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Abstract

Bus-based shared memory multiprocessors with private caches and snooping write-invalidate cache coherence protocols are dominant
form of small- to medium-scale parallel machines today. In these systems, the high memory latency poses the major hurdle in achieving high
performance. One way to cope with this problem is to use various techniques for tolerating high memory latency. Software-controlled cache
prefetching and data forwarding are two widely used techniques for tolerating high memory latency in scalable cache-coherent shared
memory multiprocessors. However, some previous studies have shown that these techniques are not so effective in bus-based shared memory
multiprocessors. In this paper, we propose a novel software-controlled technique called cache injection, which combines consumer and
producer initiated approach, and broadcasting nature of bus. Performance evaluation based on program-driven simulation and a set of
scientific applications and test benchmarks shows that cache injection is highly effective in reducing misses and bus traffic. © 2002 Elsevier
Science B.V. All rights reserved.
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1. Introduction

The popularity of bus-based shared memory multiproces-
sors or symmetric multiprocessors (SMPs) has greatly
increased since almost all modern microprocessors include
the support for building cost-effective bus-based SMPs [2].
In bus-based SMPs private caches and write-invalidate
protocols are essential to reduce bus congestion and to
maintain data coherence, respectively. However, the widen-
ing speed gap between processor and memory, high conten-
tion on the bus, and data sharing in parallel programs cause
the two performance bottlenecks: large latencies associated
with read and write cache misses, and bus traffic. While the
latency of write misses can be successfully hidden by appro-
priate write-buffers and relaxed memory consistency
models [12], the latency of read misses still remains. Read
misses can be classified into cold, coherence, and replace-
ment. Cold miss occurs if the requested block has never
been referenced by the processor, coherence miss occurs
if the block has been referenced by the processor, but has
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been written to by another processor, while all other misses
are referred as replacement misses, since they are caused by
replacements from the cache due to its limited size and
associativity. To cope with this problem, researchers have
proposed techniques that reduce the number of read misses
and bus traffic, such as software-controlled cache prefetch-
ing and data forwarding.

In order to illustrate how each technique works we will
use a simple example, which demonstrates producer—consu-
mer sharing pattern where processor PO produces, and
processors P1 and P2 consume the data (Fig. 1a). In soft-
ware-controlled cache prefetching, a processor executes a
special Pf instruction, which initiates a non-blocking fetch
operation that brings a data block, expected to be used by
that processor, into its cache [10]. Ideally, the data block
arrives at the cache before it is needed by the processor, and
its load instruction results in a cache hit (Fig. 1b, processor
P2). However, cache prefetching is useful even if it is not
issued early enough; in that case the latency will be only
partially hidden (Fig. 1b, processor P1). For many programs
and sharing patterns (e.g. producer—consumer), producer
initiated data transfers are a natural style of communication.
Producer initiated primitives are known as data forwarding,
delivery, remote writes, and software-controlled updates
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Fig. 1. Cache prefetching and data forwarding.

[5]. With data forwarding, when a processor produces the
data (Fig. lc, processor PO), in addition to updating its
cache, it sends a copy of the data to the caches of the
processors that are identified by compiler or programmer
as its future consumers. Therefore, when the consumer
processors access the data block, they find it in their caches
(Fig. 1c, processors P1 and P2). To support this, a special
StoreForw instruction is needed; this instruction
performs an ordinary store operation, and then initiates
transactions to deposit new value in the caches of the speci-
fied processors.

Comparing cache prefetching and data forwarding, it
should be noted that prefetching can eliminate any kind of
read misses (cold, conflict, and coherence), while forward-
ing can eliminate coherence and in some cases cold misses.
However, prefetching is inapplicable or insufficient when
the location to be accessed is not known sufficiently early
or when the value to be read is not produced sufficiently
early (e.g. for synchronization variables and producer—
consumer sharing patterns). In addition to that, prefetching
can negatively affect data sharing when it is initiated too
early, before the producing processor finishes the data
producing; in such cases cache prefetching can degrade
performance. For the coherence misses, forwarding can be
more effective than prefetching since forwarding delivers a
data block to consumers as soon as it is produced and since a
single instruction is enough to initiate forwarding to several
consumers. However, data forwarding requires more sophis-
ticated compiler support, compared to prefetching; for
prefetching, consumer processor does not need to know
the identity of the producer processor, while for forwarding
the producer processor needs to know the identity of consu-
mers.

