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ABSTRACT 
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Title  Experimental Evaluation of Techniques for Capturing and Compress-

ing Hardware Traces in Multicores  

 

Modern embedded systems are indispensable in all aspects of modern life. 

The increasing complexity of hardware and software stacks and tightening time-to-

market deadlines make software development and testing the most critical aspects 

of system development. To help developers find software bugs faster, modern em-

bedded systems increasingly rely on on-chip resources for debugging and tracing.  

Unfortunately, capturing and streaming all hardware events of interest for program 

debugging is cost-prohibitive in multicores where tens of processor cores work con-

currently at very high speeds. This thesis focuses on capturing control-flow and data 

traces in multicores. It introduces two new techniques: mcfTRaptor for capturing 

control-flow traces and mlvCFiat for capturing load data value traces. The effective-

ness of the commercial state-of-the-art and the proposed techniques are experimen-

tally evaluated by measuring the number of bits needed to be streamed off the chip 

for both functional and timed traces. The results show that the proposed techniques 

are very effective, while requiring modest hardware support.  
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CHAPTER 1  

 

INTRODUCTION 

 

Without efforts you cannot achieve – Do not desire anything free 

--Rev. Pandurang Shastri Athavale 

 

1.1 Background and Motivation 

Embedded computer systems are indispensable in modern communications, 

transportation, manufacturing, medicine, entertainment, and national security.  

Embedded computer systems are often used as a part of larger physical systems they 

control or serve by providing computational services.  Such systems are often re-

ferred to as cyber-physical systems.  Faster, cheaper, smaller, more sophisticated, 

and more power-efficient embedded computer systems spur new applications that 

require very complex software stacks.  The growing software and hardware complex-

ity and tightening time-to-market deadlines make software development and debug-

ging the most critical aspects of embedded system development.  

A study by the National Institute of Standard and Technology (NIST, RTI, 

2002) [1] found that software developers spend 50 to 75% of their development time 

debugging programs. Thus, with 800,000 software developers in the U.S. with annu-

al gross salaries of $120,000, the annual cost of software debugging is $48 billion. In 

spite of these efforts, the U.S. still loses approximately $20-$60 billion a year due to 
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software bugs and glitches. The recent shift toward multicore architectures makes 

software development and debugging even more challenging. 

Ideally, software developers would like to have perfect visibility into the sys-

tem state during program execution. However, achieving complete visibility of all 

internal signals in real time is not feasible due to limited I/O bandwidth, high inter-

nal complexity, and high operating frequencies. To address these challenges, modern 

embedded processors increasingly include on-chip hardware modules solely devoted 

to debugging and tracing.  These modules encompass logic for stop-control debugging 

and resources to capture, filter, buffer, and output control-flow and data traces. 

These traces, coupled with powerful software debuggers, enable a faithful program 

replay that allows developers to locate and correct software bugs faster. 

Figure 1.1 shows a typical embedded system-on-a-chip (SoC) with 4 processor 

cores and its on-chip debugging resources that include run-control logic, logic for 

capturing program traces, and buffers that serve to temporarily store captured trac-

es before they are streamed out through a trace port to an external trace probe. The 

external trace probe typically includes large trace buffers on the order of gigabytes 

and interfaces to the target platform’s trace port and to the host workstation. The 

host workstation runs a software debugger that replays the program execution off-

line by reading and processing the traces from the external probe and executing the 

program binary. This way, software developers can faithfully replay the program 

execution on the target platform and gain insights into behavior of the target system 

while it is running at full speed. 
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Figure 1.1 Debugging and tracing in embedded multicores: a system view  

 

The IEEE’s Nexus 5001 standard [2] defines functions and interfaces for de-

bugging and tracing in embedded processors for four classes of debugging and trac-

ing operations (Class 1 – Class 4).  State-of-the-art trace modules employ filtering 

and encoding to reduce the number of bits necessary to recreate program execution. 

Yet, trace port bandwidths are still in the range of 1 to 4 bits per instruction execut-

ed per core for control-flow traces [3] and 16 bits per instruction executed per core 

for data-flow traces [3]. With these trace port bandwidth requirements, a 1 KB on-

chip trace buffer per processor core may capture control-flow of program segments 

on the order of 2,000-8,000 instructions or data-flow of program segments of merely 

400-800 instructions. Such short program segments are often insufficient for locat-

ing software errors in modern systems with more sophisticated software stacks 

where the distance between a bug’s origin and its manifestation may span billions of 

executed instructions. Increasing the size of the buffers and the number of pins for 

trace ports is not an attractive alternative to chip manufacturers as it significantly 

increases the system complexity and cost. This problem is exacerbated in multicore 

processors where the number of I/O pins dedicated to trace ports cannot keep pace 
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with the exponential growth of the number of processor cores on a single chip.  Yet, 

debugging and tracing support in multicores is critical because of their increased 

proliferation in embedded systems and their increased sophistication and complexi-

ty. 

1.2 What is this thesis about? 

Developing cost-effective hardware support for debugging and tracing in mul-

ticores is of great importance for future embedded systems. On-chip debug and trace 

infrastructure should be able to unobtrusively capture control-flow and data-flow 

traces from multiple processor cores at minimal cost (which translates into minimal 

on-chip trace buffers) and stream them out in real-time through narrow trace ports.  

