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Abstract — The importance of optimizing data transfers be-

tween mobile computing devices and the cloud is increasing with 

an exponential growth of mobile data traffic. Lossless data com-

pression can be essential in increasing communication through-

put, reducing communication latency, achieving energy-efficient 

communication, and making effective use of available storage. In 

this paper we introduce analytical models for estimating effective 

throughputs of uncompressed and compressed data file transfers 

that utilize common compression utilities. The proposed analyti-

cal models are experimentally verified using modern 

smartphones as mobile devices. The proposed analytical models 

are instrumental in developing a framework for seamless optimi-

zation of file transfers in mobile computing.1 
 

Index Terms — Mobile computing, Data compression, Per-

formance Evaluation, Energy-aware systems 

I. INTRODUCTION 

Mobile computing devices such as smartphones, tablets, and 

e-readers have become the dominant platforms for consuming 

digital information. The data traffic originating on mobile 

computing devices and Internet-of-Things (IoT) platforms has 

been growing exponentially over the last several years. A re-

port from Cisco states that the global mobile data traffic grew 

69% in 2014 relative to 2013, reaching 2.5 exabytes per 

month, which is over 30 times greater than the total Internet 

traffic in 2000 [1]. It is forecast that the global mobile data 

traffic will grow nearly 10-fold from 2014 to 2019, reaching 

24.3 exabytes per month. 

Lossless data compression can increase communication 

throughput, reduce latency, save energy, and increase availa-

ble storage. However, compression introduces additional 

computational overhead that may exceed any gains due to 

transferring or storing fewer bytes. Compression utilities on 

mobile computing platforms differ in compression ratio, com-

pression and decompression speeds, and energy requirements. 

In addition, compression utilities support a range of compres-

sion levels, with lower levels favoring speed and higher levels 

favoring better compression ratio. When transferring data, we 

would like to have an agent to determine whether compressed 
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transfers are beneficial, and, if so, select the most beneficial 

compression utility and compression level. A first step toward 

designing such an agent is to obtain a good understanding of 

various parameters impacting data transfers. 

Lossless data compression is currently being used to reduce 

the required bandwidth during file downloads and to speed up 

web page loads in browsers. Google’s Flywheel proxy [2], 

Google Chrome [3], Amazon Silk [4], as well as the mobile 

applications Onavo Extend [5] and Snappli [6] use proxy serv-

ers to provide HTTP compression for all pages during web 

browsing. For file downloads, several Google services, such as 

Gmail and Drive, provide zip compression [7] of files and 

attachments [8]. Similarly, application stores such as Google 

Play and Apple’s App Store use zip or zip-derived containers 

for application distribution. Several Linux distributions are 

also using common compression utilities such as gzip, bzip2, 

and xz for their software repositories. 

The importance of lossless compression in network data 

transfers has also been recognized in academia [9]–[13]. Re-

cent studies [14], [15] focused on measurement-based experi-

mental evaluation of compressed and uncompressed file trans-

fers on the state-of-the-art mobile devices. These studies 

showed that selected compressed transfers over WLAN and 

cellular interfaces outperform corresponding uncompressed 

file transfers. However, not a single combination of a com-

pression utility and a compression level performs the best for 

all file transfers and network conditions. A number of parame-

ters may impact the effectiveness of file uploads and down-

loads initiated on a mobile device. These parameters include 

the type of network interface (e.g., cellular, WLAN), network 

connection throughput and latency, type and size of trans-

ferred files, and mobile device performance characteristics. 

In this paper we introduce analytical models for estimating 

the effectiveness of uncompressed data transfers and com-

pressed data transfers that use common compression utilities. 

As a measure of effectiveness, we use the effective upload and 

download throughputs expressed in megabytes per second. 

The analytical models describe effective upload and download 

throughputs for uncompressed and compressed network trans-

fers as a function of parameters such as:  

 Uncompressed (raw) file size; 

 Local (de)compression throughput;  

 Compression ratio; and 



 

 Network parameters including network connection 

throughput and time to setup a network connection. 

We experimentally verify the proposed models on Google’s 

Nexus 4 and OnePlus One smartphones. The proposed models 

are instrumental in developing a framework for optimized data 

transfer between mobile computing devices and the cloud. The 

framework relies on agents running on mobile devices and the 

cloud to select effective modes of data upload and download 

transfers. For a given file, the framework will utilize the ana-

lytical models to estimate effectiveness of different file trans-

fer options and to select the most effective approach.  

The rest of this paper is organized as follows. Section II 

presents background and motivation for our study. It gives a 

system view of file transfers (II.A), describes target devices 

used in experimental verification of the models (II.B), and 

makes a case for optimizing data transfers (II.C). Section III 

describes the design and verification of analytical models for 

uncompressed file transfers. Section IV describes the design 

and verification of analytical models for compressed file trans-

fers. Finally, Section V summarizes our findings and draws 

conclusions. 

II. BACKGROUND AND MOTIVATION 

A. Data Transfer between Mobile Devices and the Cloud 

Fig. 1 illustrates file uploads and downloads initiated from a 

mobile device. A data file can be uploaded uncompressed or 

compressed. In case of uncompressed uploads, an uncom-

pressed file (UF) is uploaded over a network interface. In case 

of compressed uploads, the uncompressed file is first com-

pressed locally on the device, and then a compressed file (CF) 

is uploaded over the network. Similarly, a file can be down-

loaded from the cloud uncompressed or compressed. In case 

of compressed downloads, a compressed version of the re-

quested file is downloaded from the cloud, and then the com-

pressed file is decompressed locally on the mobile device. 