Most of the studies [1,5,10,13—-16] examined the effec-

tiveness of cache prefetching and data forwarding in CC-
NUMA or CC-UMA architectures, except [18,19], which
examined the potential of cache prefetching in bus-based
multiprocessors. This study reported poor effectiveness of
cache prefetching, despite assumed high memory latency.
The main reasons for that are the following. First, prefetch-
ing increases bus traffic. Since bus-based architecture is
very sensitive to changes in bus traffic, prefetching can
result in performance degradation. Second, cache prefetch-
ing can negatively affect data sharing, especially in the cases
of prefetching initiated too early. Last, current prefetching
algorithms are not so effective in predicting coherence
misses. Actually, cache misses caused by data sharing repre-
sent the biggest challenge for designers, especially as caches
become larger and coherence misses dominate the perfor-
mance of parallel programs. On the other side, data forward-
ing has not been examined in bus-based architectures yet.
Complexity of implementation and compiler algorithm
restricts applicability of data forwarding in bus-based archi-
tectures. Dahlgren et al. explored the effectiveness of the
software-controlled update in bus-based multiprocessors,
where a special instruction initiates update of all invalid
copies of the specified cache block in the system [3,4].
This approach requires less sophisticated compiler support
since it does not require identification of future consumers
and it can be implemented at low cost. However, this
approach is less flexible than classic data forwarding as
defined in [5], because it does not allow forwarding to the
processors not having the invalid copies of the data block.

In this paper, a novel technique called cache injection is
proposed. Using advantages of existing techniques, cache
prefetching and data forwarding, and the characteristics of
bus-based architectures, cache injection overcomes some of
the shortcomings of the existing techniques, such as high
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Fig. 2. Illustration of injection mechanism.

contention on the bus, negative impact on data sharing and
instruction overhead in the case of cache prefetching,
compiler complexity in identification of future consumers,
and complexity of implementation in the case of data
forwarding. Cache injection, based on snooping possibilities
inherent to bus-based architectures, is aimed to reduce
coherence cache misses and bus traffic. In cache injection,
data consumers initialize local injection tables with
addresses of data expected to be used. Those data are
injected into consumer caches during a read bus transaction,
initiated by some other consumer, or during a software-
initiated write-back bus transaction, initiated by a data
producer. The proposed technique can be combined with
the existing ones in order to raise the overall effectiveness
of techniques for tolerating memory latency in bus-based
multiprocessors.

We have evaluated the performance of cache injection on
two synchronization kernels, three test benchmarks, and
four parallel applications. In the case of synchronization
kernels, cache injection shows gains from 12 to 96% over
the base system. In the case of test benchmarks and applica-
tions, cache injection improves performance from 2 to 90%
relative to the base system, depending on the number of
processors and parameters of the memory subsystem.

In Section 2, we define cache injection and discuss its
programming model and its implementation in a bus-
based shared memory multiprocessor. Section 3 describes
experimental methodology used in performance evaluation.
Section 4 presents results of the experiments. Section 5
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Fig. 3. Organization of the injection table.

discusses related work. Section 6 summarizes current and
discusses possible future work.

2. Cache injection

In cache injection, a consumer predicts its future needs
for shared data by executing an OpenWin instruction. This
instruction does not initiate any bus transaction, but only
stores the first and the last address of a range of consecutive
cache blocks—an address window—in a special local
injection table. There are two main scenarios when cache
injection can happen: during a bus read transaction (injec-
tion on first read) or during a software-initiated write-back
bus transaction (injection on write-back).

Injection on first read is applicable when there is more
than one consumer. Each consumer initializes its injection
table according to its future needs. When the first one among
consumers executes a load instruction specifying the
shared data, it sees a cache miss and initiates a bus read
transaction. During this transaction, each cache controller
snoops the bus and if there is an injection hit—the address
of the currently transferred block belongs to one of the open
address windows the processor stores the block into its
cache. Hence, in the case of multiple consumers, only one
read bus transaction is needed to update all consumers, if
they all have initialized their injection tables before this
transaction. In our example, both consumer processors, P1
and P2, initialize their injection tables using OpenWin
instructions. Processor’s P1 load instruction sees a cache
miss, and, consequently, initiates read bus transaction.
During this transaction, processor P2 injects that block
into its cache; hence, its 1oad will see a hit in the cache
(Fig. 2a).

