
Models for Evaluating Effective Throughputs for

File Transfers in Mobile Computing

Armen Dzhagaryan, Aleksandar Milenković

Electrical and Computer Engineering

The University of Alabama in Huntsville

Huntsville, AL

Abstract — The importance of optimizing data transfers be-

tween mobile computing devices and the cloud is increasing with

an exponential growth of mobile data traffic. Lossless data com-

pression can be essential in increasing communication through-

put, reducing communication latency, achieving energy-efficient

communication, and making effective use of available storage. In

this paper we introduce analytical models for estimating effective

throughputs of uncompressed and compressed data file transfers

that utilize common compression utilities. The proposed analyti-

cal models are experimentally verified using modern

smartphones as mobile devices. The proposed analytical models

are instrumental in developing a framework for seamless optimi-

zation of file transfers in mobile computing.1

Index Terms — Mobile computing, Data compression, Per-

formance Evaluation, Energy-aware systems

I. INTRODUCTION

Mobile computing devices such as smartphones, tablets, and

e-readers have become the dominant platforms for consuming

digital information. The data traffic originating on mobile

computing devices and Internet-of-Things (IoT) platforms has

been growing exponentially over the last several years. A re-

port from Cisco states that the global mobile data traffic grew

69% in 2014 relative to 2013, reaching 2.5 exabytes per

month, which is over 30 times greater than the total Internet

traffic in 2000 [1]. It is forecast that the global mobile data

traffic will grow nearly 10-fold from 2014 to 2019, reaching

24.3 exabytes per month.

Lossless data compression can increase communication

throughput, reduce latency, save energy, and increase availa-

ble storage. However, compression introduces additional

computational overhead that may exceed any gains due to

transferring or storing fewer bytes. Compression utilities on

mobile computing platforms differ in compression ratio, com-

pression and decompression speeds, and energy requirements.

In addition, compression utilities support a range of compres-

sion levels, with lower levels favoring speed and higher levels

favoring better compression ratio. When transferring data, we

would like to have an agent to determine whether compressed

1 This material is based upon work supported in part by the National Sci-

ence Foundation under Grants No. 1205439 and 1217470. Any opinions,

findings, and conclusions or recommendations expressed in this material are

those of the authors and do not necessarily reflect the views of the National
Science Foundation.

transfers are beneficial, and, if so, select the most beneficial

compression utility and compression level. A first step toward

designing such an agent is to obtain a good understanding of

various parameters impacting data transfers.

Lossless data compression is currently being used to reduce

the required bandwidth during file downloads and to speed up

web page loads in browsers. Google’s Flywheel proxy [2],

Google Chrome [3], Amazon Silk [4], as well as the mobile

applications Onavo Extend [5] and Snappli [6] use proxy serv-

ers to provide HTTP compression for all pages during web

browsing. For file downloads, several Google services, such as

Gmail and Drive, provide zip compression [7] of files and

attachments [8]. Similarly, application stores such as Google

Play and Apple’s App Store use zip or zip-derived containers

for application distribution. Several Linux distributions are

also using common compression utilities such as gzip, bzip2,

and xz for their software repositories.

The importance of lossless compression in network data

transfers has also been recognized in academia [9]–[13]. Re-

cent studies [14], [15] focused on measurement-based experi-

mental evaluation of compressed and uncompressed file trans-

fers on the state-of-the-art mobile devices. These studies

showed that selected compressed transfers over WLAN and

cellular interfaces outperform corresponding uncompressed

file transfers. However, not a single combination of a com-

pression utility and a compression level performs the best for

all file transfers and network conditions. A number of parame-

ters may impact the effectiveness of file uploads and down-

loads initiated on a mobile device. These parameters include

the type of network interface (e.g., cellular, WLAN), network

connection throughput and latency, type and size of trans-

ferred files, and mobile device performance characteristics.

In this paper we introduce analytical models for estimating

the effectiveness of uncompressed data transfers and com-

pressed data transfers that use common compression utilities.

As a measure of effectiveness, we use the effective upload and

download throughputs expressed in megabytes per second.

The analytical models describe effective upload and download

throughputs for uncompressed and compressed network trans-

fers as a function of parameters such as:

 Uncompressed (raw) file size;

 Local (de)compression throughput;

 Compression ratio; and

 Network parameters including network connection

throughput and time to setup a network connection.

We experimentally verify the proposed models on Google’s

Nexus 4 and OnePlus One smartphones. The proposed models

are instrumental in developing a framework for optimized data

transfer between mobile computing devices and the cloud. The

framework relies on agents running on mobile devices and the

cloud to select effective modes of data upload and download

transfers. For a given file, the framework will utilize the ana-

lytical models to estimate effectiveness of different file trans-

fer options and to select the most effective approach.

The rest of this paper is organized as follows. Section II

presents background and motivation for our study. It gives a

system view of file transfers (II.A), describes target devices

used in experimental verification of the models (II.B), and

makes a case for optimizing data transfers (II.C). Section III

describes the design and verification of analytical models for

uncompressed file transfers. Section IV describes the design

and verification of analytical models for compressed file trans-

fers. Finally, Section V summarizes our findings and draws

conclusions.

II. BACKGROUND AND MOTIVATION

A. Data Transfer between Mobile Devices and the Cloud

Fig. 1 illustrates file uploads and downloads initiated from a

mobile device. A data file can be uploaded uncompressed or

compressed. In case of uncompressed uploads, an uncom-

pressed file (UF) is uploaded over a network interface. In case

of compressed uploads, the uncompressed file is first com-

pressed locally on the device, and then a compressed file (CF)

is uploaded over the network. Similarly, a file can be down-

loaded from the cloud uncompressed or compressed. In case

of compressed downloads, a compressed version of the re-

quested file is downloaded from the cloud, and then the com-

pressed file is decompressed locally on the mobile device.

Compressed uploads and downloads utilize one of the availa-

ble compression utilities and one of the available compression

levels.