Compressed uploads and downloads utilize one of the availa-

ble compression utilities and one of the available compression 

levels.  

In this paper we consider six common compression utilities 

listed in TABLE I for compressed file transfers. We have se-

lected relatively fast gzip and lzop utilities, as well as bzip2 

and xz, which provide a high compression ratio. As many 

modern mobile devices include multicore processors, we also 

consider pigz and pbzip2, which are parallel versions of gzip 

and bzip2, respectively. For each utility we consider at least 

three compression levels: L – low, M – medium, and H – high. 

To evaluate effectiveness of a networked file transfer, we 

need to determine the total time to complete the transfer. This 

time in general includes the following components: (i) sender 

overhead time; (ii) network connection setup time; (iii) file 

transmission time; and (iv) receiver overhead time. To meas-

ure effectiveness of data transfers, we use the effective 

throughput rather than the total transfer time. The effective 

upload or download throughput, measured in megabytes per 

second, is defined as the ratio between the uncompressed file 

size in megabytes and the time needed to complete the file 

transfer. This metric thus captures the system’s ability to per-

form a file transfer in the shortest period of time regardless of 

a transfer mode. 

 

 
Fig. 1. Data transfers between mobile devices and the cloud 

 
TABLE I 

COMPRESSION UTILITIES 

Utility 
Compression 

levels 
Version Notes 

 gzip 1 – 9 (6) 1.6 DEFLATE (Ziv-Lempel, Huffman) 

 lzop 1 – 9 (3) 1.03 LZO (Lempel-Ziv-Oberhumer) 

 bzip2 1 – 9 (9) 1.0.6 RLE+BWT+MTF+RLE+Huffman 
 xz 0 – 9 (6) 5.1.0a LZMA2 

 pigz 1 – 9 (6) 2.3 Parallel implementation of gzip 

 pbzip2 1 – 9 (9) 1.1.6 Parallel implementation of bzip2 

 

The effective upload and download throughputs depend on 

many factors, including the file size and type, selected com-

pression utility, the compression level, network characteristics 

such as latency and throughput, as well as the smartphone’s 

performance. Whereas previous studies showed that com-

pressed uploads and downloads can save time and energy in 

many typical file transfers initiated from smartphones [11], 

[14], [15], there is not a single transfer method that works the 

best for all data files and network conditions. To underscore 

this problem, we conduct a measurement-based study that 

evaluates effectiveness of various data transfer options under 

different network conditions.  

B. Target Platforms 

We use Google’s Nexus 4 [16] and OnePlus One [17] 

smartphones as the target platforms during the case studies 

and the experimental evaluation of the proposed models. The 

Nexus 4 is powered by a Qualcomm Snapdragon S4 Pro 

(APQ8064) system-on-a-chip that features a quad-core ARM 

Cortex A15 processor running up to 1.512 GHz clock fre-

quency and an Adreno 320 graphics processor and 2 GB of 

RAM memory. The OnePlus One is powered by a Qualcomm 

Snapdragon 801 (MSM8974AC) system-on-a-chip that fea-

tures a quad-core ARM-based Krait 400 processor running up 

to 2.5GHz clock frequency, an Adreno 330 graphics processor 

and 3 GB of RAM memory. Both smartphones support a range 

of communication protocols including WLAN 802.11n, Blue-

tooth 4.0, and cellular networks. 

The measurements are conducted using a setup described in 

[14]. The smartphone’s operating system is upgraded to (a) 

add common compression utilities not readily supported, and 
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(b) to add utilities for managing performance measurements. 

C. The Case for Optimizing File Transfers 

In this section we show the results of a measurement based 

study that evaluates effectiveness of uncompressed and com-

pressed file transfers initiated on a mobile device. An OnePlus 

One smartphone transfers data to and from a remote server 

over the Internet using its WLAN interface. To demonstrate 

the impact of network parameters, the measurements are per-

formed when the WLAN throughput is set to 0.5 MB/s and 5 

MB/s. The WLAN network throughput is controlled using the 

Linux tc (traffic control) utility. We show that a compression 

(utility, level) pair that achieves the maximum throughput 

changes as a function of network conditions and file size and 

type. 

Upload Example. In this example we upload a text file with 

inertial sensor recordings captured on a wearable health moni-

tor – Zephyr Technologies BioHarness 3 chest belt. This type 

of data is often uploaded on the cloud where more sophisticat-

ed processing can take place. For example, we can extract the 

subject’s type and level of physical activity, detect posture 

transitions, or quantify upper body movements during stand-

ardized medical tests for mobility assessment. In this case the 

file captures an acceleration vector during subject’s activities 

of daily living that include walking, driving, and office work. 

The accelerometer vector is sampled with the frequency of 

100 Hz. The uncompressed file size is 30.88 MB. The experi-

ment involves uncompressed and compressed file uploads. For 

each type of a transfer, the time to upload the file is measured 

to determine the effective upload throughput.  