This thesis focuses on capturing and compressing control-flow and load data 

value hardware traces in multicores.  These traces are sufficient to replay programs 

offline in the software debugger under certain conditions. We first analyze require-

ments for real-time tracing in multicores as a function of the number of cores by 

running a set of parallel benchmark programs. We analyze trace port bandwidth re-

quirements for control-flow Nexus-like trace (mcfNX_b) and load data value traces 

(mlvNX_b). We introduce two new techniques for capturing and compressing hard-

ware traces, namely mcfTRaptor for control-flow traces and mlvCFiat for load data 

value traces. mcfTRaptor is a multicore implementation of the previously proposed 

single-core technique called TRaptor [4]. mlvCFiat is a multicore implementation of 

the previously proposed CFiat [5]. We explore effectiveness of the proposed tech-

niques as a function of the complexity of the proposed hardware predictors and en-

coding mechanism.  Experimental evaluation involves both functional traces collect-
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ed using mTrace tools [6] and timed traces collected using a cycle-accurate architec-

tural simulator [7].  

1.3 Main Results 

The main results of our experimental evaluation are as follows. The total 

trace port bandwidth for Nexus-like control-flow hardware traces (mcfNX_b) for the 

Splash2x benchmark suite ranges from 0.93 bits per instruction executed when the 

number of cores N = 1 to 1.15 bpi when N = 8.  The trace port bandwidth in bits per 

clock cycle is 1.21 when N = 1 and 4.68 when N = 8.  The total trace port bandwidth 

for Nexus-like load data value traces (mlvNX_b) ranges from 18.25 bits per instruc-

tion when N = 1 to 19.08 when N = 8.  The trace port bandwidth in bits per clock cy-

cle is 23.7 when N = 1 and 78.56 when N = 8.  These results indicate that capturing 

control-flow and especially load data value traces on the fly in multicores requires 

both large trace buffers and wide trace ports.  

The proposed mcfTRaptor method dramatically reduces the trace port band-

width. With mcfTRaptor, the trace port bandwidth ranges from 0.07 when N = 1 to 

0.09 bpi when N = 8, a 12-fold improvement relative to the Nexus-like control-flow 

trace. With a large [Section 4.3.3] configuration the improvement is between 36.5 

times when N = 1 and 30.3 times when N = 8.  tmcfTRaptor involves streaming out 

timestamps with each trace message and is also very effective, providing improve-

ments of 12 ~ 13 times for a small [Section 4.3.3] configurations and 18 ~ 20 times 

for a large configurations relative to the Nexus-like timed control-flow trace.  

The proposed mlvCFiat technique offers significant improvements relative to 

the Nexus-like load data value traces.  The trace port bandwidth is reduced 3.9 
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times when N = 1 and 4.6 when N = 8 for relatively small [Section 4.3.3] data caches. 

The trace port bandwidth is reduced  6.7 times when N = 1 and for 7.4 times when 

N = 8 for relatively large [Section 4.3.3] data cache sizes. tmlvCFiat achieves even 

better results mainly due to relatively smaller data sets used in the Splash bench-

marks that serve as the workload for timed traces.  

1.4 Contributions 

This thesis makes the following contributions to the field of hardware support 

of on-chip tracing and debugging in multicore processors: 

 Introduces mcfTRaptor and mlvCFiat, hardware/software techniques for cap-

turing and compressing hardware control-flow traces (mcfTRaptor) and load 

data value traces (mlvCFiat) in multicores; 

 Develops framework for experimental evaluation of tracing techniques for 

functional and timed control-flow and load data value traces; 

 Evaluates effectiveness of techniques for functional (mcfNX and mcfTRaptor) 

and timed control-flow tracing (tmcfNX and tmcfTRaptor); 

 Evaluates effectiveness of techniques for functional (mlvNX and mlvCFiat) 

and timed load data value tracing (tmlvNX and tmlvCFiat). 

1.5 Outline 

The outline of this thesis is as follows. Chapter 2 gives background, focusing 

on control-flow trace and memory data traces, tracing and debugging in embedded 

systems, and commercial and academic state-of-the-art.  Chapter 3 introduces the 

mcfTRaptor and mlvCFiat techniques for filtering and compressing control-flow and 
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load data value traces in multicores. Chapter 4 describes our experimental evalua-

tion for functional traces.  Chapter 5 describes the results of the experimental eval-

uation for functional traces. Chapter 6 describes our experimental evaluation of 

timed traces and Chapter 7 describes the results of the evaluation. Finally, Chapter 

8 gives concluding remarks. 
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CHAPTER 2  

 

BACKGROUND AND MOTIVATION 

 

Efforts are never in vain - Do not despair 

--Rev. Pandurang Shastri Athavale 

 

This Chapter focuses on types of program execution traces, namely control-

flow (Section 2.1) and memory data read and write traces (Section 2.2), that are 

commonly used in program debugging.  Section 2.3 gives a more detailed system 

view of trace-based debugging in embedded systems and surveys the commercial 

state-of-the-art. Section 2.4 gives a brief survey of the academic state-of-the-art in 

the field of capturing and compressing program execution traces. 

