
• " ;:'2J 

ELSEVIER 

Microelectronics Journal 27 (1996) 11-22 
Copyright ~) 1996 Elsevier Science Limited 
Printed in Great Britain. All fights reserved 

0026-2692/96/$15.00 

0026-2692(95)00008-9 

2D matrix 
multiplication on a 
3D systolic array 
Salim Lakhani 1, Yi Wang Aleksander 
Milenkovi6 2 and Veljko Milutinovi6 2 
I School of Electrical Engineering, Purdue University, West Lafayette, Indiana, USA 
2School ofF, lectrical Engineering, University of Belgrade, Belgrade, Serbia 

The introduction of systolic arrays in the late 1970s had an 
enormous impact on the area of special purpose computing. 
However, most of the work so far has been done with one- 
dimensional and two-dimensional (2D) systolic arrays. 
Recent advances in three-<limensional VLSI (3D VLSI) and 
3D packaging of2D VLSI components, has made the idea of 
3D systolic arrays feasible in the near future. In this paper we 
introduce one algorithm for 2D matrix multiplication, using 
a 3D systolic array. We analyze advantages and disadvantages 
of 3D systolic arrays in the context of the analysis algorithm. 
The analytical work is combined with examples and discus- 
sions of relevant details. 

1. Introduction 

R ecent advances in VLSI technology have 
made it possible to use special purpose 

processors to solve compute-bound problems 
[1]. I fa  systolic array architecture is used, simple 
and regular processing elements (or cells) capable 
of  doing simple computations are connected 
using a nearest-neighbor network. In these 
arrays, data pass through many cells, and are used 
by different cells for computation, before being 
returned to the memory [2]. As the same data are 
used repeatedly for many computations, the 
computational throughput is increased without a 
need for increasing the I/O bandwidth or using a 
local memory. Furthermore, since the cells of  

the systolic arrays are simple and regular, they are 
easier and cheaper to design. 

Most work so far has been done with one- 
dimensional (1D) and two-dimensional (2D) 
systolic arrays, which we shall refer to as planar 
systolic arrays in the rest of  this paper. Planar 
systolic arrays have been widely used in signal 
and image processing. However, there are some 
inherent limitations to the speed, extensibility 
and partitionability of  planar systolic arrays. 

One major problem with the planar systolic 
arrays is the speed limitation. In a planar systolic 
array, speed of  the data stream is dictated by the 
speed of  the computation in each cell. The speed 
of  computation may be low, especially if the cells 
are required to do complex computations such 
as floating-point multiplication and/or addition. 
For this reason, when  the size of  the problem 
becomes large (and consequently the size of  the 
array), the computational latency may become 
too large to be tolerable. 

Another problem with the planar systolic arrays is 
difficulty with the extensibility. The structure of  a 
systolic array is fixed after it has been manu- 
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factured, so it has less flexibility than SIMD 
machines. Since it is impossible to produce an 
array to match all possible sizes of different 
problems, it is necessary that one is able to solve a 
larger problem on a smaller array. To be able to 
solve a larger problem on a smaller array, a bus 
from the output to the input of the array may be 
needed to feed back the partial results. This is 
especially true if partial results and data streams 
flow in the same plane, which is generally true for 
a planar systolic array. This bus can not only affect 
the latency due to the propagation delay, but it 
can also increase the hardware cost. 

Still another problem with the planar systolic 
array is difficulty with the partitionability. This 
problem arises when one needs to solve a 
problem of smaller size on an array of larger size. 
Using a larger array to solve a problem of smaller 
size as a waste of resources, therefore it is 
important that one is able to solve several smaller 
size problems on a larger array simultaneously. 
This may be difficult if partial results and data 
streams flow in the same plane, which is gener- 
ally true for a planar systolic array. 

To solve these inherent limitations of the planar 
systolic arrays, researchers have recently turned 
their attention to three-dimensional (3D) 
systolic arrays. This was made possible by recent 
advances in 3D VLSI and related areas. Impor- 
tant contributions in the technology domain, 
among others, came from IBM [3], Texas 
Instruments [4] and Hughes [5]. 

