

EXPERIMENTAL EVALUATION OF TECHNIQUES
FOR CAPTURING AND COMPRESSING
HARDWARE TRACES IN MULTICORES

by

AMRISH K. TEWAR

A THESIS

Submitted in partial fulfillment of the requirements

for the degree of Master of Science in Engineering

in

The Department of Electrical & Computer Engineering

to

The School of Graduate Studies

of

The University of Alabama in Huntsville

HUNTSVILLE, ALABAMA

2015

ii

In presenting this thesis in partial fulfillment of the requirements for a master’s de-

gree from The University of Alabama in Huntsville, I agree that the Library of this

University shall make it freely available for inspection. I further agree that permis-

sion for extensive copying for scholarly purposes may be granted by my advisor or, in

his/her absence, by the Chair of the Department or the Dean of the School of Gradu-

ate Studies. It is also understood that due recognition shall be given to me and to

The University of Alabama in Huntsville in any scholarly use which may be made of

any material in this thesis.

(student signature) (date)

iii

THESIS APPROVAL FORM

Submitted by Amrish K. Tewar in partial fulfillment of the requirements for the de-

gree of Master of Science in Engineering in Computer Engineering and accepted on

behalf of the Faculty of the School of Graduate Studies by the thesis committee.

We, the undersigned members of the Graduate Faculty of The University of Ala-

bama in Huntsville, certify that we have advised and/or supervised the candidate on

the work described in this thesis. We further certify that we have reviewed the the-

sis manuscript and approve it in partial fulfillment of the requirements for the de-

gree of Master of Science in Engineering in Computer Engineering.

 Committee Chair

(Date)

 Department Chair

 College Dean

 Graduate Dean

iv

ABSTRACT

The School of Graduate Studies

The University of Alabama in Huntsville

Degree Master of Science in Engineering College/Dept. Engineering/Electrical &

 Computer Engineering

Name of Candidate Amrish K. Tewar

Title Experimental Evaluation of Techniques for Capturing and Compress-

ing Hardware Traces in Multicores

Modern embedded systems are indispensable in all aspects of modern life.

The increasing complexity of hardware and software stacks and tightening time-to-

market deadlines make software development and testing the most critical aspects

of system development. To help developers find software bugs faster, modern em-

bedded systems increasingly rely on on-chip resources for debugging and tracing.

Unfortunately, capturing and streaming all hardware events of interest for program

debugging is cost-prohibitive in multicores where tens of processor cores work con-

currently at very high speeds. This thesis focuses on capturing control-flow and data

traces in multicores. It introduces two new techniques: mcfTRaptor for capturing

control-flow traces and mlvCFiat for capturing load data value traces. The effective-

ness of the commercial state-of-the-art and the proposed techniques are experimen-

tally evaluated by measuring the number of bits needed to be streamed off the chip

for both functional and timed traces. The results show that the proposed techniques

are very effective, while requiring modest hardware support.

Abstract Approval: Committee Chair

 Department Chair

 Graduate Dean

v

This thesis is dedicated to

my mother and wife

without whose love and support

I would not be where I am

vi

ACKNOWLEDGMENTS

I am grateful to the Almighty, who has always given me good mentors to

achieve big steps throughout my life. This Thesis is one of those big steps which has

immensely built me up. On completion of this step, I want to express my gratitude to

those who have played an important role, either directly or indirectly.

Foremost, I would like to express my gratitude to my advisor, Dr. Aleksandar

Milenković. He is an exceptional and patient teacher, and a great motivator. I have

always admired his honest comments regarding my work on each and every prob-

lem. His work ethic and continuous counselling has always provided me with inspi-

ration and support. For all his efforts on my behalf, I thank him and wished him

continued success in his career.

I would like to thank Dr. Rafael Ubal (Multi2Sim) & Albert Myers (mTrace)

for developing the tools which were vital to this research.

I would like to express thanks to Professors Rhonda Gaede and Earl Wells for

serving in my thesis committee. I am thankful to all the ECE Department professors

who taught me various subjects in Computer Engineering. All the staff members of

ECE and COE have helped me in many ways during my time as a Master student.

I would also like to acknowledge several people, on a personal front, who have

provided me support and the resources to excel. Foremost, I express my immense

gratitude to Mr. S. N. Bhatt, and Mrs. M. S. Bhatt for leading me to the path of en-

gineering. I would like to thank Dr. K. Bhatt, Mrs. J. Rosano, Mr. P. B. Pandya, Mrs.

R. H. Bhatt, Mr. H. I. Bhatt, and Mr. S. J. Patel for their support. I would also like

to thank Mr. A. M. Tewar, Mrs. V. R. Desai, Mr. M. G. Pandya, Dr. B. B. Patel, Mr.

M. P. Gandhi, Mrs. H. C. Desai, Mr. M. Shah, and Mr. K. Thakkar for their guidance

and help.

Finally, but most importantly, I would express my gratitude to my family. I

want to thank my parents, Harshaben and KiritKumar Tewar, for their love and

support. I thank my better half, Ruchi Bhatt, for giving me inspiration for furthering

my studies, and for her continuous support.

vii

TABLE OF CONTENTS

Contents Page

LIST OF FIGURES..……………………………………………………………………………x

LIST OF TABLES.…………………………………………………………………………...xiii

CHAPTER 1 .. 1

1.1 Background and Motivation ... 1

1.2 What is this thesis about? .. 4

1.3 Main Results ... 5

1.4 Contributions .. 6

1.5 Outline .. 6

CHAPTER 2 .. 8

2.1 Control Flow Traces .. 8

2.2 Memory Data Traces..11

2.3 Tracing in Embedded Multicores ..13

2.4 Related Work ...16

CHAPTER 3 ...19

3.1 mcfTRaptor ..19

3.2 mlvCFiat ..24

CHAPTER 4 ...29

4.1 Software Trace Generation ..30

4.2 Software to Hardware Trace Translation ...32

4.2.1 mcfNX_b ..33

4.2.2 mcfTR_b and mcfTR_e ..36

4.2.3 mlvNX_b..38

4.2.4 mlvCF_b and mlvCF_e..39

4.3 Experimental Environment ...41

4.3.1 Experimental Setup ..41

viii

4.3.2 Benchmarks ..42

4.3.3 Experiments ..45

4.3.4 Variable Encoding ...47

CHAPTER 5 ...50

5.1 Trace Port Bandwidth for Control-Flow Traces ..51

5.1.1 mcfNX_b ..51

5.1.2 mcfTRaptor ...53

5.2 Trace Port Bandwidth for Memory Load Data Value Traces59

5.2.1 mlvNX_b..59

5.2.2 mlvCFiat ...61

CHAPTER 6 ...67

6.1 Software Timed Trace Generation ..69

6.1.1 Functional Description ...69

6.1.2 Format of Timed Trace Descriptors ...71

6.1.3 TmTrace Implementation Details ..75

6.1.4 Verification Details ...76

6.2 tmcfTRaptor Simulator ..83

6.2.1 Functional Description ...84

6.2.2 Implementation Details ..88

6.2.3 Verification Details ...90

6.3 tmlvCFiat Simulator ..94

6.3.1 Functional Description ...94

6.3.2 Implementation Details ..96

6.3.3 Verification Details ...97

6.4 Software to Hardware Trace Translation ... 101

6.5 Experimental Environment ... 103

6.5.1 Experimental Setup .. 103

ix

6.5.2 Benchmarks .. 104

6.5.3 Experiments .. 107

6.5.4 Variable Encoding ... 109

CHAPTER 7 ... 110

7.1 Trace Port Bandwidth for Timed Control-Flow Traces 111

7.1.1 tmcfNX_b ... 111

7.1.2 tmcfTRaptor .. 113

7.2 Trace Port Bandwidth for Timed Memory Load Data Value Traces 119

7.2.1 tmlvNX_b .. 119

7.2.2 tmlvCFiat .. 121

CHAPTER 8 ... 127

 REFERENCES………………………………………………………………………………130

x

LIST OF FIGURES

Figure Page

Figure 1.1 Debugging and tracing in embedded multicores: a system view 3

Figure 2.1. Control-flow trace: an example..11

Figure 2.2. Memory read trace: an example ..12

Figure 2.3 Debugging and tracing in multicores: a detailed view...................15

Figure 3.1 A system view of mcfTRaptor ...21

Figure 3.2. mcfTRaptor structures for core i ...21

Figure 3.3 mcfTRaptor operation on core i ..23

Figure 3.4 Program replay in software debugger for mcfTRaptor24

Figure 3.5 A system view of mlvCFiat ...26

Figure 3.6 mlvCFiat structures for core i ..26

Figure 3.7 mlvCFiat operation on core i ..27

Figure 3.8 mlvCFiat operation in software debugger for core i28

Figure 4.1 Experiment flow for determining trace port bandwidth

requirements using functional traces. ...30

Figure 4.2 Functional trace generation using mTrace tool suite31

Figure 4.3 Software to hardware trace translation ...33

Figure 4.4 mcfTrace and mcfNX_b trace descriptors35

Figure 4.5 mcfTRaptor, mcfTR_b, and mcfTR_e trace descriptors38

Figure 4.6 mlvTrace and mlvNX_b trace descriptors39

Figure 4.7 mlvTrace, mlvCF_b, and mlvCF_e trace descriptors40

Figure 4.8 Block diagram of Intel Xeon E5-2650 v2 processor socket41

Figure 4.9 CDF of the minimum length for bCnt and |diffTA| fields47

xi

Figure 4.10 Total average bCnt and |diffTA| field sizes as a function of

encoding ..48

Figure 4.11 CDF of the minimum length for Ti.fahCnt and the average

Ti.fahCnt for variable encoding ...49

Figure 5.1 Outcome misprediction rates for Splash2x bechmark54

Figure 5.2 Target address misprediction rates for Splash2x benchmark54

Figure 5.3 Total trace port bandwidth in bpi for control flow traces56

Figure 5.4 Trace port bandwidth in bpc for control-flow traces59

Figure 5.5 First access miss rate for Splash2x benchmark62

Figure 5.6 Trace port bandwidth bpi for load data value trace.......................63

Figure 5.7 Trace port bandwidth in bpc for load data value trace66

Figure 6.1 Experiment flow for timed traces ..68

Figure 6.2 Trace descriptor when all committed instructions are traced72

Figure 6.3 Trace descriptor for timed control-flow trace73

Figure 6.4 Trace descriptors generated for memory reads and writes74

Figure 6.5 Capturing timed control flow traces ...75

Figure 6.6 Capturing timed memory read and write traces............................76

Figure 6.7 Conditional branches in testControlEnumeration.s78

Figure 6.8 Unconditional branches in testControlEnumeration.s79

Figure 6.9 Tracing enabled for a specific code segment80

Figure 6.10 Testing TmTrace load data value traces: an example81

Figure 6.11 Testing TmTrace for an extended data type82

Figure 6.12 Testing TmTrace for SIMD data types ...83

Figure 6.13 tmcfTRaptor trace descriptor formats ..85

Figure 6.14 tmcfTRaptor output files ..87

xii

Figure 6.15 tmcfTRaptor simulator organization ..89

Figure 6.16 GShare verification example and results91

.Figure 6.17 Return address stack example ..92

Figure 6.18 iBTB test example ..93

Figure 6.19 tmlvCFiat trace descriptor format ...95

Figure 6.20 tmlvCFiat simulator organization ..97

Figure 6.21 Testing tmlvCFiat: single cache line access99

Figure 6.22 Testing tmlvCFiat: multi-line cache access 100

Figure 6.23 Trace descriptors for tmcfNX_b, tmcfTR_b, and tmcfTR_e 102

Figure 6.24 Trace descriptors for tmlvNX_b, tmlvCF_b, and tmlvCF_e 102

Figure 6.25 Block diagram of a modeled multicore in Mult2Sim 104

Figure 7.1 Outcome misprediction rates for Splash2 benchmark 114

Figure 7.2 Target address misprediction rates for Splash2 benchmark 114

Figure 7.3 Total trace port bandwidth in bpi for timed control flow traces .. 116

Figure 7.4 Trace port bandwidth in bpc for control flow traces 119

Figure 7.5 First Access Miss Rate for Splash2 benchmark 122

Figure 7.6 Trace port bandwidth bpi for timed load data value trace 123

Figure 7.7 Trace port bandwidth in bpc for timed load data value trace 126

xiii

LIST OF TABLES

Table Page

Table 4.1 mcfTRaptor events and trace descriptor fields36

Table 4.2 Splash2x benchmark suite control flow characterization43

Table 4.3 Splash2x benchmark suite memory read characterization44

Table 4.4 Benchmark characterization of memory reads45

Table 4.5 Functional trace experiments ..46

Table 5.1 Trace port bandwidth for mcfNX_b for Splash2x benchmark52

Table 5.2 Outcome and target address misprediction rates53

Table 5.3 Compression ratio for mcfTR_b relative to mcfNX_b57

Table 5.4 Compression ratio for mcfTR_e relative to mcfNX_b58

Table 5.5 Trace port bandwidth for mlvNX_b for Splash2x benchmark........61

Table 5.6 TPB for mlvNX_b, mlvCF_b, and mlvCF_e for large configuration 64

Table 5.7 Compression ratio of mlvCF_e relative to mlvNX_b65

Table 6.1 TmTrace custom flags ..71

Table 6.2 tmcfTRaptor flags ...85

Table 6.3 iBTB status and updates for the test example94

Table 6.4 tmlvCFiat flags ...95

Table 6.5 Splash2 benchmark suite control flow characterization 105

Table 6.6 Splash2 benchmark suite memory read characterization 106

Table 6.7 Characterization of memory reads in Splash2 107

Table 6.8 Timed trace experiments .. 108

Table 6.9 Summary variable encoding parameter for different fields 109

Table 7.1 Trace port bandwidth for tmcfNX_b for Splash2 benchmark 112

xiv

Table 7.2 Total outcome and target address misprediction rates for Splash 113

Table 7.3 Compression ratio for tmcfTR_b relative to tmcfNX_b 117

Table 7.4 Compression ratio for tmcfTR_e relative to tmcfNX_b 118

Table 7.5 Trace port bandwidth for tmlvNX_b for Splash2 benchmark 121

Table 7.6 Trace port bandwidth for tmlvNX_b and tmlvCFiat 124

Table 7.7 Compression ratio of tmlvCF_e ralative to tmlvNX_b 125

1

CHAPTER 1

INTRODUCTION

Without efforts you cannot achieve – Do not desire anything free

--Rev. Pandurang Shastri Athavale

1.1 Background and Motivation

Embedded computer systems are indispensable in modern communications,

transportation, manufacturing, medicine, entertainment, and national security.

Embedded computer systems are often used as a part of larger physical systems they

control or serve by providing computational services. Such systems are often re-

ferred to as cyber-physical systems. Faster, cheaper, smaller, more sophisticated,

and more power-efficient embedded computer systems spur new applications that

require very complex software stacks. The growing software and hardware complex-

ity and tightening time-to-market deadlines make software development and debug-

ging the most critical aspects of embedded system development.

A study by the National Institute of Standard and Technology (NIST, RTI,

2002) [1] found that software developers spend 50 to 75% of their development time

debugging programs. Thus, with 800,000 software developers in the U.S. with annu-

al gross salaries of $120,000, the annual cost of software debugging is $48 billion. In

spite of these efforts, the U.S. still loses approximately $20-$60 billion a year due to

2

software bugs and glitches. The recent shift toward multicore architectures makes

software development and debugging even more challenging.

Ideally, software developers would like to have perfect visibility into the sys-

tem state during program execution. However, achieving complete visibility of all

internal signals in real time is not feasible due to limited I/O bandwidth, high inter-

nal complexity, and high operating frequencies. To address these challenges, modern

embedded processors increasingly include on-chip hardware modules solely devoted

to debugging and tracing. These modules encompass logic for stop-control debugging

and resources to capture, filter, buffer, and output control-flow and data traces.

These traces, coupled with powerful software debuggers, enable a faithful program

replay that allows developers to locate and correct software bugs faster.

Figure 1.1 shows a typical embedded system-on-a-chip (SoC) with 4 processor

cores and its on-chip debugging resources that include run-control logic, logic for

capturing program traces, and buffers that serve to temporarily store captured trac-

es before they are streamed out through a trace port to an external trace probe. The

external trace probe typically includes large trace buffers on the order of gigabytes

and interfaces to the target platform’s trace port and to the host workstation. The

host workstation runs a software debugger that replays the program execution off-

line by reading and processing the traces from the external probe and executing the

program binary. This way, software developers can faithfully replay the program

execution on the target platform and gain insights into behavior of the target system

while it is running at full speed.

3

Core 0 Run Control

Core 1

Core 2

Core 3

On-chip
Buffers
(~KB)

Instruction &
Data Tracing

Trace
port

Communication
Interface

Probe
Processor

Buffers (~GB)

Communication
Interface

Software
Debugger

Trace
Tools

Binary

Multicore Processor System (~GHz) Trace Probe System (~MHz) Host System (~GHz)

Figure 1.1 Debugging and tracing in embedded multicores: a system view

The IEEE’s Nexus 5001 standard [2] defines functions and interfaces for de-

bugging and tracing in embedded processors for four classes of debugging and trac-

ing operations (Class 1 – Class 4). State-of-the-art trace modules employ filtering

and encoding to reduce the number of bits necessary to recreate program execution.

Yet, trace port bandwidths are still in the range of 1 to 4 bits per instruction execut-

ed per core for control-flow traces [3] and 16 bits per instruction executed per core

for data-flow traces [3]. With these trace port bandwidth requirements, a 1 KB on-

chip trace buffer per processor core may capture control-flow of program segments

on the order of 2,000-8,000 instructions or data-flow of program segments of merely

400-800 instructions. Such short program segments are often insufficient for locat-

ing software errors in modern systems with more sophisticated software stacks

where the distance between a bug’s origin and its manifestation may span billions of

executed instructions. Increasing the size of the buffers and the number of pins for

trace ports is not an attractive alternative to chip manufacturers as it significantly

increases the system complexity and cost. This problem is exacerbated in multicore

processors where the number of I/O pins dedicated to trace ports cannot keep pace

4

with the exponential growth of the number of processor cores on a single chip. Yet,

debugging and tracing support in multicores is critical because of their increased

proliferation in embedded systems and their increased sophistication and complexi-

ty.

1.2 What is this thesis about?

Developing cost-effective hardware support for debugging and tracing in mul-

ticores is of great importance for future embedded systems. On-chip debug and trace

infrastructure should be able to unobtrusively capture control-flow and data-flow

traces from multiple processor cores at minimal cost (which translates into minimal

on-chip trace buffers) and stream them out in real-time through narrow trace ports.

This thesis focuses on capturing and compressing control-flow and load data

value hardware traces in multicores. These traces are sufficient to replay programs

offline in the software debugger under certain conditions. We first analyze require-

ments for real-time tracing in multicores as a function of the number of cores by

running a set of parallel benchmark programs. We analyze trace port bandwidth re-

quirements for control-flow Nexus-like trace (mcfNX_b) and load data value traces

(mlvNX_b). We introduce two new techniques for capturing and compressing hard-

ware traces, namely mcfTRaptor for control-flow traces and mlvCFiat for load data

value traces. mcfTRaptor is a multicore implementation of the previously proposed

single-core technique called TRaptor [4]. mlvCFiat is a multicore implementation of

the previously proposed CFiat [5]. We explore effectiveness of the proposed tech-

niques as a function of the complexity of the proposed hardware predictors and en-

coding mechanism. Experimental evaluation involves both functional traces collect-

5

ed using mTrace tools [6] and timed traces collected using a cycle-accurate architec-

tural simulator [7].

1.3 Main Results

The main results of our experimental evaluation are as follows. The total

trace port bandwidth for Nexus-like control-flow hardware traces (mcfNX_b) for the

Splash2x benchmark suite ranges from 0.93 bits per instruction executed when the

number of cores N = 1 to 1.15 bpi when N = 8. The trace port bandwidth in bits per

clock cycle is 1.21 when N = 1 and 4.68 when N = 8. The total trace port bandwidth

for Nexus-like load data value traces (mlvNX_b) ranges from 18.25 bits per instruc-

tion when N = 1 to 19.08 when N = 8. The trace port bandwidth in bits per clock cy-

cle is 23.7 when N = 1 and 78.56 when N = 8. These results indicate that capturing

control-flow and especially load data value traces on the fly in multicores requires

both large trace buffers and wide trace ports.

The proposed mcfTRaptor method dramatically reduces the trace port band-

width. With mcfTRaptor, the trace port bandwidth ranges from 0.07 when N = 1 to

0.09 bpi when N = 8, a 12-fold improvement relative to the Nexus-like control-flow

trace. With a large [Section 4.3.3] configuration the improvement is between 36.5

times when N = 1 and 30.3 times when N = 8. tmcfTRaptor involves streaming out

timestamps with each trace message and is also very effective, providing improve-

ments of 12 ~ 13 times for a small [Section 4.3.3] configurations and 18 ~ 20 times

for a large configurations relative to the Nexus-like timed control-flow trace.

The proposed mlvCFiat technique offers significant improvements relative to

the Nexus-like load data value traces. The trace port bandwidth is reduced 3.9

6

times when N = 1 and 4.6 when N = 8 for relatively small [Section 4.3.3] data caches.

The trace port bandwidth is reduced 6.7 times when N = 1 and for 7.4 times when

N = 8 for relatively large [Section 4.3.3] data cache sizes. tmlvCFiat achieves even

better results mainly due to relatively smaller data sets used in the Splash bench-

marks that serve as the workload for timed traces.

1.4 Contributions

This thesis makes the following contributions to the field of hardware support

of on-chip tracing and debugging in multicore processors:

 Introduces mcfTRaptor and mlvCFiat, hardware/software techniques for cap-

turing and compressing hardware control-flow traces (mcfTRaptor) and load

data value traces (mlvCFiat) in multicores;

 Develops framework for experimental evaluation of tracing techniques for

functional and timed control-flow and load data value traces;

 Evaluates effectiveness of techniques for functional (mcfNX and mcfTRaptor)

and timed control-flow tracing (tmcfNX and tmcfTRaptor);

 Evaluates effectiveness of techniques for functional (mlvNX and mlvCFiat)

and timed load data value tracing (tmlvNX and tmlvCFiat).

1.5 Outline

The outline of this thesis is as follows. Chapter 2 gives background, focusing

on control-flow trace and memory data traces, tracing and debugging in embedded

systems, and commercial and academic state-of-the-art. Chapter 3 introduces the

mcfTRaptor and mlvCFiat techniques for filtering and compressing control-flow and

7

load data value traces in multicores. Chapter 4 describes our experimental evalua-

tion for functional traces. Chapter 5 describes the results of the experimental eval-

uation for functional traces. Chapter 6 describes our experimental evaluation of

timed traces and Chapter 7 describes the results of the evaluation. Finally, Chapter

8 gives concluding remarks.

8

CHAPTER 2

BACKGROUND AND MOTIVATION

Efforts are never in vain - Do not despair

--Rev. Pandurang Shastri Athavale

This Chapter focuses on types of program execution traces, namely control-

flow (Section 2.1) and memory data read and write traces (Section 2.2), that are

commonly used in program debugging. Section 2.3 gives a more detailed system

view of trace-based debugging in embedded systems and surveys the commercial

state-of-the-art. Section 2.4 gives a brief survey of the academic state-of-the-art in

the field of capturing and compressing program execution traces.

2.1 Control Flow Traces

Control-flow traces are created by the recording memory addresses of all

committed instructions in a program. However, such traces include a lot of redun-

dant information that can be inferred by the software debugger with access to the

program binary. To recreate the program’s control-flow off-line, the debugger needs

only information about changes in the program flow caused by control-flow instruc-

tions or exceptions. When a change in control-flow occurs, we could record the pro-

gram counter (PC) and the branch target address (BTA) in case of a control-flow in-

struction or the exception target address (ETA) in case of an exception. However,

such a sequence of (PC, BTA/ETA) pairs still contains redundant information. To

9

reduce the number of bits to encode lengthy (PC, BTA/ETA) pairs, we can replace PC

with the number of sequentially executed instructions in an instruction stream, also

known as stream length (SL). An instruction stream or dynamic basic block is a se-

quence of sequentially executed instructions starting at the target of a taken branch

and ending with the first taken branch in the sequence [8],[9]. In addition, the target

addresses of direct taken branches (BTA) do not need to be recorded as they can be

inferred by the software debugger. Therefore, to recreate the program’s control-flow

in the software debugger, only the following changes in the control-flow need to be

reported from the target platform.

 A taken conditional direct branch generates a trace message that contains on-

ly the number of sequentially executed instructions in the instruction stream,

(SL, -); the target address can be inferred from the program binary.

 An indirect unconditional branch generates a trace message that includes the

stream length and the address of the indirect branch, (SL, BTA); and

 An exception event generates a trace message that includes the message type

(eType), the number of instructions executed since the last reported event

(iCnt), and the exception target address (ETA), (eType, iCnt, ETA).

For multicores executing multithreaded programs, control-flow trace messag-

es need to include information about the core on which a particular code segment

has been executed. Note: Without loss of generality, we assume that each thread ex-

ecutes on a single core (Ti = Ci). Though threads can migrate between the cores,

these migrations can be captured by system software rather than through hardware

methods and can be merged with the hardware trace in the software debugger.

10

To illustrate capturing control-flow traces of a multithreaded program, con-

sider the OpenMP C program shown in Figure 2.1 that sums up elements of an inte-

ger array. An assembly code snippet in the middle shows the instructions executed.

We can identify the following instruction streams: the stream A with 15 instructions

starting at the address 0x80488b3, the stream B with 14 instructions starting at the

address 0x80488b6, the stream C with 15 instruction starting at the address

0x80488b6, and the stream D with 5 instructions starting at the address 0x80488e9.

The same code snippet is executed in two threads (Ti = 0 and Ti = 1). Figure 2.1

shows a functional control-flow trace for both threads. Each thread sums up 4 ele-

ments of the original array and the sequence of reported instruction streams is as

follows: A, B, B, C, D. The stream D ends with an indirect branch (retq instruction),

so the last trace message will also include the target address (not known in compile

time). The streams A, B, and C end with direct branches with inferable targets, and

thus their target addresses are not included (traced out). On the bottom, timed trace

messages are shown that include time stamps recording the clock cycle when a par-

ticular trace message is captured.

11

Figure 2.1. Control-flow trace: an example

2.2 Memory Data Traces

Memory data traces are created by recording relevant information for each

memory read or write operation in a program execution. This information typically

includes the following: the instruction address (PC), type of memory operation --

read or write (R/W), the operand address (OA), the operand size (OS), and the oper-

and value (OV). In multicores, each trace record should include the thread or core

index (Ti). Finally, in the case of timed traces, each record includes a time stamp in-

dicating the clock cycle in which the event has occurred.

Figure 2.2 shows a memory read trace excerpt for the OpenMP C program

shown in Figure 2.1. On the right hand side the flow trace records caused by the

move instruction at address 0x80488c0 that reads a byte from the input byte array.

Each trace record includes the thread index, the operand address, the operand size,

and the operand value. Below are the trace records that in addition to the fields

above include time stamps when particular memory reads have completed.