TABLE II shows the compression ratio (CR) and the effec-

tive upload throughputs for all types of file uploads. The two 

bottom rows show speedups in the effective throughput when 

comparing the best performing compressed upload to the un-

compressed upload [best/raw] and to the compressed upload 

using gzip -6 [best/gzip-6], which is considered the default 

compression mode. All utilities achieve a relatively high com-

pression ratio that ranges from 4.41 for lzop -1 to 18.92 for xz 

-9. The high compression ratio is due to redundancy in time 

stamps attached to each record. Typically, higher compression 

levels of a compression utility result in higher compression 

ratios, but unfortunately require more time to compress files, 

which results in lower effective throughputs. The uncom-

pressed upload on a 0.5 MB/s network achieves the effective 

throughput of 0.53 MB/s. The compressed upload with gzip -6 

achieves the effective throughput of 3.70 MB/s. The best ef-

fective throughput of 6.26 MB/s is achieved with xz -0. Thus, 

the compressed upload with xz -0 improves effective through-

put 11.82 times over the uncompressed upload and 1.69 times 

over the compressed upload with gzip -6. 

The uncompressed upload on a 5 MB/s network achieves 

the effective throughput of 4.52 MB/s and the compressed 

upload with gzip -6 achieves the effective throughput of only 

2.36 MB/s. This means that the compressed upload with gzip -

6 lowers the effective throughput relative to the uncompressed 

upload because the time needed to perform compression ex-

ceeds the time savings due to transferring smaller files. The 

best effective throughput of 18.31 MB/s is achieved with gzip 

-1. Thus, gzip -1 offers 4.05- and 7.75-fold improvements over 

the uncompressed upload and the compressed upload using 

gzip -6, respectively. 

Download Example. In this example, we consider down-

loading an Android executable file for the Dropbox applica-

tion (dropbox.tar). To prepare the input file, the original apk 

file, which is a zip derived container, is extracted into an un-

compressed tar archive file. The uncompressed 69.31 MB file 

and all compressed versions of the file are made available on 

the server. The experiment involves uncompressed and com-

pressed file downloads. For each transfer mode, the total time 

to get the uncompressed version of the file is measured to de-

termine the effective throughput. 

 
TABLE II 

THROUGHPUT WHEN UPLOADING ACCEL.CSV 

Utility & Level CR Throughput [MB/s] 

Net Thr. [MB/s] 0.5 MB/s 5.0 MB/s 

gzip 1 6.22 3.18 18.31 

gzip 6 7.91 3.70 2.36 

gzip 9 8.57 0.48 0.57 
lzop 1 4.41 2.31 15.24 

lzop 6 4.41 2.29 15.46 

bzip2 1 12.56 2.29 2.79 
bzip2 6 11.97 2.00 2.08 

bzip2 9 12.00 2.11 2.01 

xz 0 12.93 6.26 9.81 
xz 1 12.36 4.65 3.66 

xz 6 18.91 0.25 0.26 

xz 9 18.92 0.23 0.28 
pigz 1 6.23 3.16 17.44 

pigz 6 7.92 3.99 17.11 

pigz 9 8.58 3.19 3.23 

raw - 1.00 0.53 4.52 

[best/raw] - - 11.82 4.05 

[best/gzip-6] - - 1.69 7.75 

 
TABLE III 

THROUGHPUT WHEN DOWNLOADING DROPBOX.TAR 

Utility & Level CR Throughput [MB/s] 

Net Thr. [MB/s] - 0.5 MB/s 5.0 MB/s 

gzip 1 1.83 0.90 8.71 

gzip 6 1.91 0.95 9.00 

gzip 9 1.92 0.94 9.07 
lzop 1 1.53 0.75 7.44 

lzop 6 1.54 0.77 7.38 

bzip2 1 1.92 0.96 7.12 
bzip2 6 1.94 0.97 5.22 

bzip2 9 1.94 0.97 4.54 

xz 0 2.11 1.07 10.12 
xz 1 2.16 1.07 10.26 

xz 6 2.31 1.16 10.76 

xz 9 2.58 1.23 12.02 

pigz 1 1.84 0.87 8.58 

pigz 6 1.92 0.96 9.21 

pigz 9 1.93 0.96 9.19 

raw - 1.00 0.50 4.80 

[best/raw] - - 2.48 2.51 

[best/gzip-6] - - 1.30 1.34 

 

TABLE III shows the compression ratio and the effective 

download throughputs for all types of data downloads. The 

two bottom rows show speedups in the effective throughput 



 

when comparing the best performing compressed download 

with the uncompressed download and with the compressed 

download using gzip -6. 

The uncompressed download on a 0.5 MB/s network 

achieves the effective throughput of 0.5 MB/s and the com-

pressed download with gzip -6 achieves the effective through-

put of 0.95 MB/s. The best effective throughput of 1.23 MB/s 

is achieved with xz -9. It offers 2.48- and 1.3-fold improve-

ments over the uncompressed download and the compressed 

download using gzip -6, respectively. 

The uncompressed download on a 5 MB/s network achieves 

the effective throughput of 4.8 MB/s and the compressed 

download with gzip -6 achieves the effective throughput of 

9 MB/s. The best effective download throughput of 

12.02 MB/s is achieved with xz -9. It offers 2.51- and 1.34-

fold improvements over the uncompressed download and the 

compressed download using gzip -6, respectively. 