Injection on write-back bus transaction is applicable
when shared data exhibit 1-Producer-1-Consumer, 1-Produ-
cer-Multiple-Consumers, or migratory sharing patterns.
Here each consumer also initializes its injection table.
After data producing is finished, the producer initiates a
bus write-back transaction in order to update the memory,
by executing a StoreUp instruction. During the write-back
bus transaction, each consumer snoops the bus, and if it
finds an injection hit, it stores the data block into its
cache. Injection on write-back is shown on Fig. 2b. In this
scenario, processor PO replaces the last store with a
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StoreUp instruction, which initiates write-back bus trans-
action. During this transaction, processors P1 and P2 inject
that data block into their caches.

Hardware support for cache injection includes injection
table, proposed instructions, and a negligible modification
of bus control unit. Injection table is implemented as a part
of the cache controller. Each entry includes two address
fields, Laddr and Haddr, which define the first and the last
address of an address window, respectively, and a valid bit
V. We use the random replacement policy. The organization
of injection table is shown in Fig. 3. Proposed instructions
are:

e OpenWin (Laddr)Haddr)
Initializes an entry in the injection table, by setting the
valid bit and putting Laddr and Haddr values in the
corresponding entry fields. If only one cache block
should be injected, Laddr = Haddr.

e CloseWin (Laddr)Haddr)
Checks injection table, and if there is an open window
with specified Laddr and Haddr, it closes that window
by resetting the valid bit.

e Update (Addr)
Checks the cache and if the specified cache block is
modified, it initiates the write-back bus transaction and
changes the block state into Shared; otherwise, it acts
like noop instruction [16].

e StoreUp (Addr)XValue)

Table 1
Simulation parameters

Parameter Value

Cache size 32/64/128, 1024KB
Cache line size 32B (8W)

Data bus width 8B (2W)

Memory read cycle (MRC) 20, 100 pclk
Memory write cycle (MWC) 1 pclk

Snoop cycle 2 pclk

Lock sleep counter 5 pelk

IT size 128

WB size 32B

Performs an ordinary Store instruction; in addition,
it initiates write-back bus transaction [16].

Compiler and/or programmer insert OpenWin and
CloseWin instructions at the consumer side, and Update
and StoreUpdate instructions at the producer side, in the
injection on write-back scenario. Compiler can reduce
instruction overhead by replacing an ordinary store instruc-
tion, followed by an Update, with a StoreUp instruction.
The injection is performed at the cache block level and the
new state of injected cache block is always Shared. In order to
support exclusive transfer, UpdateInv and StoreUpInv
instructions could be used. By using these instructions, a
producer invalidates cache block in its cache. In this paper,
we have not considered the use of these instructions.

3. Experimental methodology

We evaluate performance impact of cache injection using
Limes [7]—a tool for program-driven simulation of shared
memory multiprocessors. As a simulation workload we use
two synchronization kernels (LTEST and BTEST), three
parallel test applications (PC, MM, and Jacobi) well suited
to demonstrate various data sharing patterns such as 1-
Producer-Multiple-Consumers, read only with multiple
consumers, and 1-Producer-1-Consumer, and four parallel
applications from SPLASH-2 suite (Radix, FFT, LU, and
Ocean) [20]. Proposed instructions for cache injection
support are hand-inserted. A detailed simulator of memory
subsystem is developed. For each application, we compare
the performance of base system and one or more systems
that include cache injection. Experiments vary different
memory subsystem parameters, in order to explore their
influence on cache injection.