 80488b3: mov DWORD PTR [ebp-0xc],eax

 80488b6: mov eax,DWORD PTR [ebp+0x8]

 80488b9: mov ecx,DWORD PTR [eax]

 80488bb: mov eax,DWORD PTR [ebp-0xc]

 80488be: add eax,ecx

 80488c0: movzx eax,BYTE PTR [eax]

 80488c3: movzx ecx,al

 80488c6: mov eax,DWORD PTR [ebp+0x8]

 80488c9: mov eax,DWORD PTR [eax+0x4]

 80488cc: add ecx,eax

 80488ce: mov eax,DWORD PTR [ebp+0x8]

 80488d1: mov DWORD PTR [eax+0x4],ecx

 80488d4: add DWORD PTR [ebp-0xc],0x1

 80488d8: cmp DWORD PTR [ebp-0xc],edx

 80488db: jl 80488b6

 80488dd: jmp 80488e9

 80488df: mov eax,0x0

 80488e4: add ecx,0x1

 80488e7: jmp 80488a5

 80488e9: add esp,0x10

 80488ec: pop ebx

 80488ed: pop esi

 80488ee: pop ebp

 80488ef: ret

1 #include <iostream>

2 #include <omp.h>

3 int main()

4 {

5 uint8_t a[8]={1,2,3,4,5,6,7,8};

6 int sum;

7 #pragma omp parallel for

8 for (int i = 0; i < 8; i++) {

10 sum += a[i];

11 }

12 std::cout << sum;

13 return 1;

14 }

C Program

Timed Trace (CC, TID, SL, BTA)

(0, 15, -)

Functional Trace (TID, SL, BTA)

(1, 15, -)

(0, 14, -) (1, 14, -)

(0, 14, -) (1, 14, -)

(0, 15, -) (1, 15, -)

(0, 5, BTA0) (1, 5, BTA1)

Legend:
CC Clock Cycle
TID Thread / Core ID
SL Stream Length
BTA Branch Target
 Address

(3544151, 0, 15, -) (3543577, 1, 15, -)

(3544592, 0, 14, -) (3543999, 1, 14, -)

(3544616, 0, 14, -) (3544006, 1, 14, -)

(3544639, 0, 15, -) (3544020, 1, 15, -)

(3544643, 0, 5, BTA0) (3544038, 1, 5, BTA1)

Control flow trace

A

B

B

C

D

A

B

B

C

D

12

Figure 2.2. Memory read trace: an example

Control-flow traces alone are sufficient to reconstruct the program-flow.

However, for certain classes of software bugs (e.g., data races), control-flow traces

alone are insufficient and data traces are also required. Data traces are critical in

multicore systems, as they offer valuable information about shared memory access

patterns and possible data race conditions. Unfortunately, data traces tend to be

very large: a 64-bit machine reading an 8-byte operand from memory generates a

trace record with more than 24 bytes (8 byte instruction address, 8-byte operand ad-

dress, 8-byte operand value). Streaming an entire memory data trace through a

trace port is thus cost prohibitive. Fortunately, replaying the program offline re-

quires only memory reads and not writes, as that information is infer from software

debugger.

The software debugger needs only a portion of the data trace to replay the

program. Exception traces and load (memory read) data value traces captured on

the target platform and streamed out to a software debugger are necessary to de-

terministically replay programs offline. Exception traces are created by recording

1 #include <iostream>

2 #include <omp.h>

3 int main()

4 {

5 uint8_t a[8]={1,2,3,4,5,6,7,8};

6 int sum;

7 #pragma omp parallel for

8 for (int i = 0; i < 8; i++) {

10 sum += a[i];

11 }

12 std::cout << sum;

13 return 1;

14 }

C Program

 80488b3: mov DWORD PTR [ebp-0xc],eax

 80488b6: mov eax,DWORD PTR [ebp+0x8]

 80488b9: mov ecx,DWORD PTR [eax]

 80488bb: mov eax,DWORD PTR [ebp-0xc]

 80488be: add eax,ecx

 80488c0: movzx eax,BYTE PTR [eax]

 80488c3: movzx ecx,al

 80488c6: mov eax,DWORD PTR [ebp+0x8]

 80488c9: mov eax,DWORD PTR [eax+0x4]

 80488cc: add ecx,eax

 80488ce: mov eax,DWORD PTR [ebp+0x8]

 80488d1: mov DWORD PTR [eax+0x4],ecx

 80488d4: add DWORD PTR [ebp-0xc],0x1

 80488d8: cmp DWORD PTR [ebp-0xc],edx

 80488db: jl 80488b6

 80488dd: jmp 80488e9

 80488df: mov eax,0x0

 80488e4: add ecx,0x1

 80488e7: jmp 80488a5

 80488e9: add esp,0x10

 80488ec: pop ebx

 80488ed: pop esi

 80488ee: pop ebp

 80488ef: ret

Functional Trace (TID, OA, OS, OV)
Legend:
CC Clock Cycle
TID Thread / Core ID
OA Operand Address
OS Operand Size
OV Operand Value

(0, bffeff54 ,1, 1) (1, bffeff58,1, 5)

(0, bffeff55 ,1, 2) (1, bffeff59,1, 6)

(0, bffeff56 ,1,3) (1, bffeff5a,1,7)

(0, , bffeff57 ,1, 4) (1, bffeff5b,1 , 8)

(3544146, 0, bffeff54 ,1, 1)

Timed Trace (CC, TID, OA, OS, OV)

(3543573, 1, bffeff58, 1, 5)

(3544588, 0, bffeff55 ,1, 2) (3543995, 1, bffeff59, 1, 6)

(3544611, 0, bffeff56 ,1, 3) (3544002, 1, bffeff5a, 1, 7)

(3544634, 0, bffeff57 ,1, 4) (3544009, 1, bffeff5b, 1, 8)

Memory read flow trace

13

exceptions that occur in program execution, and load data value traces record only

values read from memory and I/O devices. In addition to the traces, the software

debugger needs the following to faithfully replay the program offline: (i) an instruc-

tion set simulator (ISS) of the target platform, (ii) access to the program’s binary,

and (iii) the initial state of the general-purpose and special-purpose registers of indi-

vidual cores. ISS is a simulation model tool to mimic the behavior of processors. In

multicores, the exception and data traces need to be either streamed in the order of

occurrence or with global timestamps.

2.3 Tracing in Embedded Multicores

Trace and debug modules encompass hardware that can support different

classes of debugging and tracing operations. The IEEE Nexus 5001 standard [2] de-

fines functions and interfaces for debugging and tracing in embedded processors for

four classes of debugging and tracing operations (Class 1 – Class 4). Class 1 supports

basic debug operations for run-control debugging such as single-stepping, setting

breakpoints, and examining and modifying processor registers and memory locations

when the processor is halted. It is traditionally supported through a JTAG interface

[10]. The higher classes progressively add more sophisticated operations at the cost

of additional on-chip resources (logic, buffers, and interconnects) solely devoted to

tracing and debugging. Thus, Class 2 adds support for nearly unobtrusive capturing

and streaming out control-flow traces in real-time. Class 3 adds support for captur-

ing and streaming out data-flow trace (memory and I/O read and write data values

and addresses). Finally, Class 4 adds resources to support emulated memory and I/O

accesses through the trace port.

14

Class 1 operations are routinely deployed in modern platforms. However,

Class 1 operations are lacking in several important aspects. First, they place a bur-

den on software developers to perform time-consuming and demanding steps such as

setting breakpoints, single-stepping through programs and examining visually the

content of registers and memory locations. Moreover, setting breakpoints is not

practical or feasible in cyber-physical and real-time systems. Finally, since the pro-

cessor needs to be halted, the debugging operations are obtrusive and may perturb

sequences of events on the target platform and thus cause original bugs to disappear

during debug runs.

To address these challenges, many chip vendors have recently introduced

trace modules with support for Class 2 and less frequently for Class 3 debug and

trace operations. Figure 2.3 shows a typical embedded system-on-a-chip (SoC) with

multiple processor cores and its debugging and tracing resources. The SoC is con-

nected to a trace probe system through a trace port. The multicore SoC includes

various components, such as multiple processor cores (Core0 – Core3), a DSP core,

and a DMA core, all connected through a system interconnect. Each component in-

cludes its own trace and debug logic (trace modules) that captures program execu-

tion traces of interest. Individual trace modules are connected through a trace and

debug interconnect to on-chip trace buffers. On-chip buffers store program execution

traces temporarily before they are read out through a trace port to an external trace

probe. The external trace probe typically includes large trace buffers on the order of

gigabytes and interfaces to the target platform’s trace port and to the host work-

station. The host workstation runs a software debugger that replays the program

execution offline by reading and processing the traces from the external probe and

15

executing the program binary. This way, software developers can faithfully replay

the program execution on the target platform and gain insights into the behavior of

the target system while it is running at full speed.

Figure 2.3 Debugging and tracing in multicores: a detailed view

Some examples of commercial trace modules include ARM’s CoreSight [3],

MIPS’s PDTrace [11], Infineon’s MCDS [12], and Freescale’s MPC5500 [13]. State-of-

the-art trace modules employ filtering and encoding to reduce the number of bits

necessary to recreate program execution. Yet, trace port bandwidths are still in the

range of 1 to 4 bits per instruction executed per core for control-flow traces [3] and 8

to 16 bits per instruction executed per core for data-flow traces [3]. With these trace

port bandwidth requirements, a 1 KB on-chip buffer per processor core may capture

16

control-flow of program segments on the order of 2,000-8,000 instructions or data-

flow of program segments of merely 400-800 instructions. Such short program seg-

ments are often insufficient for locating software errors in modern systems with

more sophisticated software stacks where a distance between a bug’s origin and its

manifestation may span billions of executed instructions. Increasing the size of the

buffers and the number of pins for trace ports is not an attractive alternative to chip

manufacturers as it significantly increases the system complexity and cost. This

problem is exacerbated in multicore processors where the number of I/O pins dedi-

cated to trace ports cannot keep pace with the exponential growth of the number of

processor cores on a single chip. Yet, debugging and tracing support in multicores is

critical because of their increased proliferation in embedded systems and their in-

creased sophistication and complexity.

2.4 Related Work

Commercially available trace modules typically implement only rudimentary

forms of hardware filtering with a relatively small compression ratio. Irrgang and

Spallek analyzed the Nexus and trace port configurations and their impact on

achievable compression for instruction traces and found port width of 8bits with his-

tory messaging is effective [14]. Several recent research efforts in academia propose

trace-specific compression techniques that achieve higher compression ratios. These

techniques rely on hardware implementations of general-purpose compressors [15]

[16]. For example, Kao et al. [17] introduce an LZ-based compressor specifically tai-

lored to control-flow traces. The compressor encompasses three stages: filtering of

branch and target addresses, difference-based encoding, and hardware-based LZ

17

compression. Novel approach, stream based compression algorithm[18] exploits in-

herent characteristics program execution traces for compression. A double-move-to-

front compressor introduced by Uzelac and Milenkovic [15] encompasses two stages,

each featuring a history table performing the move-to-front transformation. Alt-

hough these techniques significantly reduce the size of the control-flow trace that

needs to be streamed out, they have a relatively high complexity (50,000 gates and

24,600 gates, respectively).

A set of recently developed techniques relies on architectural on-chip struc-

tures such as stream caches[19], [20], [21] and branch predictors [4] [22] [23] with

their software counterparts in software debuggers, as well as effective trace encod-

ing to significantly reduce the size of traces that needs to be streamed out [4],

[5],[19],[20]. Uzelac et al. [4] introduced TRaptor for control-flow traces that

achieves 0.029 bits per instruction on the trace port (~34-fold improvement over the

commercial state-of-the-art) at hardware cost of approximately 5,000 gates. For load

value traces, Uzelac and Milenkovic [24] [5] introduced cache first-access tracking

mechanism (c-fiat) that reduces the trace size between 5.8 to 56 times, depending on

the cache size.

However, these techniques have been demonstrated on uniprocessors only.

The problem of tracing requirements in multicores running parallel programs is not

fully understood. What is the required trace port bandwidth? How does trace port

bandwidth scale up with a multiple processor cores? How the existing techniques

may be applied to multicores? These are some of the questions that needs to be fully

addressed [25]. In this thesis, we want to explore requirements for real-time tracing

18

in multicores and introduce cost-effective solutions that scale well with a multiple

processor cores.

19

CHAPTER 3

NEW TECHNIQUES FOR TRACING IN MULTICORES

Continue to make efforts, pray for help, and help is assured – Do not lose faith

--Rev. Pandurang Shastri Athavale

This chapter describes mcfTRaptor and mlvCFiat techniques for capturing

and compressing hardware control-flow and load-value data traces in multicore em-

bedded processors.

3.1 mcfTRaptor

In this section, we introduce a technique called multicore control flow tracing

branch predictor alias mcfTRaptor. mcfTRaptor is an extension of the existing

TRaptor technique for capturing and filtering control-flow traces in single-core pro-

cessors [4], [24]. Figure 3.1 illustrates a multicore system-on-a-chip with tracing

and debugging resources. The multicore connects to a software debugger running on

a development workstation via a debug & trace interface. Each core has its own

trace module that captures information about committed control-flow instructions.

The trace module includes predictor structures in hardware, solely dedicated to cap-

turing and filtering control flow traces. These structures are looked up and updated

every time a non-inferable control-flow instruction (a conditional branch or an indi-

rect branch) commits in the corresponding processor core. For a given control-flow

instruction, the predictor structures either (a) correctly predict the outcome or target

address; (b) incorrectly predict the outcome or target address, or (c) cannot make a

20

prediction (e.g., due to a predictor miss). In all cases, the predictor structures are

updated based on their update policies, similarly to branch predictors in processor

pipelines. The key insight that leads to a significant reduction in the number and

size of trace messages is that trace messages need be generated only when rare

mispredictions occur in the mcfTRaptor structures on the target platform. The mes-

sages are stored in a trace buffer, streamed out of the platform, and read by the

software debugger. The software debugger has access to the program binary, in-

struction set simulator, and the trace messages captured on the target platform. The

debugger maintains software copies of all mcfTRaptor structures. These structures

are looked up and updated during program replay in the same way their hardware

counterparts are looked up and updated on the target platform.

Figure 3.2 shows a block diagram of typical mcfTRaptor structures for the

core with index i. The processor’s trace module receives information about commit-

ted control flow instructions including, time, program counter (PC), direct/indirect

branch type, outcome (taken/not taken), and branch target address (BTA) or excep-

tion target address (ETA). mcfTRaptor includes structures for predicting (a) target

addresses of indirect branches, e.g., an indirect Branch Target Buffer (iBTB) and a

Return Address Stack (RAS) [26]; and (b) outcomes of conditional branches, such as

an outcome gshare predictor [7]. In addition, mcfTRaptor includes two counters: an

instruction counter Ti.iCnt and a branch counter Ti.bCnt. Ti.iCnt is incremented

upon retirement of each executed instruction, and Ti.bCnt is incremented only upon

retirement of control-flow instruction that could generate trace messages (e.g., con-

ditional direct and unconditional indirect branches).

21

Figure 3.1 A system view of mcfTRaptor

Figure 3.2. mcfTRaptor structures for core i

System Interconnect

Trace
PortMulticore

SoC

Trace & Debug Interconnect

On-chip
Trace Buffer

Trace Port
Interface

ITM
DSP
Core

Trace
Module

DMA
Core

Trace
Module

Debug & Trace
Control

Software Debugger System View

Binaries

Multicore Instruction Set Simulator

GUI

.

Core 0
mcfTRaptor

Structure

.Nexus
Trace

Software
Debugger(s) in

Host
Workstation

Trace
Probe

Host
Interface
Buffers
(~GB)
Target

Interface

Trace Decoder and Control Software Module

CPU
Core i

Trace
Module

mcfTRaptor

CPU
Core 0

Trace
Module

mcfTRaptor

CPU
Core n-1

Trace
Module

mcfTRaptor

Core i
mcfTRaptor

Structure

Core n-1
mcfTRaptor

Structure

Path Information
Register (PIR)

iBTB

iBTB
hit

PC

iBTB target
address

Tag

 ...

Target address

0

1

 q-1

...

RAS

0

1

r-1

XOR
iBTB.tag

iBTB.index

Branch History
Register (BHR)

PC

XOR
ghare.index

...

0

1

 p-1

Gshare

way 0
way 1

RAS target
address

Predicted
Outcome

Ti.bCnt

Ti.iCnt

[PC, Type, BTA, ETA, Exception] from Core i

CMP
(actual BTA == predicted BTA)?

Actual BTA

CMP
(actual Outcome ==

predicted Outcome)?

True/False True/False

Actual
Outcome

22

Figure 3.3 describes the operation of a trace module attached to core i when

capturing control-flow tracing using mcfTRaptor. The instruction counter is incre-

mented for each committed instruction. The branch counter is incremented for each

control-flow instruction capable of generating a trace message. For indirect uncon-

ditional branches, the trace module generates a trace message only if the predicted

target address does not match the actual target address. For direct conditional

branches, the trace module generates a trace message only if the predicted outcome

does not match the actual outcome. When a trace message is generated and placed

in a trace buffer for streaming out, the counters Ti.iCnt and Ti.bCnt are cleared.

The predictor structures are updated according to an update respective structures.

In case of exceptions, a trace message is generated with Ti.bCnt = 0 to indicate a

special case, followed by the instruction count (Ti.iCnt) and the exception address

(Ti.ETA).

23

1. // For each committed instruction in Thread with index i on core i

2. Ti.iCnt++; // increment iCnt

3. if ((Ti.iType == IndBr) || (Ti.iType == DirCB)) {

4. Ti.bCnt++; // increment bCnt

5. // target address misprediction

6. if ((Ti.iType == IndBr) && (Ti.BTA != p.BTA)) {

7. Encode&Emit trace message <Ti, Ti.bCnt, Ti.BTA>;

8. Place trace message into the Trace Buffer;

9. Ti.iCnt = 0;

10. Ti.bCnt = 0;

11. }

12. // outcome misprediction

13. else if ((Ti.iType==DirCB) && (Ti.Outcome != p.Outcome)) {

14. Encode&Emit trace message <Ti, Ti.bCnt>;

15. Place trace message into the Trace Buffer;

16. Ti.iCnt = 0;

17. Ti.bCnt = 0;

18. }

19. Update predictor structures;

20. }

21. if (Exception event) {

22. Encode&Emit trace message <Ti, 0, iCnt, ETA>;

23. Place record into the Trace Buffer;

24. Ti.iCnt = 0;

25. Ti.bCnt = 0;

26. }

Figure 3.3 mcfTRaptor operation on core i

The software debugger replays the instructions as shown in Figure 3.4. The

replay starts by reading trace messages for each thread and initializing the coun-

ters. If a non-exception trace message is processed, the software copy of Ti.bCnt is

decremented every time a control-flow instruction is executed. For indirect uncondi-

tional branches, if the counter reaches zero, the actual target address is retrieved

from the current trace message; otherwise if (Ti.bCnt > 0), the target address is re-

trieved from the mcfTRaptor structures maintained by the software debugger. For

direct conditional branches, if the counter reaches zero, the actual outcome is oppo-

site to the one provided by the mcfTRaptor structures maintained by the software

debugger; otherwise if (Ti.bCnt > 0), the actual outcome matches the predicted one.

When Ti.bCnt reaches zero, the next trace message for that thread is fetched. Han-

dling of exceptions events is described in lines 3-8 in Figure 3.4.

24

1. // For each instruction on core i

2. Replay the current instruction (if not trace event generating);

3. if (Exception message is processed) {

4. Ti.iCnt—-;

5. if (Ti.iCnt == 0) {

6. Go to exception handler at Ti.ETA;

7. Get the next trace message;

8. }

9. }

10. if ((Ti.iType == IndBr) || (Ti.iType == DirCB)) {

11. Ti.bCnt--; // decrement Ti.bCnt

12. if ((Ti.iType == IndBr) && (Ti.bCnt > 0))

13. Actual BTA = predicted BTA in software;

14. else if (Ti.iType == DirCB) && (Ti.bCnt > 0))

15. Actual outcome = predicted outcome in software;

16. else if ((Ti.iType == IndBr) && (Ti.bCnt == 0))

17. Actual BTA = BTA read from the trace message;

18. else if (Ti.iType == DirCB) && (Ti.bCnt == 0))

19. Outcome is opposite to predicted outcome;

20. Update software predictor structures;

21. if (Ti.bCnt == 0) Get the next trace message;

22. }

Figure 3.4 Program replay in software debugger for mcfTRaptor

3.2 mlvCFiat

mlvCFiat or multicore load value cache first access tacking is a hardware-

based mechanism that reduces load data value traces by collecting a minimal set of

trace messages through the use of a cache first access mechanism. mlvCFiat is an

extension of the existing CFiat mechanism for capturing and filtering load data val-

ue traces in single-core processors [5], [24].

Figure 3.5 shows a block diagram of a multicore SoC with infrastructure for

debugging and tracing; green boxes represent additional mlvCFiat modules. Each

processor core is coupled to its trace module through an interface that carries infor-

mation about committed memory read and memory write instructions. The trace

module includes structures in hardware solely dedicated to capturing and filtering

memory read traces. The mlvCFiat structure is looked up when instructions that

25

read from or write to memory commit in the corresponding processor core. The key

insight that leads to a significant reduction in the number and size of trace message

is that trace messages need to be generated only when misprediction occur in the

mlvCFiat structures on the target platform. The messages are stored in a trace

buffer, streamed out of the platform, and read by the software debugger. The soft-

ware debugger has access to the program binary, instruction set simulator, and the

trace messages captured on the target platform. It maintains software copies of all

mlvCFiat structures. These structures are updated during program replay in the

same way their hardware counterparts are updated on the target platform.

Figure 3.6, shows the mlvCFiat structures for core i. Each data cache block in

each processor core on the target platform is augmented with first access tracking

flags. The first access tracking flags keep track of sub-blocks that need to be report-

ed to the software debugger. Let us assume a data cache with 64-byte cache blocks.

If a first-access tracking flag protects a 4-byte sub-block, each cache block needs to

be augmented with a 16-bit first access flag vector. The previously reported sub-

blocks do not have to be reported again as they can be inferred by the software de-

bugger. This way we exploit the temporal and spatial locality of data access to sig-

nificantly reduce the number of trace events that need to be reported. In addition to

the first-access tracking bits, each trace module includes a local first-access counter

(Ti.fahCnt) that counts the number of consecutive first access hits.

26

Figure 3.5 A system view of mlvCFiat

Figure 3.6 mlvCFiat structures for core i

System Interconnect

Trace
PortMulticore

SoC

Trace & Debug Interconnect

On-chip
Trace Buffer

Trace Port
Interface

ITM
DSP
Core

Trace
Module

DMA
Core

Trace
Module

Debug & Trace
Control

Software Debugger System View

Binaries

Multicore Instruction Set Simulator

GUI

.

Core 0
mlvCFiat
Model

.Nexus
Trace

Software
Debugger(s)

in Host
Workstation

Trace
Probe

Host
Interface
Buffers
(~GB)
Target

Interface

Trace Decoder and Control Software Module

CPU
Core i

Trace
Module

mlvCFiat

CPU
Core 0

Trace
Module

mlvCFiat

CPU
Core n-1

Trace
Module

mlvCFiat

Core i
mlvCFiat
Model

Core n-1
mlvCFiat
Model

Set/Reset
FA flags

Ti.TraceB
u

ffer

Data Cache

DC Hit

DA

FA
Hit

Tag

 ...

FA Flags

0

1

 q-1

index

Ti.fahCnt

way 0

way k-1

DV

27

Figure 3.7 describes the operation of the mlvCFiat mechanism on core i.

Each memory read causes a data cache lookup; if the requested data item is found in

the data cache (a cache hit event) and the corresponding first-access flags are set (an

FA hit event), the data value does not need to be reported to the software debugger

and Ti.fahCnt is incremented (line 3). In case of an FA miss event, a trace message

is streamed out of the chip; it includes the core id (Ti), the current value of the

Ti.fahCnt, and the load data value that is being reported for the first time (line 5). In

addition, the corresponding FA flags are set and the counter Ti.fahCnt is cleared

(line 7 and 8). In case of a data cache miss event, the newly fetched block’s FA track-

ing flags are cleared and then steps 5-8 are carried out. Similarly, external cache

block invalidation or update requests clear the corresponding FA flags (line 17). Fi-

nally, memory write operations set the corresponding FA tracking flag(s) (line 15).

1. // For each instruction that reads n bytes on core i

2. if (CacheHit) {

3. if (corresponding FA flags are set) Ti.fahCnt++;

4. else {

5. Encode&Emit trace message (Ti, Ti.fahCnt, loadValue);

6 Place trace message into the Trace buffer

7. Set corresponding FA flags;

8. Ti.fahCnt = 0;

9. }

10. } else { // cache miss event

11. Clear all FA bits for newly fetched cache block;

12. Perform steps 5-7;

13. }

14. // For each retired store that writes n bytes

15. Set corresponding FA bits;

16. // For external invalidation/update request

17. Clear FA bits for entire cache block

Figure 3.7 mlvCFiat operation on core i

28

The software debugger carries out steps that mirror actions on the target

(Figure 3.8). It maintains software copies of the data caches and the Ti.fahCnt

counters; these are updated during program replay using the same policies employed

on the target platform. The program replay starts by reading the trace messages

received from the target for each core separately. The debugger replays the instruc-

tions for each core using ISS. For memory read instructions the debugger performs

steps described in lines 1-11. The Ti.fahCnt counter is decremented; if Ti.fahCnt>0,

the debugger retrieves the load data value from the software data cache and moves

to the next instruction. If Ti.fahCnt = 0 we have a first read miss event; the load

value is retrieved from the trace message, the software data cache is updated, and a

new trace message for a given core is read from the target.

1. // For each load on Core i that reads n bytes

2. Ti.fahCnt --;

3. if (Ti.fahCnt > 0) {

4. Perform lookup in the SW data cache;

5. Retrieve data value from SW cache;

6. }

7. else { // FA miss event

8. Read n bytes from trace record;

9. Update SW cache;

10. Get the next trace message (Ti, Ti.fahCnt, LoadValue);

11. }

12. // For each store that writes N bytes

13. Update SW cache;

14. Set corresponding n SW cache FA bits;

Figure 3.8 mlvCFiat operation in software debugger for core i

29

CHAPTER 4

EXPERIMENTAL EVALUATION OF FUNCTIONAL TRACES

Fearlessness is result of faith in one self and faith in God

--Rev. Pandurang Shastri Athavale

Functional program execution traces capture behavioral aspects of running

programs. They capture control and data flow information from multithreaded pro-

grams, preserving intra-threaded ordering of events, but may not provide accurate

inter-thread ordering. We use functional traces (i) to investigate requirements of

hardware tracing in multicore platforms and (ii) to evaluate the effectiveness of our

techniques and their sensitivity to system parameters. This chapter focuses on our

experimental flow based on functional traces.

As a measure of effectiveness, we use trace port bandwidth expressed in the

number of bits streamed out of the chip per instruction executed (bpi). Figure 4.1

shows the experiment flow for determining trace port bandwidth in case of function-

al (non-timed) traces. The flow encompasses three steps: (i) software trace genera-

tion using the mTrace tool suite [6], (ii) software to hardware trace translation, and

(iii) trace port bandwidth analysis. Section 4.1 describes the trace generation step.

mTrace is designed to support a range of trace applications, such as Instruction Set

Architecture (ISA) profiling, trace-driven simulation, and software trace compres-

sion. Thus, mTrace does not include support for analyzing hardware tracing and

trace descriptor encoding at the trace port level. In addition, software traces gener-

30

ated by mTrace often include information that may be inferred by a software debug-

ger. To support the evaluation of trace port bandwidth in the context of hardware

tracing on multicore platforms, we develop custom tools that read software traces

and produce hardware traces with no redundant information. Section 4.2 describes

software to hardware trace translation. Section 4.3 describes the experimental set-

up, benchmarks used, and the experimental methodology.

