0 23.8 20.9 19.7 20.5 21.8 20.4 20.5 23.6

x264 109.7 40.6 28.3 23.2 23.7 21.4 19.3 18.1 18.0 15.3 15.6 15.9 16.2 16.5 16.8 17.8

1. for N in {1..16} # the number of threads
2. do
3. echo "$N" | tee -a $path/likwid.txt;
4. for i in {1..3}
5. do
6. likwid-powermeter $path2exe/blackscholes

$N in_10M.txt prices.txt | getResults >>
$path/likwid.txt

7. done
8. done

Figure 2. Run script for blackscholes.

this question, we compare benchmark execution times at two
clock frequencies. Figure 4 shows the ratio of the benchmark
execution times for two distinct clock frequencies of F = 2.2 and
F = 3.4 GHz, ET(2.2GHz)/ET(3.4GHz). The ratio of these two
frequencies is 3.4/2.2=1.54, and we expect to see a similar ratio
between the benchmark execution times. Indeed, the results from
Figure 4 show that many benchmarks exhibit linear scaling inde-
pendent of the number of threads, e.g., blackscholes, bodytrack,
freqmine, raytrace, and swaptions. Three notable exceptions are
canneal, dedup, and streamcluster. For these three benchmarks
the slowdown due to running at lower frequency is less than ex-
pected 1.54 times: ~1.3 times for canneal and 1.2 times for
streamcluster. To explain this behavior, we take a closer look at
characteristics of these benchmarks, especially their cache
memory behavior.
Cache memories in modern processors play a critical role in
achieving high performance. In benchmarks where the number of
of cache misses is relatively high, the processor clock frequency
scaling may result in non-linear effects. For example, let as as-
sume that the processor is waiting on a cache miss to be serviced
from main memory, which may take hundreds of processor clock
cycles. Let us assume that it takes 100 ns to satisfy a cache miss.
If a processor is running at F = 3.4 GHz, the stall time corre-
sponds to 340 clock cycles. However, when the processor is run-
ning at F = 2.2 GHz, the stall time corresponds to 220 processor
clock cycles. Thus, the penalty due to cache misses expressed in
clock cycles is relatively higher when the processor is running at a
higher clock frequency. We expect these benchmarks to have a
significant percentage of cache misses.
To confirm this observation we profile the PARSEC benchmarks
using the perf tool [10]. We measure an event called “cache miss-
es” that captures the number of memory accesses that cannot be
served by any of the cache memories (L1, L2, and L3 caches).

Table 3 shows the number of cache misses per 1,000 (1K) execut-
ed instructions. Two benchmarks, canneal and streamcluster
show a very high number of misses, thus confirming our hypothe-
sis. However, cache misses cannot quite explain behavior of
dedup – its number of cache misses is not that high, though it still
scales non-linearly with the clock frequency. Unlike other bench-
marks, dedup spends a significant portion of its execution time in
input/output operations as it is witnessed by a relatively large
number of page faults. Again, the relative impact of these stalls on
the benchmark execution time is higher when the processor is
running at higher clock frequencies.

3.2 Energy
Similarly to execution time, the total energy a processor spends on
a benchmark execution is affected by both the number of threads
and processor frequency. In this section, we analyze the impact of
these two parameters on the total energy.
Table 4 shows the total energy in Joules for all benchmarks as a
function of the number of threads (N = 1 to N = 16) for a fixed
processor frequency of F = 3.4 GHz. Figure 5 shows energy sav-
ings as a function of the number of threads, calculated as the ratio
of the energy consumed by a benchmark run as a single-threaded
application, E(1), and the energy consumed by a benchmark run
with N threads, E(N).
The total energy is directly proportional to the benchmark execu-
tion time and power, E = ET*P. As the number of threads increas-
es (1 < N ≤ 12), the execution time decreases, and thus the total
energy tends to go down. On the other side, multiple threads run-
ning in parallel result in an increase in the current drawn by the
processor. This, in turn, results in an increased power and conse-
quently the total energy. Which of these two trends prevails is an
open question and depends on benchmark characteristics as well
as on processor design. Our results indicate that the parallel exe-
cution improves overall energy efficiency for all benchmarks. The
energy efficiency is improved over 1.5 times for almost all
benchmarks with a sufficiently large number of threads (N = 8 to
N = 12). The largest energy savings over a single-threaded execu-
tion is recorded for x264 when N = 12, and it reaches a factor of
2.2. Typically, the best energy efficiency is achieved when the
number of threads is 8 ≤ N ≤ 12, which corresponds to or slightly
exceeds the number of logical processor cores. For some bench-

Figure 3. Performance speedup: normalized execution times

as a function of the number of threads (N=1-16).