2.1 Control Flow Traces 

Control-flow traces are created by the recording memory addresses of all 

committed instructions in a program. However, such traces include a lot of redun-

dant information that can be inferred by the software debugger with access to the 

program binary. To recreate the program’s control-flow off-line, the debugger needs 

only information about changes in the program flow caused by control-flow instruc-

tions or exceptions. When a change in control-flow occurs, we could record the pro-

gram counter (PC) and the branch target address (BTA) in case of a control-flow in-

struction or the exception target address (ETA) in case of an exception.  However, 

such a sequence of (PC, BTA/ETA) pairs still contains redundant information.  To 
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reduce the number of bits to encode lengthy (PC, BTA/ETA) pairs, we can replace PC 

with the number of sequentially executed instructions in an instruction stream, also 

known as stream length (SL). An instruction stream or dynamic basic block is a se-

quence of sequentially executed instructions starting at the target of a taken branch 

and ending with the first taken branch in the sequence [8],[9]. In addition, the target 

addresses of direct taken branches (BTA) do not need to be recorded as they can be 

inferred by the software debugger. Therefore, to recreate the program’s control-flow 

in the software debugger, only the following changes in the control-flow need to be 

reported from the target platform. 

 A taken conditional direct branch generates a trace message that contains on-

ly the number of sequentially executed instructions in the instruction stream, 

(SL, -); the target address can be inferred from the program binary.  

 An indirect unconditional branch generates a trace message that includes the 

stream length and the address of the indirect branch, (SL, BTA); and 

 An exception event generates a trace message that includes the message type 

(eType), the number of instructions executed since the last reported event 

(iCnt), and the exception target address (ETA), (eType, iCnt, ETA).  

For multicores executing multithreaded programs, control-flow trace messag-

es need to include information about the core on which a particular code segment 

has been executed. Note: Without loss of generality, we assume that each thread ex-

ecutes on a single core (Ti = Ci). Though threads can migrate between the cores, 

these migrations can be captured by system software rather than through hardware 

methods and can be merged with the hardware trace in the software debugger.   



10 

 

To illustrate capturing control-flow traces of a multithreaded program, con-

sider the OpenMP C program shown in Figure 2.1 that sums up elements of an inte-

ger array. An assembly code snippet in the middle shows the instructions executed. 

We can identify the following instruction streams: the stream A with 15 instructions 

starting at the address 0x80488b3, the stream B with 14 instructions starting at the 

address 0x80488b6, the stream C with 15 instruction starting at the address 

0x80488b6, and the stream D with 5 instructions starting at the address 0x80488e9. 

The same code snippet is executed in two threads (Ti = 0 and Ti = 1). Figure 2.1 

shows a functional control-flow trace for both threads. Each thread sums up 4 ele-

ments of the original array and the sequence of reported instruction streams is as 

follows: A, B, B, C, D.  The stream D ends with an indirect branch (retq instruction), 

so the last trace message will also include the target address (not known in compile 

time). The streams A, B, and C end with direct branches with inferable targets, and 

thus their target addresses are not included (traced out). On the bottom, timed trace 

messages are shown that include time stamps recording the clock cycle when a par-

ticular trace message is captured.  
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Figure 2.1. Control-flow trace: an example  

2.2 Memory Data Traces 

Memory data traces are created by recording relevant information for each 

memory read or write operation in a program execution. This information typically 

includes the following: the instruction address (PC), type of memory operation -- 

read or write (R/W), the operand address (OA), the operand size (OS), and the oper-

and value (OV).  In multicores, each trace record should include the thread or core 

index (Ti). Finally, in the case of timed traces, each record includes a time stamp in-

dicating the clock cycle in which the event has occurred.  

Figure 2.2 shows a memory read trace excerpt for the OpenMP C program 

shown in Figure 2.1. On the right hand side the flow trace records caused by the 

move instruction at address 0x80488c0 that reads a byte from the input byte array. 

Each trace record includes the thread index, the operand address, the operand size, 

and the operand value.  Below are the trace records that in addition to the fields 

above include time stamps when particular memory reads have completed.  

 

 80488b3: mov    DWORD PTR [ebp-0xc],eax

 80488b6: mov    eax,DWORD PTR [ebp+0x8]

 80488b9: mov    ecx,DWORD PTR [eax]

 80488bb: mov    eax,DWORD PTR [ebp-0xc]

 80488be: add    eax,ecx

 80488c0: movzx  eax,BYTE PTR [eax]

 80488c3: movzx  ecx,al

 80488c6: mov    eax,DWORD PTR [ebp+0x8]

 80488c9: mov    eax,DWORD PTR [eax+0x4]

 80488cc: add    ecx,eax

 80488ce: mov    eax,DWORD PTR [ebp+0x8]

 80488d1: mov    DWORD PTR [eax+0x4],ecx

 80488d4: add    DWORD PTR [ebp-0xc],0x1

 80488d8: cmp    DWORD PTR [ebp-0xc],edx

 80488db: jl     80488b6

 80488dd: jmp    80488e9

 80488df: mov    eax,0x0

 80488e4: add    ecx,0x1

 80488e7: jmp    80488a5

 80488e9: add    esp,0x10

 80488ec: pop    ebx

 80488ed: pop    esi

 80488ee: pop    ebp

 80488ef: ret

1   #include <iostream>

2   #include <omp.h>

3   int main()

4   {

5    uint8_t a[8]={1,2,3,4,5,6,7,8};