Figure 4.1 Experiment flow for determining trace port bandwidth require-

ments using functional traces

4.1 Software Trace Generation

To generate control-flow and data functional traces for multi-threaded soft-

ware we use the mTrace tool suite [6]. Figure 4.2 illustrates a trace generation flow.

mTrace relies on the Intel’s binary instrumentation framework called Pin [27] that

works like a just-in-time-compiler and enables custom binary instrumentation

through a well-defined application programming interface. The mTrace tools are de-

veloped as Pin tools and capture functional traces. They take application input pa-

rameters, the number of threads, parameters controlling the tracing process, and

Software trace
generation:

mTrace

Software to
hardware trace

translation

Trace port
bandwidth analysis

31

configuration parameters for new compression methods as input parameters, and

generate raw trace files, optionally, compressed trace files.

The mTrace tool suite consists of four different tools:

 mcfTrace: a tool for capturing and compressing control-flow traces;

 mlsTrace: a tool for capturing and compressing data traces;

 mcfTRaptor: a tool for capturing and compressing control-flow traces using

the TRaptor mechanism for multi-threaded programs; and

 mlvCFiat: a tool for capturing and compressing data traces using the CFiat

mechanism for multi-threaded programs.

Figure 4.2 Functional trace generation using mTrace tool suite

Trace generation tool - mTrace

Target
Application

Application
Input

mTrace Pin
Tool

Parameters

Number Of
Threads

Application
Output

Compressor

Raw
Trace File

Compressed
Trace File

mTrace Tool
Suite

Pin

32

4.2 Software to Hardware Trace Translation

To enable evaluation of trace port bandwidth in the context of hardware trac-

ing on multicore platforms, we develop tools that perform software to hardware

trace translation. These tools read raw traces generated by the mTrace tools, filter

out redundant trace descriptors and redundant trace fields that can be inferred by

the software debugger, and perform analysis to determine effective encoding of trace

descriptors. The output of the trace analyzer tools is the overall trace port band-

width measured in bits per instruction executed.

Figure 4.3 shows the flow from input software traces to output hardware

traces. Raw control-flow traces generated by the mcfTrace tool are filtered out and

encoded to generate Nexus-like hardware control flow traces called mcfNX_b. The

mcTRaptor control-flow traces generated by the mcfTRaptor tool are also filtered out

and then encoded using either a fixed encoding mechanism to generate mcfTR_b

compressed control-flow hardware traces or using a variable encoding mechanism to

generate mcfTR_e compressed control-flow hardware traces. This way, we can sepa-

rately evaluate the effectiveness of the mcfTRaptor filtering mechanism and the ef-

fectiveness of encoding mechanisms. Similarly, a memory load data value trace gen-

erated by the mlsTrace tool is filtered and encoded to generate a Nexus like hard-

ware load data value trace (mlvNX_b). The mlvCFiat trace is filtered and encoded

using a fixed or a variable encoding mechanism to generate compressed memory

load data value traces mlvCF_b and mlvCF_e, respectively. The following subsec-

tions shed more light on each of these trace transformations.

33

Figure 4.3 Software to hardware trace translation

4.2.1 mcfNX_b

The mcfTrace tool captures all control-flow instructions and exceptions. Fig-

ure 4.4 (a) shows the format of a trace descriptor generated by mcfTrace. A de-

scriptor includes the thread ID, control-flow instruction address (program counter),

target address, branch type (direct vs. indirect, conditional vs. unconditional),

branch outcome (taken or not taken), and the number of instructions in the basic

mcfTrace Trace
Filtering

Fixed
Encoding

mcfNX_b

Software
traces

Hardware
traces

mcfTRaptor Trace
Filtering

Fixed
Encoding

mcfTR_b

Variable
Encoding

mcfTR_e

mlsTrace Trace
Filtering

Fixed
Encoding

mlvNX_b

mlvCFiat Trace
Filtering

Fixed
Encoding

mlvCF_b

Variable
Encoding

mlvCF_e

34

block that ends with the control-flow instruction. A descriptor in ASCII format may

require up to 58 bytes.

To generate hardware control-flow traces, we filter out information that is

not required to replay the program’s control-flow offline. To recreate the control-flow,

the debugger only needs information about changes in the program flow due to tak-

en conditional branches or exceptions. For each change, we can send the program

counter (PC address) and the branch target address (BTA) for branch instructions or

exception target address (ETA) for exceptions. Yet, the trace with all (PC, BTA/ETA)

pairs still contains redundant information that can be inferred by the debugger

providing it has access to the program binary. Instead of sending the program coun-

ter we can send the number of instructions executed sequentially from the program

starting address or from the target of the last taken branch. The target addresses of

direct branches (BTA) can be inferred from the program binary and thus do not need

to be streamed out. The target addresses of indirect branches do need to be reported

though. However, instead of sending the entire target address, we can send only the

absolute difference (|DiffTA|) between the previous indirect branch target address

and the current branch target address with sign bit.

Thus, hardware control-flow trace requires tracing descriptors to be emitted

as follows:

 for taken direct conditional branches, the trace descriptor should include (Ti,

Ti.SL, -), where Ti is the thread ID, Ti.SL is the number of instructions exe-

cuted in a given thread since the last reported trace descriptor;

 for indirect unconditional branches, the trace descriptor should include (Ti,

Ti.SL, Ti.DiffTA), where Ti.DiffTA is the difference target address; and

35

 for exceptions the trace descriptor should include (Ti, Ti.SL, Ti.ETA).

The resulting format of a trace descriptor for Nexus-like control flow trace is

shown in Figure 4.4 (b). To encode the thread index we use 0 bits when N = 1, 1 bit

for N = 2, 2 bits for N = 4, and 3 bits for N = 8. The number of bits needed to encode

the field Ti.SL varies with benchmarks and phases within a benchmark. Instead of

using a long field that would encode any possible value of SL, we use Nexus-like en-

coding with each field divided into multiple chunks. Each chunk is followed by a

connect bit that indicates whether it is the terminating chunk (C = 0) for the given

field or more chunks follow (C = 1). For the Nexus-like control-flow trace, we adopt

chunk size of 8 bits for the Ti.SL field. Similarly, we encode the absolute value of

|diffTA| into two 32-bit chunks.

Figure 4.4 mcfTrace and mcfNX_b trace descriptors

Thread ID
(up to 4 Bytes)

Instruction
Address (20 Bytes)

Target Address
(20 Bytes)

Type&Outcome
(8 Bytes)

(a) mcfTrace ASCII descriptor

(b) mcfNX_b descriptor

SL diffTATi

SL[0:7]
8 b

SL[8:15]
8 b

C
1 b

C
1 b

...

|diffTA[0:31]|
32 b

Sign
1 b

|diffTA[32:63]|
32 b

C
1 b

Legend:
Ti Thread ID - é log2Nù bits
SL Stream Length
diffTA Target Address Difference
C Connect Bit
b bits

Instruction
Count (4 Bytes)

36

4.2.2 mcfTR_b and mcfTR_e

The mcfTRaptor tool implementing the mcfTRapor trace compression gener-

ates mcfTRaptor trace descriptors as described in Table 4.1. It emits trace de-

scriptors upon (i) outcome misprediction of conditional branches, (ii) target address

misprediction of indirect unconditional branches, and (iii) exceptions. In case of out-

come misprediction, a descriptor is emitted that includes information about the

thread index, Ti, and the number of branch instructions encountered in a given

thread since the last reported event, Ti.bCnt. For indirect unconditional branches, in

addition to Ti and Ti.bCnt, the indirect target address, Ti.BTA, is included as well.

Finally, in the case of exceptions, the Ti.bCnt is set to a zero, followed by a field with

the number of instructions executed since the last reported event (Ti.iCnt), and the

exception target address (Ti.ETA). Figure 4.5(a) illustrates the mcfTRaptor de-

scriptors in ASCII format that can require from 18 to 46 bytes.

Table 4.1 mcfTRaptor events and trace descriptor fields

mcfTRaptor Events Trace Descriptors

Outcome misprediction for direct conditional branch <Ti, Ti.bCnt>

Target address misprediction for indirect unconditional

branch

<Ti, Ti.bCnt, Ti.BTA>

Exception event <Ti, 0, Ti.iCnt,

Ti.ETA>

The mcfTRaptor traces are filtered out to replace the target addresses,

Ti.BTA with Ti.diffTA values. The Ti.bCnt and Ti.diffTA fields can take a number of

values. Similar to mcfNX_b trace encoding, the branch counter field is divided into

37

multiple 8-bit chunks. If an 8-bit field is sufficient to encode the counter value, the

following connect bit C = 0, thus indicating the terminating chunk for Ti.bCnt. Oth-

erwise, C = 1, and the following chunk carries the next 8 bits of the branch counter

value. The trace descriptors for target address misprediction events carry infor-

mation about the correct target address. An alternative to reporting the entire ad-

dress (64-bit in our case) is to encode the difference between subsequent target ad-

dresses and thus exploit locality in programs to minimize the size of trace messages.

The trace module maintains the previous target address, that is, the target address

of the last mispredicted indirect branch (PTA). When a new target misprediction is

detected, the trace module calculates the difference target address, diffTA, dif-

fTA = TA – PTA and PTA gets the value of current address TA, PTA = TA. The abso-

lute value of diffTA is divided into 32-bit chunks, and the connect bit indicates

whether one or two 32-bit fields are needed to encode the message. Figure 4.5 (b)

shows the encoding of a generic trace descriptor for mcfTR_b.

By analyzing profiles of reported counter values (Ti.bCnt and Ti.iCnt) as well

as diffTA values, we find that the number of required bits for encoding trace mes-

sages can be further minimized by allowing for variable encoding. Instead of using

fixed-length chunks for Ti.bCnt, we allow for chunks of variable size, i0, i1, i2, as

shown in Figure 4.5 (c). Similarly, we can use variable chunk sizes of lengths, j0, j1,

j2, for encoding diffTA. This encoding approach is called mcfTR_e. The length of

individual chunks is a design parameter and can be determined empirically. In de-

termining the length of individual chunks, we need to balance the overhead caused

by the connect bits and the number of bits wasted in individual chunks. A detailed

analysis to find good chunk sizes is performed and selected parameters are used for

38

all benchmarks. It should be noted that the variable encoding offers an additional

level of flexibility to adjust encoding lengths for individual benchmarks or even in-

side different phases of a single benchmark. However, dynamic adaptation of the

field lengths is left for future work.

Figure 4.5 mcfTRaptor, mcfTR_b, and mcfTR_e trace descriptors

4.2.3 mlvNX_b

The mlsTrace tool generates the load or store trace descriptors as shown in

Figure 4.6(a). A descriptor contains information about the thread index, the instruc-

(a) mcfTRaptor descriptor: ASCII Format

Thread ID
(up to 4
Bytes)

Mispredicted Outcome

bCnt
(up to 12

Bytes)

Thread ID
(up to 4

Byte)

Mispredicted Target

bCnt
(up to 12

Bytes)

Target Address
(20 Bytes)

Taken
(3 Bytes)

Thread ID
(up to 4
Bytes)

Exception

iCnt
(up to 12

Bytes)

Target Address
(20 Bytes)

Exception(
4 Bytes)

(b) mcfTRaptor base (mcfTR_b)

bCnt diffTATi

bCnt[0:7]
8 b

bCnt[8:15]
 8 b

...
C

1 b
C

1 b

|diffTA[0:31]|
32 b

|diffTA[32:63]|
32 b

Sign
1 b

C
1 b

(c) mcfTRaptor variable encoding (mcfTR_e)

Legend:
Ti Thread ID - é log2Nù bits
SL Stream Length
diffTA Target Address Difference
C Connect Bit
bCnt Branch Count
b bits
i0, i1, ... Chunk sizes for bCnt
j0, j1, … Chunk sizes for diffTA

bCnt diffTATi

bCnt[0:i0-1]
 i0 b

C
1 b

bCnt[i0:i0+i1-1]
i1 b

C
1 b

...

|diffTA[0:j0-1]|
j0 b

C
1 b

|diffTA[j0:j0+j1-1]|
j1 b

C
1 b

Sign
1 b

...

39

tion address (PC), the operand address, and the operand value. The software debug-

ger needs the following to faithfully replay the program offline: (i) an instruction set

simulator (ISS) of the target platform, (ii) access to the program binary, (iii) the ini-

tial stage of the general purpose and special purpose registers of the individual

cores, and (iv) the load data values read from memory or input/output devices.

Thus, the trace generated by the mlsTrace tool can be filtered out to remove the load

instruction addresses (PC) and the operand address that can be inferred in the ISS.

Figure 4.6 (b) shows the trace descriptor for Nexus-like load data value trace. The

descriptor contains only the thread index and the load data value. The length of the

load value field depends on the size of the operand specified by the instruction, and

for the Intel 64 ISA varies between 1 byte and 120 bytes.

 Figure 4.6 mlvTrace and mlvNX_b trace descriptors

4.2.4 mlvCF_b and mlvCF_e

The mlvCFiat tool generates trace descriptors as shown in Figure 4.7(a). A

descriptor contains information about the thread index, the first access hit counter

(fahCnt – number of consecutive first access hit events), the operand size, and the

operand value. The operand size can be inferred by the software debugger with an

Thread ID
(up to 4 Bytes)

Instruction
Address

(20 Bytes)

Operand Address
(20 Bytes)

(a) mlvTrace ASCII trace descriptor

Value
(Variable)

(b) Nexus-like (mlvNX_b)

LVTi

Legend:
Ti Thread ID - é log2Nù bits
LV Load Values – 8*sizeof(type) bits

40

instruction set simulator and program binary. Figure 4.7 (b) shows trace descriptors

for Nexus-like load data value trace (mlvCF_b). The descriptor includes the thread

index (Ti), the first access hit counter, Ti.fahCnt, and the load value (Ti.LV). The

number of bits needed to encode Ti.fahCnt varies as a function of the first-access

miss rate. With mlvCF_b we use at least 8 bits to encode the Ti.fahCnt. The connect

bit (C) determines whether more 8-bit chunks are needed to fully encode Ti.fahCnt

value (C = 1) or not (C = 0).

Figure 4.7 mlvTrace, mlvCF_b, and mlvCF_e trace descriptors

With mlvCF_e, we allow the length of individual chunks, i0 and i1 in Figure

4.7(c), to be between 1 and 8 bits. We evaluate different encoding arrangements to

select a pair of good values that minimizes the number of bits needed to encode the

counter value.

(a) mlvTrace ASCII descriptor (b) mlvCFiat base (mlvCF_b)

(c) mlvCFiat variable encoding (mlvCF_e)

Legend:
Ti Thread ID – é log2Nù bits
LV Load Values – 8*sizeof(type) bits
fahCnt First Access Hit Counter
C Connect Bit
b bits
i0, i1, ... Chunk sizes for fahCnt

fahCnt LVTi

fahCnt[0:7]
8 b

fahCnt[8:15]
 8 b

...
C

1 b
C

1 b

fahCnt LVTi

fahCnt[0:i0-1]
 i0 b

fahCnt[i0:i0+i1-1]
i1 b

C
1 b

...
C

1 b

Thread ID
(up to 4 Bytes)

First Access Hit
Count (4 Bytes)

Operand Size
(1 Bytes)

Value
(Operand Size)

41

4.3 Experimental Environment

The goal of experimental evaluation is to determine the effectiveness of the

newly proposed trace reduction techniques, mcfTRaptor and mlvCFiat, relative to

the baseline Nexus-like control-flow, mcfNX_b, and load data value traces,

mlvNX_b. To explore the effectiveness of mcfTRaptor and mlvCFiat, their structure

sizes and configurations are varied. As a measure of effectiveness, we use the aver-

age number of bits emitted on the trace port per instruction executed. As the work-

load, we use control flow and load data value traces of 14 benchmarks from the

Splash2x benchmark suite [28] collected on a machine executing the Intel 64 ISA.

Machine setup is described in Section 4.3.1. The benchmarks are discussed in Sec-

tion 4.3.2. Section 4.3.3 describes experiments conducted and Section 4.3.4 describes

selection of encoding parameters for variable encoding mechanism.

4.3.1 Experimental Setup

The setup included a Dell PowerEdge T620 server with two octa-core Intel

Xeon CPU E5-2650 v2 processors with total of 64 GB physical memory (Figure 4.8).

The server runs the Ubuntu 14.04 operating system with 3.13.0-39-generic Linux

kernel. The mTrace tools used Pin version 2.13.

Figure 4.8 Block diagram of Intel Xeon E5-2650 v2 processor socket

H
o

m
e

A
ge

n
t

M
em

o
ry

 C
o

n
tr

o
lle

r

DDR

DDR

PCI-E
bus

QPI
link

Core

LLC

Core

LLC

Core

LLC

Core

LLC

Core

LLC

Core

LLC

Core

LLC

Core

LLC

42

4.3.2 Benchmarks

As a workload we use a full set of SPLASH2x [28] benchmarks. SPLASH2x

is a collection of applications and kernels in the area of high performance and paral-

lel computing. Each benchmark was executed with N = 1, 2, 4 and 8 processor cores.

Each benchmark has six different input sets as follows: Test and Simdev are used

for testing and development; Simsmall, Simmedium and Simlarge are used for simu-

lations; finally, Native is used for the native program execution on actual hardware

platforms. We use the Simsmall input set.

The trace port bandwidth for control flow traces depends on benchmark char-

acteristics, specifically the frequency and type of control-flow instructions. Similarly

the trace port bandwidth for load data value traces depends on the frequency and

type of memory reads and data value sizes. Table 4.2 shows the control flow charac-

terization of all 14 benchmarks in the SPLASH2X suite. The suite was compiled for

the Intel 64 instruction set architecture with varying number of thread varies (N =

1, 2, 4, and 8). We show the number of executed instructions (instruction count) and

the number of instructions executed per clock cycle (IPC). The last four columns

show the frequency of control flow instructions for single threaded programs (N = 1),

as well as the frequency of conditional direct branches (C, D), unconditional direct

branches (U, D), and unconditional indirect branches (U, I). The number of instruc-

tions slightly increases with an increase in the number of threads due to overhead

and data partitioning. The number of instructions varies between 0.367 (lu_ncb) ~

3.2 (water-spatial) billion. The SPLASH2x benchmarks exhibit diverse behavior

with respect to control flow instructions; their frequency ranges from as high as

~15% (raytrace, radiosity) to as low as 1.06% (radix). The total frequency of control

43

flow instructions is relatively low (9.57%). Conditional direct branches are the most

frequent type of branches.

Table 4.2 Splash2x benchmark suite control flow characterization

Table 4.3 shows the memory read flow characterization of Splash2x bench-

marks while varying the number of threads (N = 1, 2, 4, and 8). We show the num-

ber of instructions executed, the number of instructions executed per clock cycle, and

the frequency of memory read instructions with respect to the total number of in-

structions. The frequency of memory read instructions increases with an increase in

the number of threads. The percentage of memory read instructions varies between

10.61% (radix) and 35.73% (barnes). The overall frequency of read instructions is

27.46% for N = 1 and 28.8% for N = 8. The overall IPC as a function of the number

of cores indicates how well performance of individual benchmarks scales. For exam-

Benchmark

Thread 1 2 4 8 1 2 4 8 branch C,D U,D U,I

cholesky 0.889 0.916 0.976 1.047 2.28 2.93 3.75 4.03 6.11 5.43 0.45 0.22

fft 0.764 0.764 0.764 0.765 1.28 1.63 1.96 2.10 8.38 5.65 1.36 1.37

lu_cb 0.381 0.381 0.382 0.383 2.93 4.89 3.67 4.91 14.30 13.74 0.28 0.28

lu_ncb 0.367 0.367 0.368 0.369 2.02 2.82 3.54 2.84 14.86 14.35 0.22 0.29

radix 0.703 0.704 0.704 0.707 0.33 0.59 1.18 2.26 1.06 1.06 0.00 0.00

barnes 1.606 1.606 1.608 1.608 1.58 2.81 4.76 6.87 13.31 7.02 4.05 2.25

fmm 2.265 2.268 2.270 2.272 2.23 3.96 7.27 9.71 7.34 5.55 1.65 0.15

ocean_cp 1.316 1.317 1.334 1.337 1.58 2.41 3.02 3.21 2.91 2.47 0.40 0.04

ocean_ncp 1.293 1.294 1.308 1.311 0.51 1.35 1.80 2.52 2.59 2.57 0.02 0.001

radiosity 1.402 1.433 1.434 1.434 1.74 2.63 3.45 3.94 14.59 9.01 3.37 2.21

raytrace 1.646 1.646 1.649 1.651 1.47 2.34 3.34 3.17 15.27 11.28 2.14 1.85

volrend 0.741 0.758 0.783 0.807 1.50 2.65 3.34 3.10 6.30 5.48 0.66 0.17

water_nsq 0.431 0.432 0.433 0.435 1.84 2.77 4.16 5.58 11.74 10.32 0.71 0.70

water_spa 3.221 3.221 3.221 3.221 2.03 3.10 4.96 7.29 11.38 9.38 0.97 1.02

Total 17.024 17.107 17.232 17.346 1.30 2.26 3.33 4.12 9.57 7.16 1.48 0.93

% branches for Thread=1Instruction per CycleInstruction Count [x10 9]

44

ple, radix scales well, reaching a speedup for 8 cores, S(8) = IPC(N= 8)/IPC(N=1) =

6.6, but lu_ncb does not scale well because its 8-core speedup is only S(8) = 1.4.

Table 4.3 Splash2x benchmark suite memory read characterization

The memory trace port bandwidth depends not only on the frequency of read

operations but also on operand sizes. Table 4.4 shows the frequency of memory reads

for different operand sizes: byte (8 bit), words (16 bit), doubleword (32 bit), quadword

(64 bit), extended precision (80 bit) operands, octaword (128 bit) operands, hexaword

(256 bit) operands, and others. The results indicate that quad-word operands domi-

nate in all benchmarks except for radiosity which has mostly double word operands.

Benchmark

Thread 1 2 4 8 1 2 4 8 1 2 4 8

cholesky 0.89 0.92 0.98 1.05 2.28 2.93 3.75 4.03 29.02 29.59 32.24 37.18

fft 0.76 0.76 0.76 0.76 1.28 1.63 1.96 2.10 21.61 21.61 21.62 21.62

lu-cb 0.38 0.38 0.38 0.38 2.93 4.89 3.67 4.91 26.03 26.04 26.07 26.11

lu-ncb 0.37 0.37 0.37 0.37 2.02 2.82 3.54 2.84 26.70 26.71 26.73 26.78

radix 0.70 0.70 0.70 0.71 0.33 0.59 1.18 2.26 10.61 10.64 10.69 10.81

barnes 1.61 1.61 1.61 1.61 1.58 2.81 4.76 6.87 35.72 35.72 35.72 35.73

fmm 2.27 2.27 2.27 2.27 2.23 3.96 7.27 9.71 15.61 15.63 15.65 15.71

ocean-cp 1.32 1.32 1.33 1.34 1.58 2.41 3.02 3.21 34.92 34.96 35.31 35.42

ocean-ncp 1.29 1.29 1.31 1.31 0.51 1.35 1.80 2.52 29.59 29.60 29.85 29.89

radiosity 1.40 1.43 1.43 1.43 1.74 2.63 3.45 3.94 30.42 31.03 30.90 31.02

raytrace 1.65 1.65 1.65 1.65 1.47 2.34 3.34 3.17 31.02 31.02 31.06 31.07

volrend 0.74 0.76 0.78 0.81 1.50 2.65 3.34 3.10 24.88 25.97 27.63 29.22

water-nsq 0.43 0.43 0.43 0.44 1.84 2.77 4.16 5.58 29.22 29.26 29.32 29.44

water-spa 3.22 3.22 3.22 3.22 2.03 3.10 4.96 7.29 29.92 29.92 29.92 29.92

Total 17.02 17.11 17.23 17.35 1.30 2.26 3.33 4.12 27.46 27.60 27.86 28.22

Instruction Count [x10 9] Instructions per Cycle %Load

45

Table 4.4 Benchmark characterization of memory reads

4.3.3 Experiments

Table 4.5 lists the pairs (technique, configuration) considered in the experi-

mental evaluation. For control-flow traces we compare the trace port bandwidth of

mcfNX_b versus mcfTR_b and mcfTR_e, while varying the number of threads (N=1,

2, 4, and 8). To assess the impact of organization and size of predictor structures in

mcfTRaptor on its effectiveness, we consider the following configurations:

 Small: it includes a p=512-entry gshare outcome predictor and an 8-

entry RAS;

 Medium: it includes an p=1024-entry gshare outcome predictor, a 16-

entry RAS, and a 16-entry iBTB (2x8); and

 Large: it includes a p=4096-entry gshare outcome predictor, a 32-entry

RAS, and a 64-entry iBTB (2x32).

Benchmark

Total

Memory

Reads

Byte

Operands

Word

operands

Doubleword

operands

Quadword

operands

Extended

Precision

operands

Octaword

operands

Hexaword

operands

OtherSize

operands

cholesky 257829613 1.41 0.01 0.37 93.55 0.00 0.50 0.00 4.16

fft 165033526 0.02 10.17 0.01 85.33 0.00 0.64 0.00 3.83

lu_cb 99130206 0.02 1.85 0.98 97.15 0.00 0.00 0.00 0.00

lu_ncb 97978154 0.02 1.88 0.36 97.75 0.00 0.00 0.00 0.00

radix 74608179 0.02 0.00 0.01 95.74 0.00 0.00 0.00 4.22

barnes 573750613 0.00 0.00 0.10 99.86 0.00 0.03 0.00 0.01

fmm 353635215 0.00 0.00 0.48 96.64 0.00 0.25 0.00 2.62

ocean_cp 459344111 0.00 0.00 0.01 94.42 0.00 0.00 0.00 5.57

ocean_ncp 382545985 0.00 0.00 0.01 98.37 0.00 0.62 0.00 1.00

radiosity 426368828 0.01 0.00 65.27 34.60 0.00 0.00 0.00 0.12

raytrace 510473124 0.96 0.00 1.28 97.74 0.00 0.02 0.00 0.00

volrend 184409952 15.50 10.90 38.24 35.34 0.00 0.01 0.00 0.00

water_nsq 125938251 0.46 0.00 0.27 99.00 0.00 0.27 0.00 0.00

water_spa 963693545 0.39 0.00 0.19 98.78 0.00 0.63 0.00 0.00

Total 4674739302 0.89 0.87 7.75 88.96 0.00 0.26 0.00 1.27

46

The index function for the gshare outcome predictor is gshare.index =

BHR[log2(p):0] xor PC[4+ log2(p):4], where the BHR register holds the outcome his-

tory of the last log2(p) conditional branches. The iBTB holds target addresses that

are tagged. Both the iBTB tag and iBTB index are calculated based on the infor-

mation maintained in the path information register [29], [30].

Table 4.5 Functional trace experiments

For load data value traces, we compare the trace port bandwidth of mlvNX_b

versus the mlvCF_b and mlvCF_e while varying the number of threads (N=1, 2, 4,

and 8). To assess the impact of organization and size data caches on mlvCFiat effec-

tiveness, we consider the following cache configurations. All cache structures are 4-

way set associative, use round robin replacement policy, feature a block size of 64

bytes, and the first-access flag granularity is set to 4 bytes. We consider three con-

figurations as follows:

 Small: 16 KB data cache;

 Medium: 32 KB data cache; and

 Large: 64 KB data cache.