In this paper we consider six common compression utilities

listed in TABLE I for compressed file transfers. We have se-

lected relatively fast gzip and lzop utilities, as well as bzip2

and xz, which provide a high compression ratio. As many

modern mobile devices include multicore processors, we also

consider pigz and pbzip2, which are parallel versions of gzip

and bzip2, respectively. For each utility we consider at least

three compression levels: L – low, M – medium, and H – high.

To evaluate effectiveness of a networked file transfer, we

need to determine the total time to complete the transfer. This

time in general includes the following components: (i) sender

overhead time; (ii) network connection setup time; (iii) file

transmission time; and (iv) receiver overhead time. To meas-

ure effectiveness of data transfers, we use the effective

throughput rather than the total transfer time. The effective

upload or download throughput, measured in megabytes per

second, is defined as the ratio between the uncompressed file

size in megabytes and the time needed to complete the file

transfer. This metric thus captures the system’s ability to per-

form a file transfer in the shortest period of time regardless of

a transfer mode.

Fig. 1. Data transfers between mobile devices and the cloud

TABLE I

COMPRESSION UTILITIES

Utility
Compression

levels
Version Notes

 gzip 1 – 9 (6) 1.6 DEFLATE (Ziv-Lempel, Huffman)

 lzop 1 – 9 (3) 1.03 LZO (Lempel-Ziv-Oberhumer)

 bzip2 1 – 9 (9) 1.0.6 RLE+BWT+MTF+RLE+Huffman
 xz 0 – 9 (6) 5.1.0a LZMA2

 pigz 1 – 9 (6) 2.3 Parallel implementation of gzip

 pbzip2 1 – 9 (9) 1.1.6 Parallel implementation of bzip2

The effective upload and download throughputs depend on

many factors, including the file size and type, selected com-

pression utility, the compression level, network characteristics

such as latency and throughput, as well as the smartphone’s

performance. Whereas previous studies showed that com-

pressed uploads and downloads can save time and energy in

many typical file transfers initiated from smartphones [11],

[14], [15], there is not a single transfer method that works the

best for all data files and network conditions. To underscore

this problem, we conduct a measurement-based study that

evaluates effectiveness of various data transfer options under

different network conditions.

B. Target Platforms

We use Google’s Nexus 4 [16] and OnePlus One [17]

smartphones as the target platforms during the case studies

and the experimental evaluation of the proposed models. The

Nexus 4 is powered by a Qualcomm Snapdragon S4 Pro

(APQ8064) system-on-a-chip that features a quad-core ARM

Cortex A15 processor running up to 1.512 GHz clock fre-

quency and an Adreno 320 graphics processor and 2 GB of

RAM memory. The OnePlus One is powered by a Qualcomm

Snapdragon 801 (MSM8974AC) system-on-a-chip that fea-

tures a quad-core ARM-based Krait 400 processor running up

to 2.5GHz clock frequency, an Adreno 330 graphics processor

and 3 GB of RAM memory. Both smartphones support a range

of communication protocols including WLAN 802.11n, Blue-

tooth 4.0, and cellular networks.

The measurements are conducted using a setup described in

[14]. The smartphone’s operating system is upgraded to (a)

add common compression utilities not readily supported, and

Cloud/Server
Smartphone

Device

Router

Internet

Mobile
Provider

WLAN

3G/4G

C/D CF

Storage

Sender
Overhead

Connection
Time

Transmission
Time (w or w/o [de]compression)

Receiver
Overhead

Storage

UF

UF

(b) to add utilities for managing performance measurements.

C. The Case for Optimizing File Transfers

In this section we show the results of a measurement based

study that evaluates effectiveness of uncompressed and com-

pressed file transfers initiated on a mobile device. An OnePlus

One smartphone transfers data to and from a remote server

over the Internet using its WLAN interface. To demonstrate

the impact of network parameters, the measurements are per-

formed when the WLAN throughput is set to 0.5 MB/s and 5

MB/s. The WLAN network throughput is controlled using the

Linux tc (traffic control) utility. We show that a compression

(utility, level) pair that achieves the maximum throughput

changes as a function of network conditions and file size and

type.

Upload Example. In this example we upload a text file with

inertial sensor recordings captured on a wearable health moni-

tor – Zephyr Technologies BioHarness 3 chest belt. This type

of data is often uploaded on the cloud where more sophisticat-

ed processing can take place. For example, we can extract the

subject’s type and level of physical activity, detect posture

transitions, or quantify upper body movements during stand-

ardized medical tests for mobility assessment. In this case the

file captures an acceleration vector during subject’s activities

of daily living that include walking, driving, and office work.

The accelerometer vector is sampled with the frequency of

100 Hz. The uncompressed file size is 30.88 MB. The experi-

ment involves uncompressed and compressed file uploads. For

each type of a transfer, the time to upload the file is measured

to determine the effective upload throughput.

TABLE II shows the compression ratio (CR) and the effec-

tive upload throughputs for all types of file uploads. The two

bottom rows show speedups in the effective throughput when

comparing the best performing compressed upload to the un-

compressed upload [best/raw] and to the compressed upload

using gzip -6 [best/gzip-6], which is considered the default

compression mode. All utilities achieve a relatively high com-

pression ratio that ranges from 4.41 for lzop -1 to 18.92 for xz

-9. The high compression ratio is due to redundancy in time

stamps attached to each record. Typically, higher compression

levels of a compression utility result in higher compression

ratios, but unfortunately require more time to compress files,

which results in lower effective throughputs. The uncom-

pressed upload on a 0.5 MB/s network achieves the effective

throughput of 0.53 MB/s. The compressed upload with gzip -6

achieves the effective throughput of 3.70 MB/s. The best ef-

fective throughput of 6.26 MB/s is achieved with xz -0. Thus,

the compressed upload with xz -0 improves effective through-

put 11.82 times over the uncompressed upload and 1.69 times

over the compressed upload with gzip -6.

The uncompressed upload on a 5 MB/s network achieves

the effective throughput of 4.52 MB/s and the compressed

upload with gzip -6 achieves the effective throughput of only

2.36 MB/s. This means that the compressed upload with gzip -

6 lowers the effective throughput relative to the uncompressed

upload because the time needed to perform compression ex-

ceeds the time savings due to transferring smaller files. The

best effective throughput of 18.31 MB/s is achieved with gzip

-1. Thus, gzip -1 offers 4.05- and 7.75-fold improvements over

the uncompressed upload and the compressed upload using

gzip -6, respectively.