6    int sum;

7    #pragma omp parallel for

8    for (int i = 0; i < 8; i++) { 

10    sum += a[i];

11   }

12   std::cout << sum;

13   return 1;

14  }

C Program

Timed Trace (CC, TID, SL, BTA)

(0, 15, -)

Functional Trace (TID, SL, BTA)

(1, 15, -)

(0, 14, -) (1, 14, -)

(0, 14, -) (1, 14, -)

(0, 15, -) (1, 15, -)

(0, 5, BTA0) (1, 5, BTA1)

Legend:
CC     Clock Cycle
TID    Thread / Core ID 
SL      Stream Length
BTA   Branch Target 
           Address

(3544151, 0, 15, -) (3543577, 1, 15, -)

(3544592, 0, 14, -) (3543999, 1, 14, -)

(3544616, 0, 14, -) (3544006, 1, 14, -)

(3544639, 0, 15, -) (3544020, 1, 15, -)

(3544643, 0, 5, BTA0) (3544038, 1, 5, BTA1)

Control flow trace

A

B

B

C

D

A

B

B

C

D



12 

 

 

Figure 2.2. Memory read trace: an example  

 

Control-flow traces alone are sufficient to reconstruct the program-flow. 

However, for certain classes of software bugs (e.g., data races), control-flow traces 

alone are insufficient and data traces are also required.  Data traces are critical in 

multicore systems, as they offer valuable information about shared memory access 

patterns and possible data race conditions. Unfortunately, data traces tend to be 

very large: a 64-bit machine reading an 8-byte operand from memory generates a 

trace record with more than 24 bytes (8 byte instruction address, 8-byte operand ad-

dress, 8-byte operand value). Streaming an entire memory data trace through a 

trace port is thus cost prohibitive.  Fortunately, replaying the program offline re-

quires only memory reads and not writes, as that information is infer from software 

debugger.  

The software debugger needs only a portion of the data trace to replay the 

program.  Exception traces and load (memory read) data value traces captured on 

the target platform and streamed out to a software debugger are necessary to de-

terministically replay programs offline. Exception traces are created by recording 

1   #include <iostream>

2   #include <omp.h>

3   int main()

4   {

5    uint8_t a[8]={1,2,3,4,5,6,7,8};

6    int sum;

7    #pragma omp parallel for

8    for (int i = 0; i < 8; i++) { 

10    sum += a[i];

11   }

12   std::cout << sum;

13   return 1;

14  }

C Program

 80488b3: mov    DWORD PTR [ebp-0xc],eax

 80488b6: mov    eax,DWORD PTR [ebp+0x8]

 80488b9: mov    ecx,DWORD PTR [eax]

 80488bb: mov    eax,DWORD PTR [ebp-0xc]

 80488be: add    eax,ecx

 80488c0: movzx  eax,BYTE PTR [eax]

 80488c3: movzx  ecx,al

 80488c6: mov    eax,DWORD PTR [ebp+0x8]

 80488c9: mov    eax,DWORD PTR [eax+0x4]

 80488cc: add    ecx,eax

 80488ce: mov    eax,DWORD PTR [ebp+0x8]

 80488d1: mov    DWORD PTR [eax+0x4],ecx

 80488d4: add    DWORD PTR [ebp-0xc],0x1

 80488d8: cmp    DWORD PTR [ebp-0xc],edx

 80488db: jl     80488b6

 80488dd: jmp    80488e9

 80488df: mov    eax,0x0

 80488e4: add    ecx,0x1

 80488e7: jmp    80488a5

 80488e9: add    esp,0x10

 80488ec: pop    ebx

 80488ed: pop    esi

 80488ee: pop    ebp

 80488ef: ret

Functional Trace (TID, OA, OS, OV)
Legend:
CC Clock Cycle
TID Thread / Core ID 
OA Operand Address
OS Operand Size
OV Operand Value

(0, bffeff54 ,1, 1) (1, bffeff58,1, 5)

(0, bffeff55 ,1, 2) (1, bffeff59,1, 6)

(0, bffeff56 ,1,3) (1, bffeff5a,1,7)

(0, , bffeff57 ,1, 4) (1, bffeff5b,1 , 8)

(3544146, 0, bffeff54 ,1, 1)

Timed Trace (CC, TID, OA, OS, OV)

(3543573, 1, bffeff58, 1, 5)

(3544588, 0, bffeff55 ,1, 2) (3543995, 1, bffeff59, 1, 6)

(3544611, 0, bffeff56 ,1, 3) (3544002, 1, bffeff5a, 1, 7)

(3544634, 0, bffeff57 ,1, 4) (3544009, 1, bffeff5b, 1, 8)

Memory read flow trace
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exceptions that occur in program execution, and load data value traces record only 

values read from memory and I/O devices.  In addition to the traces, the software 

debugger needs the following to faithfully replay the program offline: (i) an instruc-

tion set simulator (ISS) of the target platform, (ii) access to the program’s binary, 

and (iii) the initial state of the general-purpose and special-purpose registers of indi-

vidual cores.  ISS is a simulation model tool to mimic the behavior of processors. In 

multicores, the exception and data traces need to be either streamed in the order of 

occurrence or with global timestamps. 