Method Small Medium Large Method Small Medium Large

mcf_NX_b mlv_NX_b

mcf_TR_b √ √ √ mlv_CF_b √ √ √

mcf_TR_e √ √ √ mlv_CF_e √ √ √

control flow (vary N = 1,2,4 & 8) load flow (vary N = 1,2,4 & 8)

√ √

47

4.3.4 Variable Encoding

To evaluate the impact of encoding mechanisms, we analyze trace port band-

width for both encoding approaches mcfTR_b and mcfTR_e. To select good encoding

parameters (i0, i1, j0, j1, …), we profiled the Splash2x benchmarks to determine the

minimum required bit length of Ti.bCnt and Ti.|diffTA| fields. Figure 4.9 shows

the cumulative distribution function (CDF) for the minimum number of bits needed

to encode Ti.bCnt (left) and Ti.|diffTA| (right) for the raytrace, radiosity, and fft

benchmarks with N = 1 and the Large mcfTRaptor configuration. These benchmarks

are selected because they have a relatively high frequency of control-flow instruc-

tions. The number of bits needed to encode the value of Ti.bCnt counters depends on

benchmark characteristics as well as on misprediction rates of the mcfTRaptor pre-

dictors, which makes the selection of good parameters a challenging task. However,

we can see that ~60% of possible Ti.bCnt values encountered during tracing raytrace

and radiosity can be encoded with 3 bits, and very few trace descriptors require more

than 8 bits. Similarly, over 60% of Ti.|diffTA| values encountered in the trace re-

quire fewer than 16 bits to encode for raytrace and radiosity, and just 3 bits are suf-

ficient in case of fft that has a relatively high frequency of indirect branches.

Figure 4.9 CDF of the minimum length for bCnt and |diffTA| fields

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

length (bCnt) [bits]

N=1: CDF for bCnt

fft radiosity raytrace

0

0.2

0.4

0.6

0.8

1

1.2

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63

length (|DiffTA|) [bits]

N=1: CDF for DiffTA

fft radiosity raytrace

48

Whereas each (benchmark, mcfTRaptor configuration) pair may yield an op-

timal combination of the encoding parameters, we search for a combination that per-

forms well across all benchmarks. We limit the design space by requiring that

i1=i2=… ik, and j1=j2=… =jl, where {i0, i1}={1-6} and {j0, j1}={1-12}. Figure 4.10

shows the total average size of the bCnt and |diffTA| fields for a selected set of

chunk sizes for N = 1, 2, 4, and 8. We find that i0 = 4, i1 = 2 results in the smallest

average bCnt field size, regardless of the number of threads. Similarly, we find that

j0 = 3 and j1 = 5 are chunk sizes that result in the smallest average |diffTA| field

size.

Figure 4.10 Total average bCnt and |diffTA| field sizes as a function of encoding

To evaluate the impact of encoding mechanisms for load data value traces, we

analyze trace port bandwidth for both encoding approaches mlvCF_b and mlvCF_e.

To select good encoding parameters (i0, i1), we profiled the Splash2x benchmarks to

determine the minimum required bit length of the Ti.fahCnt field. Figure 4.11, left

shows the cumulative distribution function of the Ti.fahCnt field length for selected

0

1

2

3

4

5

6

7

8

2_2 2_3 2_4 3_3 3_4 3_5 4_2 4_3 4_4 4_5 5_5 6_6

Encoding scheme i0_i1

Average bCnt field size [bits]

Thread 1 Thread 2 Thread 4 Thread 8

22

23

24

25

26

27

28

29

30

2_2 2_3 2_4 3_3 3_4 3_5 3_6 4_2 4_3 4_4 4_5 5_5 6_6

Encoding scheme j0_j1

Average |diffTA| field size [bits]
Thread 1 Thread 2 Thread 4 Thread 8

49

single threaded Splash2x benchmarks. The number of bits needed to encode the

Ti.fahCnt varies as a function of benchmark characteristics (frequency load values,

locality), cache configuration, and first-access granularity. We can see that more

than 60% of trace descriptors require fewer than 2 bits for encoding Ti.fahCnt, and

more than 90% of descriptors require fewer than 6 bits. Figure 4.11, right shows the

average Ti.fahCnt field size as a function of chunk sizes (i0, i1) = {(2,2), ... (6,6)}. The

results indicate that i0 = 2 and i1 = 2 chunk sizes give the shortest field sizes re-

gardless of the number of threads.

Figure 4.11 CDF of the minimum length for Ti.fahCnt and the average Ti.fahCnt for

variable encoding

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

length(fahCnt) [bits]

N=1: CDF for fahCnt

fft radiosity raytrace

0

1

2

3

4

5

6

7

8

2_2 2_3 2_4 3_3 3_4 3_5 3_6 4_2 4_3 4_4 4_5 5_5 6_6

Encoding scheme i0_i1

Average fahCnt field size [bits]
Thread 1 Thread 2 Thread 4 Thread 8

50

CHAPTER 5

TRACE PORT BANDWIDTH ANALYSIS FOR FUNCTIONAL TRACES

Those who see invincible, can do impossible

--Rev. Pandurang Shastri Athavale

This chapter shows the main results of the experimental evaluation for func-

tional traces. We measure trace port bandwidths for control-flow and load data value

traces as a function of the number of processor cores, encoding mechanism, as well

as configuration parameters of the trace filtering structures. Trace port bandwidth

is measured in bits per instruction executed [bpi], calculated as the number of bits

needed to be streamed out through the trace port of a system-on-a-chip divided by

the number of instructions executed. In addition, we consider bits per clock cycles

[bpc], calculated as the total number of bits streamed out through the trace port of a

system-on-the-chip divided by the number of clock cycles needed to complete a

benchmark of interest. Section 5.1 discusses the results for control-flow functional

traces, specifically the trace port bandwidth requirements for the Nexus-like control-

flow trace, mcfNX_b, as well as the trace port bandwidth for the mcfTRaptor tech-

nique with the fixed encoding, mcfTR_b, and the variable encoding, mcfTR_e. Sec-

tion 5.2 discusses the results for memory load data value functional traces, specifi-

cally the trace port bandwidth requirements for the Nexus-like traces, mlvNX_b,

and the mlvCFiat technique with the fixed, mlvCF_b, and the variable encoding,

mlvCF_e.

51

5.1 Trace Port Bandwidth for Control-Flow Traces

5.1.1 mcfNX_b

Table 5.1 shows the trace port bandwidth (TPB) in bpi and bpc for the Nexus-

like control flow traces, mcfNX_b, for all the benchmarks as a function of the num-

ber of threads/cores (N = 1, 2, 4, and 8). The last row shows the total trace port

bandwidth when all benchmarks are considered together. The total bandwidth in bpi

is calculated as the sum of trace sizes for all benchmarks divided by the sum of the

number of instructions executed for all benchmarks. Similarly, the total bandwidth

in bpc is calculated as the sum of trace sizes for all benchmarks divided by the sum

of the execution times in clock cycles for all benchmarks. For single-threaded

benchmarks (N = 1) the TPB ranges between 0.09 bpi for radix and 1.67 bpi for radi-

osity. The required bandwidth varies across benchmarks and is highly correlated

with the frequency of control-flow instructions. Thus, radiosity, raytrace, water-

spatial and barnes have relatively high TPB in bpi requirements due to the relative-

ly high frequency of branch instructions and especially indirect branches (see Table

4.2), conversely, radix, has very low TPB in bpi requirements due to the extremely

small frequency of control flow instructions. The required trace port bandwidth in

bits per instruction increases as we increase the number of cores, due to additional

information such as Ti that needs to be streamed out. Thus, when N = 8, the TPB

ranges between 0.13 bpi for radix and 1.98 bpi for radiosity. The total bandwidth for

the entire benchmark suite ranges between 0.93 bpi when N = 1 and 1.14 bpi when

N = 8.

52

Table 5.1 Trace port bandwidth for mcfNX_b for Splash2x benchmark

Whereas the bandwidth in bpi increases with the number of cores, it does not

fully capture the pressure multiple processor cores place on the trace port, a shared

resource. The trace port bandwidth in bits per clock cycle better illustrates this

pressure. Thus, control-flow trace of barnes with 8 threads executing on 8 cores re-

quires 13.36 bpc on average. Generally, the trace port bandwidth in bpc is a func-

tion of benchmark characteristics as well as the scalability of individual bench-

marks. The total TPB in bpc ranges between 1.21 bpc when N = 1 and 4.68 when

N = 8. These results indicate that capturing control-flow trace on the fly in multi-

cores requires significantly large trace buffers and wide trace ports. As shown in the

next section, one alternative is to develop hardware techniques that significantly re-

duce the volume and size of trace messages that are streamed out.

Benchmark

N (cores) 1 2 4 8 1 2 4 8

cholesky 0.40 0.46 0.51 0.60 0.92 1.35 1.93 2.40

fft 1.18 1.23 1.28 1.32 1.51 2.00 2.50 2.78

lu_cb 1.25 1.38 1.50 1.62 3.67 6.72 5.50 7.95

lu_ncb 1.31 1.43 1.56 1.69 2.63 4.05 5.53 4.79

radix 0.09 0.11 0.12 0.13 0.03 0.06 0.14 0.30

barnes 1.65 1.75 1.85 1.94 2.62 4.92 8.79 13.36

fmm 0.41 0.45 0.48 0.52 0.91 1.77 3.53 5.09

ocean_cp 0.20 0.22 0.24 0.27 0.32 0.53 0.73 0.86

ocean_ncp 0.20 0.22 0.25 0.27 0.10 0.30 0.45 0.69

radiosity 1.67 1.78 1.88 1.98 2.90 4.66 6.48 7.80

raytrace 1.45 1.54 1.63 1.71 2.14 3.61 5.43 5.44

volrend 0.63 0.74 0.88 1.04 0.95 1.95 2.96 3.23

water_nsq 0.98 1.06 1.14 1.22 1.81 2.94 4.75 6.82

water_spa 1.20 1.28 1.36 1.45 2.44 3.97 6.76 10.53

Total 0.93 1.00 1.07 1.14 1.21 2.26 3.55 4.68

Trace Port Bandwidth

[bpc]

Trace Port Bandwidth

[bpi]

53

5.1.2 mcfTRaptor

The effectiveness of mcfTRaptor in reducing the trace port bandwidth de-

pends on prediction rates as the trace messages are generated only on rare mispre-

diction events. Table 5.2 shows the total misprediction rates collected on the entire

benchmark suite for the Small, Medium, and Large predictor configurations, when

the number of cores is varied between N = 1 and N = 8. Figure 5.1 illustrates the to-

tal outcome misprediction rates and Figure 5.2 shows the total target address mis-

prediction rates as a function of the number of threads and predictor configuration.

The outcome misprediction rates decrease as we increase the size of the gshare pre-

dictor. They also slightly decrease with an increase in the number of processor cores

as fewer branches compete for the same resource. Relatively high misprediction

rates indicate that even better trace compression could be achieved if more sophisti-

cated outcome predictors are used. However, this is out of scope of this thesis. The

target address misprediction rates are very low for the Medium and Large configu-

rations. The Small configuration does not include the iBTB predictor resulting in

higher target address misprediction rates. These results demonstrate a strong po-

tential of mcfTRaptor to reduce the trace port bandwidth requirements.

Table 5.2 Outcome and target address misprediction rates

Outcome Misprediction Rate [%] Target Address Misprediction Rate [%]

Configuration N = 1 N = 2 N = 4 N = 8 N = 1 N = 2 N = 4 N = 8

Small 8.20 7.95 7.95 7.54 21.78 21.84 21.86 21.88

Medium 6.85 6.88 6.60 6.51 2.69 2.70 2.72 2.74

Large 5.16 5.10 5.00 4.84 0.77 0.78 0.79 0.78

54

Figure 5.1 Outcome misprediction rates for Splash2x bechmark

Figure 5.2 Target address misprediction rates for Splash2x benchmark

55

To quantify the effectiveness of mcfTRaptor, we analyze the total trace port

bandwidth in bpi for the entire benchmark suite as a function of the number of

threads (N = 1, 2, 4, and 8), the encoding mechanism (mcfTR_b and mcfTR_e), and

the mcfTRaptor organization (Small, Medium, and Large)[Section 4.3.3]. Figure 5.3

shows the total average trace port bandwidth.

mcfTR_b dramatically reduces the total trace port bandwidth compared to

mcfNX_b. Specifically, we observe the following findings.

 Small configuration: 0.14 bpi (N = 1) and 0.16 bpi (N = 8). This is equivalent

to reducing the trace port bandwidth relative to mcfNX_b 6.65 times for N = 1

and 6.98 times for N = 8.

 Medium configuration: 0.05 bpi (N = 1) and 0.07 bpi (N = 8). This is equiva-

lent to reducing the trace port bandwidth relative to mcfNX_b 16.56 times for

N = 1 and 15.40 for N = 8.

 Large configuration: 0.03 bpi (N = 1) and 0.04 (N = 8). This equivalent to re-

ducing the trace port bandwidth relative to mcfNX_b 24.88 times for N = 1

and 22.92 for N = 8.

mcfTR_e further reduces the average trace port bandwidth as follow:

 Small configuration: 0.07 bpi (N = 1) and 0.09 bpi (N = 8). This is equivalent

to reducing the trace port bandwidth relative to mcfNX_b 12.45 times for

N = 1 and 11.58 for N = 8.

 Medium configuration: 0.03 bpi (N = 1) and 0.05 bpi (N = 8). This is equiva-

lent to reducing the trace port bandwidth relative to mcfNX_b 26.56 times for

N = 1 and 21.6 for N = 8.

56

 Large configuration: 0.02 bpi (N = 1) and 0.03 bpi (N = 8). This is equivalent

to reducing the trace port bandwidth relative to mcfNX_b 36.5 times for N = 1

and 30.3 for N = 8.

Table 5.3 shows the compression ratios for mcfTR_b relative to mcfNX_b, as a

function of the predictor configuration (Small, Medium, Large) and the number of

threads for each benchmark. The compression ratio is calculated as follows:

TPB(mcfNX_b)/TPB(mcfTR_b). For N = 1, the compression ratio ranges from 3.5

(radiosity) to 699.6 (radix) for the Small configuration and from 6.5 (lu_ncb) to 948.8

(radix) for the Large configuration. For N = 8, the compression ratio ranges from 3.5

(radiosity) to 399.7 (radix) for the Small configuration and from 6.3 (lu_ncb) to 565.2

(radix) for the Large configuration. The gains in compression ratio achieved when

increasing the number of cores (threads) are relatively more significant when using

smaller predictor structures.

Figure 5.3 Total trace port bandwidth in bpi for control flow traces

57

Table 5.3 Compression ratio for mcfTR_b relative to mcfNX_b

Table 5.4 shows the compression ratios for mcfTR_e relative to mcfNX_b.

mcfTR_e achieves higher compression ratios than mcfTR_b, especially when using

the Small predictor structures that exhibit a relatively high number of mispredic-

tions and thus report Ti.bCnt values that can benefit from variable encoding. For

N = 1, the compression ratio ranges from 7.8 (radiosity) to 1224.9 (radix) for the

Small configuration and from 11.5 (lu_ncb) to 975.9 (radix) for the Large configura-

tion. For N = 8, the compression ratio ranges from 6.5 (radiosity) to 1035.2 (radix)

for the Small configuration and from 9.4 (lu_ncb) to 805.1 (radix) for the Large con-

figuration.

Cores

Config S M L S M L S M L S M L

cholesky 7.8 13.9 19.9 8.1 11.7 19.6 8.5 13.0 19.7 9.2 15.0 20.7

fft 6.1 83.0 167.0 6.2 65.2 156.8 6.3 66.9 146.9 6.3 68.7 137.5

lu_cb 11.8 16.4 16.5 11.9 13.5 16.3 12.0 14.8 16.2 12.1 15.9 16.1

lu_ncb 5.6 6.5 6.5 5.6 5.3 6.4 5.6 5.8 6.4 5.6 6.3 6.3

radix 699.6 869.0 948.8 598.3 644.1 811.1 512.3 602.5 704.2 399.7 528.7 565.2

barnes 20.1 31.6 38.5 19.6 25.2 36.6 19.1 26.6 35.0 18.7 27.9 33.7

fmm 7.5 14.4 19.0 7.7 12.6 19.1 7.9 13.7 18.8 8.1 14.4 18.7

ocean_cp 15.5 53.9 56.9 15.7 42.1 54.6 14.0 32.6 39.0 13.1 31.2 36.3

ocean_ncp 72.9 82.4 86.8 59.1 56.7 73.6 36.4 38.5 46.4 28.0 32.8 38.2

radiosity 6.5 11.1 22.9 6.4 9.5 21.6 6.4 10.0 21.2 6.4 10.6 20.6

raytrace 3.5 7.2 12.2 3.5 6.1 11.9 3.5 6.5 11.5 3.5 6.8 11.3

volrend 5.3 9.8 12.5 5.7 8.9 13.7 6.5 10.6 15.3 7.3 12.6 16.4

water_ns 8.1 18.7 22.3 8.2 15.1 21.6 8.3 16.2 21.0 8.3 17.5 20.7

water_sp 6.4 78.1 117.1 6.8 48.1 114.4 6.8 67.6 109.0 7.3 53.9 107.1

Total 6.7 16.6 24.9 6.8 13.7 24.1 6.8 14.8 23.4 7.0 15.4 22.9

N=1 N=2 N=4 N=8

58

Table 5.4 Compression ratio for mcfTR_e relative to mcfNX_b

Figure 5.4 shows the total trace port bandwidth in bits per clock cycle for

mcfNX_b (left), mcfTR_b and mcfTR_e (right). mcfTR_e offers superior performance.

Thus, the mcfTR_e for the Large configuration when N = 8 requires merely 0.154 bpc

on average (ranging from ~0 to 0.51 bpc), whereas NX_b requires 4.68 bpc (ranging

between 0.30 to 13.36 bpc). These results further underscore the effectiveness of the

proposed mcfTRaptor predictor structures for a range of diverse benchmarks. The

results indicate that with mcfTR_e, even a single-bit data trace port would be suffi-

cient to stream out the control-flow trace from an 8-core system-on-a-chip, thus

dramatically reducing the cost of on-chip debugging infrastructure.

Cores

Config S M L S M L S M L S M L

cholesky 15.0 20.5 27.5 14.4 15.3 26.0 14.1 17.0 25.4 14.6 19.7 26.2

fft 23.1 123.1 209.3 21.6 86.3 191.6 20.4 88.8 177.1 19.3 90.9 162.8

lu_cb 17.7 19.6 19.7 17.2 15.4 19.1 16.8 16.8 18.6 16.4 18.1 18.3

lu_ncb 10.7 11.4 11.5 9.9 7.9 10.5 9.3 8.6 9.9 8.8 9.3 9.4

radix 1224.9 1417.3 1549.8 975.9 924.0 1246.6 796.5 862.4 1035.2 599.4 754.1 805.1

barnes 33.8 46.2 52.2 31.4 33.1 48.0 29.4 34.9 44.6 27.8 36.6 42.0

fmm 11.3 19.5 24.8 11.2 15.9 24.2 11.2 17.2 23.4 11.3 18.3 22.9

ocean_cp 37.4 63.9 65.9 35.1 48.7 63.1 26.8 38.0 44.9 23.5 37.4 42.0

ocean_ncp 78.5 83.7 86.2 65.0 58.6 73.7 41.5 41.5 48.4 33.4 37.4 41.5

radiosity 13.6 21.2 35.9 12.5 15.2 32.3 11.9 16.1 30.3 11.3 17.0 28.5

raytrace 7.8 11.9 18.9 7.3 9.0 17.6 6.9 9.5 16.5 6.5 10.0 15.6

volrend 8.4 15.5 18.9 8.7 12.2 19.5 9.6 14.6 21.1 10.5 17.4 21.9

water_ns 12.3 26.9 30.7 12.0 19.6 28.8 11.9 21.1 27.2 11.7 22.6 26.1

water_sp 9.7 103.8 148.0 10.2 57.8 140.6 10.0 83.6 132.5 10.5 64.9 128.4

Total 12.5 26.6 36.5 12.1 19.3 33.9 11.7 20.9 31.8 11.6 21.7 30.3

N=1 N=2 N=4 N=8

59

Figure 5.4 Trace port bandwidth in bpc for control-flow traces

5.2 Trace Port Bandwidth for Memory Load Data Value Traces

5.2.1 mlvNX_b

Table 5.5 shows the trace port bandwidth in bpi and in bpc for the Nexus-like

load data value traces, mlvNX_b, for all benchmarks as a function of the number of

threads/cores (N=1, 2, 4, and 8). The last row shows the total trace port bandwidth

when all benchmarks are considered together. The total bandwidth in bpi is calcu-

lated as the sum of trace sizes for all benchmarks divided by the sum of the number

of instructions executed for all benchmarks. Similarly, the total bandwidth in bpc is

calculated as the sum of trace sizes for all benchmarks divided by the sum of the ex-

ecution times in clock cycles for all benchmarks.

For single-threaded benchmarks (N = 1), the TPB ranges between 8.80 bpi for

radix and 31.06 bpi for ocean_cp. The required bandwidth varies across benchmarks

and is highly correlated with the frequency and type of memory reads. Thus, barnes,

60

ocean_cp have relatively high TPB requirements due to the relatively high frequency

of load instructions and especially those with large operand sizes (see Table 4.3 and

Table 4.4), unlike radix, which has very low TPB requirements due to extremely

small frequency of memory read instructions. The trace port bandwidth increases

slightly with an increase in the number of cores for two reasons: (a) an increase in

the number of bits needed to report thread index, and (b) an increase in the frequen-

cy of load instructions caused by synchronization primitives. Thus, when N = 8, the

TPB ranges between 9.23 bpi for radix and 31.99 bpi for ocean_cp. The total band-

width for the entire benchmark suite ranges between 18.25 bpi when N = 1 and

19.08 bpi when N = 8.

Whereas the bandwidth in bpi increases with the number of cores, it does not

fully capture the pressure multiple processor cores place on the trace port, a shared

resource. The trace port bandwidth in bpc better illustrates this pressure. Thus,

load data value trace for ocean_cp reaches 49.11 bpc when N = 1 and 102.83 bpc

when N = 8; barnes requires 36.23 when N = 1 and 164.38 bpc when N = 8. The total

trace port bandwidth in bpc ranges from 23.76 bpc when N = 1 to 78.56 when N = 8.

The trace port bandwidth in bpc is heavily influenced not only by the frequency and

type of memory reads but also by the scalability of individual benchmarks. For ex-

ample, barnes, water_spa, and fmm exhibit high scalability (see IPC in Table 4.3),

which contributes to a significant increase in the trace port bandwidth requirements

for N = 4 and N = 8. These results indicate that capturing load data value trace on

the fly in multicores requires large trace buffers and wide trace ports. It also shows

that capturing load data value trace is a much more challenging proposition than

capturing control-flow trace. As shown in the next section, one alternative is to de-

61

velop hardware techniques that significantly reduce the volume and size of trace da-

ta that are streamed out.

Table 5.5 Trace port bandwidth for mlvNX_b for Splash2x benchmark

5.2.2 mlvCFiat

The effectiveness of mlvCFiat directly depends on the first access flag miss

rate – the lower it is, the fewer trace messages need to be streamed out through the

trace port. Figure 5.5 shows the total first-access miss rate as a function of the

number of cores for three data cache configurations (Small, Medium, Large). The

total first-access miss rate is calculated as the total number of first-access misses

when all benchmarks are considered together divided by the total number of data

reads. The first-access miss rate decreases with an increase in the number of cores,

Benchmark

Thread 1 2 4 8 1 2 4 8

cholesky 23.80 21.98 21.98 23.11 54.23 64.50 82.53 93.03

fft 16.57 16.78 17.00 17.21 21.16 27.39 33.30 36.14

lu_cb 16.34 16.59 16.84 17.06 47.88 81.09 61.81 83.77

lu_ncb 16.82 17.07 17.32 17.55 33.90 48.23 61.26 49.81

radix 8.80 8.92 9.05 9.23 2.87 5.24 10.67 20.90

barnes 22.87 23.22 23.56 23.91 36.23 65.23 112.09 164.38

fmm 11.82 11.98 12.15 12.33 26.42 47.51 88.35 119.74

ocean_cp 31.06 31.42 31.62 31.99 49.11 75.79 95.41 102.83

ocean_ncp 20.38 20.65 20.91 21.17 10.45 27.79 37.57 53.39

radiosity 13.27 13.58 13.84 14.21 23.08 35.66 47.69 55.96

raytrace 19.56 19.87 20.17 20.47 28.79 46.58 67.33 64.96

volrend 9.42 10.14 11.11 12.00 14.14 26.88 37.16 37.26

water_nsq 18.65 18.94 19.22 19.48 34.35 52.40 79.97 108.64

water_spa 19.19 19.49 19.78 20.08 38.96 60.35 98.04 146.35

Total 18.25 18.43 18.71 19.08 23.76 41.66 62.32 78.56

Trace Port Bandwidth [bpc]Trace Port Bandwidth

62

e.g., from 6.4% when N = 1 to 5.6% when N = 8 for the Medium configuration. As

expectedly, larger data caches result in a smaller number of miss events and thus a

smaller number of first-access miss events. e.g., the first-access miss rate ranges

from 7.9% for the Small configuration to 4.2% for the Large configuration when the

number of cores is set to four (N = 4). Figure 5.5 also indicates the minimum and

the maximum first-access miss rates. Thus, the first-access miss rate reaches as

high as ~30% for ocean-ncp and as low as 0.3% - 1% for water-spa, depending on the

number of cores and data cache size. These results confirm that mlvCFiat indeed

can reduce the number of trace messages.

Figure 5.5 First access miss rate for Splash2x benchmark

Figure 5.6 shows the total average trace port bandwidth for Nexus–like memory

read flow traces (mlvNX_b), and mlvCFiat (mlvCF_b, mlvCF_e) as a function of the

number of threads (N = 1, 2, 4 and 8) and the mlvCFiat configuration (Small, Medi-

63

um and Large). Table 5.6 shows the trace port bandwidth for Large configuration.

For N = 1, mlvNX_b requires on average 18.25 bpi when N = 1 and ranges between

31.06 bpi (ocean_cp) and 8.80 bpi (radix); for N = 8, mlvNX_b requires on average

19.08 bpi (N = 8) ranges between 31.99 (ocean_cp) and 9.23 (radix).

Figure 5.6 Trace port bandwidth bpi for load data value trace

mlvCF_b dramatically reduces the average trace port bandwidth as follows:

 Small configuration: 4.98 bpi (N = 1) and 4.34 bpi when N = 8. This is equiva-

lent to reducing the trace port bandwidth relative to mlvNX_b 3.66 times for

N = 1 and 4.38 times for N = 8.

 Medium configuration: 3.70 bpi (N = 1) and 3.42 bpi when N = 8. This is

equivalent to reducing the trace port bandwidth relative to mlvNX_b 4.93

times for N = 1 and 5.56 times for N = 8.

64

 Large configuration: 2.88 bpi (N = 1) and 2.70 bpi when N = 8. This is equiva-

lent to reducing the trace port bandwidth relative to mlvNX_b 6.33 times for

N = 1 and 7.04 times for N = 8.

Table 5.6 TPB for mlvNX_b, mlvCF_b, and mlvCF_e for large configuration

mlvCF_e further reduces the average trace port bandwidth as follow:

 Small configuration: 4.69 bpi (N = 1) and 4.10 bpi when N = 8. This is equiva-

lent to reducing the trace port bandwidth relative to mlvNX_b 3.89 times for

N = 1 and 4.64 times for N = 8.