These two examples demonstrate that not a single combina-

tion of a compression utility and a level offers the best 

throughputs in all conditions. The file size, file type, the level 

of data redundancy, device performance, and network condi-

tions all impact the choice of best performing transfer mode. 

Moreover, these examples also show that the best performing 

transfer modes provide a substantial increase in the effective 

throughputs when compared to the uncompressed or the de-

fault compressed data transfers. 

Ideally, we would like to design a framework for optimal 

file transfers between mobile devices and the cloud. The 

framework will autonomously, in real-time, with no signifi-

cant overhead make a selection of a near optimal file transfer 

mode, while taking into account all parameters discussed 

above. To achieve this goal we need analytical models to sup-

port estimation of effectiveness of various transfer modes.  

III. MODELING UNCOMPRESSED FILE TRANSFERS 

A. Models for Uncompressed File Transfers 

The total time to perform a file transfer includes sender 

overhead time, network connection setup time, file transmis-

sion time, and receiver overhead time. In case of uncom-

pressed file uploads, the sender and receiver overheads can be 

ignored. Thus, the total time of an uncompressed data file up-

load, T.UUP, includes the time to setup a network connection, 

T.SC, and the file transmission time, T.UP, as shown in Equa-

tion (1). If we know the network upload throughput, Th.UP, 

the file transmission time can be calculated by dividing the file 

size with the network upload throughput, T.UP=US/Th.UP. 

Similarly, the total time of an uncompressed data file down-

load, T.UDW, includes T.SC and the file transmission time, 

T.DW, as shown in Equation (2). The file transmission time 

can be calculated as T.DW=US/Th.DW, where Th.DW is the 

network download throughput. 

 
𝑇. 𝑈𝑈𝑃 = 𝑇. 𝑆𝐶 + 𝑇. 𝑈𝑃 =  𝑇. 𝑆𝐶 + 𝑈𝑆/(𝑇ℎ. 𝑈𝑃) (1) 

𝑇. 𝑈𝐷𝑊 = 𝑇. 𝑆𝐶 + 𝑇. 𝐷𝑊 = 𝑇. 𝑆𝐶 +  𝑈𝑆/(𝑇ℎ. 𝐷𝑊) (2) 

𝑇ℎ. 𝑈𝑈𝑃 =
𝑇ℎ. 𝑈𝑃

1 + 𝑇ℎ. 𝑈𝑃 ∙ 𝑇. 𝑆𝐶/𝑈𝑆
 (3) 

𝑇ℎ. 𝑈𝐷𝑊 =
𝑇ℎ. 𝐷𝑊

1 + 𝑇ℎ. 𝐷𝑊 ∙ 𝑇. 𝑆𝐶/𝑈𝑆
 (4) 

 

The effective upload throughput is calculated as the uncom-

pressed file size divided by the total time to upload the file, 

Th.UUP=US/T.UUP. The effective download throughput is 

calculated as the uncompressed file size divided by the time to 

download the file, Th.UDW=US/T.UDW. Equations (3) and 

(4) show the expressions for the effective upload and down-

load throughputs, respectively, as the functions of the file size, 

the time to set up the network connection, and the network 

upload and download throughputs. The effective throughputs, 

Th.UUP [Th.UDW], reach the network throughputs, Th.UP 

[Th.DW], when transferring very large files. In case of smaller 

files, the time to setup the network connection limits the effec-

tive throughput. 

B. Model Verification 

To verify the models for uncompressed file transfers we 

perform a set of measurement-based experiments as follows. 

An OnePlus One smartphone is used to initiate a series of file 

uploads to and downloads from a remote server. The 

smartphone is connected to the Internet over its WLAN inter-

face. File transfers take place over a secure shell (ssh) - an 

encrypted network protocol. The file sizes are set to vary from 

1 kB to 100 MB. The total transfer time is measured for each 

file transfer and the effective throughput is calculated. The 

upload and download experiments are repeated for four dis-

tinct network throughputs, set to 0.5, 2.0, 3.5, and 5.0 MB/s. 

 

 
Fig. 2. Measured effective throughput for file uploads 

 

Fig. 2 shows the effective throughput for uncompressed up-

loads as a function of the file size and the network connection 

throughput. The plots show that the effective throughput satu-

rates for the larger files, reaching the network connection 

throughput, i.e., Th.UUP=Th.UP. By using a curve fitting 

software [18], we derive an equation that models the effective 

throughput. The dashed lines in Fig. 2 illustrate the derived 

equations for different network upload throughputs. The de-

rived equations match the Equation (3) from the proposed 

analytical model with two constants corresponding to T.SC 

and Th.UP. The curve fitting software derives a constant that 
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corresponds to the time to setup the connection. For the setup 

used in our experiment T.SC is 0.39 seconds. 

Fig. 3 shows the measured effective throughput for uncom-

pressed file downloads for different network throughputs as a 

function of the file size. The results of the download experi-

ments confirm the correctness of the proposed analytical mod-

els for the effective throughput. The derived constant for T.SC 

matches the one from the upload experiments. 

 

 
Fig. 3. Measured effective throughput for file downloads 

C. Network Connection Characterization 

The experimental verification of the models for the effec-

tive throughput requires a series of uploads and downloads of 

data files of different sizes. However, such an approach is time 

and resource consuming and thus not practical. Here we de-

scribe a practical method for deriving unknown network pa-

rameters (Th.UP, Th.DW, and T.SC) using the verified analyti-

cal model and a limited number of file transfers.  