2.3 Tracing in Embedded Multicores 

Trace and debug modules encompass hardware that can support different 

classes of debugging and tracing operations. The IEEE Nexus 5001 standard [2] de-

fines functions and interfaces for debugging and tracing in embedded processors for 

four classes of debugging and tracing operations (Class 1 – Class 4). Class 1 supports 

basic debug operations for run-control debugging such as single-stepping, setting 

breakpoints, and examining and modifying processor registers and memory locations 

when the processor is halted. It is traditionally supported through a JTAG interface 

[10]. The higher classes progressively add more sophisticated operations at the cost 

of additional on-chip resources (logic, buffers, and interconnects) solely devoted to 

tracing and debugging. Thus, Class 2 adds support for nearly unobtrusive capturing 

and streaming out control-flow traces in real-time. Class 3 adds support for captur-

ing and streaming out data-flow trace (memory and I/O read and write data values 

and addresses). Finally, Class 4 adds resources to support emulated memory and I/O 

accesses through the trace port.   
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Class 1 operations are routinely deployed in modern platforms. However, 

Class 1 operations are lacking in several important aspects. First, they place a bur-

den on software developers to perform time-consuming and demanding steps such as 

setting breakpoints, single-stepping through programs and examining visually the 

content of registers and memory locations. Moreover, setting breakpoints is not 

practical or feasible in cyber-physical and real-time systems. Finally, since the pro-

cessor needs to be halted, the debugging operations are obtrusive and may perturb 

sequences of events on the target platform and thus cause original bugs to disappear 

during debug runs.  

To address these challenges, many chip vendors have recently introduced 

trace modules with support for Class 2 and less frequently for Class 3 debug and 

trace operations. Figure 2.3 shows a typical embedded system-on-a-chip (SoC) with 

multiple processor cores and its debugging and tracing resources. The SoC is con-

nected to a trace probe system through a trace port.  The multicore SoC includes 

various components, such as multiple processor cores (Core0 – Core3), a DSP core, 

and a DMA core, all connected through a system interconnect. Each component in-

cludes its own trace and debug logic (trace modules) that captures program execu-

tion traces of interest. Individual trace modules are connected through a trace and 

debug interconnect to on-chip trace buffers. On-chip buffers store program execution 

traces temporarily before they are read out through a trace port to an external trace 

probe. The external trace probe typically includes large trace buffers on the order of 

gigabytes and interfaces to the target platform’s trace port and to the host work-

station. The host workstation runs a software debugger that replays the program 

execution offline by reading and processing the traces from the external probe and 
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executing the program binary. This way, software developers can faithfully replay 

the program execution on the target platform and gain insights into the behavior of 

the target system while it is running at full speed. 

 

Figure 2.3 Debugging and tracing in multicores: a detailed view 

 

Some examples of commercial trace modules include ARM’s CoreSight [3], 

MIPS’s PDTrace [11], Infineon’s MCDS [12], and Freescale’s MPC5500 [13]. State-of-

the-art trace modules employ filtering and encoding to reduce the number of bits 

necessary to recreate program execution. Yet, trace port bandwidths are still in the 

range of 1 to 4 bits per instruction executed per core for control-flow traces [3] and 8 

to 16 bits per instruction executed per core for data-flow traces [3]. With these trace 

port bandwidth requirements, a 1 KB on-chip buffer per processor core may capture 
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control-flow of program segments on the order of 2,000-8,000 instructions or data-

flow of program segments of merely 400-800 instructions. Such short program seg-

ments are often insufficient for locating software errors in modern systems with 

more sophisticated software stacks where a distance between a bug’s origin and its 

manifestation may span billions of executed instructions. Increasing the size of the 

buffers and the number of pins for trace ports is not an attractive alternative to chip 

manufacturers as it significantly increases the system complexity and cost. This 

problem is exacerbated in multicore processors where the number of I/O pins dedi-

cated to trace ports cannot keep pace with the exponential growth of the number of 

processor cores on a single chip. Yet, debugging and tracing support in multicores is 

critical because of their increased proliferation in embedded systems and their in-

creased sophistication and complexity. 

2.4 Related Work 

Commercially available trace modules typically implement only rudimentary 

forms of hardware filtering with a relatively small compression ratio.  Irrgang and 

Spallek analyzed the Nexus and trace port configurations and their impact on 

achievable compression for instruction traces and found port width of 8bits with his-

tory messaging is effective [14].  Several recent research efforts in academia propose 

trace-specific compression techniques that achieve higher compression ratios. These 

techniques rely on hardware implementations of general-purpose compressors  [15] 

[16]. For example, Kao et al. [17] introduce an LZ-based compressor specifically tai-

lored to control-flow traces.  The compressor encompasses three stages: filtering of 

branch and target addresses, difference-based encoding, and hardware-based LZ 
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compression. Novel approach, stream based compression algorithm[18] exploits in-

herent characteristics program execution traces for compression. A double-move-to-

front compressor introduced by Uzelac and Milenkovic [15] encompasses two stages, 

each featuring a history table performing the move-to-front transformation.  Alt-

hough these techniques significantly reduce the size of the control-flow trace that 

needs to be streamed out, they have a relatively high complexity (50,000 gates and 

24,600 gates, respectively).  