Download Example. In this example, we consider down-

loading an Android executable file for the Dropbox applica-

tion (dropbox.tar). To prepare the input file, the original apk

file, which is a zip derived container, is extracted into an un-

compressed tar archive file. The uncompressed 69.31 MB file

and all compressed versions of the file are made available on

the server. The experiment involves uncompressed and com-

pressed file downloads. For each transfer mode, the total time

to get the uncompressed version of the file is measured to de-

termine the effective throughput.

TABLE II

THROUGHPUT WHEN UPLOADING ACCEL.CSV

Utility & Level CR Throughput [MB/s]

Net Thr. [MB/s] 0.5 MB/s 5.0 MB/s

gzip 1 6.22 3.18 18.31

gzip 6 7.91 3.70 2.36

gzip 9 8.57 0.48 0.57
lzop 1 4.41 2.31 15.24

lzop 6 4.41 2.29 15.46

bzip2 1 12.56 2.29 2.79
bzip2 6 11.97 2.00 2.08

bzip2 9 12.00 2.11 2.01

xz 0 12.93 6.26 9.81
xz 1 12.36 4.65 3.66

xz 6 18.91 0.25 0.26

xz 9 18.92 0.23 0.28
pigz 1 6.23 3.16 17.44

pigz 6 7.92 3.99 17.11

pigz 9 8.58 3.19 3.23

raw - 1.00 0.53 4.52

[best/raw] - - 11.82 4.05

[best/gzip-6] - - 1.69 7.75

TABLE III

THROUGHPUT WHEN DOWNLOADING DROPBOX.TAR

Utility & Level CR Throughput [MB/s]

Net Thr. [MB/s] - 0.5 MB/s 5.0 MB/s

gzip 1 1.83 0.90 8.71

gzip 6 1.91 0.95 9.00

gzip 9 1.92 0.94 9.07
lzop 1 1.53 0.75 7.44

lzop 6 1.54 0.77 7.38

bzip2 1 1.92 0.96 7.12
bzip2 6 1.94 0.97 5.22

bzip2 9 1.94 0.97 4.54

xz 0 2.11 1.07 10.12
xz 1 2.16 1.07 10.26

xz 6 2.31 1.16 10.76

xz 9 2.58 1.23 12.02

pigz 1 1.84 0.87 8.58

pigz 6 1.92 0.96 9.21

pigz 9 1.93 0.96 9.19

raw - 1.00 0.50 4.80

[best/raw] - - 2.48 2.51

[best/gzip-6] - - 1.30 1.34

TABLE III shows the compression ratio and the effective

download throughputs for all types of data downloads. The

two bottom rows show speedups in the effective throughput

when comparing the best performing compressed download

with the uncompressed download and with the compressed

download using gzip -6.

The uncompressed download on a 0.5 MB/s network

achieves the effective throughput of 0.5 MB/s and the com-

pressed download with gzip -6 achieves the effective through-

put of 0.95 MB/s. The best effective throughput of 1.23 MB/s

is achieved with xz -9. It offers 2.48- and 1.3-fold improve-

ments over the uncompressed download and the compressed

download using gzip -6, respectively.

The uncompressed download on a 5 MB/s network achieves

the effective throughput of 4.8 MB/s and the compressed

download with gzip -6 achieves the effective throughput of

9 MB/s. The best effective download throughput of

12.02 MB/s is achieved with xz -9. It offers 2.51- and 1.34-

fold improvements over the uncompressed download and the

compressed download using gzip -6, respectively.

These two examples demonstrate that not a single combina-

tion of a compression utility and a level offers the best

throughputs in all conditions. The file size, file type, the level

of data redundancy, device performance, and network condi-

tions all impact the choice of best performing transfer mode.

Moreover, these examples also show that the best performing

transfer modes provide a substantial increase in the effective

throughputs when compared to the uncompressed or the de-

fault compressed data transfers.

Ideally, we would like to design a framework for optimal

file transfers between mobile devices and the cloud. The

framework will autonomously, in real-time, with no signifi-

cant overhead make a selection of a near optimal file transfer

mode, while taking into account all parameters discussed

above. To achieve this goal we need analytical models to sup-

port estimation of effectiveness of various transfer modes.

III. MODELING UNCOMPRESSED FILE TRANSFERS

A. Models for Uncompressed File Transfers

The total time to perform a file transfer includes sender

overhead time, network connection setup time, file transmis-

sion time, and receiver overhead time. In case of uncom-

pressed file uploads, the sender and receiver overheads can be

ignored. Thus, the total time of an uncompressed data file up-

load, T.UUP, includes the time to setup a network connection,

T.SC, and the file transmission time, T.UP, as shown in Equa-

tion (1). If we know the network upload throughput, Th.UP,

the file transmission time can be calculated by dividing the file

size with the network upload throughput, T.UP=US/Th.UP.

Similarly, the total time of an uncompressed data file down-

load, T.UDW, includes T.SC and the file transmission time,

T.DW, as shown in Equation (2). The file transmission time

can be calculated as T.DW=US/Th.DW, where Th.DW is the

network download throughput.

𝑇. 𝑈𝑈𝑃 = 𝑇. 𝑆𝐶 + 𝑇. 𝑈𝑃 = 𝑇. 𝑆𝐶 + 𝑈𝑆/(𝑇ℎ. 𝑈𝑃) (1)

𝑇. 𝑈𝐷𝑊 = 𝑇. 𝑆𝐶 + 𝑇. 𝐷𝑊 = 𝑇. 𝑆𝐶 + 𝑈𝑆/(𝑇ℎ. 𝐷𝑊) (2)

𝑇ℎ. 𝑈𝑈𝑃 =
𝑇ℎ. 𝑈𝑃

1 + 𝑇ℎ. 𝑈𝑃 ∙ 𝑇. 𝑆𝐶/𝑈𝑆
 (3)

𝑇ℎ. 𝑈𝐷𝑊 =
𝑇ℎ. 𝐷𝑊

1 + 𝑇ℎ. 𝐷𝑊 ∙ 𝑇. 𝑆𝐶/𝑈𝑆
 (4)

The effective upload throughput is calculated as the uncom-

pressed file size divided by the total time to upload the file,

Th.UUP=US/T.UUP. The effective download throughput is

calculated as the uncompressed file size divided by the time to

download the file, Th.UDW=US/T.UDW. Equations (3) and

(4) show the expressions for the effective upload and down-

load throughputs, respectively, as the functions of the file size,

the time to set up the network connection, and the network

upload and download throughputs. The effective throughputs,

Th.UUP [Th.UDW], reach the network throughputs, Th.UP

[Th.DW], when transferring very large files. In case of smaller

files, the time to setup the network connection limits the effec-

tive throughput.