The proposed method involves performing a two file upload 

or download test. Two files of different sizes are selected to be 

transferred over a network connection with unknown parame-

ters. The total transfer time is measured and used to calculate 

the effective throughput. These measured quantities are then 

used with the models to derive the unknown parameters. 

To demonstrate deriving the network parameters, we con-

sider file uploads over an ssh network connection that utilizes 

the smartphone’s WLAN interface. We select two test files 

with sizes US(s)=0.14 MB and US(l)=1.24 MB. The measured 

effective upload throughputs are Th.UUP(s)=0.36 MB/s and 

Th.UUP(l)=2.06 MB/s. Next, by replacing the file sizes and 

the measured effective throughputs in Equation (5) we get two 

equations with two unknowns, T.SC and Th.UP. By solving 

the system of linear equations, shown in Equation (6), we de-

rive Th.UP=5.167 MB/s and T.SC=0.362 seconds. 

Fig. 4 illustrates the proposed method. The measured up-

load throughputs for two selected files are marked with a blue 

and a red diamond. By deriving Th.UP and T.SC as described 

above, the model from Equation (3) is plotted using a black 

dashed dot curve. The actual measurements of the effective 

upload throughputs performed during the verification phase 

are shown as blue circles. A visual inspection shows that the 

model with parameters extracted by just two measurements 

matches the actual measurements performed during the verifi-

cation phase. 

 

𝑇ℎ. 𝑈𝑃 =
𝑇ℎ. 𝑈𝑈𝑃

1 − 𝑇ℎ. 𝑈𝑈𝑃 ∙ 𝑇. 𝑆𝐶/𝑈𝑆
 (5) 

𝑇ℎ. 𝑈𝑃 − 2.57 ∙ 𝑇ℎ. 𝑈𝑃 ∙ 𝑇. 𝑆𝐶 = 0.36 

𝑇ℎ. 𝑈𝑃 − 1.66 ∙ 𝑇ℎ. 𝑈𝑃 ∙ 𝑇. 𝑆𝐶 = 2.06 

(6) 

 

 
Fig. 4. Extracting network parameters for file uploads 

IV. MODELING COMPRESSED FILE TRANSFERS 

A. Compressed Uploads 

A compressed upload of a data file from a mobile device to 

the cloud can be performed in two ways, sequentially or with 

the use of piping. In the former, the data file is first com-

pressed locally on the mobile device and then the compressed 

file is transferred to the cloud, with no overlap between these 

two tasks. In the later, the file compression is partially or 

completely overlapped by setting up the network connection 

and the file transmission. Thus, we can determine the upper 

and lower limits for the total compressed upload time. The 

maximum compressed upload time shown in Equation (7), 

T.CUP.max, includes the time to perform the local compres-

sion of the file on the mobile device, T.C, the time to setup 

network connection, T.SC, and the time to transfer the com-

pressed file, T.CUP’. The minimum upload time shown in 

Equation (8), T.CUP.min, includes the time to setup network 

connection and the time to transfer the compressed file of size. 

The time to transfer the compressed file can be calculated as 

the compressed file size, which is US/CR, where CR is the 

compression ratio, divided by the network connection upload 

throughput Th.UP. The local compression throughput, Th.C, is 

defined as the uncompressed file size divided by the time to 

perform a local compression Th.C=US/T.C. This “higher is 

better” metric captures ability of a mobile device to perform 

local compression fast.  

The minimum upload throughput, Th.CUP.min, is calculat-

ed as the uncompressed file size in megabytes, US, divided by 

the maximum time to perform compressed upload as shown in 

Equation (9). The maximum upload throughput, Th.CUP.max, 

is calculated as the uncompressed file size in megabytes, US, 

divided by the minimum time to perform compressed upload 

as shown in Equation (10). The final expressions in Equations 

(11) and (12) show the boundaries for the compressed upload 

throughputs as a function of the network parameters, Th.UP, 

T.SC, file size, US, compression ratio, CR, and the local com-
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pression throughput, Th.C. From these expressions, we can 

analytically estimate the impact of changes in these parame-

ters. For example, the highest compressed upload throughput 

that can be achieved approaches the product of the compres-

sion ratio and the network connection upload throughput, 

which is possible in devices where local compression 

throughputs exceed the network upload throughput and when 

the size of a transferred file is sufficient to minimize the ef-

fects of the network connection setup time. 

 
𝑇. 𝐶𝑈𝑃. 𝑚𝑎𝑥 = 𝑇. 𝐶 + 𝑇. 𝑆𝐶 + 𝑇. 𝐶𝑈𝑃′ (7) 

𝑇. 𝐶𝑈𝑃. 𝑚𝑖𝑛 = 𝑇. 𝑆𝐶 + 𝑇. 𝐶𝑈𝑃′ (8) 

𝑇ℎ. 𝐶𝑈𝑃. 𝑚𝑖𝑛 =
𝑈𝑆

𝑇. 𝐶𝑈𝑃. max
 (9) 

𝑇ℎ. 𝐶𝑈𝑃. 𝑚𝑎𝑥 =
𝑈𝑆

𝑇. 𝐶𝑈𝑃. min
 (10) 

