
264 IEEE TRANSACTIONS ON EDUCATION, VOL. 48, NO. 2, MAY 2005

Flexible Web-Based Educational System for Teaching
Computer Architecture and Organization

Jovan Djordjevic, Bosko Nikolic, and Aleksandar Milenkovic, Member, IEEE

Abstract—An important problem in teaching courses in com-
puter architecture and organization is to find a way to help
students to make a cognitive leap from the blackboard description
of a computer system to its utilization as a programmable device.
Computer simulators developed to tackle this problem vary in
scope, target architecture, user interface, and support for distance
learning. Usually, they include the processor only, lacking the
whole-system perspective. The existing simulators mainly focus on
the programmer’s view of the machine and do not provide the de-
signer’s perspective. This paper presents an educational computer
system and its Web-based simulator, designed to help teaching
and learning computer architecture and organization courses. The
educational computer system is designed to cover a broad spec-
trum of topics taught in lower division courses. It offers a unique
environment that exposes students to both the programmer and
the designer’s perspective of the computer system. The Web-based
simulator features an interactive animation of program execution
and allows students to navigate through different levels of the
educational computer system’s hierarchy—starting from the top
level with block representation down to the implementation level
with standard sequential and combinational logic blocks.

Index Terms—Computer-aided instruction, computer archi-
tecture, computer science education, educational technology,
simulation.

I. INTRODUCTION

COMPUTER architecture and organization courses play
a central role in the computer engineering curriculum.

They provide students with knowledge in all aspects of the
design and organization of the central processing unit, memory,
input/output (I/O) subsystem, and their incorporation into a
computer system. While computer architecture encompasses
the programmer’s or abstract view of the machine, computer
organization deals with implementation details. However, these
two views cannot be treated separately because of their strong
mutual dependence [1]. The joint IEEE Computer Society and
ACM Computer Engineering Task Force has identified the core
topics in computer architecture and organization [2], shown in
Table I. Computer engineering graduates should have a very
good theoretical and practical understanding of these topics.

The laboratory where students get hands-on experience is
crucial in helping the students to bridge the gap between the-
oretical knowledge and practical problems architects face in de-
signing various computer system modules. The most common

Manuscript received January 21, 2004; revised August 7, 2004.
J. Djordjevic and B. Nikolic are with the School of Electrical Engineering,

University of Belgrade, 11000 Belgrade, Serbia and Montenegro (e-mail:
jdjordjevic@etf.bg.ac.yu).

A. Milenkovic is with the Electrical and Computer Engineering Department,
The University of Alabama, AL 35899 USA.

Digital Object Identifier 10.1109/TE.2004.842918

approach in narrowing this gap relies on software simulators of
computer systems. Software simulators have several advantages
over “real” microcomputer platforms; they are less expensive,
more flexible, and more appropriate for lower division courses,
which typically include a large number of students. In addition,
graphical presentation and animation help students to “experi-
ence” computer system functioning and better understand var-
ious design issues.

This paper presents EDCOMP, an educational computer
system and its Web-based simulator. The computer system
demonstrates a broad spectrum of topics typically taught in
lower division computer architecture courses; the topics sup-
ported are in italic type in Table I. The Web-based graphical
simulator supports animation of instruction execution and
allows students to write their own assembly programs; translate
them; interactively set and examine values of memory loca-
tions, registers, and I/O units; and run simulation. It gives a
visual presentation of all parts of the computer system both at
the level of standard system modules and at the level of com-
binational and sequential circuits; displays values of signals;
performs simulation at the level of a clock cycle, an instruction,
and a complete program; and displays timing diagrams of
selected signals. The simulator flexibility allows instructors to
focus on a specific topic. For example, when studying integer
multiply instruction execution, students can run a simulation
on a clock-by-clock cycle basis, closely following the changes
in the relevant registers and arithmetic and logic unit (ALU).
On the other hand, when learning I/O fundamentals, students
can follow simulation at the system level, where the processor
is considered as a black box, executing a program on the
instruction-by-instruction level.

The paper is organized as follows. Section II provides back-
ground and motivation. Section III introduces the structure
of the educational computer system and its components, and
Section IV concentrates on the visual simulator. Section V
describes laboratory organization, and Section VI illustrates
the capabilities of the educational environment through several
laboratory experiments. Section VII describes the evaluation
of the educational environment, and Section VIII concludes
the paper.