 Medium configuration: 3.50 bpi (N = 1) and 3.25 bpi when N = 8. This is

equivalent to reducing the trace port bandwidth relative to mlvNX_b 5.21

times for N = 1 and 5.86 times for N = 8.

 Large configuration: 2.74 bpi (N = 1) and 2.58 bpi when N = 8. This is equiva-

lent to reducing the trace port bandwidth relative to mlvNX_b 6.66 times for

N = 1 and 7.39 times for N = 8.

Thread

Mechanism -> mlvNX_b mlvCF_b mlvCF_e mlvNX_b mlvCF_b mlvCF_e mlvNX_b mlvCF_b mlvCF_e mlvNX_b mlvCF_b mlvCF_e

Benchmark

cholesky 23.802 4.816 4.651 21.979 3.700 3.562 21.979 3.125 2.995 23.108 2.568 2.446

fft 16.570 2.889 2.791 16.785 2.904 2.806 16.997 2.922 2.824 17.206 2.937 2.839

lu_cb 16.342 1.116 1.060 16.594 0.947 0.890 16.837 0.939 0.883 17.062 0.875 0.816

lu_ncb 16.816 6.340 5.838 17.074 6.410 5.910 17.322 6.488 5.989 17.551 6.557 6.060

radix 8.797 3.538 3.430 8.917 3.566 3.457 9.054 3.608 3.498 9.230 3.678 3.565

barnes 22.867 0.831 0.786 23.224 0.810 0.767 23.558 0.822 0.779 23.913 1.028 0.976

fmm 11.824 0.385 0.364 11.982 0.399 0.378 12.146 0.407 0.386 12.335 0.418 0.396

ocean_cp 31.056 12.317 11.937 31.420 12.833 12.413 31.619 12.459 12.069 31.986 12.464 12.074

ocean_ncp 20.376 12.702 11.791 20.654 11.447 10.691 20.915 11.460 10.715 21.173 11.149 10.440

radiosity 13.274 0.353 0.335 13.581 0.362 0.344 13.836 0.360 0.343 14.206 0.379 0.360

raytrace 19.562 0.789 0.742 19.866 0.821 0.772 20.174 0.840 0.791 20.466 0.835 0.786

volrend 9.421 0.109 0.098 10.141 0.130 0.118 11.110 0.174 0.157 12.001 0.204 0.184

water_nsq 18.653 0.308 0.290 18.940 0.315 0.297 19.218 0.298 0.283 19.480 0.308 0.291

water_sp 19.186 0.156 0.147 19.485 0.172 0.162 19.784 0.175 0.166 20.083 0.176 0.167

Average 18.252 2.882 2.738 18.425 2.771 2.638 18.710 2.736 2.605 19.076 2.708 2.579

81 2 4

65

Table 5.7 shows the compression ratio of mlvCF_e relative to mlvNX_b, as a

function of the number of threads (N = 1, 2, 4 and 8) and configuration (S, M, L) cal-

culated as TPB(mlvNX_b)/TPB(mlvCF_e). For the Small configuration average

compression ratio is 3.9 (N = 1) and 4.6 (N = 8). For the Medium configuration the

average compression ratio is 5.2 (N = 1) and 5.9 (N = 8). For the Large configuration

the total compression ratio is 6.7 (N = 1) and 7.4 (N = 8). The best performing is wa-

ter-spatial (N = 1) and the worst performing is ocean_ncp (N = 8).

Table 5.7 Compression ratio of mlvCF_e relative to mlvNX_b

Cores
Config. S M L S M L S M L S M L

cholesky 3.0 4.1 5.1 3.7 5.0 6.2 4.4 5.9 7.3 5.5 7.6 9.4

fft 4.1 5.3 5.9 4.2 5.4 6.0 4.2 5.4 6.0 4.2 5.4 6.1

lu-cb 13.4 14.2 15.4 13.3 14.7 18.6 13.4 14.8 19.1 13.6 17.5 20.9

lu-ncb 1.5 1.6 2.9 1.5 1.6 2.9 1.5 1.7 2.9 1.5 1.7 2.9

radix 2.2 2.3 2.6 2.3 2.4 2.6 2.3 2.4 2.6 2.3 2.4 2.6

barnes 4.9 8.6 29.1 4.9 8.3 30.3 5.0 8.4 30.2 5.0 8.0 24.5

fmm 11.1 20.9 32.5 9.4 20.7 31.7 10.3 20.5 31.5 10.2 20.3 31.1

ocean-cp 1.6 2.3 2.6 1.6 2.3 2.5 2.3 2.6 2.6 2.3 2.5 2.6

ocean-ncp 1.6 1.6 1.7 1.6 1.7 1.9 1.6 1.7 2.0 1.7 1.9 2.0

radiosity 14.2 29.4 39.6 12.8 28.5 39.5 12.7 28.5 40.4 12.8 29.6 39.5

raytrace 5.2 9.6 26.4 5.1 9.5 25.7 5.1 9.6 25.5 5.1 9.0 26.0

volrend 22.9 44.9 96.5 27.8 52.7 86.2 30.2 53.4 70.9 31.8 52.8 65.1

water-nsq 10.9 11.3 64.2 10.9 11.3 63.7 10.9 11.4 67.9 10.9 11.6 66.9

water-spa. 39.3 71.8 130.4 41.3 70.3 120.3 41.1 70.6 119.3 41.2 71.4 120.3

Total Avg. 3.9 5.2 6.7 4.0 5.4 7.0 4.5 5.6 7.2 4.6 5.9 7.4

N=1 N=2 N=4 N=8

66

Figure 5.7 shows the total trace port bandwidth in bits per clock cycle. CF_e

and CF_b are highly effective in reducing the trace port bandwidth. When N = 8, the

total required bandwidth for mlvCF_e is just 10.62 bpc compared to 78.56 for

mlvNX_b. Our variable encoding scheme in mlvCF_e offers improvement in range of

~5% when compared to fixed encoding mlvCF_b for the Large configuration.

Figure 5.7 Trace port bandwidth in bpc for load data value trace

67

CHAPTER 6

EXPERIMENTAL EVALUATION FOR TIMED TRACES

Progress of mankind is progress of mind and intellect

--Rev. Pandurang Shastri Athavale

Timed program execution traces capture complete information about program

execution including a correct intra-thread and inter-thread ordering of traced

events. Unlike functional traces, timed traces include time stamped trace de-

scriptors. We use timed traces to explore the challenges and opportunities of hard-

ware tracing in multicore platforms and to evaluate the effectiveness of different

techniques and their sensitivity to system parameters.

This chapter focuses on experimental flow based on timed traces. Figure 6.1

shows the experiment flow for determining trace port bandwidth requirements for

timed traces in the number of bits per instruction executed (bpi) and the number of

bits per clock cycle (bpc). The flow includes three major components, as follows: (a)

trace generation using TmTrace tool suite, (b) software to hardware trace transla-

tion using custom tools that model trace compressors (tmcfTRaptor and tmlvCFiat),

and (c) trace port bandwidth analysis using a custom tool suite.

The TmTrace tool suite that generates timed control-flow and load data value

traces is described in Section 6.1. Whereas TmTrace tools are designed to support a

range of trace applications, such as ISA profiling and trace-drive simulation, they

donot include support for analyzing the hardware tracing and trace message encod-

68

ing at the trace port level, and software trace compression. We develop custom sim-

ulators (tmcfTRaptor and tmlvCFiat) and translators that generate timed versions

of control-flow traces (tmcfNX_b, tmcfTR_b and tmcfTR_e) and load data value trac-

es (tmlvNX_b, tmlvCF_b, and tmlv_CF_e). Section 6.2 describes the tmcfTRaptor

simulator. Section 6.3 describes the tmlvCFiat simulator. The Software to hardware

trace conversion described in Section 6.4 invokes similar steps to those used for

functional traces. Section 6.4 describes the experimental environment. The timed

traces are generated for the Splash2 benchmark suite [31], a predecessor of the

Splash2x benchmark suite used to generate functional traces. These benchmarks are

compiled for the IA32 ISA.

Figure 6.1 Experiment flow for timed traces

TmTrace: Software Timed Trace Generator

32 bit
Target

Application

Application
Input

Number
Of Threads

Application
Output

Multi2Sim
configuration

files

TmTrace
Flags

Multi2Sim TmTrace

Performance
Statistics

tmcfTrace

tmlsTrace

tmcf-
TRaptor

Flags

tmlvCFiat

Flags

tmcfTRaptor

tmlvCFiat

Trace
Filtering

Fixed
Encoding

tmcfNX_b

Hardware
traces

Trace
Filtering

Fixed
Encoding

tmcfTR_b

Variable
Encoding

tmcfTR_e

Trace
Filtering

Fixed
Encoding

tmlvNX_b

Trace
Filtering

Fixed
Encoding

tmlvCF_b

Variable
Encoding

tmlvCF_e

SW2HW Trace Conversion

69

6.1 Software Timed Trace Generation

TmTrace (Timed Multithreaded Traces) is a software tool developed to cap-

ture timed program execution traces. It is designed as an extension of a heterogene-

ous cycle-accurate system simulator called Multi2Sim [7]. TmTrace can be directed

to capture a timed control flow trace (tmcfTrace) or a timed memory read or write

trace (tmlsTrace). Section 6.1.1 gives a functional description of TmTrace, Section

6.1.2 describes format of TmTrace-generated traces, Section 6.1.3 describes TmTrace

implementation, and Section 6.1.4 describes TmTrace verification.

6.1.1 Functional Description

The TmTrace tool can generate the following types of traces: control flow,

memory read, memory write, and a trace that includes all committed instructions.

Figure 6.1 shows a system view of generating software timed traces the using Mul-

ti2Sim simulator. The Multi2sim simulator takes as inputs the following: (a) the

number of threads, (b) a target application executable (x86 32-bit ISA), and (c) the

application input parameters. In addition, it takes a system configuration that in-

cludes processor model, memory hierarchy, and the system interconnect. Multi2Sim

generates general statistics related to program execution including instruction

count, IPC, branch accuracy, and simulation time. The TmTrace component takes

custom flags that control trace generation and consequently generates compressed

ASCII trace files.

Table 6.1 shows flags that control the captures of software timed traces. The

mTrace flag enables the tracing feature in the Multi2Sim simulator. Additional

flags specify the type of the trace to be generated (mcf for control flow, mld for

70

memory reads, and mst for memory writes). To study a segment of a program, one

can use flags to specify how many instructions should be skipped before the tracing

is turned on (mTraceSkip) and how many instructions should be traced (mTrace-

Length). The Intel ISA instructions are implemented as a sequence of micro instruc-

tions in the Multi2Sim simulator. The mTraceMax flag enables capturing micro in-

struction for traced instructions. The mTraceSysPrg flag enables capturing the in-

structions executed by the simulator in system calls.

71

Table 6.1 TmTrace custom flags

Parameter Description

--mTrace <file.gz> Captures program execution trace for x86 in ASCII format.

The program execution trace includes relevant information

for committed instructions only. Note: if –mTraceSysPrg is

used, both system and user program traces are captured;

otherwise only user program traces are captured.

--mcf Captures control flow program execution trace. Note: re-

quires –mTrace flag.

--mld Captures memory reads. Note: requires –mTrace flag.

--mst Captures memory writes. Note: requires–mTrace flag.

--mTraceSkip

<#Skipped INS>

Specifies the number of instructions skipped before the

tracing is turned ON. Note: requires -mTrace and -

mTraceLength flags.

--mTraceLength

<Length in #INS>

Specifies the number of instructions to be traced. Note: re-

quires -mTrace and -mTraceSkip flags.

--mTraceSysPrg Enables tracing of system code. Note: requires -mTrace

flag.

--mTraceMax Captures assembly instructions and micro instructions for

control flow instructions and load values for memory read

operations.

6.1.2 Format of Timed Trace Descriptors

Figure 6.2 shows the format of a trace descriptor generated when a trace with

all committed instructions is generated. The trace descriptor includes the following

fields:

 CC: clock cycle in which the instruction is committed;

 Ti: thread index;

72

 PC: instruction address; and

 ASM and UASM: assembly language instruction and micro instruction.

An example descriptor shown in Figure 6.2 is interpreted as follows: at clock

cycle 135 from the start of the program simulation, a thread with index 0 commits

an instruction at the address 0x8048d0a; the assembly instruction is xor ebp, ebp.

Figure 6.2 Trace descriptor when all committed instructions are traced

Figure 6.3 shows a timed control flow trace descriptor captured by TmTrace

when the mTrace and mcf flags are set. The descriptor is generated for each control-

flow instruction and includes the following fields:

 CC: clock cycle in which the instruction is committed;

 Ti: thread index;

 PC: branch instruction address;

 TA: target address of the branch;

 InstSize: size of the instruction;

 D/I: type of the branch, direct or indirect;

 C/U: type of the branch, conditional or unconditional;

 T/N: branch outcome, taken or not taken;

Timed committed instruction trace
Legend:
CC Clock Cycle

Ti Thread / Core ID
PC Instruction Address
ASM Assembly Instruction
UASM Micro Instruction135, 0, 8048d0a, xor ebp, ebp, zps/ebp [0x11,16]x

Ti PCCC ASM UASM

73

 BrType: type encoded as follows: call – 1, ret – 2, syscall – 3, ibranch – 4,

jump – 5, branch – 6;

 BBL: the number of instructions in a basic block ending with the branch.

An example descriptor shown in Figure 6.3 is interpreted as follows: at clock

cycle 463 in thread 0 a control-flow instruction at the address of 0x804814c is com-

mitted; its target address is 0x8058090 and the instruction size is 5 bytes. The in-

struction is a direct unconditional taken branch of type “call”. The number of in-

structions executed in the program since the previous descriptor is 13.

Figure 6.3 Trace descriptor for timed control-flow trace

Figure 6.4 shows several types of trace descriptors generated for memory

read (with –mld switch) and memory write operations (–mst switch). Figure 6.4 (a)

shows a trace descriptor generated for both memory reads and writes. It includes the

following fields:

 CC: time in clock cycles in which the memory instruction is committed;

 Ti: thread index;

 L/S: read (L=0) or write (S=1) operation;

 PC: instruction address;

Timed control-flow trace (tmcfTrace)

Ti PCCC TA D/I C/U T/N BrType BBL

Legend:
CC Clock Cycle

Ti Thread / Core ID
PC Instruction Address
TA Target Address
InstSize Instruction Size
D/I Direct / Indirect
C/U Conditional / Unconditional
T/N Taken / Not Taken
BrType Type of branch [call, jump …]
BBL Basic Block Length

463, 0, 804814c, 8058090, 5, D, U, T, 1,13

InstSize

74

 Oaddr: operand address;

 Osize: operand size.

An example descriptor shown in Figure 6.4 (a) is interpreted as follows: at

clock cycle time 456 in thread 0 a load instruction residing at the address 0x8048132

reads a 4-byte operand from the address 0xbfff0000. The following descriptor de-

scribes a store operation committed at clock cycle 457 in thread 0; the address of the

instruction is 0x8048138 and it writes a 4-byte operand at the address 0xbffefffc in

memory. Figure 6.4(b) shows the trace descriptor format when only memory reads

or memory writes are generated. Figure 6.4(c) shows the trace descriptor format

when memory reads with the operand values are generated.

Figure 6.4 Trace descriptors generated for memory reads and writes

(a) Timed memory read and write trace descriptor

(b) Timed memory read or write trace descriptor

(c) Timed extended memory read trace descriptor

Legend:
CC Clock Cycle

Ti Thread / Core ID
PC Instruction Address
L/S Load / Store
OAddr Operand Address
OSize Operand Size
OValue Operand Value
ASM Assembly Instruction
UASM Micro Instruction

456, 0, 0, 8048132, bfff0000, 4
457, 0, 1, 8048138, bffefffc, 4

TiCC PC Oaddr OsizeASM UASM OValue

TiCC PC Oaddr Osize

Ti L/SCC PC Oaddr Osize

75

6.1.3 TmTrace Implementation Details

TmTrace is implemented as a component in Multi2Sim, a cycle accurate com-

puter system simulator. Whereas Multi2Sim supports several instruction set archi-

tectures including Intel x86 (IA32), MIPS-32, ARM, AMD GPU, and NVIDIA GPU,

TmTrace is implemented for Intel’s IA32 ISA. The simulator offers a range of input

parameters that can be configured to model processor, memory hierarchy, and inter-

connection network. More details about Mult2Sim can be found at its web site [32].

Mult2Sim’s modular software design with well-defined interfaces allow researchers

to add new functionality.

Figure 6.5 illustrates capturing timed control-flow traces enabled by the

mTrace and mcf flags. The timing simulator models all pipeline stages from the

fetch to the commit stage. TmTrace augments the fetch stage to capture relevant

information about control-flow instructions needed to create a trace descriptor.

However, we do not emit a trace descriptor in the fetch stage. Some control-flow

instructions may be discarded in the pipeline. If the control-flow instruction

commits, then a corresponding trace descriptor is generated and written into a file,

including the current clock cycle time.

Figure 6.5 Capturing timed control flow traces

Fetch* Decode Dispatch Issue WriteBack

if (Type == Control-flow)

 Capture record;

Commit*

If (Type == Control-flow)

 Write record into a file;

76

Figure 6.6 illustrates capturing timed memory read and/or write traces ena-

bled by the mTrace, mld, and/or mst flags. If an instruction is identified as a memory

referencing instruction, in the fetch stage we capture relevant information for a

trace descriptor and store it into a data structure (address, operand address, size,

load value). If a memory referencing instruction is committed, its corresponding

trace descriptor will be written into a trace file.

Figure 6.6 Capturing timed memory read and write traces

6.1.4 Verification Details

To verify that TmTrace captures complete control-flow or memory read and

write traces, we develop a number of assembly language test programs. These test

programs are designed to include a wide variety of characteristic instructions that

result in trace events. For each test program, an expected trace is derived and then

compared to the one generated by TmTrace.

Figure 6.7 (a) shows a selected portion of the testControlEnumeration.s test

program. The selection includes a number of conditional direct branches and all of

them are not taken. Figure 6.7(b) shows trace descriptors for the selection from Fig-

Fetch* Decode Dispatch Issue WriteBack

if (Type == Read or Write)

 Capture record;

Commit*

If (Type == Read or Write)

 Write record into a file;

77

ure 6.7(a). All trace descriptors match the expected ones and thus we can conclude

that we captured a correct tmcfTrace.

Figure 6.8 (a) shows a program section with unconditional and indirect

branch instructions. Both jmp and call instructions are unconditional direct branch

instructions, while the return is an indirect branch. The captured descriptors shown

in Figure 6.8 (b) correspond to the expected ones.

78

(a) Code Sample

<<~~

#section 1

#unsigned conditional direct branches

#all branches will not be taken

#branch if strictly above

#Taken when CF and ZF are both zero

mov %eax, 1

mov %eax, 2

jnbe exit1

#branch if strictly below

#Taken when CF is 1

mov %eax, 2

mov %eax, 1

jb exit1

#branch if not equal/ not zero

#Taken when ZF is 0

mov %eax, 1

cmp %eax, 1

jnz exit1

#branch if not parity/parity odd

#Taken when PF is 0

jnp exit1

#branch if CX is zero

mov %eax, 1

jecxz exit1

#End of unsigned conditional direct branches

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~>> 

(b) tmcfTrace (timed control-flow)  

<<~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

. . . 

637711, 0, 80483e1, 804844c, 2, D, C, N, 5, 6 

637712, 0, 80483ed, 804844c, 2, D, C, N, 3, 6 

637713, 0, 80483f7, 804844c, 2, D, C, N, 3, 6 

637713, 0, 80483f9, 804844c, 2, D, C, N, 1, 6 

637713, 0, 8048400, 804844c, 2, D, C, N, 2, 6 

. . . 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~>> 

Figure 6.7 Conditional branches in testControlEnumeration.s

79

(a) Code Sample

<<~~

 #Unconditional Direct jump

 jmp Label1

 #Not executed

 test %eax, %eax

Label1:

 #send the string to console

 mov DWORD PTR [esp], OFFSET FLAT:.LC0

 #unconditional direct branch - call

 call puts

 mov eax, 1

exit1:

 leave

 .cfi_restore 5

 .cfi_def_cfa 4, 4

 ret

 .cfi_endproc

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~>> 

(b) tmcfTrace (timed control flow) 

<<~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

. . . 

637718, 0, 8048437, 804843b, 7, D, U, T, 5, 2 

637768, 0, 8048442, 80482f0, 5, D, U, T, 1, 2 

637893, 0, 80482f0, 80482f6, 7, I, U, T, 5, 1 

637894, 0, 80482fb, 80482e0, 7, D, U, T, 5, 2  

637900, 0, 80482e6, 144f0, 7, I, U, T, 5, 2 

663378, 0, 804844d, b7dfca83, 1, I, U, T, 2, 3  

. . . 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~>> 

Figure 6.8 Unconditional branches in testControlEnumeration.s

Figure 6.9 demonstrates how to run the Mult2Sim with tracing functions en-

abled. It shows a command line that simulates a benchmark execution (./one). The

timed control-flow trace is captured for a selected code segment of a test program

(./one) that starts after the first 85,717 instructions are committed and includes 20

instructions.

80

tmcfTrace (timed control flow)

<<~~~

amrishktewar@eb136i-lacasa-gx280:~/Desktop/multi2sim/multi2sim-

4.2/samples/x86$ m --x86-sim detailed --x86-config x86-config --mTrace six-

teen.gz --mcf --mTraceSysPrg --mTraceSkip 85717 --mTraceLength 20 ./one

amrishktewar@eb136i-lacasa-gx280:~/Desktop/multi2sim/multi2sim-

4.2/samples/x86$ more sixteen

mTrace: x86.init version="1.671" num_cores=8 num_threads=1

mTrace: Only Committed instructions for User Code

tMcf: MultiThread control flow traces

SIZE: 8, 31

tMcf: clock cycle,CoreID, PC, TA, instSize, Direct-D/ Indirect-I , Cond-

C/UnCond-U, Outcome [T / NT], brcategory, BBL

tMcf: brcategory [call 1 / ret 2 / syscall 3 / ibranch 4 / jump 5 / branch

6]

657710, 0, b7e539eb, b7f0a5eb, 5, D, U, T, 1, 3

657711, 0, b7f0a5ee, b7e539f0, 1, I, U, T, 2, 2

657713, 0, b7e539ff, b7e53b58, 2, D, C, N, 6, 5

657714, 0, b7e53a08, b7e53a58, 2, D, C, N, 6, 2

657715, 0, b7e53a0f, b7e53b80, 2, D, C, N, 6, 3

657716, 0, b7e53a1b, b7e53b28, 2, D, C, N, 6, 3

657717, 0, b7e53a24, b7e53ae8, 2, D, C, N, 6, 2

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~>> 

Figure 6.9 Tracing enabled for a specific code segment 

 

Software generation of timed read and write traces is tested with a program 

that executes memory read operations with varying operand sizes.  We have verified 

memory reads of 8-, 16-, 32- and 64-bit signed and unsigned integers, floats, doubles, 

extended precision, and SIMD (single instruction multiple data).  In this section, we 

look at the load data value output for 8 bit signed / unsigned integers, extended pre-

cision and SIMD type of data types. 

Figure 6.10 (a) shows a program that creates an unsigned and a signed 8 bit 

array.  The code in lines 8-10 prints the addresses of the arrays in memory, and the 

code in 11-14 touches the elements of the arrays. Figure 6.10 (b) shows the address-

es of both arrays. Figure 6.10 (c) shows the trace snippet for the lines 12, 14. It 

shows that the array addresses and values are correct (Figure 6.10(b) & (c)) 

 



81 

 

(a) Code sample 

<<~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

1. int i; 

2. volatile uint8_t uint8[17]; 

3. volatile int8_t sint8[17]; 

4. for(i=0;i<17;i++){ 

5.   uint8[i] = i; 

6.   sint8[i] = -i; 

7. } 

8. printf("uint8 address: %p\n",uint8); 

9. printf("sint8 address: %p\n",sint8);  

10. printf("Begin uint8/int8 test\n"); 

11. for(i=0;i<17;i++) 

12.    uint8[i];     

13. for(i=0;i<17;i++) 

14.    sint8[i] 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~>> 

(b) Run time

<<~~~

amrishktewar@eb136i-lacasa-gx280:~/Desktop/multi2sim/multi2sim-

4.2/samples/x86$ m --x86-sim detailed --x86-config x86-config --mTrace

mlvTest_ld_trace.gz --mld ./mlvTest_akt

; Multi2Sim 4.2 - A changed Simulation Framework for CPU-GPU Heterogeneous

Computing

. . .

uint8 address: 0xbffeff3a

sint8 address: 0xbffeff4b

Begin uint8/int8 test

. . .

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~>> 

(c) tmlsTrace (timed Memory read trace) 

<<~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

. . . 

740363, 0, 8048604,------------,load edx/ea [0xbffeff3a,1],bffeff3a,1,0 

740364, 0, 8048604,------------,load edx/ea [0xbffeff3b,1],bffeff3b,1,1 

740365, 0, 8048604,------------,load edx/ea [0xbffeff3c,1],bffeff3c,1,2 

740366, 0, 8048604,------------,load edx/ea [0xbffeff3d,1],bffeff3d,1,3 

. . . 

740425, 0, 8048616,------------,load edx/ea [0xbffeff4b,1],bffeff4b,1,0 

740426, 0, 8048616,------------,load edx/ea [0xbffeff4c,1],bffeff4c,1,ff 

740427, 0, 8048616,------------,load edx/ea [0xbffeff4d,1],bffeff4d,1,fe 

740432, 0, 8048616,------------,load edx/ea [0xbffeff4e,1],bffeff4e,1,fd 

. . . 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~>> 

Figure 6.10 Testing TmTrace load data value traces: an example

Figure 6.11(a) shows a program accessing an extended precision array. Lines

2 initialize the extended precision array, and lines 3-4 print the address and value

respectively. Figure 6.11(b) shows the address of the array at runtime. Figure 6.11

82

(b) & (c) shows that the address 0xbffeff60 and value 1.2(line 2) match the ad-

dress and value 3FFF999999999999980 (in hex format) printed in the program.

(a) Code sample

<<~~~

1. volatile long double ex[1];

2. ex[0] = 1.2;

3. printf("double address: %p\n",ex);

4. ex[0];

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~>> 

(b) Run time 

<<~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

amrishktewar@eb136i-lacasa-gx280:~/Desktop/multi2sim/multi2sim-

4.2/samples/x86$ m --x86-sim detailed --x86-config x86-config --mTrace 

mlvTest_akt_trace.gz --mld --x86-debug-isa isa.txt  ./mlvTest_akt_extended 

 

; Multi2Sim 4.2 - A changed Simulation Framework for CPU-GPU Heterogeneous 

Computing 

. . . 

double address: 0xbffeff60 

. . . 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~>> 

(c) tmlsTrace (timed Memory read trace)

<<~~~

. . .

11646, 0, 8048e7f, ------------,load data/ea [0xbffeff60,10],bffeff60,10,

3FFF999999999999980

. . .

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~>> 

Figure 6.11 Testing TmTrace for an extended data type 

 

Figure 6.12(a) shows a test program which uses an SIMD (single instruction, 

multiple data) vector instruction.  Lines 1-2 show __m128i directives for initializing 

two 128-bit variables.  Lines 3 – 7 show assembly instructions that calculate an xor 

function for two input variables. Line 8 prints the result.  Figure 6.12(b) shows the 

result in hex string while running the program. Figure 6.12 (c) shows a trace seg-

ment for the SIMD variables.  The first four trace messages show loading of the val-

ues in to the registers. The last trace descriptor at clock cycle 82560 shows the cor-

rect hex result matching the running program. 