𝑇ℎ. 𝐶𝑈𝑃. 𝑚𝑖𝑛 =
𝐶𝑅 ∙ 𝑇ℎ. 𝑈𝑃

1 + 𝑇ℎ. 𝑈𝑃 ∙ 𝐶𝑅 ∙ (
1

𝑇ℎ. 𝐶
+

𝑇. 𝑆𝐶
𝑈𝑆

)
 (11) 

𝑇ℎ. 𝐶𝑈𝑃. 𝑚𝑎𝑥 =
𝐶𝑅 ∙ 𝑇ℎ. 𝑈𝑃

1 + 𝑇ℎ. 𝑈𝑃 ∙ 𝐶𝑅 ∙ 𝑇. 𝑆𝐶/𝑈𝑆
 (12) 

 

Fig. 5 illustrates the estimated minimum and maximum 

throughputs, Th.CUP.min and Th.CUP.max, respectively, as 

well as the measured compressed upload throughput, Th.CUP, 

for different modes of compressed upload. The measurements 

are performed on Nexus 4 smartphone with a 2.5 MB/s 

WLAN network interface. The measured compressed upload 

throughput is between the predicted minimum and maximum 

throughputs. For example, the estimated lower and upper limit 

for the compression throughput of gzip with -1 are 3.9 MB/s 

and 6.2 MB/s, and the measured compression throughput is 

5.9 MB/s; in contrast, the estimated bounds for bzip2 with -1 

are 1.8 MB/s and 8.1 MB/s and the measured compression 

throughput is 2.04 MB/s. In cases when the local compression 

throughput falls below the network connection upload 

throughput, Th.C << Th.UP, the effective compressed upload 

throughput is closer to the minimum throughput (e.g., for xz). 

In cases when Th.C >> Th.UP, the effective compressed up-

load throughput is closer to the expected maximum throughput 

(e.g, for lzop). 

 

 
Fig. 5. Effective compressed upload throughputs 

 

B. Compressed Downloads  

A compressed download from the cloud, initiated from a 

mobile device, can be done sequentially or with the use of 

piping. In the former, the compressed data file is downloaded 

on the mobile device and then the compressed file is decom-

pressed with no overlap between these two tasks. In the later, 

the file decompression is partially or completely overlapped 

by the compressed file transmission. Thus, we can determine 

the limits for the total download time. The maximum total 

download time shown in Equation (13), T.CDW.max, includes 

the time to setup network connection, T.SC, the time to trans-

fer the compressed file, T.CDW', and the time to perform the 

decompression of the received file on the mobile device, T.D. 

The minimum download time shown in Equation (14), 

T.CDW.min, includes the time to setup network connection 

and the time to transfer the compressed file. The time to trans-

fer the compressed file can be calculated as the compressed 

file size, US/CR, divided by the network connection download 

throughput Th.DW. The time to perform decompression on the 

mobile device is used to determine the local decompression 

throughput, Th.D, which is defined as the uncompressed file 

size divided by the time to perform decompression, US/T.D. 

This metric thus captures the mobile device’s ability to effec-

tively perform decompression.  

 
𝑇. 𝐶𝐷𝑊. 𝑚𝑎𝑥 = 𝑇. 𝐷 + 𝑇. 𝑆𝐶 + 𝑇. 𝐶𝐷𝑊′ (13) 

𝑇. 𝐶𝐷𝑊. 𝑚𝑖𝑛 = 𝑇. 𝑆𝐶 + 𝑇. 𝐶𝐷𝑊′ (14) 

𝑇ℎ. 𝐶𝐷𝑊. 𝑚𝑖𝑛 =
𝑈𝑆

𝑇. 𝐶𝐷𝑊. max
 (15) 

𝑇ℎ. 𝐶𝐷𝑊. 𝑚𝑎𝑥 =
𝑈𝑆

𝑇. 𝐶𝐷𝑊. min
 (16) 

𝑇ℎ. 𝐶𝐷𝑊. 𝑚𝑖𝑛 =
𝐶𝑅 ∙ 𝑇ℎ. 𝐷𝑊

1 + 𝑇ℎ. 𝐷𝑊 ∙ 𝐶𝑅 ∙ (
1

𝑇ℎ. 𝐷
+

𝑇. 𝑆𝐶
𝑈𝑆

)
 (17) 

𝑇ℎ. 𝐶𝐷𝑊. 𝑚𝑎𝑥 =
𝐶𝑅 ∙ 𝑇ℎ. 𝐷𝑊

1 + 𝑇ℎ. 𝐷𝑊 ∙ 𝐶𝑅 ∙ 𝑇. 𝑆𝐶/𝑈𝑆
 (18) 

 

The minimum effective compressed download throughput, 

Th.CDW.min, is calculated as the uncompressed file size in 

megabytes divided by the maximum time to perform com-

pressed upload, as shown in Equation (15). The maximum 

download throughput, Th.CDW.max, is calculated as the un-

compressed file size divided by the minimum time to perform 

the compressed download as shown in Equation (16). The 

final expressions in Equations (17) and (18) show the bounda-

ries for the compressed download throughputs as a function of 

the network parameters, file size, compression ratio, and the 

local decompression throughput. 