II. BACKGROUND AND MOTIVATION

The course Introduction to Computer Architecture and Or-
ganization at the School of Electrical Engineering, University
of Belgrade, Belgrade, Serbia and Montenegro, is mandatory
for students with communications, automation and electronics,
and computer engineering majors. This course is taught in the

0018-9359/$20.00 © 2005 IEEE

DJORDJEVIC et al.: TEACHING COMPUTER ARCHITECTURE AND ORGANIZATION 265

TABLE I
CORE TOPICS IN COMPUTER ARCHITECTURE AND ORGANIZATION

TABLE II
EDUCATIONAL COMPUTER ARCHITECTURE SIMULATORS: AN OVERVIEW

second year, and its prerequisites are first-year courses Intro-
duction in Digital Logic and Programming Languages. The goal
of this course is to give a broad overview of computer ar-
chitecture and organization topics. For computer engineering
students, this course is followed by Advanced Computer Ar-
chitecture, Microprocessors and Interfacing, Computer VLSI
(very large scale integration) Design, and Parallel Processing.
The course includes a mandatory laboratory component based
on the use of a software simulator of a computer system.

A variety of educational simulators designed to support
teaching courses in computer architecture and organization
have been proposed and developed. Table II gives an overview
of educational simulators and their characteristics. They
differ greatly in scope and complexity (rudimentary, medium,
complex), type of instruction set (commercial, custom), user
interface, simulation granularity (program, instruction, clock),
simulation mode (batch, interactive), level of implementational
details, and support for distance learning. For instance, Sim-
pleScalar [3] and SimOS [4] represent highly sophisticated

simulation suites widely used in computer architecture research.
However, high complexity and a lack of graphical interfaces
make them impractical for illustration of the fundamental topics
presented in Table I. DLXview [5] is a powerful educational
system that supports animation of instruction execution at the
clock level, but it does not include implementational details, and
it concentrates only on the processor, lacking the whole-system
perspective.

Ideally, the simulators should support examples for a wide
range of relevant topics, allow students to write their own
assembly and/or high-level language programs, and allow sim-
ulation and graphic animation of the program execution at
the various levels of hierarchy. Graphical representation and
animation of computer system operation has proven to be
quite a powerful tool in teaching computer architecture [16].
The educational simulators must also be user friendly with a
minimal learning curve and configurable, allowing instructors
to adapt them to a number of various laboratory experiments
and various courses’ curricula. Finally, all modern educational

266 IEEE TRANSACTIONS ON EDUCATION, VOL. 48, NO. 2, MAY 2005

Fig. 1. Structure of EDCOMP.

tools striving for wide acceptance should support distance
learning. These requirements are often contradictory, making
the development of such a software tool very difficult.

None of the existing educational computer architecture sim-
ulators completely satisfied the previously mentioned require-
ments; thus, the authors decided to develop a new simulation
environment with a graphical easy-to-use user interface that
offers both a programmer’s and a designer’s view of a computer
system. A number of design choices have been made. First, a
computer architecture tailored specifically to educational needs
was selected. Although simulators based on commercial archi-
tectures provide hands-on experience with real-world systems
and can decrease the cost of development, they are rarely ideal
choices for educational purposes. Off-the-shelf systems are de-
signed to achieve optimum performance at minimal cost. They
do not cover various computer architecture topics in breadth;
for example, only a subset of possible addressing modes is
supported. Students learn about commercial systems in higher
division courses, such as Microprocessors and Interfacing.

Another issue was a choice between complex instruction
set computer (CISC) and reduced instruction set computer
(RISC) architectures. The authors opted for a CISC processor
for the following reasons. The follow-up computer engineering
course, Advanced Computer Architecture, deals with RISC
architectures, and a similar educational environment is devel-
oped around an educational RISC processor with pipelined
organization [16]. Second, the nature of RISC processors is to
have a limited subset of the most frequently executed instruc-
tions, while other instructions are emulated in software. This
setup is in direct opposition with the intention to provide an
architecture with a rich instruction set, suitable for explanation
of arithmetic algorithms, various addressing modes, and in-

terrupt mechanism. Finally, the authors believe that computer
engineering and science students should be exposed to both
architecture styles, since CISC architectures are still dominant
in the desktop and embedded processor market (e.g., x86, 8051,
and PICmicro microcontrollers).