B. Model Verification

To verify the models for uncompressed file transfers we

perform a set of measurement-based experiments as follows.

An OnePlus One smartphone is used to initiate a series of file

uploads to and downloads from a remote server. The

smartphone is connected to the Internet over its WLAN inter-

face. File transfers take place over a secure shell (ssh) - an

encrypted network protocol. The file sizes are set to vary from

1 kB to 100 MB. The total transfer time is measured for each

file transfer and the effective throughput is calculated. The

upload and download experiments are repeated for four dis-

tinct network throughputs, set to 0.5, 2.0, 3.5, and 5.0 MB/s.

Fig. 2. Measured effective throughput for file uploads

Fig. 2 shows the effective throughput for uncompressed up-

loads as a function of the file size and the network connection

throughput. The plots show that the effective throughput satu-

rates for the larger files, reaching the network connection

throughput, i.e., Th.UUP=Th.UP. By using a curve fitting

software [18], we derive an equation that models the effective

throughput. The dashed lines in Fig. 2 illustrate the derived

equations for different network upload throughputs. The de-

rived equations match the Equation (3) from the proposed

analytical model with two constants corresponding to T.SC

and Th.UP. The curve fitting software derives a constant that

0.01

0.10

1.00

10.00

0.01 0.10 1.00 10.00 100.00

Th
.U

U
P

 [
M

B
/s

]

US [MB]

Measured effective throughput for file uploads

0.5MB/s 2.0MB/s 3.5MB/s 5.0MB/s

corresponds to the time to setup the connection. For the setup

used in our experiment T.SC is 0.39 seconds.

Fig. 3 shows the measured effective throughput for uncom-

pressed file downloads for different network throughputs as a

function of the file size. The results of the download experi-

ments confirm the correctness of the proposed analytical mod-

els for the effective throughput. The derived constant for T.SC

matches the one from the upload experiments.

Fig. 3. Measured effective throughput for file downloads

C. Network Connection Characterization

The experimental verification of the models for the effec-

tive throughput requires a series of uploads and downloads of

data files of different sizes. However, such an approach is time

and resource consuming and thus not practical. Here we de-

scribe a practical method for deriving unknown network pa-

rameters (Th.UP, Th.DW, and T.SC) using the verified analyti-

cal model and a limited number of file transfers.

The proposed method involves performing a two file upload

or download test. Two files of different sizes are selected to be

transferred over a network connection with unknown parame-

ters. The total transfer time is measured and used to calculate

the effective throughput. These measured quantities are then

used with the models to derive the unknown parameters.

To demonstrate deriving the network parameters, we con-

sider file uploads over an ssh network connection that utilizes

the smartphone’s WLAN interface. We select two test files

with sizes US(s)=0.14 MB and US(l)=1.24 MB. The measured

effective upload throughputs are Th.UUP(s)=0.36 MB/s and

Th.UUP(l)=2.06 MB/s. Next, by replacing the file sizes and

the measured effective throughputs in Equation (5) we get two

equations with two unknowns, T.SC and Th.UP. By solving

the system of linear equations, shown in Equation (6), we de-

rive Th.UP=5.167 MB/s and T.SC=0.362 seconds.

Fig. 4 illustrates the proposed method. The measured up-

load throughputs for two selected files are marked with a blue

and a red diamond. By deriving Th.UP and T.SC as described

above, the model from Equation (3) is plotted using a black

dashed dot curve. The actual measurements of the effective

upload throughputs performed during the verification phase

are shown as blue circles. A visual inspection shows that the

model with parameters extracted by just two measurements

matches the actual measurements performed during the verifi-

cation phase.

𝑇ℎ. 𝑈𝑃 =
𝑇ℎ. 𝑈𝑈𝑃

1 − 𝑇ℎ. 𝑈𝑈𝑃 ∙ 𝑇. 𝑆𝐶/𝑈𝑆
 (5)

𝑇ℎ. 𝑈𝑃 − 2.57 ∙ 𝑇ℎ. 𝑈𝑃 ∙ 𝑇. 𝑆𝐶 = 0.36

𝑇ℎ. 𝑈𝑃 − 1.66 ∙ 𝑇ℎ. 𝑈𝑃 ∙ 𝑇. 𝑆𝐶 = 2.06

(6)

Fig. 4. Extracting network parameters for file uploads

IV. MODELING COMPRESSED FILE TRANSFERS

A. Compressed Uploads

A compressed upload of a data file from a mobile device to

the cloud can be performed in two ways, sequentially or with

the use of piping. In the former, the data file is first com-

pressed locally on the mobile device and then the compressed

file is transferred to the cloud, with no overlap between these

two tasks. In the later, the file compression is partially or

completely overlapped by setting up the network connection

and the file transmission. Thus, we can determine the upper

and lower limits for the total compressed upload time. The

maximum compressed upload time shown in Equation (7),

T.CUP.max, includes the time to perform the local compres-

sion of the file on the mobile device, T.C, the time to setup

network connection, T.SC, and the time to transfer the com-

pressed file, T.CUP’. The minimum upload time shown in

Equation (8), T.CUP.min, includes the time to setup network

connection and the time to transfer the compressed file of size.