83 

 

 

(a) Code sample 

<<~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

1. __m128i a = _mm_setr_epi32(0x00ffff00, 0x00ffff00, 0x00ffff00, 

0x10ffff00); 

2. __m128i b = _mm_setr_epi32(0x0000ffff, 0x0000ffff, 0x0000ffff, 

0x0000ffff), x; 

3. asm( 

4. "pxor %2, %0;" 

5. :"=x"(a) 

6. :"x"(a), "x"(b) 

7. ); 

8. print128(a); 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~>> 

(b) Run time

<<~~~

amrishktewar@eb136i-lacasa-gx280:~/Desktop/multi2sim/multi2sim-

4.2/samples/x86$ m --x86-sim detailed --x86-config x86-config --mTrace

mlvTest_akt_trace.gz --mld ./MMX

; Multi2Sim 4.2 - A changed Simulation Framework for CPU-GPU Heterogeneous

Computing

. . .

10ff00ff00ff00ff 00ff00ff00ff00ff

. . .

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~>> 

(c) tmlsTrace (timed memory read trace) 

<<~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

. . . 

82266, 0, 8048f29,------------,load xmm_data/ea [0xbffeff50,16],bffeff50,16, 

10FFFF0000FFFF0000FFFF0000FFFF00 

82554, 0, 8048fca,------------,load xmm_data/ea [0xbffeff60,16],bffeff60,16, 

0000FFFF0000FFFF0000FFFF0000FFFF 

82556, 0, 8048fd9,------------,load xmm_data/ea [0xbffeff30,16],bffeff30,16, 

10FFFF0000FFFF0000FFFF0000FFFF00 

82557, 0, 8048fdf,------------,load xmm_data/ea [0xbffeff40,16],bffeff40,16, 

0000FFFF0000FFFF0000FFFF0000FFFF 

82560, 0, 8048fef,------------,load xmm_data/ea [0xbffeff30,16],bffeff30,16, 

10FF00FF00FF00FF00FF00FF00FF00FF 

. . . 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~>> 

Figure 6.12 Testing TmTrace for SIMD data types

6.2 tmcfTRaptor Simulator

The tmcfTRaptor simulator takes a timed control-flow trace as an input,

models multicore trace predictor structures, and generates a timed tmcfTRaptor

compressed control-flow trace. The tmcfTRaptor maintains TRaptor predictor struc-

84

tures for each thread separately and carries out steps that correspond to hardware

trace compression in the trace module. Mispredicted trace descriptors are written

into an output trace file. Section 6.2.1 gives functional description for the tmcfTRap-

tor, Section 6.2.2 describes its implementation, and Section 6.2.3 describes the veri-

fication of the tmcfTRaptor simulator.

6.2.1 Functional Description

Table 6.2 shows flags for controlling behavior of tmcfTRaptor. These flags

are used for specifying: (i) output file size, (ii) TRaptor branch predictor structures,

and (iii) output file name. tmcfTRaptor contains a gshare branch outcome predictor,

a return address stack (RAS), and an indirect branch target buffer (iBTB). We can

specify the number of entries for the gshare outcome predictor (0, 256, 512, 1024,

2048, and 4096), the RAS (0, 8, 16, and 32), and iBTB (0, 16, 32, and 64).

Figure 6.13 shows the format of trace descriptors generated by tmcfTRaptor.

There are three types of distinct trace descriptors for (i) outcome mispredictions, (ii)

target mispredictions, and (iii) exceptions.

85

Table 6.2 tmcfTRaptor flags

Parameter Description

--help Generates help messages

--f [size] Output file size in MB. If file exceeds the specified size,

tracing stops. Default 50000 MB

--gshare [entries] gshare – outcome predictor with entries = {0, 256, 512,

1024, 2048, 4096}. Note: entries = 0 means no gshare. De-

fault is 256.

--ras [entries] RAS – return address stack with entries = {0, 8, 16, 32}.

Note: entries = 0 means no RAS. Default is 8.

--ibtb [entries] iBTB – 2 way set associativity indirect branch target buffer

with {0, 16, 32, 64} entries. Note: entries = 0 means no

iBTB. Default is 64.

--o [filename] Specifies output trace file filename. Default – tMcfTRa-

tor_out_yr_mon_day_hr_min_sec. Note: *.txt = descriptors,

*.Statistics = Statistics

Figure 6.13 tmcfTRaptor trace descriptor formats

tmcfTRaptor Trace

Mispredicted Outcome

Mispredicted Target

Exception

Legend:
CC Clock Cycle

Ti Thread ID
TA Target Address
T Taken
bCnt Branch Counter
Excep Exception
iCnt Instruction Counter

TiCC bCnt

TiCC bCnt T TA

TiCC Excep iCnt TA

86

Figure 6.14(a) shows a sample output trace file generated by tmcfTRaptor.

Figure 6.14 (b) shows a statistics report generated when running the barnes bench-

mark. The statistics file includes information about the type and frequency of con-

trol flow instructions, the predictor structure statistics, and binary sizes for individ-

ual descriptor fields that can be used in evaluating the effectiveness of the

tmcfTRaptor.

87

 (a) tmcfTRaptor trace

<<~~~

akt0001@eb245-drina:/mnt/drive02/ttraces/benRun_Detail_v1/barnes/1$ head

LargeTRaptorSerialBarnes.txt

1413, 0, 1

1426, 0, 10

2371, 0, 4, T, 0x08073380

2600, 0, 1

2831, 0, 2, T, 0x080731d0

2847, 0, 1

2861, 0, 2, T, 0x08073368

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~>> 

(b) tmcfTRaptor Statistics 

<<~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

akt0001@eb245-drina:/mnt/drive02/ttraces/benRun_Detail_v1/barnes/1$ more 

LargeTRaptorSerialBarnes.Statistics 

; tmcfTRaptor: Instrumentation Time 617331 ms 

; timed Control Flow Stats 

Recorded 218360061 control transfer instructions. 

        70954154 ( %32.49 ) Conditional Direct Taken 

        59093985 ( %27.06 ) Conditional Direct Not Taken 

        51871988 ( %23.76 ) Unconditional Direct 

        36439934 ( %16.69 ) Unconditional Indirect 

; timed Control Flow TRaptor Stats 

tmcfTRaptor: Recorded 218360061 direct conditional branches, indirect uncon-

ditional branches, and exceptions 

181919908 conditional direct branches 

        172325660 ( %94.73 ) outcomes predicted 

        9594248 ( %5.27 ) outcomes mispredicted 

36440153 unconditional indirect branches 

        36439991 ( %100.00 ) targets predicted 

        162 ( %0.00 ) targets mispredicted 

0 exceptions 

; TRaptor structure stats 

        correct ,Total(%hitRate) structure type 

        172325660       ,181919908 ( %94.73 ) gshare 

        36302064        ,36302067 ( %100.00 ) ras 

        137927  ,138086 ( %99.88 ) ibtb 

; branch stats 

        Total # 

        call instruction:       36302072 

        ret instruction:        36302067 

        syscall instruction:    0 

        ibranch instruction:    219 

        jump instruction:       15707783 

        branch instruction:     130047920 

; File size in Binaries 

; Type, TotalSizeofTime, TotalSizeofLine, TotalSize 

Input, 1746880488, 6769161891, 8516042379 

OutputDirect, 76753984, 47971240, 124725224 

OutputIndirect, 1296, 1620, 2916 

OutputException, 0, 0, 0 

Output, 76755280, 47972860, 124728140 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~>> 

Figure 6.14 tmcfTRaptor output files

88

6.2.2 Implementation Details

Figure 6.15 shows the organization of the tmcfTRaptor simulator. It takes

two inputs: (i) a timed control flow trace generated by the tmcfTrace tool, and (ii)

tmcfTRaptor configuration parameters (Table 6.2). It gives two output files: (i) trace

descriptors for mispredicted events in the mcfTRaptor structures, and (ii) statistics

of input and output traces. The simulator reads the input trace descriptors, analyz-

es them (doAnalysisOnBranch()), and writes emitted trace descriptors and statistics

into the output files. The doAnalysisOnBranch procedure checks the type of branch

and invokes corresponding procedures as follows: Private_DirectConditional for di-

rect branch and call instructions, Private_Ret for return instructions, Pri-

vate_IndirectCall for indirect call instructions, and Pri-

vate_OtherUnconditionalIndirect for all other unconditional indirect branch instruc-

tions.

Private_DirectConditional checks whether its input is a conditional branch or

a call. For conditional branches it performs a lookup in the gshare branch outcome

predictor structure. A gshare index is generated and the predicted outcome is re-

trieved and compared to the actual outcome. If the prediction is incorrect, an ASCII

descriptor associated with instruction is created and stored in a dequeue ADT (ab-

stract data type) structure. The gshare is then updated accordingly. If the branch is

a call instruction, the return address is pushed on to the RAS structure.

Private_Ret accesses the RAS structure and retrieves the target address from

the top. If the predicted address does not match the actual one, an ASCII descriptor

associated with the instruction is created and stored in the dequeue ADT structure.

89

Private_IndirectCall and Private_OtherUnconditionalIndirect access the

iBTB structure in mcfTRaptor. An iBTB index is generated and a lookup is per-

formed to retrieve a predicted target address. If the prediction is incorrect, an

ASCII descriptor associated with the instruction is created and stored in the

dequeue ADT structure. The iBTB structure is updated. If the indirect branch is a

call instruction, its target address is pushed onto the RAS structure.

Figure 6.15 tmcfTRaptor simulator organization

tmcfTRaptor Simulator

tmcfTrace

Last descriptor

Start

Read next trace
descriptor

Create a per-thread
mcfTraptor structure

(if first time)

Increment input
Statistics

doAnalysisOnBranch

Output mcfTRaptor
trace

& statistics

Delete dynamic
mcfTRaptor
structures

End

Statistics filemcfTRaptor trace
file

direct
branch/call?

Return?

indirect
branch/call?

indirect
branch?

Private_DirectConditional()

Private_Ret()

Private_IndirectCall()

Private_OtherUnconditionalI
ndirect()

tmcfTRaptor
input parameters

TRaptor

Gshare
iBTB, RAS,
bCnt, iCnt

T0

Gshare
iBTB, RAS,
bCnt, iCnt

T1

Gshare
iBTB, RAS,
bCnt, iCnt

TN-1

doAnalysisOnBranch

End

N

Y

Y

Y

Y

Y

N

N

N

N

90

6.2.3 Verification Details

tmcfTRaptor has been tested using custom test programs tailored to verify

the behavior of the predictor structures, namely the gshare outcome predictor, the

return address stack, and the indirect branch target buffer. This section describes

test programs for each structure. Figure 6.16(a) shows a program used to verify the

gshare structure. The program includes a for loop which terminates after iterating

20 times (0 to 19). The last instruction of the for loop is a direct conditional branch,

which is taken for 20 times and not taken the last time. This loop branch will be in-

correctly predicted 5 times until the branch history register (BHR) and the gshare

entries are warmed up (the gshare entries are initialized in the weak not taken

state). Figure 6.16 (b) illustrates the trace events for the loop branch. We track the

state of the bCnt counter and relevant entries in the gshare predictor through warm-

ing up (lines 1-30). The first six instances of the loop branch result in trace messages

as shown. Once the predictor structures are warmed up, all lookups occur in the

gshare entry with index 187. The last trace message is emitted on the loop exit: a

trace message includes bCnt = 15 (14 correctly predicted outcomes with the last one

incorrectly predicted because the predictor is trained to be in the strong taken state

and the actual branch is not taken).

91

(a) Code Sample

<<~~~

volatile int x;

for(x = 0; x < 20; x++);

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~>> 

(b) tmcfTRaptor: Gshare entries 

<<~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

1. bCnt: 1 

2. prediction is correct 0 

3. Actual Result: T 

4. Next GSHARE[35]: 2 (WT) 

5. Mis-predicted outcome descriptor 0, 1 

 

6. bCnt: 1 

7. prediction is correct 0 

8. Actual Result: T 

9. Next GSHARE[139]: 2 (WT) 

10. Mis-predicted outcome descriptor 0, 1 

 

11. bCnt: 1 

12. prediction is correct 0 

13. Actual Result: T 

14. Next GSHARE[219]: 2 (WT) 

15. Mis-predicted outcome descriptor 0, 1 

 

16. bCnt: 1 

17. prediction is correct 0 

18. Actual Result: T 

19. Next GSHARE[123]: 2 (WT) 

20. Mis-predicted outcome descriptor 0, 1 

 

21. bCnt: 1 

22. prediction is correct 0 

23. Actual Result: T 

24. Next GSHARE[59]: 2 (WT) 

25. Mis-predicted outcome descriptor 0, 1 

 

26. bCnt: 1 

27. prediction is correct 0 

28. Actual Result: T 

29. Next GSHARE[187]: 2 (WT) 

30. Mis-predicted outcome descriptor 0, 1 

 

31. bCnt: 1 

32. prediction is correct 1 

33. Actual Result: T 

34. Next GSHARE[187]: 3 (ST) 

. . .  

86. bCnt: 15 

87. prediction is correct 0 

88. Actual Result: N 

89. Next GSHARE[187]: 2 (WT) 

90. Mis-predicted outcome descriptor 0, 15 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~>> 

Figure 6.16 GShare verification example and results

92

Figure 6.17 (a) shows a test program for verifying the return address stack.

The test include multiple nested calls, main calls the functions f0 and f4, whereas

f0 calls f1, f1 calls f2, f2 calls f3, f3 calls f4, and f4 does not call other functions.

Figure 6.17 (b) shows the results with the RAS updates and the status after each

step. All returns are correctly predicted except the exit from main.

(a) Code Sample

<<~~~

void f4(int x){ x; }

void f3(int x){ f4(x); }

void f2(int x){ f3(x); }

void f1(int x){ f2(x); }

void f0(int x){ f1(x); }

int main() {

 volatile int x;

 f0(x);

 f4(x);

}

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~>> 

(b) tmcfTRaptor: RAS updates and hit  

<<~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Instruction call f0(x) 

RAS[2] = 804848f  

Instruction call f1(x)  

RAS[3] = 804846c   

Instruction call f2(x) 

RAS[4] = 8048459  

Instruction call f3(x)  

RAS[5] = 8048446   

Instruction call f4(x)  

RAS[6] = 8048433   

Instruction ret from f4(x) 

isRASHit = 1 

RAS[5] = 8048446 

Instruction ret from f3(x) 

isRASHit = 1 

RAS[4] = 8048459 

Instruction ret from f2(x) 

isRASHit = 1 

RAS[3] = 804846c 

. . . 

Instruction ret from main 

isRASHit = 0 

RAS[0] = b7669470 

Emitted descriptor 0, 7, T, 0xb7dfca83 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~>> 

Figure 6.17 Return address stack example

93

Figure 6.18 shows a program for testing the indirect branch target buffer. It

includes a loop that calls a function through a pointer 20 times. Table 6.3 has iBTB

structure parameters PC, TA, index mask, path information register (PIR), iBTB

index, prediction hit or miss, and the number of iterations. These results can be in-

dependently verified to match the expected events. Once the iBTB is fully warmed

up, the iBTB provides correct target address for the last 13 iterations of the loop.

1. <<~~

2. int loop_inc (int loop_count) {

3. return ++loop_count;

4. }

5. int main(void) {

6. int loop;

7. int (*pf)(int);

8. pf = loop_inc;

9. for (loop = 0; loop < 20; loop++)

10. pf (1);

11. return 1;

12. }

13. ~~~>>

14. Assembly code

15. <<~~~

16. 08048e50 <main>:

17. 8048e50: 55 push ebp

18. 8048e51: 89 e5 mov ebp,esp

19. 8048e53: 83 e4 f0 and esp,0xf0

20. 8048e56: 83 ec 20 sub esp,0x20

21. 8048e59: c7 44 24 1c 44 8e 04 mov DWORD PTR

[esp+0x1c],0x8048e44

22. 8048e60: 08

23. 8048e61: c7 44 24 18 00 00 00 mov DWORD PTR [esp+0x18],0x0

24. 8048e68: 00

25. 8048e69: eb 12 jmp 8048e7d

26. 8048e6b: c7 04 24 01 00 00 00 mov DWORD PTR [esp],0x1

27. 8048e72: 8b 44 24 1c mov eax,DWORD PTR [esp+0x1c]

28. 8048e76: ff d0 call eax

29. 8048e78: 83 44 24 18 01 add DWORD PTR [esp+0x18],0x1

30. 8048e7d: 83 7c 24 18 13 cmp DWORD PTR [esp+0x18],0x13

31. 8048e82: 7e e7 jle 8048e6b

32. 8048e84: b8 01 00 00 00 mov eax,0x1

33. 8048e89: c9 leave

34. 8048e8a: c3 ret

35. 8048e8b: 66 90 xchg ax,ax

36. 8048e8d: 66 90 xchg ax,ax

37. 8048e8f: 90 nop

38. ~~>>

Figure 6.18 iBTB test example

94

Table 6.3 iBTB status and updates for the test example

6.3 tmlvCFiat Simulator

The tmlvCFiat simulator takes a timed memory read and write trace as an

input, implements the mlvCFiat compression, and generates an output timed load

data value trace. The tmlvCFiat maintains private CFiat structures per processor

core. Section 6.3.1 gives functional description for the tmlvCFiat, Section 6.3.2 de-

scribes its implementation, and Section 6.3.3 describes verification efforts.

6.3.1 Functional Description

Table 6.4 shows the flags for controlling the behavior of tmlvCFiat. These

flags are used to control the following: (i) output file size, (ii) CFiat structures size

and configuration, and (iii) output file name. tmlvCFiat contains a data cache model

with first access mechanism. We can set different parameters for the data cache,

including cache size, cache line size, and cache associativity. In addition, we can set

first-access flag granularity, i.e., the number of bytes in a data cache block guarded

PC TA

index

Mask PIR index

Miss/

Hit

New

PIR

Lastway

Used

Prediction

correct iteration

8048e76 8048e44 1f 13c9 20 Miss 4fc3 0 0

8048e76 8048e44 1f 4fc3 8 Miss 3feb 1 0

8048e76 8048e44 1f 3feb 24 Miss ff4b 0 0

8048e76 8048e44 1f ff4b 24 Hit fdcb 0 1 1

8048e76 8048e44 1f fdcb 26 Miss f7cb 1 0

8048e76 8048e44 1f f7cb 16 Miss dfcb 0 0

8048e76 8048e44 1f dfcb 24 Hit 7fcb 0 1 1

8048e76 8048e44 1f 7fcb 24 Hit ffcb 0 1 1

8048e76 8048e44 1f ffcb 24 Hit ffcb 0 1 12

3

2

95

by a single first-access flag. Figure 6.19 shows the format of trace descriptors gen-

erated by the tmlvCFiat simulator.

Table 6.4 tmlvCFiat flags

Parameter Description

--help Generates help messages

--f [size] Output file size in MB. If file exceeds the specified size the

tracing stops. Default 50,000 MB.

--cs [kilobytes] Cache size in kilobytes. Default is 32 KB.

--cls [line size] Cache line size in bytes. Default is 32 B.

--ca [associativity] Sets the associativity of the cache. Default is 4.

--cfg [granularity] First access flag granularity, with each flag protecting an

operand of size granularity in a cache line. Default is 4

words (8 bytes).

--o [filename] Specifies output trace file name. Default is

tmlvCFiat_out_yr_mon_day_hr_min_sec

Note: *.txt = descriptors, *.Statistics = Statistics of

tmlvCFiat

Figure 6.19 tmlvCFiat trace descriptor format

tmlvCFiat Trace

OsizeTi FahCntCC

Legend:
CC Clock Cycle

Ti Thread ID
Osize Operand size
FahCnt First access Hit Counter

96

6.3.2 Implementation Details

Figure 6.20 shows the organization of the tmlvCFiat simulator. The tool

takes two inputs: (i) a timed memory read and write trace generated by the tml-

sTrace tool, and (ii) the tmlvCFiat flags shown in Table 6.4. The tool gives two out-

puts: (i) emitted tmlvCFiat compressed load value trace, and (ii) statistics of input

and output memory read value traces. The simulator reads the input trace de-

scriptors, analyzes them (doAnalysisMemoryInst()), and writes emitted trace de-

scriptor and statistics into the output files. The doAnalysisMemoryInst procedure

checks the type and size of operand value and invokes corresponding procedures as

follows: Load_SingleCacheLine for reads that touch a single cache line,

Store_SingleCacheLine for writes that touch a single cache line,

Load_MultiCacheLine for reads that span multiple cache lines, and

Store_MultiCacheLine for stores that span multiple cache lines.

Here we take a closer look at the Load_MultiCacheLine procedure. It handles

memory read operations that may extend over multiple cache lines. tmlvCFiat has a

private CFiat structure for each thread, so the respective private structure is re-

trieved using thread id information for that memory write instruction. The operand

is looked up in the cache. If it is a cache miss, the descriptor associated with that op-

erand is pushed to a deque ADT and the Ti.fahCnt is reset and the requested cache

lines are loaded into the cache. If it is a cache hit, the corresponding first-access

flags are checked. A first-access hit occurs when all flags associated with the re-

quested operand are set. If at least one first-access flag is not set, we have a first-

access miss event.

97

Figure 6.20 tmlvCFiat simulator organization

6.3.3 Verification Details

tmlvCFiat was tested with test programs to verify the correct behavior of sin-

gle cache line operands and multi cache line operands. Figure 6.21(a) shows a test

program for variables that fit into a single cache line. The program traverses a 4-

byte integer array with 9 elements. The data cache parameters are as follows: 32-

tmlvCFiat Simulator

tmlsTrace

Is EOF ?

Start

Read a tmlsTrace
descriptor

Collect
statistics

AnalyzeMemoryRef

Output
statistics

End

Statistics file
tmlvCFiat Trace

file

tmlvCFiat input
parameters

CFIAT

Data Cache
First Access

T0

Data Cache
First Access

T1

Data Cache
First Access

TN-1

operand single
cache line?

AnalyzeMemoryRef

store? Store_SingleCacheLine()

Load_SingleCacheLine()

Store_MultiCacheLine()

Load_MultiCacheLine()

Operand
multiline store?

N

N

N

Y

Y

Y

Y

98

byte cache size, 16-byte line size, 2-way set associativity, and first-access flag granu-

larity of 16 bytes. The program should cause three misses.

Figure 6.21(b) captures the behavior of the for loop in line number 5. Each

entry contains information of memory read instruction and tmlvCFiat structure pa-

rameters tag, set index, line index, new way index, is cache hit, and is descriptor

emitted. We see total three cache misses (line 1-4, 5-8 and 21-24). Last two cache

misses (5-8, and 21-24) is followed by three iteration of hits (9-12, 13-16, 17-20, and

25-28, 29-32, 33-36).

(a) Code sample

<<~~~

1. volatile uint32_t uint32[9];

2. for (int i = 0; i< 9; i++){

3. uint32[i] = 256 + i;}

4. printf("uint32 address: %p\n", uint16);

5. for (int i = 0; i< 9; i++){

6. uint32[i];}

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~>> 

(B) Run time 

<<~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

amrishktewar@eb136i-lacasa-gx280:~/Desktop/multi2sim/multi2sim-

4.2/samples/x86$ m --x86-sim detailed --mTrace mlvCFiat_NINE_v1.gz --mld --mst 

./mlvCFiat_NINE 

 

; Multi2Sim 4.2 - A changed Simulation Framework for CPU-GPU Heterogeneous 

Computing 

. . . 

uint32 address: 0xbffeff3c 

. . . 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~>> 

(C) tmlvCFiat parameter

<<~~~

1. 6191139, 0, 804860e, bffeff3c, 4

2. tag = bffeff3 setIndex = 0 lineIndex = c

3. cacheHit = 0 New wayIndex = 0

4. emit ? 1

5. 6191185, 0, 804860e, bffeff40, 4

6. tag = bffeff4 setIndex = 0 lineIndex = 0

7. cacheHit = 0 New wayIndex = 1

8. emit ? 1

9. 6191186, 0, 804860e, bffeff44, 4

10. tag = bffeff4 setIndex = 0 lineIndex = 4

11. cacheHit = 1 Found in wayIndex = 1

12. emit ? 0

99

13. 6191187, 0, 804860e, bffeff48, 4

14. tag = bffeff4 setIndex = 0 lineIndex = 8

15. cacheHit = 1 Found in wayIndex = 1

16. emit ? 0

17. 6191188, 0, 804860e, bffeff4c, 4

18. tag = bffeff4 setIndex = 0 lineIndex = c

19. cacheHit = 1 Found in wayIndex = 1

20. emit ? 0

21. 6191190, 0, 804860e, bffeff50, 4

22. tag = bffeff5 setIndex = 0 lineIndex = 0

23. cacheHit = 0 New wayIndex = 0

24. emit ? 1

25. 6191191, 0, 804860e, bffeff54, 4

26. tag = bffeff5 setIndex = 0 lineIndex = 4

27. cacheHit = 1 Found in wayIndex = 0

28. emit ? 0

29. 6191192, 0, 804860e, bffeff58, 4

30. tag = bffeff5 setIndex = 0 lineIndex = 8

31. cacheHit = 1 Found in wayIndex = 0

32. emit ? 0

33. 6191193, 0, 804860e, bffeff5c, 4

34. tag = bffeff5 setIndex = 0 lineIndex = c

35. cacheHit = 1 Found in wayIndex = 0

36. emit ? 0

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~>> 

Figure 6.21 Testing tmlvCFiat: single cache line access 

 

Figure 6.22(a) shows a test program for operands spanning multiple cache 

lines.  The program stores and loads an 8-byte double precision operand.  The cache 

parameters are set as follows: 8-byte cache size, 4-byte line size, associativity of 2, 

and first-access flag granularity of 4 bytes.  As the operand size exceeds the cache 

line size, it takes two cache lines to store a single operand value.  A write operation 

is followed by a read operation, so we expect to get a read hit.  Figure 6.22(b) shows 

the results of program memory read and write traces and run time operand address-

es.  Figure 6.22(c) shows the behavior of tmlvCFiat structures.  Each entry contains 

memory read / write trace and tmlvCFiat structure parameters address, tag, set in-

dex, line index, new way index, is local hit, and next cache line address.  The simula-



100 

 

tor dump shows a hit in multi-line read access (lines 9-13, and 14-17), thus matching 

our expectations. 

(a) Code sample 

<<~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

volatile double db[1]; 

db[0] = 1.2; 

db[0]; 

printf("double address: %p\n",db); 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~>> 

(b) Run time

<<~~~

amrishktewar@eb136i-lacasa-gx280:~/Desktop/multi2sim/multi2sim-

4.2/samples/x86$ m --x86-sim detailed --mTrace mlvCFiat_MLine_v1.gz --mld --mst

./mlvCFiat_akt_double

; Multi2Sim 4.2 - A changed Simulation Framework for CPU-GPU Heterogeneous

Computing

. . .

double address: 0xbffeff58

. . .

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~>> 

(c) tmlsTrace (timed Memory read and write trace) 

<<~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

. . . 