The pioneering work in the area of  3D compu- 
ter engineering/science was done by Aboelaze, 
Kacz, orek, Leighton, Preparata, Rosenberg and 
Wah [6-12]. Rosenberg has been working on 
the modeling of 3D layouts and layouts of 
selected interconnection networks, Preparata has 
also been working on the layouts of  selected 
interconnections networks, and Leighton and 
Rosenberg, as well as Aboelaze and Wah, have 
been working on various aspects of  layout 
complexities. 

The 3D systolic array is a concept in computer 
architecture. A 3D systolic array can be imple- 
mented with 3D VLSI, but 3D VLSI is not the 
only way to implement the 3D systolic array. 
The 3D systolic arrays can also be implemented 
using 3D packaging of 2D VLSI. 

In this paper we focus on 2D and 3D systolic 
arrays for 2D matrix multiplication. In Section 
2 we analyze the advantages of  3D systolic 
arrays, in Section 3 we discuss some of the 
possible problems with 3D systolic arrays, in 
Section 4 we define criteria to compare 2D and 
3D systolic arrays, and in Section 5 we show 
the structure of the 3D systolic array for multi- 
plication of 2D matrices, and we compare that 
structure with the structure of the correspond- 
ing 2D systolic array. 

2. Advantages 

The 3D systolic arrays have many potential 
advantages over the planar systolic arrays. These 
advantages include, but are not limited to, higher 
speed, better extensibility, better partitionability, 
better fault tolerance capabilities, ease of  pipe- 
lining, ease of cascading, etc. Also the processing 
element for 3D systolic arrays may be simpler 
than that for planar systolic arrays. Some of the 
advantages are due to the unique 3D architecture 
of  3D systolic arrays, and the others are due to 
3D VLSI and 3D packaging technologies. Even 
though some of the advantages of 3D systolic 
arrays are due to 3D VLSI and 3D packaging, 
most of the advantages of the 3D systolic array 
are due to its unique architectural concept. 

In a 3D systolic array, constant (or direct) data 
streams move in the X - Y  plane, and variable (or 
functional) data streams move along the Z axis 
(Fig. 1). All computations in a 3D systolic array 
are done in the cells along the Z axis [13]. As 
only constant data flow in the X - Y  plane, they 
can move at higher speed, resulting in a reduc- 
tion of the propagation delay. Also, due to the 
fact that computation in a cell depends only on 

12 



Microelectronics Journal, Vol. 27, No. 1 

¢ 

~ X  

z/ 

Fig. 1. A 3D systolic array. No te  that constant data streams 
(a) and (b) are flowing in the X - Y  plane and the varying 
data stream (c) is flowing along the Z axis. Also note that I/ 
O can occur  at any o f  the six planar sides o f  the array [13]. 

the constant data streams moving in the X - Y  
plane, computation can be done concurrently, 
therefore speed of the 3D systolic arrays will 
increase compared with the 2D systolic arrays. 

As already indicated, some of the advantages of 
the 3D systolic array are due to the use of 3D 
VLSI and/or 3D packaging technologies. With 
3D VLSI and/or 3D packaging technologies, 
components can be placed at a shorter distance 
from each other, wlxich results in shorter wires 
between the components (Fig. 2) [14] and in 
smaller propagation delays. The 3D VLSI also 
has greater packing density than the 2D VLSI 
(Fig. 3), which means more components can be 
placed on the same ctfip [14]. More components 
on the same chip results in less need for off-chip 
communication, and thus higher throughput can 
be achieved. In 3D VLSI, we can also use holes 
instead of wires to connect components on 
different planes (Fig. 4 [14]), and hence we can 
connect more components without using long 
wires, which results in lower propagation delays. 
Note, in this paper the term layer is used for 
different VLSI mask levels, and the term plane is 
used for different levels of  processing elements. 
With 3D technoloff[es we can also construct 
multiport devices [14]. Multiport devices have a 

2D structure 3D structure 

2gm 

Fig. 2. Compar ison o f  wiring lengths in a 2D structure and 
a 3D structure. Shorter wires are required in a 3D structure, 
as components  can be placed close to each other  by using 

more than one plane [14]. 

higher I/O bandwidth which increases the over- 
all speed of the array. 