The time to transfer the compressed file can be calculated as

the compressed file size, which is US/CR, where CR is the

compression ratio, divided by the network connection upload

throughput Th.UP. The local compression throughput, Th.C, is

defined as the uncompressed file size divided by the time to

perform a local compression Th.C=US/T.C. This “higher is

better” metric captures ability of a mobile device to perform

local compression fast.

The minimum upload throughput, Th.CUP.min, is calculat-

ed as the uncompressed file size in megabytes, US, divided by

the maximum time to perform compressed upload as shown in

Equation (9). The maximum upload throughput, Th.CUP.max,

is calculated as the uncompressed file size in megabytes, US,

divided by the minimum time to perform compressed upload

as shown in Equation (10). The final expressions in Equations

(11) and (12) show the boundaries for the compressed upload

throughputs as a function of the network parameters, Th.UP,

T.SC, file size, US, compression ratio, CR, and the local com-

0.01

0.10

1.00

10.00

0.01 0.10 1.00 10.00 100.00

Th
.U

D
W

 [
M

B
/s

]

US [MB]

Measured effective throughput for file downloads

0.5MB/s 2.0MB/s 3.5MB/s 5.0MB/s

0.01

0.10

1.00

10.00

0.01 0.10 1.00 10.00 100.00

Th
.U

U
P

 [
M

B
/s

]

US [MB]

Extracting network parameters for file uploads

Th.UUP (Actual Measurements) 0.14 MB 1.24 MB Th.UP Th.UUP

pression throughput, Th.C. From these expressions, we can

analytically estimate the impact of changes in these parame-

ters. For example, the highest compressed upload throughput

that can be achieved approaches the product of the compres-

sion ratio and the network connection upload throughput,

which is possible in devices where local compression

throughputs exceed the network upload throughput and when

the size of a transferred file is sufficient to minimize the ef-

fects of the network connection setup time.

𝑇. 𝐶𝑈𝑃. 𝑚𝑎𝑥 = 𝑇. 𝐶 + 𝑇. 𝑆𝐶 + 𝑇. 𝐶𝑈𝑃′ (7)

𝑇. 𝐶𝑈𝑃. 𝑚𝑖𝑛 = 𝑇. 𝑆𝐶 + 𝑇. 𝐶𝑈𝑃′ (8)

𝑇ℎ. 𝐶𝑈𝑃. 𝑚𝑖𝑛 =
𝑈𝑆

𝑇. 𝐶𝑈𝑃. max
 (9)

𝑇ℎ. 𝐶𝑈𝑃. 𝑚𝑎𝑥 =
𝑈𝑆

𝑇. 𝐶𝑈𝑃. min
 (10)

𝑇ℎ. 𝐶𝑈𝑃. 𝑚𝑖𝑛 =
𝐶𝑅 ∙ 𝑇ℎ. 𝑈𝑃

1 + 𝑇ℎ. 𝑈𝑃 ∙ 𝐶𝑅 ∙ (
1

𝑇ℎ. 𝐶
+

𝑇. 𝑆𝐶
𝑈𝑆

)
 (11)

𝑇ℎ. 𝐶𝑈𝑃. 𝑚𝑎𝑥 =
𝐶𝑅 ∙ 𝑇ℎ. 𝑈𝑃

1 + 𝑇ℎ. 𝑈𝑃 ∙ 𝐶𝑅 ∙ 𝑇. 𝑆𝐶/𝑈𝑆
 (12)

Fig. 5 illustrates the estimated minimum and maximum

throughputs, Th.CUP.min and Th.CUP.max, respectively, as

well as the measured compressed upload throughput, Th.CUP,

for different modes of compressed upload. The measurements

are performed on Nexus 4 smartphone with a 2.5 MB/s

WLAN network interface. The measured compressed upload

throughput is between the predicted minimum and maximum

throughputs. For example, the estimated lower and upper limit

for the compression throughput of gzip with -1 are 3.9 MB/s

and 6.2 MB/s, and the measured compression throughput is

5.9 MB/s; in contrast, the estimated bounds for bzip2 with -1

are 1.8 MB/s and 8.1 MB/s and the measured compression

throughput is 2.04 MB/s. In cases when the local compression

throughput falls below the network connection upload

throughput, Th.C << Th.UP, the effective compressed upload

throughput is closer to the minimum throughput (e.g., for xz).

In cases when Th.C >> Th.UP, the effective compressed up-

load throughput is closer to the expected maximum throughput

(e.g, for lzop).

Fig. 5. Effective compressed upload throughputs

B. Compressed Downloads

A compressed download from the cloud, initiated from a

mobile device, can be done sequentially or with the use of

piping. In the former, the compressed data file is downloaded

on the mobile device and then the compressed file is decom-

pressed with no overlap between these two tasks. In the later,

the file decompression is partially or completely overlapped

by the compressed file transmission. Thus, we can determine

the limits for the total download time. The maximum total

download time shown in Equation (13), T.CDW.max, includes

the time to setup network connection, T.SC, the time to trans-

fer the compressed file, T.CDW', and the time to perform the

decompression of the received file on the mobile device, T.D.

The minimum download time shown in Equation (14),

T.CDW.min, includes the time to setup network connection

and the time to transfer the compressed file. The time to trans-

fer the compressed file can be calculated as the compressed

file size, US/CR, divided by the network connection download

throughput Th.DW. The time to perform decompression on the

mobile device is used to determine the local decompression

throughput, Th.D, which is defined as the uncompressed file

size divided by the time to perform decompression, US/T.D.

This metric thus captures the mobile device’s ability to effec-

tively perform decompression.