The initial version of the simulator was developed as a stand-
alone application in Java. After several years of use, a transi-
tion was pursued to a Web-based environment for the following
reasons. The large number of students enrolled in the course, in
excess of 400, placed tremendous pressure on laboratory equip-
ment and staff. The Web-based environment allows students to
prepare for laboratory at home, at their own pace, thus reducing
the time needed for successful completion of laboratory exer-
cises. The Web-based technology also offers seamless integra-
tion with knowledge assessment and administrative tasks and
cost reductions for installations, updates, and maintenance.

III. ARCHITECTURE AND ORGANIZATION OF EDCOMP

EDCOMP includes a processor (PRO), a main memory
(MEM), an I/O subsystem with a direct memory access (DMA)
controller, a non-DMA controller, and six dummy peripheral
controllers (PER3–PER8), and an arbitrator (ARB), as shown in
Fig. 1. All components communicate through an asynchronous
bus with address, data, and control lines. Each bus master is
connected with the bus ARB by a pair of private lines: the
bus request line and the bus grant line . A dummy
controller only takes part in the bus arbitration, keeps the bus
busy for a definable period of time, and performs no transfer of
data.

The processor features an originally developed CISC archi-
tecture. It includes separate data, address, base and index regis-
ters, and special-purpose registers, such as the program counter,

DJORDJEVIC et al.: TEACHING COMPUTER ARCHITECTURE AND ORGANIZATION 267

Fig. 2. Simulation flow.

the stack pointer, the program status word, and the accumulator.
Data types supported are 8-b signed and unsigned integers, 16-b
floating-point numbers, and strings of characters; the size of
data types is chosen to provide a relatively modest number of
steps for arithmetic algorithms (e.g., shift and multiplication al-
gorithm for integers). The instruction format is one address with
a variable instruction length of 1, 2, 3, and 4 B. An extensive
set of addressing modes is supported, including register direct,
register indirect, memory direct, memory indirect, base, index,
base index, base with 8- and 16-b displacement, base index with
8- and 16-b displacement, relative, register indirect with auto
increment and auto decrement, and immediate. The instruction
set includes the transfer, arithmetic with integer and floating-
point data types, logic, shift, rotate, control, loop control, and
string instructions. The interrupt mechanism is vectored with
internal and external interrupts. The processor has two interrupt
request lines for external maskable interrupt requests and one
line for a nonmaskable request. The processor features separate
units for each of the instruction execution phases: the instruc-
tion fetch unit (IF), five operation execution units—integer (IE),
floating-point (FPE), string (SE), control (CE), and loop control
(LCE)—and the interrupt service unit (IS). All these units use
the bus interface unit (BI) for bus arbitration and read/write bus
cycles. Each of these units has its own hard-wired control unit
(CU). The detailed description of EDCOMP is available in [17].

IV. VISUAL SIMULATOR CAPABILITIES

The visual simulator is run from a Web browser and includes
various menus to initialize and control simulation of EDCOMP.

The flow of a simulation session is shown in Fig. 2. The initial-
ization supports an easy preparation of test examples for instruc-
tors and an easy initialization of the whole educational system
by loading a predefined file for students. The initialization al-
lows the user to define the clock rates for the system modules
[Fig. 3(a)] and the access times of the peripheral devices and
the memory, examine and set the values of memory locations
and registers of the processor [Fig. 3(b)] and I/O units, and se-
lect signals for which the timing diagrams will be drawn. Each
module can be initialized separately, interactively, or from a
file. In addition, the complete initialization from a file is pos-
sible. Memory locations can be initialized interactively by set-
ting values directly or by using the editor, the assembler, the
linker, and the loader. The result of an initialization or the con-
text of the whole system at any point of time during simulation
can be saved in a file.

The simulator graphically presents parts of the computer
system and signal values, simulates the behavior of EDCOMP,
and displays simulation results in a user friendly manner.
During a simulation run, two windows are present on the screen
(Fig. 4). The window in the upper part of the screen, named the
block diagram window, shows parts of the computer system.
Because a limited number of elements can be displayed on a
screen, a two-level hierarchical scheme of screens is developed.
The first-level screen gives the structure of the computer system
at the level of modules (Fig. 1), and the simulation run begins
with this screen. For a more detailed structure of any of the
modules, the user needs to point and click to select a module
to go to the second level of screens. The second-level screen
gives the structure of the module’s processing unit at the level
of combinational and sequential circuits (Fig. 4). The exception

268 IEEE TRANSACTIONS ON EDUCATION, VOL. 48, NO. 2, MAY 2005

Fig. 3. (a) Initialization of clocks rates. (b) Partial initialization of processor registers.