Another advantage ofa 3D systolic array is that it 
can be easily extended or partitioned. This ease 
of extensibility and partitionability is due to the 
fact that no partial results flow from one cell to 
the next in the X - Y  plane [13]. As the compu- 
tation depends only on the constant data flowing 

3D structure 2D structure 

/ elements = N O Wiring area 
Area = S o Inter-chip / = aS o 

No So . . . . . . . . . . . . .  , 

Number of planes = N 

NN o N O 
3D density = S'--~ 2D density = (~So) 

3D density = ctN = 20 - 50 (when 0~ = 2 - 5 and N = 10) 
2D density 

Fig. 3. Comparison o f  packing density o f  a 2D structure 
and a 3D structure. Note ,  the packing density o f  a 3D 
structure increases by a factor ~, compared wi th  a 2D 

structure [14]. 
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3D structure 2D structure 

S 0 ° 'T°° I 
/ 

Via hole Wiring 

Number of interconnections Number of interconnections 
= 10 4 ~ 10 6 = 10 2 ~ 10 3 

Fig. 4. C o m p a r i s o n  o f  the  possible n u m b e r  o f  in ter -  
connec t ions  in a 2D structure and a 3D structure.  M o r e  
c o m p o n e n t s  can be  c o n n e c t e d  in a 3D structure as holes 
can be used, instead o f  wires,  to connec t  c o m p o n e n t s  on  

different planes [14]. 

in the X - Y  plane, an array can be extended or 
partitioned without affecting the result. 

Sometimes it is necessary to combine two special 
purpose systolic arrays (in the form of a pipeline) 
to solve a complex problem. One example of 
such a pipeline is a systolic array to solve a 
system of linear equations. This macropipeline 
can be formed by combining a systolic array for 
LU decomposition of a matrix and a systolic 
array for solving a triangular linear system [2]. 
This can be easily accomplished with the 3D 
systolic arrays, because direct and functional data 
streams flow in different planes. 

The next advantage is related to fault tolerance. 
One problem with single chip design is that, 
even if one small part of the chip develops a 
fault, the whole chip becomes useless. One 
solution is to use row reconfigurability (PAL) and 
row-column reconfigurability (RCR) techni- 
ques. The RIL and R.CR techniques were 
proposed by Fortes and Raghavendra [15] for 
increasing the fault tolerance capabilities of a 
processor array. In this technique, if a processor 
develops a fault, it is bypassed by 1LR or RCP,_ 

This technique can be easily extended to 3D 
systolic arrays, and would work even better in 
3D architectures than in planar architectures. In 
3D systolic arrays, we can extend this technique 
to a full layer of processors. Thus, if a processor 
develops a fault we have three choices (as 
compared with two choices for a 2D systolic 
array and one choice for a 1D systolic array). For 
a 3D systolic array we can bypass a faulty 
processor in one of the following ways: (1) by 
row reconfiguration; (2) by column reconfi- 
guration; or (3) by layer reconfiguration. 

Here we deal only with time, area and area-time 
complexity-related issues. Details related to 
partitionability, extensibility and fault tolerance 
can be found in [16]. 

3. Disadvantages 
The 3D systolic arrays also have some disad- 
vantages. In this section we discuss some of the 
disadvantages of the 3D systolic arrays. We also 
present some of the possible ways to overcome 
these disadvantages. Some of  these disadvantages 
are due to the architecture of the 3D systolic 
array and some are due to 3D VLSI. Three of  
the main disadvantages of the 3D systolic array 
are I/O problems, high cost (low yield) and heat 
dissipation. 