𝑇. 𝐶𝐷𝑊. 𝑚𝑎𝑥 = 𝑇. 𝐷 + 𝑇. 𝑆𝐶 + 𝑇. 𝐶𝐷𝑊′ (13)

𝑇. 𝐶𝐷𝑊. 𝑚𝑖𝑛 = 𝑇. 𝑆𝐶 + 𝑇. 𝐶𝐷𝑊′ (14)

𝑇ℎ. 𝐶𝐷𝑊. 𝑚𝑖𝑛 =
𝑈𝑆

𝑇. 𝐶𝐷𝑊. max
 (15)

𝑇ℎ. 𝐶𝐷𝑊. 𝑚𝑎𝑥 =
𝑈𝑆

𝑇. 𝐶𝐷𝑊. min
 (16)

𝑇ℎ. 𝐶𝐷𝑊. 𝑚𝑖𝑛 =
𝐶𝑅 ∙ 𝑇ℎ. 𝐷𝑊

1 + 𝑇ℎ. 𝐷𝑊 ∙ 𝐶𝑅 ∙ (
1

𝑇ℎ. 𝐷
+

𝑇. 𝑆𝐶
𝑈𝑆

)
 (17)

𝑇ℎ. 𝐶𝐷𝑊. 𝑚𝑎𝑥 =
𝐶𝑅 ∙ 𝑇ℎ. 𝐷𝑊

1 + 𝑇ℎ. 𝐷𝑊 ∙ 𝐶𝑅 ∙ 𝑇. 𝑆𝐶/𝑈𝑆
 (18)

The minimum effective compressed download throughput,

Th.CDW.min, is calculated as the uncompressed file size in

megabytes divided by the maximum time to perform com-

pressed upload, as shown in Equation (15). The maximum

download throughput, Th.CDW.max, is calculated as the un-

compressed file size divided by the minimum time to perform

the compressed download as shown in Equation (16). The

final expressions in Equations (17) and (18) show the bounda-

ries for the compressed download throughputs as a function of

the network parameters, file size, compression ratio, and the

local decompression throughput.

Fig. 6 illustrates the estimated throughput boundaries and

the measured compressed download throughput for different

modes of compressed download. The measurements are per-

formed on Nexus 4 smartphone with a 2.5 MB/s WLAN net-

work interface. The measured compressed download through-

put is between the predicted minimum and maximum

0.2

2.0

20.0

0 1 2 3 4 5 6 7 8 9 0 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

gzip lzop bzip2 xz pigz pbzip2

[M
B

/s
]

Throughput Limits: Compressed Upload (Nexus 4@2.5 MB/s)

Th.UP Th.CUP Th.CUP.min Th.CUP.max

throughputs. For example, the estimated lower and upper

boundaries for the decompression throughput of gzip with -9

are 6.19 MB/s and 7.29 MB/s, and the measured compression

throughput is 7.16 MB/s. The utilities with high local decom-

pression throughputs achieve the effective download through-

puts close to the upper boundaries when downloading large

files (e.g., gzip and lzop for all compression levels).

Fig. 6. Effective compressed download throughput

C. Piping Model

Whereas we experimentally verified that we can estimate

the minimum and maximum compressed upload and download

throughputs, the distance between these boundaries for a par-

ticular compression utility is often too wide, rendering this

model insufficient to estimate the effective throughputs. We

would like to be able to devise models for accurate estimation

of effective upload and download throughputs.

The use of piping when transferring a file is beneficial as it

increases the effective throughput. It allows for overlapping

local (de)compression tasks with the file transfer task on mo-

bile devices. In case of compressed upload, a degree of this

overlap depends on the ratio between the network upload

throughput and the local compression throughput. When the

local compression throughput exceeds by far the network up-

load throughput, the bottleneck is the network. When the local

compression throughput falls below the network throughput,

the compressed uploads are not beneficial. To derive the pip-

ing model, the local compression term from the lower

throughput limit is restricted using a ratio, k.th.c, described in

Equation (19). This factor lowers the impact of the local com-

pression term when the local compression throughput exceeds

the network connection upload throughput. The final piping

model for the compressed upload throughput is shown in

Equation (20).

Fig. 7 shows the estimated compressed upload throughput

(green dots) and the measured compressed upload throughput

(red squares) for all considered compression utilities and com-

pression levels when uploading an input file from Nexus 4 to

the server over a 2.5 MB/s WLAN connection. The plot sug-

gests a very high accuracy of the proposed model for all com-

pression utilities and compression levels. This expression im-

plies that if we know the parameters of the network connec-

tion (Th.UP and T.SC), and if for a given file of size US we

can predict the compression ratio, CR, and local compression

throughput for a given (utility, level) (Th.C), we can fairly

accurately estimate the expected compressed upload through-

put using the piping model.

𝑘. 𝑡ℎ. 𝑐 = {
𝑇ℎ. 𝑈𝑃/𝑇ℎ. 𝐶, 𝑇ℎ. 𝐶 > 𝑇ℎ. 𝑈𝑃

1, 𝑇ℎ. 𝐶 < 𝑇ℎ. 𝑈𝑃
 (19)

𝑇ℎ. 𝐶𝑈𝑃. 𝑝𝑖𝑝𝑒 ≈
𝐶𝑅 ∙ 𝑇ℎ. 𝑈𝑃

1 + 𝐶𝑅 ∙ 𝑇ℎ. 𝑈𝑃 ∙ (
𝑇. 𝑆𝐶

𝑈𝑆
+

𝑘. 𝑡ℎ. 𝑐
𝑇ℎ. 𝐶

)
 (20)

Fig. 7. Throughput estimation – compressed upload with piping

When piping is used for compressed data download, the de-

gree of overlapping depends on the ratio between the network

download throughput, Th.DW, and the local decompression

throughput, Th.D. To derive the piping model, the decompres-

sion term from the lower throughput limit is restricted using a

corrective factor, k.th.d, described in Equation (21). This fac-

tor lowers the impact of the local decompression term when

the local decompression throughput exceeds the network

download throughput. The final piping model for compressed

download throughput is shown in Equation (22).