Fig. 6 illustrates the estimated throughput boundaries and 

the measured compressed download throughput for different 

modes of compressed download. The measurements are per-

formed on Nexus 4 smartphone with a 2.5 MB/s WLAN net-

work interface. The measured compressed download through-

put is between the predicted minimum and maximum 
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throughputs. For example, the estimated lower and upper 

boundaries for the decompression throughput of gzip with -9 

are 6.19 MB/s and 7.29 MB/s, and the measured compression 

throughput is 7.16 MB/s. The utilities with high local decom-

pression throughputs achieve the effective download through-

puts close to the upper boundaries when downloading large 

files (e.g., gzip and lzop for all compression levels). 

 

 
Fig. 6. Effective compressed download throughput 

 

C. Piping Model 

Whereas we experimentally verified that we can estimate 

the minimum and maximum compressed upload and download 

throughputs, the distance between these boundaries for a par-

ticular compression utility is often too wide, rendering this 

model insufficient to estimate the effective throughputs. We 

would like to be able to devise models for accurate estimation 

of effective upload and download throughputs. 

The use of piping when transferring a file is beneficial as it 

increases the effective throughput. It allows for overlapping 

local (de)compression tasks with the file transfer task on mo-

bile devices. In case of compressed upload, a degree of this 

overlap depends on the ratio between the network upload 

throughput and the local compression throughput. When the 

local compression throughput exceeds by far the network up-

load throughput, the bottleneck is the network. When the local 

compression throughput falls below the network throughput, 

the compressed uploads are not beneficial. To derive the pip-

ing model, the local compression term from the lower 

throughput limit is restricted using a ratio, k.th.c, described in 

Equation (19). This factor lowers the impact of the local com-

pression term when the local compression throughput exceeds 

the network connection upload throughput. The final piping 

model for the compressed upload throughput is shown in 

Equation (20). 

Fig. 7 shows the estimated compressed upload throughput 

(green dots) and the measured compressed upload throughput 

(red squares) for all considered compression utilities and com-

pression levels when uploading an input file from Nexus 4 to 

the server over a 2.5 MB/s WLAN connection. The plot sug-

gests a very high accuracy of the proposed model for all com-

pression utilities and compression levels. This expression im-

plies that if we know the parameters of the network connec-

tion (Th.UP and T.SC), and if for a given file of size US we 

can predict the compression ratio, CR, and local compression 

throughput for a given (utility, level) (Th.C), we can fairly 

accurately estimate the expected compressed upload through-

put using the piping model. 

 

𝑘. 𝑡ℎ. 𝑐 = {
𝑇ℎ. 𝑈𝑃/𝑇ℎ. 𝐶, 𝑇ℎ. 𝐶 > 𝑇ℎ. 𝑈𝑃

1, 𝑇ℎ. 𝐶 < 𝑇ℎ. 𝑈𝑃
 (19) 

𝑇ℎ. 𝐶𝑈𝑃. 𝑝𝑖𝑝𝑒 ≈
𝐶𝑅 ∙ 𝑇ℎ. 𝑈𝑃

1 + 𝐶𝑅 ∙ 𝑇ℎ. 𝑈𝑃 ∙ (
𝑇. 𝑆𝐶

𝑈𝑆
+

𝑘. 𝑡ℎ. 𝑐
𝑇ℎ. 𝐶

)
 (20) 

 

 
Fig. 7. Throughput estimation – compressed upload with piping 

 

When piping is used for compressed data download, the de-

gree of overlapping depends on the ratio between the network 

download throughput, Th.DW, and the local decompression 

throughput, Th.D. To derive the piping model, the decompres-

sion term from the lower throughput limit is restricted using a 

corrective factor, k.th.d, described in Equation (21). This fac-

tor lowers the impact of the local decompression term when 

the local decompression throughput exceeds the network 

download throughput. The final piping model for compressed 

download throughput is shown in Equation (22). 

 

𝑘. 𝑡ℎ. 𝑑 = {
𝑇ℎ. 𝐷𝑊/𝑇ℎ. 𝐷, 𝑇ℎ. 𝐷 > 𝑇ℎ. 𝐷𝑊

1, 𝑇ℎ. 𝐷 < 𝑇ℎ. 𝐷𝑊
 (21) 

𝑇ℎ. 𝐶𝐷𝑊. 𝑝𝑖𝑝𝑒 ≈
𝐶𝑅 ∙ 𝑇ℎ. 𝐷𝑊

1 + 𝐶𝑅 ∙ 𝑇ℎ. 𝐷𝑊 ∙ (
𝑇. 𝑆𝐶

𝑈𝑆
+

𝑘. 𝑡ℎ. 𝑑
𝑇ℎ. 𝐷

)
 (22) 

 

Fig. 8 shows the estimated compressed download through-

put (green circles) and the measured compressed download 

throughput (blue triangles) for all considered compression 

utilities and compression levels when downloading an input 

file from the server to the Nexus 4 over the 2.5 MB/s WLAN 

connection. The plot suggests a very high accuracy of the pro-

posed model for all compression utilities and compression 

levels. This expression implies that if we know the parameters 

of the network connection (Th.DW and T.SC), and if for a giv-

en file of size US we can predict the compression ratio, CR, 

and local decompression throughput for a given utility, level 

pair (Th.D), we can fairly accurately estimate the expected 

compressed download throughput in the piping model. 