The first problem of the 3D systolic array is I/O. 
This problem is partially due to the architecture 
of the 3D systolic array and partially due to 3D 
VLSI. For a planar systolic array, I/O can occur 
only at the four edges of  the array, while for a 
3D array I/O can occur at all six planar sides of 
the array (Fig. 1). This means that additional pins 
would be required for I/O, which is difficult 
with current packaging technologies. One solu- 
tion for this problem is to use one pin for more 
than one purpose. This sharing of hardware may 
result in a reduction of the throughput for 3D 
arrays, but this reduced throughput may still be 
higher than that for 2D systolic arrays [13]. 
Another solution to this problem is to use 3D 
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VLSI and 3D packaging technologies, and at the 
same time advance 31-) VLSI and 3D packaging 
technologies, so as to be able to have pins located 
on all four edges of more than one plane. This 
increase in the number of pins not only solves 
the I/O problem of the 3D arrays, but it can also 
result in an increase of I/O bandwidth, which in 
turn may improve the performance of the 
systohc array; but this increased I/O bandwidth 
of the 3D systolic array must be matched by the 
I/O bandwidth of the host (memory or compu- 
ter) and the data bandwidth of the bus. If I/O 
bandwidth of the host or the data bandwidth of 
the bus is less than the I/O bandwidth of the 3D 
systohc array, then the host or the bus may 
become a bottleneck, and will result in degrada- 
tion of the performance of the 3D systolic array. 
If the host is a memory, then one way to increase 
its I/O bandwidth is by using multiport memory. 
Bandwidth of a host memory can also be 
increased by using interleaved memory, memory 
pipelining, and other techniques. If the host is a 
computer, then the I/O bandwidth of the host 
and the 3D systolic array can be matched by 
using a buffer between the host computer and 
the 3D systolic array. Increasing the data band- 
width of the bus may be difficult. The only way 
to increase the data bandwidth of a bus is by 
using more than one bus between the host and 
the 3D systohc array. This use of more than one 
bus will result in an increase of the cost, there- 
fore it is important to achieve a balance between 
speed of the 3D systolic array and its cost. 

The second major problem of the 3D systohc 
array is the cost of the chip. This is due to 3D 
technology. In 3D technologies, the yield of the 
chip goes down as the number of planes increa- 
ses [14]. This decrease in the yield results in an 
increase of the rrmnufacturing cost. This 
problem can be avoided if one uses 2D VLSI 
instead of 3D VLSI. "]?he use of 2D VLSI for the 
3D systolic array may" result in a decrease in the 
throughput, but this reduced throughput will be 
higher than the throughput of a planar systolic 
array. Therefore, due to the fact that manu- 

facturing cost increases with increase in the 
number of planes in the 3D systohc array, it is 
important to achieve a balance between the 
utilization of 3D technologies and the cost of 3D 
systolic arrays. 

The third major problem of the 3D systohc 
arrays, which is also due to 3D technology, is the 
problem of heat dissipation. This is due to the 
fact that it is difficult to dissipate the heat from 
the inner portions of a 3D VLSI chip. One 
solution to this problem is to restrict the number 
of planes in the third dimension. This problem 
can be avoided altogether if the 3D systolic 
arrays are implemented with 2D VLSI. 

4. Comparison criteria 

In this section we define criteria for comparing a 
planar and a 3D systolic array, to be used in the 
later analysis, and with respect to the previously 
mentioned advantages of the 3D approach. One 
simple but incorrect way to compare a 2D systohc 
array with a 3D systolic array would be by 
counting the number of cells in each. The main 
problem with this is that the cells in different 
types of systolic array may be different, therefore 
one can not draw any valid conclusions about the 
relative speed or hardware complexity of the two 
arrays just by counting the number of cells in the 
two arrays. Due to the differences in the structure 
of the cells, it is difficult to compare the planar 
and the 3D systolic arrays. For these reasons, it is 
important to develop some realistic and prefer- 
ably analytical criteria that can be used for 
comparing the systohc arrays. 

The two most common criteria for comparing 
two systohc arrays are processing latency (time T) 
and VLSI area (area A). We will use time and area 
to compare the systohc arrays. One must realize 
that usually there is a tradeoffinvolved between T 
and A, i.e. one hardware may take less time to 
solve a problem, but it may need more VLSI area 
than the slower hardware. Therefore, to under- 
stand clearly the differences between the systohc 
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arrays, one must also look at the overall perfor- 
mance. To compare this overall performance of 
the systolic arrays, we use the A T  2 criterion. 
Note, the A T  2 criterion is the adoption of the 
classical A T 2 criterion used in the theory of VLSI 
complexity analysis [17]. In this section, we 
present a general method for developing criteria 
to compare time and area. In Section 5, we use 
this general method to develop exact comparison 
criteria for our example. 