𝑘. 𝑡ℎ. 𝑑 = {
𝑇ℎ. 𝐷𝑊/𝑇ℎ. 𝐷, 𝑇ℎ. 𝐷 > 𝑇ℎ. 𝐷𝑊

1, 𝑇ℎ. 𝐷 < 𝑇ℎ. 𝐷𝑊
 (21)

𝑇ℎ. 𝐶𝐷𝑊. 𝑝𝑖𝑝𝑒 ≈
𝐶𝑅 ∙ 𝑇ℎ. 𝐷𝑊

1 + 𝐶𝑅 ∙ 𝑇ℎ. 𝐷𝑊 ∙ (
𝑇. 𝑆𝐶

𝑈𝑆
+

𝑘. 𝑡ℎ. 𝑑
𝑇ℎ. 𝐷

)
 (22)

Fig. 8 shows the estimated compressed download through-

put (green circles) and the measured compressed download

throughput (blue triangles) for all considered compression

utilities and compression levels when downloading an input

file from the server to the Nexus 4 over the 2.5 MB/s WLAN

connection. The plot suggests a very high accuracy of the pro-

posed model for all compression utilities and compression

levels. This expression implies that if we know the parameters

of the network connection (Th.DW and T.SC), and if for a giv-

en file of size US we can predict the compression ratio, CR,

and local decompression throughput for a given utility, level

pair (Th.D), we can fairly accurately estimate the expected

compressed download throughput in the piping model.

The proposed models rely on three sets of parameters: those

that are readily available (e.g., file size), those that can be de-

termined using simple experiments (T.SC, Th.UP, Th.DW),

0.2

2.0

20.0

0 1 2 3 4 5 6 7 8 9 0 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

gzip lzop bzip2 xz pigz pbzip2

[M
B

/s
]

Throughput Limits: Compressed Download (Nexus 4@2.5 MB/s)
Th.DW Th.CDW Th.CDW.min Th.CDW.max

0.2

2.0

20.0

0 1 2 3 4 5 6 7 8 9 0 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

gzip lzop bzip2 xz pigz pbzip2

[M
B

/s
]

Throughput Estimation: Compressed Upload with Piping (Nexus 4@2.5 MB/s)

Th.UP Th.CUP Th.CUP.pipe

and those that are unknown such as the compression ratio, CR,

and compression or decompression throughput, Th.C [Th.D].

To be able to successfully apply and use the proposed models,

the compression ratio and the time it takes to perform com-

pression or decompression of files have to be estimated. One

method which can provide estimation for compression ratio

and local (de)compression throughputs is the use of data tables

filled with historical data of prior data transfers and their ef-

fectiveness for specific compression utilities and levels.

Fig. 8. Throughput estimation – compressed download with piping

D. Model Verification and Estimation Errors

To verify the piping models and to quantify their ability to

estimate effective throughputs, we perform a set of measure-

ment-based experiments. For each upload or download file

transfer, the effective throughput is estimated using the piping

model. In addition, the total transfer time is measured and then

used to determine the measured effective throughput. An esti-

mation error is calculated as the difference between the meas-

ured and the estimated throughput, divided by the measured

throughput. Two data sets representative for uploads and

downloads initiated on mobile platforms are used in the exper-

iments. The file transfers are initiated on the OnePlus One

smartphone with a 0.5 MB/s and 5 MB/s WLAN network

throughputs.

Upload. For upload, we use a data set that includes over 40

files containing physiological data recorded by a wearable

health monitor - Zephyr Technologies BioHarness 3 chest belt.

The files are in text format and range from 0.5 MB to 300 MB

in size.

Fig. 9 shows the estimation errors for compressed uploads

on the low network throughput of 0.5 MB/s for all considered

compression utilities with compression level -1. For transfers

of large files (10 MB to 300 MB), the estimation errors are

less than 1% for all utilities except xz and bzip2, which result

in slightly higher estimation errors of up to 5% and -40%, re-

spectively. For transfers of small files, the estimation errors

start at 10% at 0.1 MB file size and fall down to less than 1%.

Fig. 10 shows the estimation errors for compressed uploads

on the high network throughput of 5 MB/s for all considered

compression utilities with compression level -1. For transfers

of large files (10 MB to 300 MB), the estimation errors are

from 10% to 5% for all utilities except xz, which results in

estimation errors of up to -40%. For smaller files, the estima-

tion error starts at 50% and falls down to 10%. For both net-

work throughputs, the error boundaries are higher for com-

pressed uploads of small files due to the smaller execution

time, which makes estimation more sensitive to the measure-

ment variability in the verification experiments.

Fig. 9. Estimation error of compressed uploads (0.5 MB/s)

Fig. 10. Estimation error of compressed uploads (5 MB/s)

Download. For download, we use a dataset that includes

over 140 files containing executables of popular Android ap-

plications. To prepare the input files, the original apk files are

extracted into an uncompressed tar archive files. The files

range from 0.1 MB to 150 MB in size.

Fig. 11 shows the estimation errors for compressed down-

loads on the low network throughput of 0.5 MB/s for com-

pression utilities with compression level -9. When download-

ing large files (10 MB to 150 MB), the estimation errors are

between 3% and 1% for all compression utilities. When trans-

ferring small files the estimation error starts at 16% at 0.1 MB

file size and falls down to 3%.

Fig. 12 shows the estimation errors for compressed down-

loads on the high network throughput of 5 MB/s for all com-

pression utilities with compression level -9. When download-

ing large files, the estimation error is around 22-15% for all

compression utilities. When transferring small files, the esti-

mation errors start at 33% and fall down to 20-15%. For both

network throughputs, the error boundaries are higher for com-

pressed downloads of small files due to their lower execution

times, which make estimation more sensitive to the measure-

ment variability.

Overall, the analytical models provide an accurate predic-

tion of effective throughput of compressed data transfers over

varying files sizes and with a variability of the network pa-

0.2

2.0

20.0

0 1 2 3 4 5 6 7 8 9 0 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

gzip lzop bzip2 xz pigz pbzip2

[M
B

/s
]

Throughput Estimation: Compressed Download with Piping (Nexus 4@2.5 MB/s)
Th.DW Th.CDW Th.CDW.pipe

-40%

-30%

-20%

-10%

0%

10%

20%

0.1 1.0 10.0 100.0

[-
]

US [MB]

Estimation error of Compressed Uploads (0.5 MB/s)

err.gzip.1 err.lzop.1 err.bzip2.1 err.xz.1 err.pigz.1

-40%

-30%

-20%

-10%

0%

10%

20%

30%

40%

0.1 1.0 10.0 100.0

[-
]

US [MB]

Estimation error of Compressed Uploads (5 MB/s)

err.gzip.1 err.lzop.1 err.bzip2.1 err.xz.1 err.pigz.1

rameters. The estimation error is increasing for higher

throughput and smaller file sizes, which can be attributed to

the higher sensitivity of conducted experiments to the meas-

urement variability of local, uncompressed and compressed

throughputs.