The proposed models rely on three sets of parameters: those 

that are readily available (e.g., file size), those that can be de-

termined using simple experiments (T.SC, Th.UP, Th.DW), 
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and those that are unknown such as the compression ratio, CR, 

and compression or decompression throughput, Th.C [Th.D]. 

To be able to successfully apply and use the proposed models, 

the compression ratio and the time it takes to perform com-

pression or decompression of files have to be estimated. One 

method which can provide estimation for compression ratio 

and local (de)compression throughputs is the use of data tables 

filled with historical data of prior data transfers and their ef-

fectiveness for specific compression utilities and levels. 

 

 
Fig. 8. Throughput estimation – compressed download with piping 

 

D. Model Verification and Estimation Errors 

To verify the piping models and to quantify their ability to 

estimate effective throughputs, we perform a set of measure-

ment-based experiments. For each upload or download file 

transfer, the effective throughput is estimated using the piping 

model. In addition, the total transfer time is measured and then 

used to determine the measured effective throughput. An esti-

mation error is calculated as the difference between the meas-

ured and the estimated throughput, divided by the measured 

throughput. Two data sets representative for uploads and 

downloads initiated on mobile platforms are used in the exper-

iments. The file transfers are initiated on the OnePlus One 

smartphone with a 0.5 MB/s and 5 MB/s WLAN network 

throughputs.   

Upload. For upload, we use a data set that includes over 40 

files containing physiological data recorded by a wearable 

health monitor - Zephyr Technologies BioHarness 3 chest belt. 

The files are in text format and range from 0.5 MB to 300 MB 

in size.  

Fig. 9 shows the estimation errors for compressed uploads 

on the low network throughput of 0.5 MB/s for all considered 

compression utilities with compression level -1. For transfers 

of large files (10 MB to 300 MB), the estimation errors are 

less than 1% for all utilities except xz and bzip2, which result 

in slightly higher estimation errors of up to 5% and -40%, re-

spectively. For transfers of small files, the estimation errors 

start at 10% at 0.1 MB file size and fall down to less than 1%. 

Fig. 10 shows the estimation errors for compressed uploads 

on the high network throughput of 5 MB/s for all considered 

compression utilities with compression level -1. For transfers 

of large files (10 MB to 300 MB), the estimation errors are 

from 10% to 5% for all utilities except xz, which results in 

estimation errors of up to -40%. For smaller files, the estima-

tion error starts at 50% and falls down to 10%. For both net-

work throughputs, the error boundaries are higher for com-

pressed uploads of small files due to the smaller execution 

time, which makes estimation more sensitive to the measure-

ment variability in the verification experiments. 

 

 
Fig. 9. Estimation error of compressed uploads (0.5 MB/s) 

 

 
Fig. 10. Estimation error of compressed uploads (5 MB/s) 

 

Download. For download, we use a dataset that includes 

over 140 files containing executables of popular Android ap-

plications. To prepare the input files, the original apk files are 

extracted into an uncompressed tar archive files. The files 

range from 0.1 MB to 150 MB in size. 

Fig. 11 shows the estimation errors for compressed down-

loads on the low network throughput of 0.5 MB/s for com-

pression utilities with compression level -9. When download-

ing large files (10 MB to 150 MB), the estimation errors are 

between 3% and 1% for all compression utilities. When trans-

ferring small files the estimation error starts at 16% at 0.1 MB 

file size and falls down to 3%. 

Fig. 12 shows the estimation errors for compressed down-

loads on the high network throughput of 5 MB/s for all com-

pression utilities with compression level -9. When download-

ing large files, the estimation error is around 22-15% for all 

compression utilities. When transferring small files, the esti-

mation errors start at 33% and fall down to 20-15%. For both 

network throughputs, the error boundaries are higher for com-

pressed downloads of small files due to their lower execution 

times, which make estimation more sensitive to the measure-

ment variability. 

Overall, the analytical models provide an accurate predic-

tion of effective throughput of compressed data transfers over 

varying files sizes and with a variability of the network pa-
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rameters. The estimation error is increasing for higher 

throughput and smaller file sizes, which can be attributed to 

the higher sensitivity of conducted experiments to the meas-

urement variability of local, uncompressed and compressed 

throughputs. 

 

 
Fig. 11. Estimation errors for compressed downloads (0.5 MB/s) 

 

 
Fig. 12. Estimation errors for compressed downloads (5 MB/s) 

 

V. CONCLUSIONS 

This paper introduces analytical models for characterizing 

effective throughput of uncompressed and compressed data 

file transfers between mobile devices and the cloud. We have 

demonstrated the validity of the models through the series of 

measurement-based experiments conducted on Nexus 4 and 

OnePlus One smartphones. The experiments have demonstrat-

ed that the proposed models can accurately estimate through-

puts if we know the parameters of network connection, and if 

for a given file we can predict the compression ratio and local 

(de)compression throughputs. 

Using the proposed analytical models, we can initiate the 

development of frameworks for optimizing data transfers be-

tween mobile devices and the cloud. The framework can be 

designed to be conscientious of the network conditions, the 

user’s history of data transfers (type and size of files transfers, 

a frequency of transfers), the file characteristics, available 

compression utilities, and their performance profiles.  

The future research will focus on the development of mod-

els for energy efficiency in compressed transfers and on the 

estimation of energy efficiency from the described throughput 

estimations of uncompressed and compressed transfers. 
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