The modeled architecture is a bus-based shared memory
multiprocessor system with the MESI write-back invalidate
cache coherence protocol. The bus supports split transac-
tions and uses round robin arbitration scheme. We assume a
single-issue, in order processor model with blocking reads.
Processors execute a single cycle per instruction. Each
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Fig. 5. LAT and NET: LTEST, BTEST.

processor includes only a first level cache memory. We
assume that instructions always hit into the cache. Cache
hit is solved without penalty. Fig. 4 shows the structure of
the modeled cache controller and Table 1 specifies relevant
system parameters. The read and the read-exclusive bus
transactions include the request and the response phases.
The memory read cycle (MRC) defines time needed to
retrieve a requested block from memory. A two word trans-
fer via the data bus takes 2 pclk (pclk—processor cycle);
hence, the block transfer takes 8 pclk. It is assumed that the
memory controller buffer has enough capacity to accept
each block during write-back bus transactions at the data
bus speed (MWC = 1 pclk). Lock sleep counter defines time
between two successive lock acquires when the lock is busy.
We assume 128-entry injection tables, although experi-
ments show that most of the applications need less IT
entries.

The aim of our evaluation is to determine the upper bound
of performance benefit of cache injection before we start
developing compiler support. Hence, we use simple heuris-
tics based on application behavior to insert instructions for
cache injection by hand. Here, we will discuss our heuris-
tics, separately for synchronization variables and for true-
shared data.

Support for injection of synchronization variables is
accomplished using injection on first read, since this
approach does not require any modification of synchroniza-
tion operations. This support is quite simple and includes the

initialization of the injection table before a synchronization
event and the invalidation of the corresponding entry in the
injection table after the synchronization is finished. Thus,
before a 1ock (L) operation, we insert an OpenWin (L,
L) instruction, and after an unlock(L) operation, we insert
a CloseWin(L, L) instruction. Similar procedure is used
for global synchronization primitive Barrier(B, N). It is
clear that inserting instructions to support injection of
synchronization variables can be solved by using macros
that expand synchronization operations. Hence, the true
challenge is the compiler support for injection of true shared
data.

If there is an 1-Producer-Multiple-Consumers sharing
pattern, injection on first read or injection on write-back
can be used. Although injection on write-back may be
more efficient, we use injection on first read because it
implies no action at the producer side. However, if sharing
pattern is 1-Producer-1-Consumer, we have to use injection
on write-back. In this case, there should be supported not
only the initialization of injection tables of consumers, but
also the insertion of Update instructions.

4. Results

This section is organized as follows. Section 4.1 gives a
short overview of simulation results. Section 4.2 discusses
the influence of the injection mechanism on synchronization
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kernels. Section 4.3 explains the data sharing patterns and
injection support and discusses results for applications PC,
MM, Jacobi, Radix, LU, FFT, and Ocean.

4.1. Overview

For synchronization kernels LTEST and BTEST we
compare average lock acquire time (LAT) and execution
time (ET) for the base system (B) and the system with
injection (I), depending on the number of processors and
MRC time. Fig. 5 shows LAT and normalized execution
time (NET) for LTEST and BTEST, when MRC = 20
pclk and MRC = 100 pclk.

For applications PC, MM, and Jacobi we compare ET for
the base system (B) and the system which includes support
for injection of synchronization variables and true shared
data (Isd). In order to examine the sensitivity of cache injec-
tion on number of processors, cache size, and MRC, experi-
ments are repeated with various number of processors (1, 2,
4, 8, 16, and 32), cache sizes of 64/128 and 1024KB, and
MRC values of 20 and 100 pclk. Fig. 6 shows speedup for
the evaluated systems B (SUg) and Isd (SUj). Speedups are
calculated using the following formula, where ETg(P)
represents the execution time on the base system with P
processors.

SUg(P) = ETg(1)/ETg(P), SU,;(P) = ET(1)/ET(P)

For applications Radix, LU, FFT, and Ocean we compare

ET for the base system (B), the system which supports
injection of synchronization variables only (Is), and the
system which supports injection of both synchronization
variables and true shared data (Isd). Fig. 7 illustrates
speedup for the evaluated systems with different parameters
of the memory subsystem.