The first step towards developing comparison 
criteria is to define precisely the algorithm for 
which one needs a systolic array. Then, for this 
algorithm, one has to define the molecular 
operation. Here, the molecular operation is 
defined as the operation that is constantly being 
repeated in the given algorithm, regardless of the 
type of systolic array being used. Next, one has 
to define atomic operations for all the systolic 
arrays that need to be compared. We define the 
atomic operations as the operations to be actually 
executed, by each cell of the systohc array, as 
elementary parts of the above-defined molecular 
operation. Note that the molecular and atomic 
operation for a particular array may or may not 
be the same. Now, one knows exactly what the 
operation to be performed by each cell of the 
systolic array is. Once one has this information, 
one can define the structure of the array and can 
develop the equations for time and area in terms 
of different relevant parameters. Next, one plots 
these equations versus the problem size, for 
different values of the chosen parameters. From 
these plots, one can analyze and compare the 
performance of the given systolic arrays. 

4.1 Time 
To develop an equation for the total execution 
time, one first has to define the time for one 
atomic cycle. Here atomic cycle is defined as the 
time needed by the slowest cell to perform its 
required atomic operation, and to pass the result/ 
data to the next cell (unless all cells are char- 
acterized with the same delay, which is what the 
assumption is throughout the rest of this work). 

Note, the time for an atomic operation is the 
same as the time for an atomic cycle. Once one 
has defined the atomic cycle time, one can 
compute the time for the execution of the 
molecular operation, and for the execution of 
the whole algorithm. The total time is a function 
of the atomic cycle time and the problem size 
(plus a plethora of possible technology-related 
and algorithm-related parameters). 

4.2 Area 
To develop an equation for area, one first has to 
define the area for each cell of the systolic array. 
This area will be dictated by the complexity of 
the atomic operation. One already knows the 
number ofceUs in an array (from the structure of 
the array), thus one can now compute the total 
area of the systolic arrays. Note, in this work the 
area of a cell in a 3D systolic array is defined to 
be the area needed to implement the logic func- 
tion of that cell in 2D VLSI. Thus, the area of a 
cell in a planar systolic array and the area of a cell 
in a 3D systolic array will be the same if both 
cells implement the same function. Therefore, 
here we actually talk about the virtual area, so 
that the planar and the 3D approaches can be 
compared, but (for simphcity) we use only the 
terlTl a r e a .  

4.3 Area-time tradeoff 
As we mentioned earlier, there is a tradeoff 
involved between area of the systolic array and 
the time for execution of the algorithm. There- 
fore, to understand the differences between the 
given systolic arrays, one must also look at the 
overall performance (in terms of area and time) 
of the given systolic arrays. To compare this 
overall performance of the given systolic arrays, 
we use the A T  2 criterion. 

5. Matrix multiplication 

In this section we present two different struc- 
tures of2D systohc arrays and one structure of a 
3D systohc array for matrix multiphcation. We 
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also compare the 2D and 3D systolic arrays for 
time and area according to the criteria defined in 
the previous section. 

Given matrices A and B of size N by N,  we need 
to compute matrix C, such that C = A .  B. The 
algorithm for matrix multiplication is shown in 
Fig. 5. In this example, the molecular operation is 
c + a. b. This operation will be performed by 
each cell of the 2D systolic array, therefore it is 
also the atomic operation for the 2D systolic 
array. Two different structures of the 2D systolic 
arrays (for matrix multiplication) are shown in 
Fig. 6a [18] and 6b [19]. The number of cells (n2~) 
needed in the 2D systolic array of Fig. 6a, in terms 
of the problem size (N), is given by [13]: 

n2~ = 3 N  2 - 3 N  + 1 

and the number of cells (n2b) needed in the 2D 
systolic array of Fig. 6b, in terms of the problem 
size (N), is given by: 

n2b = N 2 

One can decompose the molecular operation 
into atomic operations for a 3D systolic array. 
For example, assume that the elements of the 
matrices are floating-point numbers. Then one 
can decompose the molecular operation into five 
atomic operations. These atomic operations are: 
(1) mantissa multiplication; (2) exponent addi- 
tion; (3) mantissa aligmment; (4) mantissa addi- 
tion; and (5) result normalization [13]. Mantissa 
multiplication and exponent addition are needed 
for the multiplication part of the molecular 
operation, and other atomic operations are 
needed for the addition part of the molecular 

I 

(a) 