Fig. 4. Part of the processing unit of the processor instruction fetch unit.

is the processor module for which the user goes from the first
to the second level through an intermediate level screen, which
gives the structure of the processor module at the level of
units (Fig. 5). For each signal coming from another part of the
computer system, a link button with the name of the module
where the signal is generated is provided (Fig. 4); this scheme
provides an easy and fast navigation through screens. A single

line changes its color depending on the current value (logic “0”
or “1”), and a bus is accompanied by its current value.

The main window in the lower part of the screen (Fig. 4)
shows the status of simulation (PC—program counter, T—step
counter, Tclk—processor clock cycles executed), the control
signals generated for that clock period, and a brief explana-
tion of the actions to take place during that clock period in the

DJORDJEVIC et al.: TEACHING COMPUTER ARCHITECTURE AND ORGANIZATION 269

Fig. 5. Button hierarchy activated.

Fig. 6. Program illustrating operations and addressing modes.

sequence box. The command buttons support navigation (UP,
HIERARCHY, and BACK), stop of simulation (EXIT), simulation
(CLK, INS, PRG, and CLEAR), and examination of simulation re-
sults (SHOW, CLOCK, and SIGNALS), saving the simulation con-
text (SAVE). More details regarding simulator capabilities can be
found in [17].

V. LABORATORY ORGANIZATION

Each exercise has four components: prelaboratory prepara-
tion, in-laboratory knowledge assessment, in-laboratory assign-
ment, and written report. To prepare for a particular laboratory,
the students must review related material from lectures and
the textbook and read the related sections from the labora-
tory manual. They can also access the EDCOMP simulator
from home and use it for self-study. Each laboratory assign-
ment is preceded by a short computer-based test designed to
verify whether the students understand the topic covered in the
assignment [18]. After passing the test, the students select a
predefined experiment, which results in the initialization of the
computer system from a file. Then, they execute the programs,
either at the instruction level or at the clock level. Before,
during, and after the simulation, the students are requested to
examine the values of relevant memory locations and regis-
ters in the processor and the I/O units, follow the values of
selected signals at combinational and sequential circuits, and
draw their timing diagrams. In some of the experiments, the
students are also asked to develop their own assembly programs
using the editor, the translator, and the loader and to verify
the programs’ correctness and determine performance. Based
on the observations made during the experiment, they answer
questions relevant to the topic and turn in a written report.
The following section gives examples of typical laboratory
experiments.

VI. USING EDUCATIONAL COMPUTER SIMULATOR: EXAMPLES

To illustrate the use of the simulator in learning computer ar-
chitecture and organization, this section gives several examples
both of the computer architecture and computer organization
experiments.

A. The Computer Architecture Experiments

The programs in this group illustrate the programmer’s view
of the processor, the interrupt, and the I/O. The simulation is run
instruction by instruction.

1) The Processor: These programs include various instruc-
tions, addressing modes, data types, instruction formats, and
programmable registers. There are two groups of programs.
The first group includes instructions with simple algorithms
of operation, such as transfer, arithmetic, logic, shift, rotate,
and unconditional and conditional jump instructions. These
programs utilize all addressing modes given in Section III and
operate on integers. The second group includes instructions
with more complicated algorithms of operations; simple ad-
dressing modes; and integer, floating-point, and string data
types. The instructions used are multiplication and division
with unsigned and signed integers, the push/pop from the stack,
the jump/return from subroutine, the arithmetic operations with
the floating-point numbers and the conversions between inte-
gers and floating-point numbers, and finally, string and loop
control instructions.

Fig. 6 shows a program illustrating execution of load
byte (LOADB), multiply unsigned integers (MULU), and the
store byte (STOREB) instructions; the effects of the im-
mediate (imm(10)), the index with 16-b displacement
(i16(XR0,003C)), and the base with 16-b displacement
addressing modes (i16(BR3,00A0)); and the use of the
index (XR0) and the base (BR3) programmable registers. The
XR0 and BR3 registers are preloaded with values 0001 h and

270 IEEE TRANSACTIONS ON EDUCATION, VOL. 48, NO. 2, MAY 2005

Fig. 7. Program illustrating the interrupt instruction.

Fig. 8. Program illustrating the I/O.