According to the experiment results, the injection
mechanism almost always improves performance. In
systems with relatively small number of processors (2 and
4), and small cache size, for applications Jacobi, FFT, and
Ocean, the cache injection sometimes may degrade perfor-
mance. However, in those cases the degradation percentage
is negligible (never over 2%). According to the expecta-
tions, the efficiency of the injection increases with increase
of the number of processors in the system, cache memory
size, and MRC time. When the number of processors
increases, the percentage of shared data increases, as well
as the number of sharers, hence the benefit of injection
increases due to lowering miss rate and reducing bus traffic.
Larger cache memory size reduces probability of collision
of the injected data and the current working set. If the MRC
time is longer, there is more to gain by reducing the read
stall time. One exception of above trends is the application
MM, where improvement is less in systems with larger
cache size and longer memory cycle time. This anomaly
will be explained in the section dedicated to this application.
Solutions Isd have better performance than solutions Is for
all experiments with Radix, and in majority of experiments
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with FFT. For LU and Ocean solutions /s are predominantly
better than Isd. The reasons for this phenomenon will be
explained in the following sections.

4.2. Synchronization kernels

The influence of cache injection on locks is evaluated
using LTEST synchronization kernel. This kernel simulates
1000 requests per processor to enter the critical section;
duration of the critical section is 200 pclk, and delay
between release of the lock and next attempt to acquire it
is defined using uniform distribution 0—1000 pclk. Locks
are implemented using the test and test-and-set algorithm.

For the LTEST, the system with injection assumes the
support for injection of lock variable, which protects the
critical section. The instruction OpenWin is inserted at

the beginning of the kernel. When one processor initiates
the read cycle, reading the lock variable from memory
during testing phase, all other processors will inject the
lock variable (the injection on first read). This mechanism
provides significant bus traffic reduction, especially in the
conditions of high lock contention. The alternative approach
is the injection on write-back. This approach requires the
modification of synchronization primitives: the modified
lock initiates write-back bus cycle after a processor sets
a lock variable to busy and the modified unlock initiates
the write-back bus cycle after the processor resets it to free.
However, simulation results show a negligible improvement
over the solution described earlier; therefore, we concen-
trate on the injection on first read.

Fig. 5a and b show LAT for base system and system with
injection, for MRC =20 pclk and MRC =100 pclk,
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respectively, depending on the number of processors (P).
The cache injection reduces LAT between 27% (P = 4)
and 75% (P = 32) when MRC =20 pclk, and between
66% (P =4) and 77% (P = 32) when MRC = 100 pclk.
Fig. 5c and d show NET for LTEST. For LTEST, cache
injection reduces ET between 12% on a system with 4
processors and 79% on a system with 32 processors, when
MRC =20 pclk. When MRC = 100 pclk, ET is reduced
between 48 and 84%.

The influence of cache injection on barriers is evaluated
using BTEST synchronization kernel. In this kernel, each
processor performs global synchronization 100 times, and
there are 120 pclk between two subsequent barriers. For the
BTEST, the system with injection assumes the support for
injection of two lock variables and a counter used in an
implementation of a barrier primitive. Since the implemen-
tation is based on lock and unlock primitives, the benefit is
the consequence of the same mechanism as described
earlier. Fig. S5e and f show NET for BTEST. For BTEST,
cache injection reduces ET between 56% on a system with
four processors and 94% on a system with 32 processors,
when MRC =20 pclk. When MRC = 100 pclk, ET is
reduced between 63 and 96%. Higher improvements for
this kernel, compared to LTEST, are a consequence of
higher contention.

4.3. Applications

4.3.1. PC

PC iterates i times over two phase loop. In the first phase,
each processor computes a parameter value depending on its
ID and all elements of shared matrix. In the second phase,
each processor modifies the elements of the submatrix
assigned to it, using previously computed parameter.
Hence, there is an 1-Producer-(P — 1)-Consumers sharing
pattern between successive iterations (P is the number of
processors). The matrix size is 128 X 128, i = 20. The
coherence misses dominate since each processor modifies
its assigned submatrix, which is read by all other processors
in the next iteration. The support for the injection is
achieved by insertion of only one instruction, which defines
an address window encompassing the whole shared matrix.

Here it should be noted that the absolute value of SU is
not of interest, because the problem dimension grows with
the increase of the number of processors—during the first
phase each processor reads all elements of the shared
matrix. The real indicator of the injection benefit is the
relative improvement of ET of Isd system over B system.
The cache injection improves performance from 2.1% in the
system with P = 2, to 49.4% in the system with P = 32,
depending on parameters of the memory subsystem (Fig. 6a
and b).