• . - °  a s S 
' ' 2  , e . i 
i 
' 1' a 1 3  1 
I • s 
,' , a2l/ 
i • a22 , ,  

s • i S 
, a23 , ,  

1' a31 1' 

• a32 . - "  

es • a33 . ~, 
• s s - "  

(b) 

t t  

t e 
e e 

s e 
t 

• .  • / b33 
• a 

• o e e 
L 

• -"  , 023 • s 
. • . .  . •,;" b32 

) . . ± j  / 
..L.L/..Ab3, / 

( ) ~O ' 

- " ~  - - -  ~ I b l l  ,, •-~ 

t e I o ~  e ~ J~-.!,..- c n  , 
= ~ . • "  ° '~')'i c ' '  C23 

~'s~.. I . - " a l l , '  : C22 ' 
i i 
: e2 '  C33 ) 
t 

b33 

b32 b23 

b 3 1  b22 b13 

b21  b 1 2  0 

bll 0 0 

a 1 3  a 1 2  a l l  

f o r ( i = l ; i ' . . - ' N ; i + + ) {  a23 a22 a2] 0 : 
for  ( j =  1 ; j < N ;  j + + )  { 

f o r  ( k = l ;  k < N ;  k + + )  { 

i,j = ei,j + ai.k * bk.j; 

} a33 a32 a31 0 0 : 

} 

Fig. 5. An algorithm for matrix multiplication. Here ai,j, bi,j 
and q,j are the (i,j) th elements of  matrices A, B and C, Fig. 6. Two different 2D systolic arrays for multiplying two 

respectively. 3 x 3 matrices: (a) [18]; (b) [19]. 
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operation. Note, one can also use a molecular 
operation as an atomic operation, in which case 
all cells of the 3D systolic array will do the same 
operation, and the resulting array will be the 
same as the 2D systolic array of Fig. 6b. A 3D 
systolic array for matrix multiplication is shown 
in Fig. 7. Note, in the array of Fig. 7, there are 
five planes. The cells in the first plane perform 
the mantissa multiplication, the cells in the 
second plane perform the exponent addition, the 
cells in the third plane perform the mantissa 
alignment, the cells in the fourth plane do the 
mantissa addition, and the cells in the fifth plane 
normalize the result. For the 3D systolic array, 
the number of cells (n3) is given by [13]: 

n3 : M N  2 

where N is the problem size and M is the 
number of different cell planes (or the number of 
atomic operations, if cells in one plane execute 
only one atomic operation). 

Now that we have defined the structure of both 
the 2D and the 3D systolic arrays (and we 
already have other necessary information), we 

al I a12 al3 

a21 a22, a23 

Ir ~ a31 a32 a33 

bll 
b21 
b31 

b13 
b12 b23 
b22 b33 
b32 

Fig. 7. A 3D systolic array for multiplying two 3 x 3 
matrices. 

can develop equations for time and area, to 
compare 2D and 3D systolic arrays. 

5.1 Comparison of time 
First, assume that all atomic operations are of the 
same length and the time needed for an atomic 
operation in the 2D systolic array is t2. Then the 
atomic cycle for the 2D systolic array will be t2. 
Note, as the molecular operation is the same as 
the atomic operation for the 2D systolic array, 
the time needed for molecular operation is also 
t2. Now the total time (T2a) needed for compu- 
tation (of the matrix C) with the 2D systolic 
array of Fig. 6a will be equal to [13]: 

T2~ = (3N - 2)t2 

and the total time (T2b) needed for computation 
(of the matrix C) with the 2D systolic array of 
Fig. 6b will be equal to: 

T2b = (3N - 2)t2 

Note, the latency for both structures of 2D 
systolic arrays for matrix multiplication is the 
same. Therefore, in the rest of this section, we 
shall refer to both T2~ and T2b simply as T2. 