00A8 h, respectively. As a result, the index addressing mode
gives the effective memory address 003D h, from which data
02 h is read, and the base addressing mode address 00A8 h at
which the result 20 h is stored.

2) The Interrupt: These programs demonstrate topics such
as the jump to an interrupt routine and return from the interrupt,
for various types of internal and external interrupts, the selective
and complete masking of interrupt requests from the I/O units,
the servicing and the nesting of multiple interrupt requests, and
the execution of the interrupt instruction. They also demonstrate
how the starting address of an interrupt routine can be found by
using the interrupt vector table or by polling the I/O units or by a
combination of both. Fig. 7 shows a program that illustrates the
effects of execution of the interrupt instruction (INT 05). This
instruction saves the contents of the progam counter (PC) and
program status word (PSW) registers on the stack and causes a
jump to the interrupt routine at the address 0200 h, loaded from
entry 5 of the interrupt vector table. The preloaded values of
the stack and the interrupt vector table pointers are F103 h and
0300 h, respectively. Since each address is 2 B long, entry 5 is
at addresses 030A h and 030B h. The interrupt routine contains
only the return from interrupt instruction (RTI), which restores
the contents of the PC and PSW registers from the stack and
causes a return to the instruction at address 0102 h.

3) The Program Controlled Input/Output: These programs
demonstrate how blocks of data are transferred within the com-
puter system using the non-DMA and DMA controllers. Trans-
fers with the non-DMA controller are carried out between the
peripheral device of an I/O unit and the memory, using both
the polling and the interrupt technique. Transfers with the DMA
controller are carried out between the peripheral device and the
memory and between two parts of memory with both the cycle
stealing and the burst modes of operation.

Fig. 8 shows a program where polling is used to transfer a
block of 3 B starting at memory address 0FFF h to the peripheral
device of an output unit using the non-DMA controller. The
first part is the initialization of the processor’s AR0 and DR0

registers and the controller’s control register at address F100
h with the block address, the block size, and the start mode of
operation. The second part is the inner loop where the polling of
the controller’s status register at address F102 h is performed.
The third part is the outer loop where a byte is transferred into
the controller’s data register at address F104 h, register AR0 is
incremented, and DR0 is decremented. The fourth part is the
loading of the controller’s control register at address F102 h
with the stop mode of operation.

B. The Computer Organization Experiments

The programs in this group are created to illustrate the phases
of the instruction execution and the bus arbitration and cycles.
They are executed at the clock level.

1) The Phases of Instruction Execution: The instruction and
operand fetch phase and the operation execution phase are illus-
trated by executing the programs explained in Section VI-A-1)
and the interrupt handling phase by executing the programs ex-
plained in Section VI-A-2). During execution of these phases,
the students follow the appropriate sequence of control signals
(Fig. 9).

The program in Fig. 6 illustrates the realization of the
LOADB, STOREB, and MULU instructions and immediate,
base, and index addressing with 16-b displacement. In the IF
unit, the students follow how the first, second, third, and fourth
byte of an instruction are read; the operand address is formed
depending on the addressing mode specified; the operand is
read; the IE unit is activated; and the IF unit deactivated. In the
IE unit the students follow how the operation is executed; the
IS unit is activated; and the IE unit is deactivated. In the IS unit,
they find that there is no interrupt generated; therefore, the IF
unit is activated, and the IS unit deactivated.

The program in Fig. 7 illustrates the realization of the inter-
rupt handling phase and the operation of the IS unit. The INT
instruction goes through the IF and IE units as described in the
previous paragraph. However, when it arrives in the IS unit, the

DJORDJEVIC et al.: TEACHING COMPUTER ARCHITECTURE AND ORGANIZATION 271

Fig. 9. Sequence of control signals for IF.

Fig. 10. Timing diagrams during the read bus cycle.

presence of the interrupt is found. Therefore, the PC and PSW
registers are saved on the stack; value 0200 h is loaded in the PC
register from entry 5 in the interrupt vector table; the IF unit is
activated; and the IS unit is deactivated. The next instruction ex-
ecuted is the RTI instruction. The instruction is first read in the
IF unit; then, it is executed in the IE unit by restoring the con-
tents of the PC and PSW registers from the stack; and finally,
since it is found in the IS unit that there is no interrupt, the IF
unit is activated, and the IS unit is deactivated.