4.3.2. MM
MM is a parallel version of matrix multiplication
A=AXB. Each processor computes elements of the

assigned submatrix of matrix A, so all processors read
matrix B elements (read only data with P consumers). The
matrix size is 128 X 128. As all processors read elements of
the shared matrix B, the injection on first read significantly
reduces bus traffic. To support the injection, each processor
defines an address window encompassing the whole matrix
B.

It is interesting to notice that for this application the effi-
ciency of cache injection decreases as the cache memory
size increase (Fig. 6¢c and d). This is a consequence of multi-
ple injections in a system with small cache size: due to
limited cache capacity, once injected data are thrown out
of the cache and injected again. In the system with large
cache, there is no conflict, i.e. the elements of matrix B are
injected only once during the execution. In addition, the
efficiency of the cache injection decreases for longer
MRC. In the system B-64, when MRC =20 pclk, the
increase of the processor number does not contribute to
the speedup, since the ET is completely determined by the
bus traffic—the bus utilization is almost 100%. By increas-
ing MRC, the bus utilization decreases (58.6% for the
system B-64 when MRC = 100 pclk). The cache injection
dramatically reduces the bus traffic in both cases, but the
relative improvement is larger, when the bus utilization is
higher in the base system.

4.3.3. Jacobi

Jacobi is a method for solving partial differential equa-
tions and iterates over a two-dimensional (2D) array. In each
iteration, every matrix element is updated to the average of
its four neighbors. A scratch array is used to store new
values, in order to avoid overwriting an element’s old
value before it is used by its neighbor. All processors are
assigned roughly equal chunks of rows. Neighboring
processors share the rows on a chunk’s boundary, so there
is 1-Producer-1-Consumer sharing pattern. The matrix size
is 256 X 256. Since this application has 1-Producer-1-
Consumer sharing pattern, we have to apply the injection
on write-back. A producer executes Update instructions,
sending the data from boundary rows to neighbor proces-
sors. On the other hand, each consumer opens the address
window to inject data from its neighbors.

When the number of processors in the system is small,
with small cache memory size, the cache injection can
degrade the performance negligibly (less than 2%). This is
a consequence of the small percentage of shared data, the
instruction overhead due to Update instructions, and
conflicts between the injected data and the current working
set. In all other cases, the injection improves performance,
up to 77.7% (Fig. 6e and f). The cache injection reduces the
bus traffic during the synchronization and the miss rates for
shared data (read bus cycles in B are replaced by software-
initiated write-back bus cycles in Isd). The drop of the
speedup in the base system with 32 processors is due to
the high percentage of shared data and consequently, high
bus traffic.
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4.3.4. Radix

Radix sorts integer keys using the radix-sorting method.
The algorithm is iterative, performing one three phase itera-
tion for each r digit of keys. First, each processor passes
over its assigned keys and generates a local histogram. Next,
local histograms are accumulated in a global histogram.
Finally, each processor uses the global histogram to permute
its keys into a new array for the next iteration. We use an 8-
bit digit (r = 256) to sort 128K keys. The injection of the
global histogram rank is applied in the first phase of an
iteration. Each processor initializes the injection table to
accept the elements of rank array currently being updated
by the next processor, which should insert an Update
instruction after the last write in the cache block. In the
second phase, each processor computes its rank_ff, using
the global histogram rank and local histograms rank_me
of all processors with lower ID. As there are multiple consu-
mers, we use the injection on first read. Each processor
initializes the injection table according to the data to be
used at the beginning of the phase, and invalidates the
entries at the end. In the last phase, there is an irregular
communication all-to-all. If the size of cache block is one
word, the cache injection significantly improves perfor-
mance. Otherwise, the false sharing eliminates the benefit
of injection, so we did not use the injection in this phase.
Solutions Is and Isd always improve performance, and Isd
outperforms Is (Fig. 7a and b). Solution Is improves perfor-
mance for up to 30.9%, while Isd improves for up to 41.1%.