For the 3D systolic array, assume that all atomic 
operations are of  the same length, and the time 
needed for atomic operations is t3. Then the 
atomic cycle time for the 3D systolic array is t3, 
and the time for the molecular operation (t3m) is: 

t3m = M t 3  

if the molecular operation is decomposed into M 
atomic operations. The total time (T3) for 
computation (of matrix C) on a 3D systolic array 
will be: 

T3 = (3N + M - 3)t3 

Note, the time for computation of matrix C on a 
3D systolic array will be the same as the time for 
computation of matrix C on a 2D systolic array, 
i fM is equal to one. The plots for 

T2 __f (N; M, t2, t3) 
T3 
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are shown in Fig. 8 for different values of the 
ratio t2/t3 and different values of the parameter 
M. From these plots one can see that the latency 
of the 3D systolic arr:Ly is smaller than that of the 
2D systolic array. One can also see from these 
plots that the ratio T2/T3 increases asymptoti- 
cally with the problem size (N), and the value of 
asymptote increases with M. The difference in 
the latency of a 2D and a 3D systolic array 
increases rapidly with the problem size, and thus 
3D systolic array for matrix multiplication 
proves to be faster than 2D systolic array for 
matrix multiplication. 

5.2 Comparison of area 
Now we develop equations for area 1. First, 
assume that the area of a cell in the 2D systolic 
array is given by a2, and a3 is the area of a cell 
in any plane of the 3D systolic array. Now the 
total area of the 2[) systolic array of Fig. 6a 
(A2~), the total area of the 2D systolic array of 
Fig. 6b (A2b), and the total area of the 3D 

a 

0 - - - - ~ - ~ ~  
0 5 10 15 20 25 

Problem size (N) 

Fig. 8. Plots of  T2/T3 vs. N.  The  values of  the different 
parameters are: (a) t2 = 4t3 and M = 5; (b) t2 = 3.4t3 and 
M = 4; (c) t2 = 2.7t3 and M = 3; (d) t2 = 1.9t3 and M = 2; 
(e) t2 = t3 and M = 1. Note,  t2 = M ( 1  -x)t3, where x is 

the overhead associated with using a 3D systolic array. 

1 The reader is referred to Section 4.2 for our interpretation 
o f  the area comparison ~ r  2D and 3D systolic arrays. 

systolic array (A3) are given by the following 
equations: 

A2a = (3N 2 - 3N + 1) a2 

A2b = N 2 a2 

A3 = N2Ma3  

The plots for 

A2a 
= f  (N; M, a2, a3) 

A 3  

and 

A2b 
A3 = f  (N;M, a2, a3) 

are shown in Figs. 9 and 10, respectively, for 
different values of the ratio a2/a3, and different 
values of the parameter M. From these plots one 
can see that the area of the 3D systolic array is 
less than the area of the 2D systolic array of 
Fig. 6a, but the area of the 3D systolic array is 
greater than that of the 2D systolic array of 
Fig. 6b. It is interesting to note that the ratio 
A2a/A 3 increases asymptotically with N, but the 
ratio A2b/A 3 is constant for different values of 
N. Another interesting point to note is that the 
r a t ios  A2a/A 3 and A2b/A 3 increase with 
decreasing M. On the other hand, the ratio 

o 

" ~ \ b \ C  

I I I I 
5 10 15 20 25 

Problem size (N) 

Fig. 9. Plots of A2JA3 vs. N. A2a/A3 = 1 is shown by the 
dotted line. The values o f  the different parameters are: 
(a) a2 =4a3  and M =  5; (b) a2 =3.4a3 and M = 4 ;  
(c) a2----2.7a3 and M = 3 ;  (d) a 2 = l , 9 a 3  and M = 2 ;  

(e) a2 = a3 and M = 1. 
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Fig. 10. Plots  of A2b/A3 vs. N .  T h e  values o f  the  different 
parameters  are: (a) a2 = 4a3 and M = 5; (b) a2 = 3.4a3 and 
M = 4 ;  (c) a 2 = 2 . 7 a 3  and M = 3 ;  (d) a z = l . 9 a 3  and 

M = 2; (e) a2 = la3 and M = 1. 

T2/T3 increases wi th  increasing M.  Thus,  one 
can conclude that there is a clear t radeoff  
involved between t ime and area, and therefore it 
is important  to look at the overall area-t ime 
performance o f  2D and 3D systolic arrays. 