0

1

2

3

4

5

6

7

8

Benchmark

Performance Speedup: ET(1)/ET(N) 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

Figure 4. Performance scaling with frequency:

ET(N, 2.2GHz)/ET(N, 3.4GHz).

0.0

0.5

1.0

1.5

2.0

Benchmark

Scaling Performance: ET(N, 2.2 GHz)/ET(N, 3.4 GHz) 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

Table 3. Number of cache misses per 1K executed instruc-
tions as a function of the number of threads.

Misses/1K ins Number of Threads

1 2 4 8 16

blackscholes 0.093 0.092 0.093 0.090 0.091

bodytrack 0.029 0.030 0.031 0.032 0.033

canneal 9.003 9.053 9.162 8.949 9.034

dedup 0.790 0.449 0.461 0.503 0.660

facesim 0.534 0.536 0.712 1.065 0.796

ferret 1.104 1.144 1.191 1.222 1.257

fluidanimate 0.763 0.825 0.999 1.128 1.193

freqmine 0.091 0.112 0.141 0.174 0.195

raytrace 0.294 0.305 0.310 0.335 0.354

streamcluster 14.954 14.914 14.865 14.879 9.697

swaptions 0.000 0.000 0.000 0.000 0.000

vips 0.047 0.050 0.065 0.215 0.295

x264 0.748 1.416 2.124 2.450 2.374

marks the total energy savings tend to decrease if we keep in-
creasing the number of threads beyond N = 8. The dedup and
streamcluster benchmarks show this type of behavior. On the
other hand, benchmarks such as blackscholes, bodytrack, ferret,
freqmine, raytrace, and x264 plateau at a certain level of energy
savings.
How does frequency scaling impacts the total energy? By lower-
ing the processor clock frequency, the benchmark execution times
will increase. On the other side, the current drawn by the micro-
processor will decrease, resulting in a lower power during pro-
gram execution.
To analyze the impact of frequency scaling we consider the total
energy consumed by the Parsec benchmarks when the clock fre-
quency is F = 2.2 GHz and compare it with the total energy when
the clock frequency is F = 3.4 GHz. Figure 6 shows the ratio of
energies E(N, 2.2)/E(N, 3.4 GHz), when 1 ≤ N ≤ 16. We can see
that running at the lower clock frequency reduces the the total
energy for a fixed number of threads. For N = 1, the energy when
running at F = 2.2 GHz is between 0.74 (streamcluster) and 0.92
(blackscholes) of the energy when running at F = 3.4 GHz. For
N = 8, the energy when running at F = 2.2 GHz is in range be-
tween 0.67 (streamcluster) and 0.80 (blackscholes) of the energy
when running at F = 3.4 GHz. Thus, the energy is reduced when
running at F = 2.2 GHz, regardless of the number of threads. In
general, the savings tend to increase with an increase in the num-

ber of threads. Expectedly, the energy savings are relatively larger
in benchmarks where performance slowdown due to running at a
lower frequency is smaller (canneal, streamcluster). Similar ob-
servations can be made for other clock frequencies, though the
range of energy savings varies with the clock frequency. Lower-
ing clock frequency to the minimum F=1.6 GHz does not yield the
best energy savings. For example, x264 with N>1 requires the
least energy when running at 2.0 GHz and the most when running
at 3.4 GHz.