A set of recently developed techniques relies on architectural on-chip struc-

tures such as stream caches[19], [20], [21] and branch predictors [4] [22] [23] with 

their software counterparts in software debuggers, as well as effective trace encod-

ing to significantly reduce the size of traces that needs to be streamed out [4], 

[5],[19],[20].  Uzelac et al. [4] introduced TRaptor for control-flow traces that 

achieves 0.029 bits per instruction on the trace port (~34-fold improvement over the 

commercial state-of-the-art) at hardware cost of approximately 5,000 gates. For load 

value traces, Uzelac and Milenkovic [24] [5] introduced cache first-access tracking 

mechanism (c-fiat) that reduces the trace size between 5.8 to 56 times, depending on 

the cache size.  

However, these techniques have been demonstrated on uniprocessors only. 

The problem of tracing requirements in multicores running parallel programs is not 

fully understood.  What is the required trace port bandwidth? How does trace port 

bandwidth scale up with a multiple processor cores? How the existing techniques 

may be applied to multicores? These are some of the questions that needs to be fully 

addressed [25].  In this thesis, we want to explore requirements for real-time tracing 
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in multicores and introduce cost-effective solutions that scale well with a multiple 

processor cores.   
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CHAPTER 3  

 

NEW TECHNIQUES FOR TRACING IN MULTICORES 

 

Continue to make efforts, pray for help, and help is assured – Do not lose faith 

--Rev. Pandurang Shastri Athavale 

 

This chapter describes mcfTRaptor and mlvCFiat techniques for capturing 

and compressing hardware control-flow and load-value data traces in multicore em-

bedded processors.   

3.1 mcfTRaptor 

In this section, we introduce a technique called multicore control flow tracing 

branch predictor alias mcfTRaptor.  mcfTRaptor is an extension of the existing 

TRaptor technique for capturing and filtering control-flow traces in single-core pro-

cessors [4], [24].  Figure 3.1 illustrates a multicore system-on-a-chip with tracing 

and debugging resources. The multicore connects to a software debugger running on 

a development workstation via a debug & trace interface.  Each core has its own 

trace module that captures information about committed control-flow instructions.  

The trace module includes predictor structures in hardware, solely dedicated to cap-

turing and filtering control flow traces. These structures are looked up and updated 

every time a non-inferable control-flow instruction (a conditional branch or an indi-

rect branch) commits in the corresponding processor core.  For a given control-flow 

instruction, the predictor structures either (a) correctly predict the outcome or target 

address; (b) incorrectly predict the outcome or target address, or (c) cannot make a 
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prediction (e.g., due to a predictor miss).  In all cases, the predictor structures are 

updated based on their update policies, similarly to branch predictors in processor 

pipelines.  The key insight that leads to a significant reduction in the number and 

size of trace messages is that trace messages need  be generated only when rare 

mispredictions occur in the mcfTRaptor structures on the target platform.  The mes-

sages are stored in a trace buffer, streamed out of the platform, and read by the 

software debugger.  The software debugger has access to the program binary, in-

struction set simulator, and the trace messages captured on the target platform. The 

debugger maintains software copies of all mcfTRaptor structures.  These structures 

are looked up and updated during program replay in the same way their hardware 

counterparts are looked up and updated on the target platform.  

Figure 3.2 shows a block diagram of typical mcfTRaptor structures for the 

core with index i.  The processor’s trace module receives information about commit-

ted control flow instructions including, time, program counter (PC), direct/indirect 

branch type, outcome (taken/not taken), and branch target address (BTA) or excep-

tion target address (ETA).  mcfTRaptor includes structures for predicting (a) target 

addresses of indirect branches, e.g., an indirect Branch Target Buffer (iBTB) and a 

Return Address Stack (RAS) [26]; and (b) outcomes of conditional branches, such as 

an outcome gshare predictor [7].  In addition, mcfTRaptor includes two counters: an 

instruction counter Ti.iCnt and a branch counter Ti.bCnt.  Ti.iCnt is incremented 

upon retirement of each executed instruction, and Ti.bCnt is incremented only upon 

retirement of control-flow instruction that could generate trace messages (e.g., con-

ditional direct and unconditional indirect branches). 



21 

 

  

Figure 3.1 A system view of mcfTRaptor 

 

 

Figure 3.2. mcfTRaptor structures for core i 
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Figure 3.3 describes the operation of a trace module attached to core i when 

capturing control-flow tracing using mcfTRaptor.  The instruction counter is incre-

mented for each committed instruction.  The branch counter is incremented for each 

control-flow instruction capable of generating a trace message.  For indirect uncon-

ditional branches, the trace module generates a trace message only if the predicted 

target address does not match the actual target address.  For direct conditional 

branches, the trace module generates a trace message only if the predicted outcome 

does not match the actual outcome.  When a trace message is generated and placed 

in a trace buffer for streaming out, the counters Ti.iCnt and Ti.bCnt are cleared.  

The predictor structures are updated according to an update respective structures.  