5.3 Area-time tradeoff 
As we ment ioned  earlier, there is always a 
tradeoff  involved between t ime and area. This 
tradeoff can be studied f rom the plots o f  A2a T22/ 
A 3 T 3  2 v s .  N ,  a n d  A 2 b  T2/A3 T 2 v s .  N ,  where 

A2a T22 
A3 T32 = f  (N; M,  a2, a3, t2, t3) 

and 

A 2 b  T 2 
A3 T2 = f  (N; M,  a2,  a3, t2, t3) 

These plots are shown in Figs. 11 and 12, 
respectively, for different values o f  the ratio 
t2/t3, for different values o f  the ratio a2/a3, and 
different values o f  the parameter M.  From these 
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Problem size (N) 

Fig. 11. Plots  of A2aT2/A3 T2 vs. N. A2aT2/A3T 2 --- 1 is 
shown by the dotted line. The values of the different para- 
meters are: (a) a2 = 4a3, t2 = 4t3 and M = 5; (b) a2 = 3.4a3, 
t2 = 3.4t3 and M = 4; (c) a2 = 2.7a3, t2 = 2.7t3 and M = 3; 
(d) a2 = 1.9a3, t2 = 1.9t3 and M = 2; (e) a2 = a3, t2 = t3 

a n d M =  1. 

plots one can see that the overall performance 
o f  a 3D systolic array increases asymptotically 
wi th  N and the value o f  the asymptote increases 
wi th  M,  for M greater than one. Also, as we 

12 

< 

i 
0 5 10 15 20 25 

Problem size (N) 

Fig. 12. Plots  of A2bT2/A3T~ vs. N. The values of the 
different parameters are: (a) a2 -- 4a3, t2 = 4t3 and M = 5; 
(b) a2 = 3.4a3, t2 --- 3.4t3 and M = 4; (c) a2 = 2.7a3, 
t2 = 2.7t3 and M = 3; (d) a2 = 1.9a3,  t2 = 1.9t3 and  M = 2; 

(e)  a 2 -~- a3,  t2 = t3 a n d  M = 1. 
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mentioned earlier, the performance of  the 2D 
systolic array of  Fig. 6b is the same as the 
performance of  the 3D systolic array for M 
equal to one (Fig. 12e). 

6. Conclusion 

Systolic array architectures were initially intro- 
duced to solve the latency problems in special 
purpose processors. Since systolic arrays exploit 
concurrency in the problems, they are faster, 
especially for solving the compute-bound 
problems. Furthermore, as the systolic arrays are 
regular, they are relatively simpler to design and 
relatively cheaper to hnplement in terms of  cost 
per processing element. However, most work so 
far has been done with planar systolic arrays. 
There are some i~terent  limitations to the 
speed, extensibility and partitionability of  planar 
systolic arrays. To solve these problems, 
researchers have recently introduced the concept 
of  3D systolic arrays. 

In this paper we have shown a 3D systolic array 
implementation of  2D matrix multiplication. 
We  have also shown that the overall perfor- 
mance (in terms of  time and area) of  the 3D 
systolic array for 2D matrix multiplication is 
(relatively speaking) better than that of  the 2D 
systolic array. 

After studying the results presented in this paper, 
we believe that other problems can also benefit 
from 3D systolic arrays. We  also believe that 
progress in 3D technologies (3D VLSI and 3D 
packaging o f2D VLSI) will make the 3D systolic 
arrays more competitive in terms of  cost. 

To understand fully' the advantages of  3D 
systolic arrays, further research work is needed in 
the area of  special purpose architectures and 3D 
VLSI. One area that needs to be investigated 
further is the development of  systematic metho-  
dology to transform an algorithm into a 3D 
systolic array. A lot o f  good work was done in 
developing systematic: methodologies to trans- 

form an algorithm into a 2D systolic array [20, 
21]. O n  a similar basis, we need to develop a 
methodology to transform an algorithm into a 
3D systolic array. Some work has been done in 
this area (see [13]) but further research is 
required. A second area that needs to be investi- 
gated further is the development of  ways to use 
3D systolic arrays in the form of  a macropipe- 
line, to solve complex problems. In some 
problems it is important to find ways to combine 
simple systolic arrays in the form of  a macro- 
pipeline, to solve complex problems. A third 
area that needs to be investigated is fault toler- 
ance capabilities of  3D systolic arrays. It is also 
important to find ways to design a standard fault 
tolerant programmable cell that can be used in 
different 3D systolic arrays. 
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