3.3 Energy-Time
So far we have discussed performance and energy as a function of
the number of threads and processor frequency. The best perfor-
mance is achieved when running at the highest clock frequency
with the number of threads typically in range between N = 8 and
N = 12. The best energy efficiency is typically achieved for the
clock frequencies in range of F = 2.0 and F = 2.2 GHz. Depending
on user needs, we may opt to optimize for either performance or
energy. An interesting question arises when one wants to optimize
for both the performance and energy. What are N and F that will
provide the best performance at minimal energy?
Figure 7 shows an energy-time plot for x264. The y-axis repre-
sents the total energy in Joules, and the x-axis represents the exe-
cution time in seconds. We analyze benchmark runs when N = 4,
N = 8, N = 12, and N = 16 for all frequencies supported on our
machine. We can see that x264 achieves the best performance
when N = 12. For N = 12, lowering the processor clock frequency

Table 4. Energy (E) in Joules as a function of the number of threads (F=3.4 GHz).
Benchmark Number of Threads

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

blackscholes 1992 1511 1357 1273 1238 1193 1157 1118 1130 1124 1129 1128 1124 1123 1122 1117

bodytrack 1804 1382 1242 1185 1158 1138 1113 1103 1101 1099 1096 1099 1098 1093 1097 1095

canneal 2499 2013 1847 1781 1785 1699 1641 1561 1676 1670 1665 1662 1660 1663 1691 1664

dedup 334 261 236 226 263 232 219 218 277 272 273 288 291 287 292 290

facesim 5045 3941 3578 3528 NA 3513 NA 3451 NA NA NA NA NA NA NA 3703

ferret 4162 3123 2771 2590 2508 2468 2448 2443 2437 2433 2428 2431 2430 2430 2431 2429

fluidanimate 3890 3060 NA 2713 NA NA NA 2584 NA NA NA NA NA NA NA 2768

freqmine 5651 4181 3778 3647 3394 3371 3319 3290 3298 3288 3306 3306 3304 3311 3307 3303

raytrace 2972 2444 2246 2152 2099 2058 2015 1988 1989 1984 1982 1978 1980 1989 1979 1979

streamcluster 4801 3612 3298 3108 2975 2771 2639 2526 3277 3263 3257 3272 3277 3328 3386 3299

swaptions 3280 2425 2136 1979 1979 1934 1872 1828 1853 1840 1845 1837 1848 1837 1839 1842

vips 1404 1042 926 855 831 824 828 835 827 845 832 836 844 830 828 829

x264 1608 903 821 790 791 768 744 729 729 729 728 728 728 729 727 728

Figure 5. Energy savings as a function of the number of

threads: E(1, 3.4GHz)/E(N, 3.4GHz).

0.0

0.5

1.0

1.5

2.0

2.5

Benchmark

Energy Savings: E(1)/E(N) 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

Figure 6. Energy scaling as a function of frequency:

E(N, 2.2GHz)/E(N, 3.4GHz).

0.0

0.5

1.0

Benchmark

Scaling Energy: E(N, 2.2 GHz)/E(N, 3.4 GHz) 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

from 3.4 GHz to 2.8 GHz increases execution time from 15.9 s to
18.1 s (or ~13% degradation) and decreases energy from 728.5 to
589.5 Joules (or ~19 % energy savings). Thus, an operating point
of (N = 12, F = 2.8 GHz) is more desirable than (N = 12, F = 3.4
GHz).
Figure 8 shows the ratio of the energy-time product for single-
threaded execution at maximum clock frequency (N=1, F=3.4)
and the energy-time product when N and F are varied. We sum-
marize this metric for all benchmarks using a geometric mean.
When all PARSEC benchmarks are considered together, the opti-
mal operating point when both energy and execution time are
considered equally is at (N = 10, F = 2.8 GHz) or (N = 10, F = 3.1
GHz).

Figure 7. Energy-Time for x264.

Figure 8. Energy-Time speedup for PARSEC.

4. CONCLUSIONS
Growing complexity of modern multicores that integrate a number
of processor cores, hardware accelerators, on-chip interconnect,
and cache hierarchies, poses a number of challenges to software
developers who are responsible for tuning and optimization of
applications. In addition to performance, power and energy used
by an application become critical in many application uses. A
number of new power management schemes and tools are intro-
duced to support software developers to estimate power and ener-
gy.
In conditions when a user can vary a number of parameters such
as processor core clock frequency and the number of threads in a