In case of exceptions, a trace message is generated with Ti.bCnt = 0 to indicate a 

special case, followed by the instruction count (Ti.iCnt) and the exception address 

(Ti.ETA). 
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1. // For each committed instruction in Thread with index i on core i 

2. Ti.iCnt++; // increment iCnt 

3. if ((Ti.iType == IndBr) || (Ti.iType == DirCB)) { 

4.     Ti.bCnt++; // increment bCnt 

5.     // target address misprediction 

6.     if ((Ti.iType == IndBr) && (Ti.BTA != p.BTA)) { 

7.         Encode&Emit trace message <Ti, Ti.bCnt, Ti.BTA>; 

8.         Place trace message into the Trace Buffer; 

9.         Ti.iCnt = 0; 

10.        Ti.bCnt = 0; 

11.     } 

12.     // outcome misprediction 

13.    else if ((Ti.iType==DirCB) && (Ti.Outcome != p.Outcome)) { 

14.        Encode&Emit trace message <Ti, Ti.bCnt>; 

15.        Place trace message into the Trace Buffer; 

16.        Ti.iCnt = 0; 

17.        Ti.bCnt = 0; 

18.    } 

19.    Update predictor structures; 

20. } 

21. if (Exception event) { 

22.    Encode&Emit trace message <Ti, 0, iCnt, ETA>; 

23.    Place record into the Trace Buffer; 

24.    Ti.iCnt = 0; 

25.    Ti.bCnt = 0; 

26. } 

Figure 3.3 mcfTRaptor operation on core i 

The software debugger replays the instructions as shown in Figure 3.4. The 

replay starts by reading trace messages for each thread and initializing the coun-

ters.  If a non-exception trace message is processed, the software copy of Ti.bCnt is 

decremented every time a control-flow instruction is executed.  For indirect uncondi-

tional branches, if the counter reaches zero, the actual target address is retrieved 

from the current trace message; otherwise if (Ti.bCnt > 0), the target address is re-

trieved from the mcfTRaptor structures maintained by the software debugger.  For 

direct conditional branches, if the counter reaches zero, the actual outcome is oppo-

site to the one provided by the mcfTRaptor structures maintained by the software 

debugger; otherwise if (Ti.bCnt > 0), the actual outcome matches the predicted one.  

When Ti.bCnt reaches zero, the next trace message for that thread is fetched. Han-

dling of exceptions events is described in lines 3-8 in Figure 3.4. 
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1.  // For each instruction on core i 

2.  Replay the current instruction (if not trace event generating); 

3.  if (Exception message is processed) { 

4.     Ti.iCnt—-; 

5.     if (Ti.iCnt == 0) { 

6.         Go to exception handler at Ti.ETA; 

7.         Get the next trace message; 

8.     } 

9.  } 

10. if ((Ti.iType == IndBr) || (Ti.iType == DirCB)) { 

11.    Ti.bCnt--; // decrement Ti.bCnt 

12.    if ((Ti.iType == IndBr) && (Ti.bCnt > 0)) 

13.       Actual BTA = predicted BTA in software; 

14.    else if (Ti.iType == DirCB) && (Ti.bCnt > 0)) 

15.       Actual outcome = predicted outcome in software; 

16.    else if ((Ti.iType == IndBr) && (Ti.bCnt == 0)) 

17.       Actual BTA = BTA read from the trace message; 

18.    else if (Ti.iType == DirCB) && (Ti.bCnt == 0)) 

19.       Outcome is opposite to predicted outcome; 

20.    Update software predictor structures; 

21.    if (Ti.bCnt == 0) Get the next trace message; 

22. } 

Figure 3.4 Program replay in software debugger for mcfTRaptor 

3.2 mlvCFiat 

mlvCFiat or multicore load value cache first access tacking is a hardware-

based mechanism that reduces load data value traces by collecting a minimal set of 

trace messages through the use of  a cache first access mechanism.  mlvCFiat is an 

extension of the existing CFiat mechanism for capturing and filtering load data val-

ue traces in single-core processors [5], [24].   

Figure 3.5 shows a block diagram of a multicore SoC with infrastructure for 

debugging and tracing; green boxes represent additional mlvCFiat modules.  Each 

processor core is coupled to its trace module through an interface that carries infor-

mation about committed memory read and memory write instructions.  The trace 

module includes structures in hardware solely dedicated to capturing and filtering 

memory read traces.  The mlvCFiat structure is looked up when instructions that 
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read from or write to memory commit in the corresponding processor core.  The key 

insight that leads to a significant reduction in the number and size of trace message 

is that trace messages need to be generated only when misprediction occur in the 

mlvCFiat structures on the target platform.  The messages are stored in a trace 

buffer, streamed out of the platform, and read by the software debugger.  The soft-

ware debugger has access to the program binary, instruction set simulator, and the 

trace messages captured on the target platform.  It maintains software copies of all 

mlvCFiat structures.  These structures are updated during program replay in the 

same way their hardware counterparts are updated on the target platform. 

Figure 3.6, shows the mlvCFiat structures for core i. Each data cache block in 

each processor core on the target platform is augmented with first access tracking 

flags.  The first access tracking flags keep track of sub-blocks that need to be report-

ed to the software debugger.  Let us assume a data cache with 64-byte cache blocks.  

If a first-access tracking flag protects a 4-byte sub-block, each cache block needs to 

be augmented with a 16-bit first access flag vector.  The previously reported sub-

blocks do not have to be reported again as they can be inferred by the software de-

bugger.  This way we exploit the temporal and spatial locality of data access to sig-

nificantly reduce the number of trace events that need to be reported.  In addition to 

the first-access tracking bits, each trace module includes a local first-access counter 

(Ti.fahCnt) that counts the number of consecutive first access hits. 
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Figure 3.5 A system view of mlvCFiat 

 

 

Figure 3.6 mlvCFiat structures for core i 
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Figure 3.7 describes the operation of the mlvCFiat mechanism on core i.  