2) The Bus Arbitration and Bus Cycles: The bus arbitra-
tion is demonstrated with two experiments, where the dummy
controllers appear as the bus masters. In the first experiment,
a single bus master participates in the arbitration. This experi-
ment demonstrates how the bus master sends the bus request; the
arbiter acknowledges with the bus grant; the bus master keeps

the bus busy during the bus cycle; the bus master abolishes the
bus request; and the arbiter does the same with the bus grant.
In the second experiment, two bus masters participate in the ar-
bitration. The exchange of signals between the bus masters and
the arbiter is very similar to the one in the previous experiment.
The difference is that one bus master has to wait to obtain the
bus grant until the other one completes its cycle on the bus.

The bus cycles demonstrated in the experiment are the read
and write cycles between the processor as the bus master and
the memory as the bus slave, and the interrupt vector number
acquisition cycle between the processor as the bus master and
the I/O unit as the bus slave. The experiment demonstrates how
the address, data, and control signals are exchanged between a
bus master and a bus slave for each of the cycles. Fig. 10 shows
the timing diagrams during the read bus cycle.

272 IEEE TRANSACTIONS ON EDUCATION, VOL. 48, NO. 2, MAY 2005

VII. EDCOMP ASSESSMENT

Qualitative and quantitative evaluations of the proposed edu-
cational approach have been conducted. The qualitative evalua-
tion included a number of student surveys and discussions with
fellow instructors who teach courses that directly or indirectly
have this course as a prerequisite. The surveys were designed to
learn what students perceived as a good educational tool and
how they assessed the overall effectiveness of this approach.
The students were also asked to specify things they liked the
most and the least. These forms have been a valuable source for
the authors, and some of students’ suggestions have been im-
plemented in later versions of the EDCOMP. The majority of
students found the graphical representation very instructive and
the user interface easy to use. The fellow instructors reported
that students who used EDCOMP were better prepared and had
deeper understanding of basic concepts so that the time needed
for revision could be reduced. The School of Electrical Engi-
neering, University of Belgrade, conducts a survey at the end
of each school year where the students assess the quality of all
laboratory courses they have taken. Each laboratory is graded
using a five-point scale (excellent, very good, good, fair, and
poor). The authors compared the students’ ratings taken in the
period of 2001–2003, when EDCOMP was used, versus ratings
collected during a four-year period before EDCOMP was in-
troduced. The average grade for the laboratory has increased
from 4.1 to 4.7. However, the significantly increased number of
students who rated the laboratory as excellent and very good
(70%) is partially offset by an increase in the number of stu-
dents who rated the laboratory as poor (17%). The latter found
that EDCOMP required a significant effort on the students’ side.
Overall, the students ranked this laboratory as the second most
useful in the second year—up from sixth.

For the quantitative evaluation, the authors compared the
average total score in the course for the two periods described
previously. The number of students taking this course is about
450 per year. The average total score on a scale 0 to 100 has
increased from 78 to 86 after the introduction of EDCOMP.
In addition, the number of students who successfully passed
the exam has increased from 72% to 85%.

VIII. CONCLUSION

This paper introduced a flexible, Web-based, educational
environment designed to help teaching and learning in com-
puter architecture and organization courses. The environment
goes beyond existing simulators by covering a broad range
of relevant topics and providing visualization of the computer
system functioning with various levels of details. This ap-
proach allows students to associate knowledge gained in class
with practical examples and promotes active learning: to pass
laboratory assignments successfully, students must become en-
gaged learners and assimilate related knowledge before coming
to the laboratory. This approach also provides a vertical inte-
gration with prerequisite courses in digital logic design and
multilevel comprehension of the computer system, from the
system level down to the gate level. Students can start from

the programmer’s view of the computer system, write pro-
grams, and follow the program execution at the highest level.
If they want to examine the implementation details, they nav-
igate through the system hierarchy down to the digital logic
level. The sophisticated process initialization helps instructors
in preparing laboratory experiments. Although EDCOMP is
developed to satisfy specific needs of the School of Electrical
Engineering at the University of Belgrade, its built-in flexi-
bility allows its use in other introductory courses in computer
architecture and organization.

REFERENCES

[1] A. Clements, “The undergraduate curriculum in computer architecture,”
IEEE Micro, vol. 20, no. 3, pp. 13–22, May/Jun. 2000.

[2] (2004, Jun.) Computing curricula—Computer engineering, IEEE
Computer Society and ACM. [Online]. Available: http://www.eng.
auburn.edu/ece/CCCE

[3] D. Burger and T. Austin, “The SimpleScalar Tool Set Version 2.0,” Univ.
of Wisconsin, Madison, Tech. Rep. CS-TR-97-1342, 1997.