Fig. 11. Estimation errors for compressed downloads (0.5 MB/s)

Fig. 12. Estimation errors for compressed downloads (5 MB/s)

V. CONCLUSIONS

This paper introduces analytical models for characterizing

effective throughput of uncompressed and compressed data

file transfers between mobile devices and the cloud. We have

demonstrated the validity of the models through the series of

measurement-based experiments conducted on Nexus 4 and

OnePlus One smartphones. The experiments have demonstrat-

ed that the proposed models can accurately estimate through-

puts if we know the parameters of network connection, and if

for a given file we can predict the compression ratio and local

(de)compression throughputs.

Using the proposed analytical models, we can initiate the

development of frameworks for optimizing data transfers be-

tween mobile devices and the cloud. The framework can be

designed to be conscientious of the network conditions, the

user’s history of data transfers (type and size of files transfers,

a frequency of transfers), the file characteristics, available

compression utilities, and their performance profiles.

The future research will focus on the development of mod-

els for energy efficiency in compressed transfers and on the

estimation of energy efficiency from the described throughput

estimations of uncompressed and compressed transfers.

REFERENCES

[1] CISCO, “Cisco Visual Networking Index: Global Mobile Data Traffic
Forecast Update 2014–2019 White Paper.” 03-Feb-2015.

[2] V. Agababov, M. Buettner, V. Chudnovsky, M. Cogan, B. Greenstein,

S. McDaniel, M. Piatek, C. Scott, M. Welsh, and B. Yin, “Flywheel:
Google’s Data Compression Proxy for the Mobile Web,” in Proceed-

ings of the 12th USENIX Conference on Networked Systems Design

and Implementation, Berkeley, CA, USA, 2015, pp. 367–380.
[3] Google, “Data Server - Google Chrome,” 2014. [Online]. Available:

https://developer.chrome.com/multidevice/data-compression. [Ac-

cessed: 30-Oct-2015].
[4] Amazon, “What Is Amazon Silk? - Amazon Silk,” 2015. [Online].

Available: http://docs.aws.amazon.com/silk/latest/developerguide/.

[Accessed: 06-Dec-2015].

[5] Onavo, “Onavo,” Onavo, 2015. [Online]. Available:

http://www.onavo.com. [Accessed: 01-Dec-2015].

[6] Snappli, “Snappli,” 2014. [Online]. Available: http://snappli.com/.
[Accessed: 01-Dec-2015].

[7] zlib, “zlib Home Site,” 2015. [Online]. Available:

http://www.zlib.net/. [Accessed: 16-Dec-2015].
[8] Google, “About Attachment Manager,” 2014. [Online]. Available:

http://www.google.com/support/enterprise/static/postini/docs/admin/e
n/admin_msd/attach_overview.html. [Accessed: 31-Oct-2015].

[9] A. Dzhagaryan, A. Milenkovic, and M. Burtscher, “Energy efficiency

of lossless data compression on a mobile device: An experimental
evaluation,” in Performance Analysis of Systems and Software

(ISPASS), 2013 IEEE International Symposium on, Austin, TX, 2013,

pp. 126–127.
[10] A. Milenkovic, A. Dzhagaryan, and M. Burtscher, “Performance and

Energy Consumption of Lossless Compression/Decompression Utili-

ties on Mobile Computing Platforms,” in Modeling, Analysis Simula-
tion of Computer and Telecommunication Systems (MASCOTS), 2013

IEEE 21st International Symposium on, 2013, pp. 254–263.

[11] A. Dzhagaryan and A. Milenkovic, “On Effectiveness of Lossless
Compression in Transferring mHealth Data Files,” in 2015 IEEE 17th

International Conference on e-Health Networking, Applications and

Services (Healthcom), Boston, MA, 2015.
[12] K. Barr and K. Asanović, “Energy aware lossless data compression,”

in Proceedings of the 1st International Conference on Mobile Systems,

Applications and Services (MobiSys’03), 2003, pp. 231–244.
[13] K. C. Barr and K. Asanović, “Energy-aware lossless data compres-

sion,” ACM Transactions on Computer Systems, vol. 24, no. 3, pp.

250–291, Aug. 2006.
[14] A. Dzhagaryan, A. Milenković, and M. Burtscher, “Quantifying Bene-

fits of Lossless Compression Utilities on Modern Smartphones,” in

2015 24th International Conference on Computer Communication and
Networks (ICCCN), Las Vegas, NV, 2015.

[15] A. Milenkovic, A. Dzhagaryan, and M. Burtscher, “Performance and

Energy Consumption of Lossless Compression/Decompression Utili-
ties on Mobile Computing Platforms,” in 2013 IEEE 21st Internation-

al Symposium on Modeling, Analysis Simulation of Computer and

Telecommunication Systems (MASCOTS), San Francisco, CA, 2013,

pp. 254–263.

[16] Google, “Nexus - Google,” 2014. [Online]. Available:

http://www.google.com/intl/all/nexus. [Accessed: 15-Jun-2014].
[17] OnePlus, “OnePlus One,” 2015. [Online]. Available:

https://oneplus.net/one. [Accessed: 12-Jul-2015].

[18] “CurveExpert and GraphExpert Software,” 2015. [Online]. Available:
https://www.curveexpert.net/. [Accessed: 07-May-2016].

-20%

-15%

-10%

-5%

0%

5%

10%

15%

20%

0.1 1.0 10.0 100.0

[-
]

US [MB]

Estimation error of Compressed Downloads (0.5 MB/s)

err.gzip.9 err.lzop.9 err.bzip2.9 err.xz.9 err.pigz.9

-50%

-40%

-30%

-20%

-10%

0%

10%

20%

30%

40%

50%

0.1 1.0 10.0 100.0

[-
]

US [MB]

Estimation error of Compressed Downloads (5 MB/s)

err.gzip.9 err.lzop.9 err.bzip2.9 err.xz.9 err.pigz.9