663730, 0, 1,  804847c, bffeff58, 8 

663731, 0, 0,  8048480, bffeff58, 8 

. . . 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~>> 

(d) tmlvCFiat parameter

<<~~~

1. 663730, 0, 1, 804847c, bffeff58, 8

2. storeMulti: highAddr = bffeff60

3. storeMulti: tag = 2fffbfd6 setIndex = 0 lineIndex = 0

4. localHit = 0 cacheAllHit = 0 new wayIndex is = 0

5. next cache line address = bffeff5c

6. storeMulti: tag = 2fffbfd7 setIndex = 0 lineIndex = 0

7. localHit = 0 cacheAllHit = 0 new wayIndex is = 1

8. next cache line address = bffeff60

9. 663731, 0, 0, 8048480, bffeff58, 8

10. loadMulti: highAddr = bffeff60

11. loadMulti: tag = 2fffbfd6 setIndex = 0 lineIndex = 0

12. localCacheHit = 1 cacheAllHit = 1 localFlagHit = 1

13. Found in wayIndex = 0 next cache line address = bffeff5c

14. loadMulti: tag = 2fffbfd7 setIndex = 0 lineIndex = 0

15. localCacheHit = 1 cacheAllHit = 1 localFlagHit = 1

16. Found in wayIndex = 1 next cache line address = bffeff60

17. Mulitipleload: emit ? 0

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~>> 

Figure 6.22 Testing tmlvCFiat: multi-line cache access  

 



101 

 

6.4 Software to Hardware Trace Translation 

Similarly to functional control-flow and load data value traces, we translate 

software traces generated by our simulators into hardware traces by eliminating re-

dundant fields and applying our encoding schemes (see Figure 6.1).   

Figure 6.23 shows the format of trace messages for control-flow traces, 

tmcfNX_b, tmcfTR_b, and tmcfTR_e.  Figure 6.24 shows the format of trace messag-

es for load data value traces, tmlvNX_b, tmlvCF_b, and tmlvCF_e.  These descriptors 

correspond to the corresponding descriptors used for functional traces described in 

Section 4.2.  The only difference is that all trace messages include a time stamp.  In-

stead of encoding a full time stamp that may require a large number of bits to en-

code, we apply a differential encoding.  The time stamp is reported relatively to the 

last reported time stamp and contains the number of clock cycles that expired from 

the last reported trace event.  The differential time stamp is divided into chunks of 8 

bits, with the connect bit indicating whether this is a terminating chunk (C = 0) or 

not (C = 1). In case of tmcfTR_e and tmlvCF_e we allow variable encoding of the dif-

ferential time stamp with chunk sizes h0 and h1 that are determined experimental-

ly.   

 



102 

 

 

Figure 6.23 Trace descriptors for tmcfNX_b, tmcfTR_b, and tmcfTR_e 

 

 

Figure 6.24 Trace descriptors for tmlvNX_b, tmlvCF_b, and tmlvCF_e 

 

(a) tmcfNX_b descriptor

SL[0:7]
8 b

SL[8:15]
8 b

C
1 b

C 
1 b

...

CC[0:7]
8 b

CC[8:15]
8 b

C
1 b

C 
1 b

...

TiCC SL diffTA

|diffTA[0:31]|
32 b

Sign 
1 b

|diffTA[32:63]|
32 b

C 
1 b

(b) tmcfTR_b descriptor

bCnt[0:7]  
8 b

bCnt[8:15] 
 8 b

...
C 

1 b
C 

1 b

(c) tmcfTR_e descriptors

|diffTA[0:31]|
32 b

|diffTA[32:63]|
32 b

Sign 
1 b

C 
1 b

bCnt diffTATiCC

CC[0:7]
8 b

CC[8:15]
8 b

C
1 b

C 
1 b

...
CC[0:h0-1]

 h0 b
C

1 b
CC[h0:h0+h1-1] 

h1 b
C 

1 b
...

|diffTA[0:j0-1]| 
j0 b

C 
1 b

|diffTA[j0:j0+j1-1]| 
j1 b

C 
1 b

Sign 
1 b

...

bCnt[0:i0-1]
 i0 b

C
1 b

bCnt[i0:i0+i1-1] 
i1 b

C 
1 b

...

bCnt diffTATiCC

Legend:
CC   Clock cycle

Ti   Thread ID 
bCnt   Branch counter
diffTA   Absolute difference target address
b   bits
h0, h1,..   Chunk size for CC
i0, i1,…   Chunk size for bCnt
j0, j1,…   Chunk size for diffTA

(a) tmlvNX_b descriptor

LVTiCC

CC[0:7]
8 b

CC[8:15]
8 b

C
1 b

C 
1 b

...

(b) tmlvCF_b descriptor (c) mlvCFiat variable encoding (tmlvCF_e) 

fahCnt[0:7]  
8 b

fahCnt[8:15] 
 8 b

...
C 

1 b
C 

1 b

CC fahCnt LVTi fahCnt LVTiCC

fahCnt[0:i0-1]
 i0 b

fahCnt[i0:i0+i1-1] 
i1 b

C 
1 b

...
C 

1 b

CC[0:h0-1]
 h0 b

C
1 b

CC[h0:h0+h1-1] 
h1 b

C 
1 b

...
CC[0:7]

8 b
CC[8:15]

8 b
C

1 b
C 

1 b
...

Legend:
CC Clock cycle

Ti Thread ID 
fahCnt Flag access hit count
LV Load value
h0, h1,… Chunk size of CC
i0, i1,… Chunk size of fahCnt



103 

 

6.5 Experimental Environment   

The goal of experimental evaluation is to determine the effectiveness of the 

newly proposed trace reduction techniques, mcfTRaptor and mlvCFiat, relative to 

the baseline Nexus-like control-flow and load data value traces for timed traces.  As 

a measure of effectiveness, we use the average number of bits emitted on the trace 

port per instruction executed and the average number of bits emitted per clock cycle.  

As the workload, we use control flow and load value traces of 10 benchmarks from 

the Splash2 benchmark suite [31].  Machine setup is described in Section 4.3.1. The 

benchmarks are discussed in Section 6.5.2.   

6.5.1 Experimental Setup 

The Multi2sim simulator supports building a cycle-accurate model for a mul-

ticore processor including processor and memory hierarchy. Figure 6.25 shows a 

block diagram of a multicore used to generate timed traces.  We use a multicore with 

8 single-threaded x86 processor cores.  Each core has its private L1 instruction and 

data caches. L1 data cache size is set to 8KB and L1 instruction cache size is set to 

8KB with a latency of 2 clock cycles per core.  The multicore has a shared L2 cache 

with a hit latency of 4 clock cycles.  L2 cache size is 64KB x Number of cores e.g for 1 

core L2 cache size is 64KB, and similar way for 8 core L2 cache size is 512KB. It has 

main memory with a block size of 256 KB and a latency of 200 clock cycle.  The net-

works between L1 ~ L2 cache and L2 ~ Main Memory are identical in buffer size and 

bandwidth. The experiments are conducted on a Dell PowerEdge T620 server de-

scribed in Section 5.3.1. 

 



104 

 

 

Figure 6.25 Block diagram of a modeled multicore in Mult2Sim 

6.5.2 Benchmarks 

The workload used is the Splash2 suite of [28] benchmarks.  Splash2 bench-

marks are predecessor benchmarks to Splash2x. The benchmarks are precompiled 

for Intel’s IA32 ISA by Multi2Sim developers [31] .  Each benchmark was executed 

with N = 1, 2, 4 and 8 processor cores using the Simsmall input set.  

The trace port bandwidth for control-flow traces depends on benchmark 

characteristics, specifically the frequency and type of control-flow instructions. Simi-

larly, the trace port bandwidth for load data value traces depends on the frequency 

and type of memory reads and data value sizes.  

Table 6.5 shows the control flow characterization of Splash2 benchmarks.  

We show the number of executed instructions (instruction count) and the number of 

instructions executed per a clock cycle (IPC). The last four columns show the fre-

quency of control flow instructions for single threaded programs (N = 1), as well as 

the frequency of conditional direct branches (C, D), unconditional direct branches (U, 

Core 0 Core 1 Core 7

L1
I

L1
D

L1
I

L1
D

L1
I

L1
D

 ...

L2 Cache

Main Memory

Network L1-L2

Network L2-MM



105 

 

D), and unconditional indirect branches (U, I).  The number of instructions slightly 

increases with an increase in the number of threads due to overhead and data parti-

tioning.  The number of instructions varies between 0.45 (lu) and 5.03 billion (water-

spatial).  The Splash2 benchmarks exhibit diverse behavior with respect to control 

flow instructions; their frequency ranges from as high as ~14% (water-nsquared, lu, 

raytrace) to as low as 3.96% (radix).  The total frequency for the entire benchmark 

suite is relatively low (10.46%).  The conditional direct branches are the most fre-

quent type of branches.  

 

Table 6.5 Splash2 benchmark suite control flow characterization 

 

 

Table 6.6 shows the memory read flow characterization of Splash2 bench-

marks while varying the number of threads (N = 1, 2, 4, and 8).  We show the num-

ber of instructions executed, the number of instructions executed per clock cycle, and 

the frequency of memory read instructions with respect to the total number of in-

Benchmark

Thread 1 2 4 8 1 2 4 8 branch C,D U,D U,I

barnes 2.13 2.13 2.13 2.14 0.405 0.827 1.515 2.760 10.25 6.10 2.44 1.71

cholesky 1.27 1.37 1.85 2.77 0.307 0.610 1.372 3.034 7.11 6.50 0.42 0.18

fft 0.92 0.92 0.92 0.92 0.280 0.563 1.000 1.584 8.35 6.06 1.14 1.14

fmm 2.79 2.79 2.84 2.88 0.403 0.800 1.570 2.942 7.05 6.57 0.36 0.12

lu 0.45 0.45 0.45 0.45 0.577 1.088 1.896 2.995 13.63 11.98 0.83 0.82

radiosity 2.23 2.32 2.31 2.31 0.636 1.242 2.354 4.419 11.70 6.48 3.40 1.81

radix 1.59 1.59 1.59 1.60 0.219 0.373 0.605 0.752 3.96 1.85 1.06 1.06

raytrace 2.47 2.47 2.47 2.47 0.501 1.166 2.164 3.601 12.12 7.74 2.65 1.73

water-nsq 0.74 0.74 0.74 0.75 0.701 1.458 3.038 5.293 14.12 11.56 2.16 0.41

water-sp 5.03 5.03 5.03 5.03 0.820 1.346 2.204 3.510 13.53 11.49 1.51 0.53

Total 19.61 19.81 20.33 21.31 0.453 0.867 1.564 2.567 10.46 7.82 1.69 0.95

Instruction Count [x10
9

] Instructions per cycle % branch for Thread = 1



106 

 

structions. The frequency of memory read instructions increases with an increase in 

the number of threads.  The percentage of memory read instructions varies between 

13.02 (fmm) and 35.09 (radix). The overall frequency of read instructions is 22.77% 

for N = 1 and 23.57% for N = 8. The overall IPC as a function of the number of cores 

indicates how well the performance of individual benchmarks scale.  For example, 

cholesky scales well, reaching speedup S(8) = IPC(N= 8)/IPC(N=1) = 9.8 for 8 cores, 

but radix does not scale well because its 8-core speedup is only S(8) = 3.4 

Table 6.6 Splash2 benchmark suite memory read characterization 

 

 

The memory trace port bandwidth depends not only on the frequency of read 

operations but also on operand size. Table 6.7 shows the frequency of memory reads 

for different operand sizes: 8-bit bytes, 16-bit words, 32-bit double words, 64-bit 

quad words, 80-bit extended precision operands, 128-bit octa-word operands, 256-bit 

hexa-word operands, and others. The results indicate that double-word and quad-

Benchmark

Thread 1 2 4 8 1 2 4 8 1 2 4 8

barnes 2.13 2.13 2.13 2.14 0.405 0.827 1.515 2.760 28.78 28.78 28.78 28.79

cholesky 1.27 1.37 1.85 2.77 0.307 0.610 1.372 3.034 27.78 29.37 30.17 31.08

fft 0.92 0.92 0.92 0.92 0.280 0.563 1.000 1.584 19.20 19.20 19.20 19.21

fmm 2.79 2.79 2.84 2.88 0.403 0.800 1.570 2.942 13.02 13.06 13.36 13.68

lu 0.45 0.45 0.45 0.45 0.577 1.088 1.896 2.995 20.20 20.22 20.25 20.31

radiosity 2.23 2.32 2.31 2.31 0.636 1.242 2.354 4.419 27.51 27.49 27.42 27.02

radix 1.59 1.59 1.59 1.60 0.219 0.373 0.605 0.752 35.09 35.09 35.09 35.09

raytrace 2.47 2.47 2.47 2.47 0.501 1.166 2.164 3.601 28.49 28.47 28.51 28.48

water-nsq 0.74 0.74 0.74 0.75 0.701 1.458 3.038 5.293 16.31 16.33 16.36 16.42

water-sp 5.03 5.03 5.03 5.03 0.820 1.346 2.204 3.510 17.38 17.38 17.38 17.38

Total 19.61 19.81 20.33 21.31 0.453 0.867 1.564 2.567 22.77 22.92 23.17 23.57

Instruction Count [x10
9

] Instructions per cycle % Load for Thread = 1



107 

 

word operands dominate in all benchmarks except of radix which has a majority of 

word operands.   

Table 6.7 Characterization of memory reads in Splash2 

 

 

6.5.3 Experiments  

Table 6.8 lists (technique, configuration) pairs considered in the experimental 

evaluation. For control-flow traces we compare the trace port bandwidth of 

tmcfNX_b versus tmcfTR_b and tmcfTR_e, while varying the number of threads 

(N=1, 2, 4, and 8).  To assess the impact of organization and size of predictor struc-

tures in tmcfTRaptor on its effectiveness, we consider the following configurations:  

 Small: 512-entry gshare outcome predictor and an 8-entry RAS; 

 Medium: 1024-entry gshare outcome predictor, a 16-entry RAS, and a 

16-entry iBTB (2x8); and 

 Large: 4096-entry gshare outcome predictor, a 32-entry RAS, and a 64-

entry iBTB (2x32). 

Benchmark

Total Memory 

reads

Byte 

operand

Word 

operand

Doubleword 

operand

Quadword 

operand

Extended 

precesion 

operand

Octaword 

operands Others

barnes 613094350 0 3.26 60.1 36.65 0 0 0

cholesky 352542968 1.33 0 54.09 44.59 0 0 0

fft 176253017 0.01 9.52 41.16 49.31 0 0 0

fmm 362805364 0 0.15 16.3 83.55 0 0 0

lu 90032624 0 2.04 41.77 56.19 0 0 0

radiosity 613310395 0 0 90.61 9.39 0 0 0

radix 558024069 4.51 29.31 57.16 9.02 0 0 0

raytrace 702413242 0.8 0.96 58.93 39.3 0 0 0

water-nsq 120913483 0.6 0.01 23.2 76.19 0 0 0

water-sp 874383921 0.55 0.02 22.63 76.8 0 0 0

Total 4463773433 0.92 4.70 50.25 44.14 0.00 0.00 0.00



108 

 

The index function for the gshare outcome predictor is gshare.index = 

BHR[log2(p):0] xor PC[4+ log2(p):4], where the Branch History Register (BHR) regis-

ter holds the outcome history of the last log2(p) conditional branches. The iBTB 

holds target addresses that are tagged. Both the iBTB tag and the iBTB index are 

calculated based on the information maintained in the path information register 

[29], [30].  

 

Table 6.8 Timed trace experiments 

 

 

For load data value traces, we compare the trace port bandwidth of tmlvNX_b 

versus tmlvCF_b and tmlvCF_e while varying the number of threads (N=1, 2, 4, and 

8). To assess the impact of organization and size data caches on tmlvCFiat effective-

ness, we consider the following cache configurations.  All cache structures are 4-way 

set associative, use round robin replacement policy, feature line size of 64 bytes, and 

first-access flag granularity is set to 4 bytes. We consider three configurations as fol-

lows: 

 Small: data cache of 16 KB; 

 Medium: data cache of 32 KB; and 

 Large: data cache of 64 KB. 

Timed 

Method Small Medium Large

Timed 

Method Small Medium Large

tmcf_NX_b tmlv_NX_b

tmcf_TR_b √ √ √ tmlv_CF_b √ √ √

tmcf_TR_e √ √ √ tmlv_CF_e √ √ √

load  flow (vary N = 1,2,4 & 8) control flow (vary N = 1,2,4 & 8)

√ √



109 

 

6.5.4 Variable Encoding 

Similarly to Section 4.3.4, we analyze the generated traces to find optimal 

variable length chunk sizes for the descriptor fields such as Ti.CC (time), Ti.bCnt, 

and Ti.fahCnt in both timed control-flow (tmcfTR_e) and timed load data value 

(tmlvCF_e) traces.  Table 6.9 summarizes chunk sizes that work well for all bench-

marks.  To encode differential time stamps, our results indicate the first chunk 

should have 4 bits, followed by a connect bit, and every other chunk should have 2 

bits.  Interestingly, this combination (h0, h1) = (4, 2) works well regardless of the 

size of predictor structures or caches and is used in both tmcfTR_e and tmlvCF_e.  

 

Table 6.9 Summary variable encoding parameter for different fields 

 

 

  

Mechanism fields small medium large

Time 4_2 4_2 4_2

bCnt 3_2 3_2 3_2

DiffTA 3_4 3_4 3_4

Time 4_2 4_2 4_2

fahCnt 2_2 2_2 2_2

Variable Encoding paramter i_j

tmlvCFiat

tmcfTRaptor



110 

 

CHAPTER 7  

 

TRACE PORT BANDWIDTH ANALYSIS FOR TIMED TRACES 

 

God does not work for you, he works with you 

--Rev. Pandurang Shastri Athavale 

 

This chapter shows the main results of the experimental evaluation for timed 

traces. We measure the trace port bandwidth for control-flow and load data value 

traces as a function of the number of processor cores, encoding mechanism, as well 

as configuration parameters of the trace filtering structures. Trace port bandwidth 

is measured in bits per instruction executed [bpi], calculated as the number of bits 

needed to be streamed divided by the number of instructions executed.  In addition, 

we consider bits per clock cycles [bpc], calculated as the total number of bits 

streamed divided by the number of clock cycles needed to complete a benchmark of 

interest.  Section 7.1 discusses the results for timed control-flow functional traces, 

specifically the trace port bandwidth requirements for the Nexus-like timed control-

flow trace, tmcfNX_b, as well as the trace port bandwidth for the tmcfTRaptor tech-

nique with the fixed encoding, tmcfTR_b, and with the variable encoding, tmcfTR_e.  

Section 7.2 discusses the results for timed memory load data value traces, specifical-

ly the trace port bandwidth requirements for the Nexus-like traces, tmlvNX_b, and 

the tmlvCFiat technique with the fixed, tmlvCF_b, and with the variable encoding, 

tmlvCF_e.  



111 

 

7.1 Trace Port Bandwidth for Timed Control-Flow Traces 

7.1.1 tmcfNX_b  

Table 7.1 shows the trace port bandwidth (TPB) in bpi and bpc for the Nexus-

like timed control flow traces, tmcfNX_b, for all benchmarks as a function of the 

number of threads/cores (N=1, 2, 4, and 8).  The last row shows the total trace port 

bandwidth when all benchmarks are considered together. The total bandwidth in 

bits per instruction is calculated as the sum of trace sizes for all benchmarks divided 

by the sum of the number of instructions executed for all benchmarks. Similarly, the 

total bandwidth in bits per cycle is calculated as the sum of trace sizes for all 

benchmarks divided by the sum of the execution times in clock cycles for all bench-

marks. For single-threaded benchmarks (N = 1), the TPB ranges between 0.83 bpi 

for fmm and 2.45 bpi for lu.  The required bandwidth varies across benchmarks and 

is highly correlated with the frequency of control-flow instructions.  Thus, lu, radios-

ity, raytrace and barnes have relatively high TPB requirements due to the relatively 

high frequency of branch instructions and especially indirect branches (see Table 

6.5), unlike fmm, which has very low TPB requirements due to the extremely small 

frequency of control flow instructions.  The required trace port bandwidth in bits per 

instruction increases as we increase the number of cores, due to additional infor-

mation such as Ti that needs to be streamed out.  Thus, when N = 8, the TPB ranges 

between 1.06 bpi for fmm and 2.81 bpi for lu. The total bandwidth for the entire 

benchmark suite ranges between 1.57 bpi when N = 1 and 1.90 bpi when N = 8.  

 

 



112 

 

Table 7.1 Trace port bandwidth for tmcfNX_b for Splash2 benchmark 

 

 

Whereas the bandwidth in bits per instruction increases with the number of 

cores, it does not fully capture the pressure on multiple processor cores place on the 

trace port, a shared resource.  The trace port bandwidth in bits per clock cycle better 

illustrates this pressure.  Thus, the control-flow trace for radiosity with 8 threads 

executing on 8 cores requires 10.74 bits per clock cycle on average. Generally, the 

trace port bandwidth in bits per clock cycle is a function of benchmark characteris-

tics as well as the scalability of individual benchmarks. The total TPB in bpc ranges 

between 0.71 bpc when N = 1 and 4.94 bpc when N = 8.  These results indicate that 

capturing control-flow trace on the fly in multicores requires significantly large trace 

buffers and wide trace ports. As shown in the next section, one alternative is to de-

velop hardware techniques that significantly reduce the volume and size of trace 

messages that are streamed out. 

Benchmark

Cores 1 2 4 8 1 2 4 8

barnes 1.95 2.16 2.17 2.18 0.79 1.79 3.29 6.03

cholesky 1.00 1.14 1.72 2.11 0.31 0.71 2.36 6.91

fft 1.62 1.81 1.81 1.81 0.45 1.02 1.81 2.86

fmm 0.83 0.97 1.06 1.15 0.33 0.78 1.67 3.41

lu 2.45 2.81 2.81 2.81 1.41 3.06 5.33 8.41

radiosity 2.10 2.35 2.38 2.38 1.33 2.92 5.56 10.74

radix 1.11 1.23 1.31 1.36 0.24 0.46 0.79 1.02

raytrace 2.08 2.32 2.32 2.33 1.04 2.70 5.02 8.37

water-ns 1.51 1.73 1.73 1.74 1.06 2.53 5.26 9.19

water-sp 1.55 1.78 1.78 1.78 1.27 2.40 3.92 6.25

Total 1.57 1.78 1.83 1.90 0.71 1.54 2.87 4.94

Trace port Bandwidth [bpi] Trace Port Bandwidth [bpc]



113 

 

7.1.2 tmcfTRaptor  

The effectiveness of tmcfTRaptor in reducing the trace port bandwidth de-

pends on prediction rates as the trace messages are generated only on rare mispre-

diction events. Table 7.2 shows the total misprediction rates collected on the entire 

Splash2 benchmark suite for the Small, Medium, and Large predictor configura-

tions, when the number of cores is varied between N = 1 and N = 8.  Figure 7.1 illus-

trates the total outcome misprediction rates and Figure 7.2 shows the total target 

address misprediction rates as a function of the number of threads and predictor 

configuration.  The outcome misprediction rates decrease as we increase the size of 

the gshare predictor.  They also slightly decrease with an increase in the number of 

processor cores as fewer branches compete for the same resource.  Relatively high 

misprediction rates indicate that even better trace compression could be achieved if 

more sophisticated outcome predictors are used.  However, this is out of scope of this 

work.  The target address misprediction rates are very low for the Medium and 

Large configurations. The Small configuration does not include the iBTB predictor 

resulting in higher target address misprediction rates. These results demonstrate a 

strong potential of tmcfTRaptor to reduce the trace port bandwidth requirements. 

Table 7.2 Total outcome and target address misprediction rates for Splash  

 

 

 

Configuration N=1 N=2 N=4 N=8 N=1 N=2 N=4 N=8

Small 7.86 7.83 7.20 6.23 8.47 8.59 8.58 8.55

Medium 6.69 6.67 6.14 5.31 2.05 2.12 2.08 2.05

Large 5.27 5.26 4.84 4.20 0.57 0.58 0.57 0.57

Outcome Misprediction Rate [%] Target Address Misprediction Rate [%]



114 

 

 

Figure 7.1 Outcome misprediction rates for Splash2 benchmark 

 

 

Figure 7.2 Target address misprediction rates for Splash2 benchmark 



115 

 

 

To quantify the effectiveness of tmcfTRaptor, we analyze the total trace port 

bandwidth in bits per instruction for the entire benchmark suite as a function of the 

number of threads (N = 1, 2, 4, and 8), the encoding mechanism (tmcfTR_b and 

tmcfTR_e), and the tmcfTRaptor organization (Small, Medium, and Large). Figure 

7.3 shows the total average trace port bandwidth.  

TR_b dramatically reduces the total trace port bandwidth as follows:  

 Small configuration: 0.19 bpi (N = 1) and 0.20 bpi (N = 8). This is equivalent 

to reducing the trace port bandwidth relative to tmcfNX_b 8.41 times for N=1 

and 9.71 times for N=8. 

 Medium configuration: 0.136 bpi (N = 1) and 0.144 bpi (N = 8). This is equiva-

lent to reducing the trace port bandwidth relative to tmcfNX_b 11.57 times 

for N = 1 and 13.19 times for N = 8. 

 Large configuration: 0.10 bpi (N = 1) and 0.11 (N = 8). This is equivalent to 

reducing the trace port bandwidth relative to tmcfNX_b 14.98 times for N = 1 

and 17.02 for N = 8. 

TR_e further reduce the average trace port bandwidth as follow: 

 Small configuration: 0.13 bpi (N = 1) and 0.14 bpi (N = 8). This is equivalent 

to reducing the trace port bandwidth relative to tmcfNX_b is 12.11 times for 

N = 1 and 13.26 for N = 8. 

 Medium configuration: 0.11 bpi (N = 1) and 0.12 bpi (N = 8).  This is equiva-

lent to reducing the trace port bandwidth relative to tmcfNX_b is 14.89 times 

for N = 1 and 16.35 for N = 8. 



116 

 

 Large configuration:  0.087 bpi (N = 1) and 0.095 bpi (N = 8).  This is equiva-

lent to reducing the trace port bandwidth relative to tmcfNX_b is 18.15 times 

for N = 1 and 20.07 for N = 8. 

 

Table 7.3 shows the compression ratio for tmcfTR_b relative to tmcfNX_b, as 

a function of the predictor configuration (Small, Medium, Large) and the number of 

threads for each benchmark. The compression ratio is calculated as follows: 

TPB(tmcfNX_b)/TPB(tmcfTR_b).  For N = 1, the compression ratio ranges from 4.07 

(raytrace) to 30,296 (radix) for the Small configuration and from 10.91 (water-sq) to 

42,393 (radix) for the Large configuration.  For N = 8, the compression ratio ranges 

from 4.04 (raytrace) to 13,570 (radix) for the Small configuration and from 10.76 

(water-nsquared) to 13,570 (radix) for the Large configuration.  The gains in com-

pression ratio achieved when increasing the number of cores (threads) are relatively 

more pronounced when we are using smaller predictor structures.  

 

 

Figure 7.3 Total trace port bandwidth in bpi for timed control flow traces 



117 

 

Table 7.3 Compression ratio for tmcfTR_b relative to tmcfNX_b 

 

 

Table 7.4 shows the compression ratio for tmcfTR_e relative to tmcfNX_b. 

tmcfTR_e achieves higher compression ratios than tmcfTR_b, especially when using 

the Small predictor structures that have a relatively high number of mispredictions 

and thus reported bCnt values will be shorter. For N = 1, the compression ratio 

ranges from 6.70 (raytrace) to 56,102 (radix) for the Small configuration and from 

12.77 (water-nsquared) to 69,711 (radix) for the Large configuration.  For N = 8, the 

compression ratio ranges from 6.20 (raytrace) to 13,570 (radix) for the Small configu-

ration and from 12.45 (water-nsquared) to 13,570 (radix) for the Large configuration.  