[4] M. Rosenblum, E. Bugnion, S. Devine, and S. A. Herrod, “Using the
SimOS machine simulator to study complex computer systems,” ACM
Trans. Modeling Computer Simulation, vol. 7, no. 1, pp. 78–103.

[5] Y. Zhang and G. B. Adams, “An interactive, visual simulator for the
DLX pipeline,” IEEE TCCA Newslett., pp. 9–12, Sep. 1997.

[6] R. N. Ibbett, “Hase DLX simulator,” IEEE Micro, vol. 20, no. 3, pp.
57–65, May/Jun. 2000.

[7] J. L. Bechennec, “ASF: A teaching and research object-oriented sim-
ulation tool for computer architecture design and performance evolu-
tion,” in Proc. Workshop Computer Architecture Education (WCAE-98),
Barcelona, Spain, Jun. 27, 1998, pp. 93–96.

[8] P. Verplaetse, J. V. Campenhout, and H. Neefs, “ESCAPE: Environment
for the simulation of computer architecture for the purpose of educa-
tion,” in Proc. Workshop Computer Architecture Education (WCAE-98),
Barcelona, Spain, Jun. 27, 1998, pp. 42–47.

[9] E. Pastor, F. Sanchez, and A. M. d. Corral, “A rudimentary machine.
Experiences in the design of a pedagogic computer,” in Proc. Workshop
Computer Architecture Education (WCAE-98), Barcelona, Spain, Jun.
27, 1998, pp. 31–36.

[10] J. R. Arias and D. F. Garcia, “Introduction computer architecture educa-
tion in the first course of computer science career,” in Proc. Workshop
Computer Architecture Education (WCAE-98), Barcelona, Spain, Jun.
27, 1998, pp. 82–87.

[11] C. Yehezkel, W. Yurcik, and M. Pearson, “Teaching computer architec-
ture with a computer-aided learning environment: State-of-the-art simu-
lators,” presented at the Int. Conf. Simulation Multimedia in Engineering
Education (ICSEE), Phoenix, AZ, Jan. 2001.

[12] D. Ellard, D. Holland, N. Murphy, and M. Seltzer, “On the design of
a new CPU architecture for pedagogical purposes,” in Proc. 9th Work-
shop Computer Architecture Education, Anchorage, AK, May 2002, pp.
27–33.

[13] R. Hodson and J. Hereford, “Interactive CPU simulator for computer
organization instruction,” presented at the 3rd Workshop Computer Ar-
chitecture Education (WCAE), San Antonio, TX, Feb. 1997.

[14] G. Adams and H. Dietz. (1997) Compiler/Architecture Simulation
for Learning and Experimenting. [Online]. Available: http://shay.
ecn.purdue.edu/~casle/

[15] C. J. Hughes, V. S. Pai, P. Ranganathan, and S. V. Adve, “Rsim: Sim-
ulating shared-memory multiprocessors with ILP processors,” IEEE
Computer, vol. 35, no. 2, pp. 40–49, Feb. 2002.

[16] J. Djordjevic, A. Milenkovic, and N. Grbanovic, “An integrated envi-
ronment for teaching computer architecture,” IEEE Micro, vol. 20, no.
3, pp. 66–74, May/Jun. 2000.

[17] J. Djordjevic, B. Nikolic, and A. Milenkovic. (2004) Educational system
for teaching computer architecture and organization—Demo version.
[Online]. Available: http://electra.etf.bg.ac.yu:8080/SIMCISCO/SIM-
CISCO.html

[18] J. Djordjevic, A. Milenkovic, I. Todorovic, and D. Marinov, “CALKAS:
A computer architecture learning and knowledge assessment system,”
IEEE TCCA Newslett., pp. 26–29, Jul. 2000.

DJORDJEVIC et al.: TEACHING COMPUTER ARCHITECTURE AND ORGANIZATION 273

Jovan Djordjevic received the B.Sc. degree in electrical engineering from the
University of Belgrade, Belgrade, Serbia and Montenegro, and the M.S. and
Ph.D. degrees in computer science from the University of Manchester, Man-
chester, U.K.

He is currently an Associate Professor of Computer Engineering at the School
of Electrical Engineering, University of Belgrade. His research interests include
computer architecture, parallel computer systems, digital systems simulation,
and distance learning.