4.3.5. LU

LU factors a dense matrix into the product of lower trian-
gular and upper triangular matrices. The matrix is divided
into blocks; a block ownership is assigned using 2D-scatter
decomposition, with blocks being updated by the processor
that owns them. Outer loop iterates over the diagonal
blocks. In the iteration k, first step is the factorization of
the diagonal block Agg. Next, processors modify the peri-
meter blocks in column k and row k using the diagonal
block. Finally, processors modify the interior blocks using
corresponding perimeter blocks. The matrix size is
512X 512, and the block size is 8 X 8. In the second phase
of the iteration k, the processors that own the perimeter
blocks update those blocks, using the diagonal block Ay,
modified in the previous phase. As there are more consu-
mers, each processor that owns a perimeter block inserts
instructions to support the injection of the diagonal block.
In the third phase, the processors modify the interior blocks,
using the corresponding perimeter blocks. In this phase,
there are also more consumers, so at the beginning of the
phase each processor inserts the instructions to support the
injection of the corresponding perimeter blocks. It should be
noted that here we can use the injection on write-back. In
this case, the process of injection would be translated into
the first phase for the diagonal block Axg, and to the second
phase for the perimeter blocks.

Solution Is always improves performance, while solution

Isd does not influence the ET in the systems with two and
four processors (Fig. 7c and d). Surprisingly, Is always
outperforms Isd, except when P = 32, MRC =20 pclk,
and cache size 128KB, although Isd reduces cache misses
and bus traffic more than Is. The main reason why this
potential did not turn into the performance gain is due to
the execution of the inserted instructions supporting the
injection of matrix blocks, and the contention on internal
resources of cache controller caused by these instructions
and injection mechanism. The large instruction overhead is
due to the complex initialization of the injection table for a
matrix block, since it does not occupy continual address
space. This problem could be easily solved by the data
reallocation.

4.3.6. FFT

FFT executes the one-dimensional (1D) version of the
six-step FFT algorithm. The data set consists of the n
complex data points to be transformed, and n complex
data points referred as the roots of unity. Both sets of data
are organized as ./n X \/n matrices, which are partitioned
among processors in contiguous chunks of rows. The only
communication is during three transpose phases. The
matrices size is 256 X 256. In the algorithm steps 2, 3, and
5, each processor modifies only its assigned chunk of rows.
In the steps 1, 4, and 6, the matrix is transposed: the proces-
sor communication is all-to-all, and the data-sharing pattern
is 1-Producer-1-Consumer. A producer inserts Update
instructions before the transposing step, while a consumer
initializes the injection table to inject the corresponding
data.

Solution Is always improves performance, while Isd
degrades performance in the systems with cache size
128KB and MRC = 20 pclk, between 3% when P = 2 and
0.4% when P = 16 (Fig. 7e and f). In the systems with small
cache, small MRC time and moderate number of processors,
solution Is outperforms Isd, due to the conflicts in caches
between the injected data and the current working set. The
problem of complexity of the initialization is the same as in
LU. Solution Is improves performance up to 13.3%, and Isd
up to 15.8%.

4.3.7. Ocean

Ocean simulates large-scale ocean movements. At each
horizontal cross-section through the ocean basin, several
different variables are modeled. Each variable is discretized
and represented by a regular, uniform 2D grid with nXn
non-border points. After the initialization, this application
proceeds over a large number of time-steps. Data are parti-
tioned among processors in square-like subgrids. Most of
time the application solves partial differential equations
using the red—black Gauss—Seidell equation solver. The
grid size is 128 X 128. The injection of true shared data is
implemented only in the phase of the solving of partial
differential equations. Generally, a processor communicates
with four neighbor processors (Top, Bottom, Left, Right);
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the data sharing pattern is 1-Producer-1-Consumer. A
producer initiates update of the consumer cache with data
to be used in the next iteration. A consumer initializes the
injection table to accept the last row of subgrid assigned to
the processor Top, first row of the Bottom, left column of
the Right and right column of the Left.

Solution Is always improves performance, while Isd
degrades performance in the systems with P =2 and
P =4, cache size 128KB and MRC =20 pclk (Fig. 7¢g
and h). Solution Isd does not contribute to the performance
improvement, compared to Is, which is simpler to imple-
ment. Although Isd solution reduces cache misses and bus
traffic, complexity of the inserted code and the contention
on the internal resources limit the benefit of these solutions.
The problem of the complexity of the initialization is the
same as in LU. Solution Is improves performance up to
90.9%, and Isd up to 89.6%. For this problem size of the
application, the base solution shows poor speedup, due to
the high communication-to-computation ratio and high bus
utilization.