 

cores

Config S M L S M L S M L S M L

barnes 15.66 19.14 19.61 15.36 18.60 19.04 15.31 18.51 18.96 15.32 18.50 18.98

cholesky 18.49 29.52 34.03 18.97 28.71 32.85 33.99 49.95 57.07 60.78 87.51 99.95

fft 90.07 91.59 92.64 88.09 89.84 90.74 86.70 87.96 89.26 85.26 86.90 87.74

fmm 11.79 13.30 14.49 12.40 13.91 15.19 13.73 15.41 16.77 15.08 16.92 18.42

lu 19.34 19.41 19.51 19.09 19.17 19.27 19.08 19.17 19.28 18.98 19.10 19.24

radiosity 5.75 8.53 13.74 5.64 8.28 13.24 5.68 8.34 13.27 5.94 8.74 13.87

radix 30296 41510 42393 12335 30124 30610 13085 13085 13085 13570 13570 13570

raytrace 4.07 7.22 11.13 4.08 7.12 10.98 4.07 7.09 10.95 4.04 7.01 10.80

water-ns 7.80 9.48 10.91 7.77 9.49 10.93 7.76 9.49 10.92 7.69 9.39 10.76

water-sp 9.25 10.01 11.62 9.18 9.93 11.53 9.19 9.93 11.53 9.18 9.92 11.51

Total 8.41 11.57 14.98 8.39 11.42 14.80 8.85 12.04 15.57 9.71 13.19 17.02

N=1 N=2 N=4 N=8



118 

 

Table 7.4 Compression ratio for tmcfTR_e relative to tmcfNX_b 

 

 

Figure 7.4 shows the total trace port bandwidth in bits per clock cycle for 

tmcfNX_b (left), tmcfTR_b and tmcfTR_e (right).  tmcfTR_e offers superior perfor-

mance, the tmcfTR_e for Large configuration when N = 8 requires merely 0.246 bpc 

on average (ranging from ~0 to 0.739 bpc), whereas tmcfNX_b requires 0.290 bpc 

(ranging between ~0 to 0.854 bpc). These results further underscore the effective-

ness of the proposed tmcfTRaptor predictor structures for a range of diverse bench-

marks. The results indicate that with tmcfTR_e even a single-bit data trace port is 

sufficient to stream out the control-flow trace from an 8-core system-on-a-chip, thus 

dramatically reducing the cost of on-chip debugging infrastructure. 

The improvements of tmcfTR_b and tmcfTR_e over tmcfNX_b are slightly 

smaller than those observed for of functional traces due to the overhead required for 

reporting time stamps.   

 

 

cores

Config S M L S M L S M L S M L

barnes 21.17 24.07 24.59 19.98 22.73 23.24 19.94 22.67 23.18 20.00 22.71 23.24

cholesky 28.60 34.14 38.02 27.27 32.66 36.42 48.27 57.64 64.07 85.73 101.88 113.39

fft 95.36 95.93 97.08 92.59 93.54 94.52 91.06 91.98 92.92 88.17 89.48 90.38

fmm 14.09 15.17 16.15 14.49 15.60 16.70 16.03 17.26 18.45 17.63 18.97 20.31

lu 20.36 20.41 20.52 20.06 20.12 20.22 20.08 20.15 20.26 20.03 20.11 20.26

radiosity 9.38 12.69 18.06 8.60 11.65 16.75 8.64 11.71 16.80 9.02 12.23 17.54

radix 56102 68676 69711 37431 44227 45303 26580 31397 32878 13570 13570 13570

raytrace 6.70 9.90 14.15 6.26 9.29 13.48 6.24 9.27 13.47 6.20 9.21 13.36

water-ns 9.90 11.43 12.77 9.52 11.11 12.48 9.51 11.12 12.50 9.47 11.09 12.45

water-sp 11.27 11.93 13.57 10.83 11.49 13.11 10.80 11.45 13.06 10.77 11.42 13.03

Total 12.11 14.89 18.15 11.48 14.17 17.43 12.10 14.93 18.34 13.26 16.35 20.07

N=1 N=2 N=4 N=8



119 

 

 

Figure 7.4 Trace port bandwidth in bpc for control flow traces 

 

7.2 Trace Port Bandwidth for Timed Memory Load Data Value Traces 

7.2.1 tmlvNX_b 

Table 7.5 shows the trace port bandwidth in bpi and in bpc for the Nexus-like 

timed load data value traces, tmlvNX_b, for all benchmarks as a function of the 

number of threads/cores (N=1, 2, 4, and 8).  The last row shows the total trace port 

bandwidth when all benchmarks are considered together. The total bandwidth in 

bits per instruction is calculated as the sum of trace sizes for all benchmarks divided 

by the sum of the number of instructions executed for all benchmarks. Similarly, the 

total bandwidth in bits per cycle is calculated as the sum of trace sizes for all 

benchmarks divided by the sum of the execution times in clock cycles for all bench-

marks.  

For single-threaded benchmarks (N = 1), the TPB ranges between 8.82 bpi for 

fmm and 15.29 bpi for cholesky.  The required bandwidth varies across benchmarks 



120 

 

and is highly correlated with the frequency and type of memory reads.  Thus, barnes 

and cholesky have relatively high TPB requirements due to the relatively high fre-

quency of load instructions, unlike fmm which has very low TPB requirements due 

to the extremely low frequency of memory read instructions.  The trace port band-

width increases slightly with an increase in the number of cores for two reasons: (a) 

an increase in the number of bits needed to report thread index, and (b) an increase 

in the frequency of load instructions (caused by synchronization primitives). Thus, 

when N = 8, the TPB ranges between 9.30 bpi for fmm and 16.01 bpi for raytrace. 

The total bandwidth for the entire benchmark suite ranges between 12.34 bpi when 

N = 1 and 12.98 bpi when N = 8.  

Whereas the bandwidth in bits per instruction increases with the number of 

cores, it does not fully capture the pressure multiple processor cores place on the 

trace port, a shared resource.  The trace port bandwidth in bits per clock cycle better 

illustrates this pressure, load data value trace for cholesky reaches 4.69 bpc when 

N = 1 and 47.61 bpc when N = 8; fmm requires 3.55 when N = 1 and 27.63 bpc when 

N = 8.  The total trace port bandwidth in bpc ranges from 5.59 when N = 1 to 33.79 

when N = 8.  The trace port bandwidth in bpc is heavily influenced not only by the-

frequency and type of memory reads but also by the scalability of individual bench-

marks. For example, barnes, water_spa, and fmm exhibit high scalability (see IPC in 

Table 6.6) which contributes to a significant increase in the trace port bandwidth 

requirements for N = 4 and N = 8.  These results indicate that capturing load data 

value traces on the fly in multicores requires large trace buffers and wide trace 

ports. As shown in the next section, one alternative is to develop hardware tech-



121 

 

niques that significantly reduce the volume and size of trace data that are streamed 

out. 

Table 7.5  Trace port bandwidth for tmlvNX_b for Splash2 benchmark 

 

 

7.2.2 tmlvCFiat  

The effectiveness of tmlvCFiat directly depends on the first-access flag miss 

rate – lower values result in fewer trace messages needing to be streamed out 

through the trace port. Figure 7.5 shows the total first-access miss rate as a function 

of the number of cores for three data cache configurations (Small, Medium, and 

Large).  The total first-access miss rate is calculated as the total number of first-

access misses when all benchmarks are considered together divided by the total 

number of data reads. The first-access miss rate decreases with an increase in the 

number of cores, e.g., from more than 3.09% when N = 1 to 2.81% when N = 8 for the 

Medium configuration.  As expected, larger data caches result in a smaller number 

of miss events and thus a smaller number of first-access miss events. e.g., the first-

Benchmark

Cores 1 2 4 8 1 2 4 8

barnes 15.04 15.89 15.87 15.81 6.09 13.15 24.07 43.81

cholesky 15.29 16.53 16.29 14.54 4.69 10.28 22.28 47.61

fft 10.65 11.21 11.20 11.20 2.98 6.31 11.20 17.74

fmm 8.82 9.22 9.29 9.30 3.55 7.38 14.59 27.63

lu 11.86 12.46 12.47 12.47 6.84 13.56 23.64 37.36

radiosity 12.11 12.90 13.00 12.45 7.71 16.04 30.32 55.95

radix 13.42 14.47 14.45 14.52 2.94 5.39 8.75 10.92

raytrace 15.18 16.02 16.01 16.01 7.60 18.67 34.51 57.56

water-ns 10.65 11.14 11.14 11.15 7.46 16.24 33.84 59.02

water-sp 11.38 11.90 11.90 11.90 9.33 16.02 26.22 41.77

Total 12.34 13.06 13.13 12.98 5.59 11.34 20.50 33.79

Trace port Bandwidth [bpi] Trace Port Bandwidth [bpc]



122 

 

access miss rate ranges from 4.74 % for the Small configuration to 1.73 % for the 

Large configuration when the number of cores is set to four (N = 8).  Figure 7.5 also 

indicates the minimum and the maximum first-access miss rates.  Thus, the first-

access miss rate reaches as high as ~14.26% for fft and as low as 0.48% for water-

spa, depending on the number of cores and the data cache size. These results con-

firm that tmlvCFiat indeed can reduce the number of trace messages. 

 

Figure 7.5 First Access Miss Rate for Splash2 benchmark 

 

Figure 7.6 shows the total average trace port bandwidth for Nexus–like 

memory read flow traces (tmlvNX_b), tmlvCFiat (tmlvCF_b, tmlvCF_e) as function of 

the number of threads (N = 1, 2, 4, and 8 ) and the tmlvCFiat configuration (Small, 

Medium and Large).  Table 7.6 shows the trace port bandwidth for Large configura-

tion.  For N = 1, tmlvNX_b requires on average 12.34 bpi when N = 1 and ranges be-



123 

 

tween 8.8 bpi (fmm) and 15.29 bpi (cholesky); for N = 8, tmlvNX_b requires 12.98 bpi   

ranges between 9.29 (fmm) and 16.01 (cholesky).  

 

 

 

Figure 7.6 Trace port bandwidth bpi for timed load data value trace 

 

tmlvCF_b dramatically reduces the average trace port bandwidth as followa: 

 Small configuration: 1.08 bpi (N = 1) and 0.98 bpi when N = 8. This is equiva-

lent to reducing the trace port bandwidth relative to NX_b 11.41 times for    

N = 1 and 13.24 times for N = 8. 

 Medium configuration: 0.59 bpi (N = 1) and 0.57 bpi when N = 8. This is 

equivalent to reducing the trace port bandwidth relative to NX_b 20.6 times 

for N = 1 and 22.64 times for N = 8. 

 Large configuration: 0.317 bpi (N = 1) and 0.339 bpi when N = 8. This is 

equivalent to reducing the trace port bandwidth relative to NX_b 38.9 times 

for N = 1 and 38.25 times for N = 8. 



124 

 

Table 7.6 Trace port bandwidth for tmlvNX_b and tmlvCFiat  

 

 

tmlvCF_e further reduces the average trace port bandwidth as follows: 

 Small configuration: 0.977 bpi (N = 1) and 0.893 bpi when N = 8. This is 

equivalent to reducing the trace port bandwidth relative to tmlvNX_b 1.10 

times for N = 1 and 1.09 times for N = 8. 

 Medium configuration: 0.54 bpi (N = 1) and 0.52 bpi when N = 8. This is 

equivalent to reducing the trace port bandwidth relative to tmlvNX_b 1.09 

times for N = 1 and 1.09 times for N = 8. 

 Large configuration: 0.287 bpi (N = 1) and 0.310 bpi when N = 4. This is 

equivalent to reducing the trace port bandwidth relative to tmlvNX_b 1.10 

times for N = 1 and 1.09 times for N = 8. 

Table 7.7 shows the compression ratio or speedup of tmlvCF_e relative to 

tmlvNX_b, calculated as TPB(tmlvNX_b)/TPB(tmlvCF_e) as a function of the num-

ber of threads (N = 1, 2, 4 and 8) and configuration (Small, Medium, Large).  For the 

Small configuration, the average compression ratio is 12.63 for N = 1 and 14.54 for 

N = 8.  For the Medium configuration, the average compression ratio is 22.65 for N = 

1 and 24.75 for N = 8.  For the Large configuration, the average compression ratio 

Thread

Mechanism tmlvNX_b tmlvCF_b tmlvCF_e tmlvNX_b tmlvCF_b tmlvCF_e tmlvNX_b tmlvCF_b tmlvCF_e tmlvNX_b tmlvCF_b tmlvCF_e

barnes 15.041 0.414 0.382 15.888 0.414 0.383 15.867 0.462 0.429 15.810 0.837 0.775

cholesky 15.292 0.951 0.861 16.534 0.897 0.813 16.294 0.691 0.626 14.537 0.430 0.388

fft 10.651 1.401 1.260 11.209 1.433 1.303 11.201 1.426 1.300 11.196 1.423 1.296

fmm 8.821 0.200 0.183 9.219 0.209 0.192 9.285 0.207 0.192 9.299 0.205 0.190

lu 11.858 0.488 0.492 12.464 0.323 0.319 12.466 0.329 0.326 12.474 0.253 0.244

radiosity 12.108 0.062 0.053 12.902 0.070 0.062 12.999 0.076 0.066 12.450 0.072 0.064

radix 13.424 0.723 0.636 14.467 0.759 0.675 14.454 0.758 0.676 14.519 0.767 0.683

raytrace 15.176 0.223 0.199 16.025 0.234 0.211 16.010 0.234 0.211 16.012 0.234 0.210

water-ns 10.646 0.033 0.031 11.137 0.033 0.031 11.139 0.033 0.031 11.150 0.044 0.041

water-sp 11.379 0.040 0.039 11.900 0.046 0.044 11.899 0.047 0.045 11.899 0.046 0.044

Total 12.342 0.317 0.287 13.065 0.321 0.293 13.127 0.321 0.293 12.982 0.339 0.310

N=1 N=2 N=4 N=8



125 

 

42.98 for N = 1 and 41.95 for N = 8.  The best performing is water-spatial (N = 1) and 

the worst performing is fft (N = 8). 

 

Table 7.7 Compression ratio of tmlvCF_e ralative to tmlvNX_b  

 

 

Figure 7.7 shows the total trace port bandwidth in bits per clock cycle. 

tmlvCF_e and tmlvCF_b are highly effective in reducing the trace port bandwidth. 

When N = 8, the total required bandwidth for tmlvCF_e is just 2.32 bpc compared to 

33.78 for tmlvNX_b for the Small configuration. Our variable encoding scheme in 

tmlvCF_e offers improvement in the range of 9 % when compared to fixed encoding 

tmlvCF_b for the Large configuration.  

cores

Config S M L S M L S M L S M L

barnes 5.65 10.68 39.40 5.68 10.55 41.45 5.65 10.20 37.01 5.70 9.64 20.41

cholesky 5.75 11.67 17.77 7.92 14.61 20.33 11.07 19.37 26.05 17.17 28.93 37.46

fft 4.63 6.84 8.46 4.72 6.95 8.60 4.70 6.95 8.61 4.71 6.97 8.64

fmm 16.95 28.95 48.12 17.16 29.08 47.99 17.60 29.57 48.46 18.04 30.15 48.99

lu 18.42 20.62 24.12 18.57 22.37 39.07 18.60 22.37 38.24 19.17 32.26 51.06

radiosity 35.50 100.15 227.17 35.12 86.42 209.79 34.71 99.53 195.76 34.58 105.87 196.06

radix 16.36 18.44 21.10 16.51 18.68 21.44 16.40 18.57 21.38 16.17 18.35 21.26

raytrace 11.02 27.11 76.15 10.93 26.84 76.09 10.82 26.31 76.02 10.68 26.16 76.21

water-ns 21.83 22.48 345.65 21.79 22.66 359.25 21.65 23.07 364.00 21.49 22.65 270.64

water-sp 126.85 175.60 295.55 130.05 173.47 271.69 128.78 171.71 265.02 132.21 174.22 269.82

Total 12.63 22.65 42.98 13.25 23.21 44.65 13.70 23.71 44.80 14.54 24.75 41.95

N=1 N=2 N=4 N=8



126 

 

 

Figure 7.7  Trace port bandwidth in bpc for timed load data value trace 

  



127 

 

CHAPTER 8  

 

CONCLUSIONS 

 

Knowledge, Action and Devotion are complementary to each other 

--Rev. Pandurang Shastri Athavale 

 

Modern embedded and cyber-physical computer systems are shaped by their 

increasing sophistication and complexity, diversification, proliferation, as well as 

ever-tightening time-to-market. A growing number of such systems relies on multi-

core systems-on-a-chip. More complex software stacks running on more sophisticat-

ed and complex hardware platforms place additional burdens on software developers 

who spend a significant portion of development time on software debugging and test-

ing.  Developing hardware/software techniques to help developers locate and correct 

software bugs faster is critical in meeting time-to-market deadlines, reducing system 

cost, and improving system reliability by providing well-tested bug-free software.  

Capturing all events of interest for debugging in hardware and streaming them out 

of the chip is cost prohibitive because a huge amount of debug and trace data gener-

ated on systems with multiple processor cores running at clock frequencies in GHz.  

This research focuses on developing and evaluating hardware techniques for 

unobtrusive capturing and filtering of control-flow and load data value traces in re-

al-time for multicore systems.  These traces coupled with sophisticated software de-

buggers enable a faithful reconstruction of events from the target platform in the 

software debugger, thus helping software developers locate and correct bugs faster.  



128 

 

The thesis introduced mcfTRaptor and mlvCFiat hardware structures to capture 

and compress control-flow and load data value traces, respectively.  To dramatically 

reduce the number of trace messages that needs to be streamed out, these structures 

are modelled in a software debugger as well and work in sync with corresponding 

hardware structures. This way, trace messages are generated only in the case of rare 

miss events on predictor or cache structures on the target platforms – events that 

cannot be properly inferred by the software debugger.   

Our experimental evaluation demonstrated the effectiveness of the proposed 

techniques by evaluating trace port bandwidth requirements on a selected set of 

benchmark programs.  The experimental evaluation is based on functional traces 

that assume that events are ordered on the target platform and timed traces that 

include explicit time stamps.  The evaluation is performed while varying the number 

of processor cores, size and organization of tracing structures, and encoding 

schemes.  We evaluate several encoding schemes and find those that minimize the 

number of bits that needs to be streamed out of the chip.    

The results of our experimental evaluation show that mcfTRaptor dramati-

cally reduces the trace port bandwidth when compared to the current state-of-the-

art.  The total improvements are between ~12 times for the Small configuration and 

over ~30 times for the Large configuration.  The proposed method is robust, reducing 

the trace port bandwidths regardless of the number of processors on a chip.  Similar-

ly, mlvCFiat proves to be very effective in reducing the trace port bandwidth for load 

data value traces when compared to the state-of-the-art.  It reduces the bandwidth 

in the range of 3.9 – 4.6 times for relatively the Small configuration and 6.7 to 7.4 

times for the Large configuration.  



129 

 

The research tools designed in this thesis can be used to support future re-

search in the area of on-the-fly tracing in multicores.  The proposed techniques 

mcfTRaptor and mlvCFiat may utilize shared resources (predictors and caches).  

Another promising research area is to expand mlvCFiat technique to utilize cache 

coherence protocols and thus further reduce the number of trace messages that need 

to be reported. 

  



130 

 

REFERENCES 

[1] G. Tassey, “The Economic Impacts of Inadequate Infrastructure for Software 

Testing,” 2002. [Online]. Available: 

http://www.rti.org/pubs/software_testing.pdf. 

[2] IEEE-ISTO, “The Nexus 5001 Forum Standard for a Global Embedded Proces-

sor Debug Interface V 3.01,” Nexus 5001 Forum, 2012. [Online]. Available: 

http://www.nexus5001.org/standard. [Accessed: 27-Sep-2014]. 

[3] W. Orme, “Debug and Trace for Multicore SoCs.” White paper, ARM, Sep-2008. 

[4] V. Uzelac, A. Milenković, M. Milenković, and M. Burtscher, “Using Branch Pre-

dictors and Variable Encoding for On-the-Fly Program Tracing,” IEEE Transac-

tions on Computers, vol. 63, no. 4, pp. 1008–1020, Apr. 2014. 

[5] V. Uzelac and A. Milenković, “Hardware-Based Load Value Trace Filtering for 

On-the-Fly Debugging,” ACM Transactions on Embedded Computing Systems, 

vol. 12, no. 2s, pp. 1–18, May 2013. 

[6] A. Myers, “A Binary Instrumentation Tool Suite for Capturing and Compress-

ing Traces for Multithreaded Software,” Thesis, University of Alabama in 

Huntsville, Huntsville, AL, USA, 2014. 

[7] R. Ubal, B. Jang, P. Mistry, D. Schaa, and D. Kaeli, “Multi2Sim: a simulation 

framework for CPU-GPU computing,” in Proceedings of the 21st International 

Conference on Parallel Architectures and Compilation Techniques, Minneapolis, 

MN, USA, 2012, pp. 335–344. 

[8] A. Milenkovic and M. Milenkovic, “Exploiting Streams in Instruction and Data 

Address Trace Compression,” in Proceedings of the IEEE 6th Annual Workshop 

on Workload Characterization, Austin, TX, 2003, pp. 99–107. 



131 

 

[9] A. Milenkovic and M. Milenkovic, “Stream-Based Trace Compression,” IEEE 

Computer Architecture Letter, vol. 2, no. 1, pp. 9–12, 2003. 

[10] IEEE, “IEEE Standard 1149.1-2013 for Test Access Port and Boundary-Scan 

Architecture,” IEEE standards Association, May-2013. [Online]. Available: 

http://standards.ieee.org/findstds/standard/1149.1-2013.html. [Accessed: 27-

Sep-2014]. 

[11] MIPS, “MIPS PDtrace Specification Rev 7.50.” MIPS Technologies Inc., CA, 

Dec-2012. 

[12] A. Mayer, H. Siebert, and C. Lipsky, “MCDS - Multi-Core Debug Solution.” 

White paper, IPextreme, May-2007. 

[13] N. Stollon and R. Collins, “Nexus Based Multi-Core Debug,” in Proceedings of 

the Design Conference International Engineering Consortium, Santa Clara, CA, 

USA, 2006, vol. 1, pp. 805–822. 

[14] K.-U. Irrgang and R. G. Spallek, “Comparison of Trace-Port-Designs for On-

Chip-Instruction-Trace,” in IEEE Germany Student Conference, University of 

Passau, 2012. 

[15] V. Uzelac and A. Milenkovic, “A Real-Time Program Trace Compressor Utiliz-

ing Double Move-To-Front Method,” in Proceedings of the 46th Annual Design 

Automation Conference (DAC’09), July 26-31, San Francisco, CA, USA, 2009, 

pp. 738–743. 

[16] B. Mihajlović and Ž. Žilić, “Real-time address trace compression for emulated 

and real system-on-chip processor core debugging,” in Proceedings of the 21st 

Edition on Great lakes symposium on VLSI, Lausanne, Switzerland, 2011, pp. 

331–336. 



132 

 

[17] C.-F. Kao, S.-M. Huang, and I.-J. Huang, “A Hardware Approach to Real-Time 

Program Trace Compression for Embedded Processors,” IEEE Transactions on 

Circuits and Systems, vol. 54, pp. 530–543, 2007. 

[18] A. Milenkovic and M. Milenkovic, “An Efficient Single-Pass Trace Compression 

Technique Utilizing Instruction Streams,” ACM Transactions on Modeling and 

Computer Simulation (TOMACS), vol. 17, no. 1, pp. 1–27, 2007. 

[19] M. Milenkovic, A. Milenkovic, and M. Burtscher, “Algorithms and Hardware 

Structures for Unobtrusive Real-Time Compression of Instruction and Data 

Address Traces,” in Proceedings of the 2007 Data Compression Conference 

(DCC’07), Mar 27-29, Snowbird, UT, 2007, pp. 55–65. 

[20] V. Uzelac, A. Milenkovic, M. Milenkovic, and M. Burtscher, “Real-time, unob-

trusive, and efficient program execution tracing with stream caches and last 

stream predictors,” in Proceedings of IEEE International Conference on Com-

puter Design, 2009. ICCD 2009, Lake Tahoe, CA, 2009, pp. 173–178. 

[21] A. Milenkovic, V. Uzelac, M. Milenkovic, and M. Burtscher, “Caches and Pre-

dictors for Real-Time, Unobtrusive, and Cost-Effective Program Tracing in Em-

bedded Systems,” IEEE Transactions on Computers, vol. 60, no. 7, pp. 992–

1005, Jul. 2011. 

[22] V. Uzelac, A. Milenković, M. Burtscher, and M. Milenković, “Real-time Unob-

trusive Program Execution Trace Compression Using Branch Predictor 

Events,” in Proceedings of the International Conference on Compilers, Architec-

tures and Synthesis of Embedded Systems (CASES’10), Scottsdale, AZ, 2010, 

pp. 97–106. 



133 

 

[23] A. Milenkovic, M. Milenkovic, and J. Kulick, “N-Tuple Compression: A Novel 

Method for Compression of Branch Instruction Traces,” in Proceedings of the 

16th International Conference on Parallel and Distributed Computing Systems 

(PDCS-2003), Reno, NV, 2003, pp. 49–55. 

[24] V. Uzelac and A. Milenković, “Hardware-based data value and address trace 

filtering techniques,” in Proceedings of the International Conference on Compil-

ers, Architectures and Synthesis for Embedded System (CASES’10), Scottsdale, 

AZ, USA, 2010, pp. 117–126. 

[25] A. B. T. Hopkins and K. D. McDonald-Maier, “Debug Support Strategy for Sys-

tems-on-Chips with Multiple Processor Cores,” IEEE Transactions on Comput-

ers, vol. 55, no. 2, pp. 174–184, Feb. 2006. 

[26] K. Driesen and U. Hölze, “Accurate indirect branch prediction,” in SIGARCH 

Computer Architecture News, 1998, vol. 26, pp. 167–178. 

[27] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J. 

Reddi, and K. Hazelwood, “Pin: building customized program analysis tools 

with dynamic instrumentation,” in Proceedings of the 2005 ACM SIGPLAN con-

ference on Programming Language Design and Implementation, Chicago, IL, 

USA, 2005, pp. 190 – 200. 

[28] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The SPLASH-2 pro-

grams: characterization and methodological considerations,” in Proceedings of 

the 22nd Annual International Symposium on Computer Architecture, Santa 

Margherita Ligure, Italy, 1995, pp. 24–36. 



134 

 

[29] V. Uzelac, “Microbenchmarks and mechanisms for reverse engineering of mod-

ern branch predictor units,” Thesis, University of Alabama in Huntsville, 

Huntsville, AL, USA, 2008. 

[30] V. Uzelac and A. Milenkovic, “Experiment flows and microbenchmarks for re-

verse engineering of branch predictor structures,” in Proceedings of the IEEE 

International Symposium on Performance Analysis of Systems and Software, 

April 2009, Boston, MA, USA, 2009, pp. 207–217. 

[31] “SPLASH-2, 32 bit binary archive,” Multi2Sim benchmarks. [Online]. Availa-

ble: https://www.multi2sim.org/benchmarks/splash2.php. [Accessed: 07-Mar-

2015]. 

[32] “Multi2Sim,” Multi2Sim, A Heterogeneous System Simulator. [Online]. Availa-

ble: https://www.multi2sim.org/. [Accessed: 07-Mar-2015]. 

 