Bosko Nikolic received the B.Sc. and M.S. degrees in electrical engineering
from the University of Belgrade, Belgrade, Serbia and Montenegro.

He is currently a Research Assistant in the Department of Computer Engi-
neering at the School of Electrical Engineering, University of Belgrade. His re-
search interests include computer architecture, digital systems simulation, and
the programming language Java.

Aleksandar Milenkovic (M’96) received the B.Sc., M.S., and Ph.D. degrees
in computer engineering from the University of Belgrade, Belgrade, Serbia, in
1994, 1997, and 1999, respectively.

He previously held faculty positions with the University of Belgrade and
Dublin City University, Dublin, Ireland. He is currently an Assistant Professor of
Electrical and Computer Engineering at the University of Alabama, Huntsville.
His research interests include computer architecture, performance analysis, em-
bedded systems, very large scale integration (VLSI), and parallel and distributed
systems.

Dr. Milenkovic is a Member of the Association for Computing Machinery
(ACM), the IEEE Computer Society, and Eta Kappa Nu.

	toc
	Flexible Web-Based Educational System for Teaching Computer Arch
	Jovan Djordjevic, Bosko Nikolic, and Aleksandar Milenkovic, Memb
	I. I NTRODUCTION
	II. B ACKGROUND AND M OTIVATION

	TABLE€I C ORE T OPICS IN C OMPUTER A RCHITECTURE AND O RGANIZATI
	TABLE€II E DUCATIONAL C OMPUTER A RCHITECTURE S IMULATORS: A N O
	Fig.€1. Structure of EDCOMP.
	III. A RCHITECTURE AND O RGANIZATION OF EDCOMP

	Fig.€2. Simulation flow.
	IV. V ISUAL S IMULATOR C APABILITIES

	Fig.€3. (a) Initialization of clocks rates. (b) Partial initiali
	Fig.€4. Part of the processing unit of the processor instruction
	Fig.€5. Button hierarchy activated.
	Fig.€6. Program illustrating operations and addressing modes.
	V. L ABORATORY O RGANIZATION
	VI. U SING E DUCATIONAL C OMPUTER S IMULATOR: E XAMPLES
	A. The Computer Architecture Experiments
	1) The Processor: These programs include various instructions, a

	Fig.€7. Program illustrating the interrupt instruction.
	Fig.€8. Program illustrating the I/O.
	2) The Interrupt: These programs demonstrate topics such as the
	3) The Program Controlled Input/Output: These programs demonstra
	B. The Computer Organization Experiments
	1) The Phases of Instruction Execution: The instruction and oper

	Fig.€9. Sequence of control signals for IF.
	Fig.€10. Timing diagrams during the read bus cycle.
	2) The Bus Arbitration and Bus Cycles: The bus arbitration is de
	VII. EDCOMP A SSESSMENT
	VIII. C ONCLUSION
	A. Clements, The undergraduate curriculum in computer architectu

	(2004, Jun.) Computing curricula Computer engineering, IEEE Comp
	D. Burger and T. Austin, The SimpleScalar Tool Set Version 2.0,
	M. Rosenblum, E. Bugnion, S. Devine, and S. A. Herrod, Using the
	Y. Zhang and G. B. Adams, An interactive, visual simulator for t
	R. N. Ibbett, Hase DLX simulator, IEEE Micro, vol. 20, no. 3, p
	J. L. Bechennec, ASF: A teaching and research object-oriented si
	P. Verplaetse, J. V. Campenhout, and H. Neefs, ESCAPE: Environme
	E. Pastor, F. Sanchez, and A. M. d. Corral, A rudimentary machin
	J. R. Arias and D. F. Garcia, Introduction computer architecture
	C. Yehezkel, W. Yurcik, and M. Pearson, Teaching computer archit
	D. Ellard, D. Holland, N. Murphy, and M. Seltzer, On the design
	R. Hodson and J. Hereford, Interactive CPU simulator for compute
	G. Adams and H. Dietz . (1997) Compiler/Architecture Simulation
	C. J. Hughes, V. S. Pai, P. Ranganathan, and S. V. Adve, Rsim: S
	J. Djordjevic, A. Milenkovic, and N. Grbanovic, An integrated en
	J. Djordjevic, B. Nikolic, and A. Milenkovic . (2004) Educationa
	J. Djordjevic, A. Milenkovic, I. Todorovic, and D. Marinov, CALK