5. Related work

Flexibility and efficiency of software-controlled techni-
ques for reducing memory latency, and the ever increasing
speed gap between memory subsystem and high perfor-
mance processors in cache-coherent shared memory
systems result in a large number of research studies. This
section gives a short overview of recent research efforts in
this area [9].

T. Mowry proposed a compiler algorithm for selective
prefetching in uniprocessor and multiprocessor systems
[10]. Simulation analysis based on DASH-like CC-NUMA
multiprocessors showed considerable improvements,
between 6 and 53% reduction in ET. However, the proposed
algorithm is limited to numeric-based applications. T.
Mowry and C. Luk proposed three different prefetching
schemes for applications with pointer-based data structures
[11]. Performance analysis shows performance improve-
ment of 14% for the Barnes application from the
SPLASH-2 benchmark suite. P. Ranganathan et al. investi-
gated the interaction of software prefetching with ILP
processors in shared memory systems [14]. D. Tullsen and
S. Eggers analyzed the potential of ‘ideal’ compiler-directed
prefetching in bus-based shared memory multiprocessors
[18]. Results have shown that despite high memory latency,
bus-based architectures are not very well suited for prefetch-
ing, predominantly due to the invalidation misses and the
increase of bus traffic. Same authors proposed several tech-
niques and heuristics that increased efficiency of prefetching
for these architectures [19].

Data forwarding technique was implemented for the first
time in the DASH multiprocessor, developed at Stanford
University [6]. Special deliver instruction initiates the
sending of a cache block to processors specified by a bit

vector. Koufaty et al. proposed a framework for a compiler
algorithm to insert data forwarding instructions in the code
that exploits loop-level parallelism with do-all constructs
[5]. Simulation analysis based on CC-UMA architecture
has shown performance improvement of 50% for a system
with large caches and 30% for a system with small caches.
In CC-NUMA architectures with write-invalidate protocols,
it may be useful to update the memory copy of the shared
data, if another processor is going to use that data. J. Skepp-
stedt and P. Stenstrom proposed a compiler algorithm for
inserting the instructions to update a memory block after its
last modification, using a classic data-flow analysis [16].

Large number of research papers investigates the combi-
nation of prefetching and forwarding techniques
[1,13,15,17]. H. Shafi et al. evaluated fine-grain producer
initiated communication, alone and combined with data
prefetching [15]. P. Trancoso and J. Torrellas used data
prefetching and data forwarding to speedup critical sections
[17]. U. Ramachandran et al. explored the set of software-
controlled primitives, allowing selective update of cache
memories, and generalized data prefetching [13]. G. Byrd
and M. Flynn classified communication mechanisms in
shared memory multiprocessors [1].

Dahlgren analyzed the deficiencies of hybrid snooping
cache protocols and the effectiveness of read snarfing and
write cache in boosting the performance of these protocols
[3]. In read snarfing (or read broadcast) data block that is
transferred on the bus as a read response, updates the node
that requested it, but also updates all other caches having the
block invalidated. This technique and cache injection use
similar mechanism, but cache injection is more flexible
since it is software-controlled.

6. Conclusions

This paper presents a novel software-controlled technique
for tolerating memory latency in bus-based shared memory
multiprocessors called cache injection. Cache injection is
developed to overcome some of the shortcomings of the
existing software-controlled techniques, cache prefetching
and data forwarding, combining advantages of these two
techniques and inherent characteristics of bus-based archi-
tectures. Experimental analysis, based on execution driven
simulation, showed gains between 12 and 96% over the
based system for synchronization kernels, and between 2
and 90% for applications. Performance improvements are
due to the elimination of cache misses for true shared data
and reduction of bus traffic. Efficiency of cache injection
increases with the increase of the number of processors in
the system, cache size, and memory latency.

Possible future research includes developing and imple-
mentation of a compiler algorithm for inserting instructions
to support injection of shared data. It is also interesting to
analyze the effectiveness of cache injection compared to
data prefetching, read snarfing, software-controlled update,
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and the combinations of these techniques. Another direction
is to implement some kind of cache injection in scalable
cache-coherent shared memory multiprocessors [8].
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