parallel benchmark, several practical questions arise: what is the
optimal number of threads to achieve the best performance, what
is the optimal clock frequency to achieve the best energy-
efficiency, and how these two can be optimized together.
In this paper we presented the results of our measurement-based
experimental study aimed at quantifying the impact of frequency
scaling and thread scaling on performance and energy. We meas-
ured execution time and energy consumed by an Intel Xeon 1240
v2 microprocessor while executing the Parsec benchmarks. We
find that maximum performance is achieved when the number of
threads matches or slightly exceeds the number of logical proces-
sors (8 ≤ N ≤ 12) and the clock frequency is at maximum (F = 3.4
GHz). The minimum energy is consumed when clock frequency is
in range 2.0 ≤ F ≤ 2.4 GHz. Finally, we find that an optimal Ener-
gy-Performance ratio is achieved when 8 ≤ N ≤ 12 and
2.8 ≤ F ≤ 3.0 GHz.

5. ACKNOWLEDGMENTS
This work has been supported in part by National Science Foun-
dation grants CNS-1205439 and CNS-1217470.

6. REFERENCES

[1] “CPU Frequency Scaling - ArchWiki.” [Online]. Available:

https://wiki.archlinux.org/index.php/CPU_Frequency_Scalin
g. [Accessed: 19-Dec-2013].

[2] “Intel® 64 and IA-32 Architectures Software Developer
Manuals,” Intel. [Online]. Available:
http://www.intel.com/content/www/us/en/processors/archite
ctures-software-developer-manuals.html. [Accessed: 21-
Dec-2013].

[3] E. Rotem, A. Naveh, D. Rajwan, A. Ananthakrishnan, and E.
Weissmann, “Power-Management Architecture of the Intel
Microarchitecture Code-Named Sandy Bridge,” IEEE Micro,
vol. 32, no. 2, pp. 20 –27, Apr. 2012.

[4] “PAPI.” [Online]. Available:
http://icl.cs.utk.edu/papi/index.html. [Accessed: 20-Dec-
2013].

[5] V. M. Weaver, M. Johnson, K. Kasichayanula, J. Ralph, P.
Luszczek, D. Terpstra, and S. Moore, “Measuring Energy
and Power with PAPI,” in 2012 41st International Confer-
ence on Parallel Processing Workshops (ICPPW), 2012, pp.
262–268.

[6] “likwid - Lightweight performance tools - Google Project
Hosting.” [Online]. Available:
http://code.google.com/p/likwid/. [Accessed: 08-Dec-2013].

[7] J. Treibig, G. Hager, and G. Wellein, “LIKWID: Light-
weight Performance Tools,” arXiv:1104.4874 [cs], pp. 207–
216, Sep. 2010.

[8] J. Treibig, G. Hager, and G. Wellein, “LIKWID: A light-
weight performance-oriented tool suite for x86 multicore en-
vironments,” arXiv:1004.4431 [cs], Apr. 2010.

[9] C. Bienia, “Benchmarking Modern Multiprocessors,”
Princeton University, Princeton, NJ, USA, 2011.

[10] “Perf Wiki.” [Online]. Available:
https://perf.wiki.kernel.org/index.php/Main_Page. [Ac-
cessed: 07-Dec-2013].

3.4

3.3

3.1

3

2.8

2.6
2.5 2.4 2.22.1 2 1.9 1.7 1.6

3.4

3.3

3.1
3

2.8
2.6

2.52.4 2.2 2.1 2 1.9 1.7 1.6

3.4

3.3

3.1
3

2.8
2.62.52.4 2.22.12 1.9 1.7 1.6

500

550

600

650

700

750

800

850

15 20 25 30 35 40 45 50

En
er

gy
 [J

]

Time [s]

x264
4

8

12

16

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

ET
 S

pe
ed

up

Threads

PARSEC-ALL: E*T(N=1,F=3.4)/E*T(N,F)

F=3.4 F=3.1 F=2.8 F=2.5 F=2.2 F=1.9 F=1.6

	1. INTRODUCTION
	2. EXPERIMENTAL METHODOLOGY
	2.1 Hardware and Software Setup
	2.2 Benchmarks
	2.3 Experiments and Metrics

	3. RESULTS
	3.1 Performance
	3.2 Energy
	3.3 Energy-Time

	4. CONCLUSIONS
	5. ACKNOWLEDGMENTS
	6. REFERENCES