Each memory read causes a data cache lookup; if the requested data item is found in 

the data cache (a cache hit event) and the corresponding first-access flags are set (an 

FA hit event), the data value does not need to be reported to the software debugger 

and Ti.fahCnt is incremented (line 3).  In case of an FA miss event, a trace message 

is streamed out of the chip; it includes the core id (Ti), the current value of the 

Ti.fahCnt, and the load data value that is being reported for the first time (line 5). In 

addition, the corresponding FA flags are set and the counter Ti.fahCnt is cleared 

(line 7 and 8). In case of a data cache miss event, the newly fetched block’s FA track-

ing flags are cleared and then steps 5-8 are carried out. Similarly, external cache 

block invalidation or update requests clear the corresponding FA flags (line 17).  Fi-

nally, memory write operations set the corresponding FA tracking flag(s) (line 15). 

 

1. // For each instruction that reads n bytes on core i 

2. if (CacheHit) { 

3.    if (corresponding FA flags are set) Ti.fahCnt++; 

4.    else { 

5.        Encode&Emit trace message (Ti, Ti.fahCnt, loadValue); 

6         Place trace message into the Trace buffer 

7.        Set corresponding FA flags; 

8.        Ti.fahCnt = 0; 

9.    } 

10.  } else { // cache miss event 

11.   Clear all FA bits for newly fetched cache block; 

12.   Perform steps 5-7; 

13. } 

 

14. // For each retired store that writes n bytes 

15. Set corresponding FA bits; 

 

16. // For external invalidation/update request 

17. Clear FA bits for entire cache block 

 

Figure 3.7 mlvCFiat operation on core i 



28 

 

 

The software debugger carries out steps that mirror actions on the target 

(Figure 3.8).  It maintains software copies of the data caches and the Ti.fahCnt 

counters; these are updated during program replay using the same policies employed 

on the target platform.  The program replay starts by reading the trace messages 

received from the target for each core separately.  The debugger replays the instruc-

tions for each core using ISS.  For memory read instructions the debugger performs 

steps described in lines 1-11.  The Ti.fahCnt counter is decremented; if Ti.fahCnt>0, 

the debugger retrieves the load data value from the software data cache and moves 

to the next instruction.  If Ti.fahCnt = 0 we have a first read miss event; the load 

value is retrieved from the trace message, the software data cache is updated, and a 

new trace message for a given core is read from the target.  

1. // For each load on Core i that reads n bytes 

2. Ti.fahCnt --; 

3. if (Ti.fahCnt > 0) { 

4.     Perform lookup in the SW data cache; 

5.     Retrieve data value from SW cache; 

6. } 

7. else { // FA miss event 

8.     Read n bytes from trace record; 

9.     Update SW cache; 

10.    Get the next trace message (Ti, Ti.fahCnt, LoadValue); 

11. } 

 

12. // For each store that writes N bytes 

13. Update SW cache; 

14. Set corresponding n SW cache FA bits; 

Figure 3.8 mlvCFiat operation in software debugger for core i 
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CHAPTER 4  

 

EXPERIMENTAL EVALUATION OF FUNCTIONAL TRACES 

 

Fearlessness is result of faith in one self and faith in God 

--Rev. Pandurang Shastri Athavale 

 

Functional program execution traces capture behavioral aspects of running 

programs. They capture control and data flow information from multithreaded pro-

grams, preserving intra-threaded ordering of events, but may not provide accurate 

inter-thread ordering. We use functional traces (i) to investigate requirements of 

hardware tracing in multicore platforms and (ii) to evaluate the effectiveness of our 

techniques and their sensitivity to system parameters. This chapter focuses on our 

experimental flow based on functional traces. 

As a measure of effectiveness, we use trace port bandwidth expressed in the 

number of bits streamed out of the chip per instruction executed (bpi). Figure 4.1 

shows the experiment flow for determining trace port bandwidth in case of function-

al (non-timed) traces. The flow encompasses three steps:  (i) software trace genera-

tion using the mTrace tool suite [6], (ii) software to hardware trace translation, and 

(iii) trace port bandwidth analysis. Section 4.1 describes the trace generation step. 

mTrace is designed to support a range of trace applications, such as Instruction Set 

Architecture (ISA) profiling, trace-driven simulation, and software trace compres-

sion. Thus, mTrace does not include support for analyzing hardware tracing and 

trace descriptor encoding at the trace port level. In addition, software traces gener-



30 

 

ated by mTrace often include information that may be inferred by a software debug-

ger. To support the evaluation of trace port bandwidth in the context of hardware 

tracing on multicore platforms, we develop custom tools that read software traces 

and produce hardware traces with no redundant information. Section 4.2 describes 

software to hardware trace translation. Section 4.3 describes the experimental set-

up, benchmarks used, and the experimental methodology.  

 

 

Figure 4.1 Experiment flow for determining trace port bandwidth require-

ments using functional traces 

 

4.1 Software Trace Generation  

To generate control-flow and data functional traces for multi-threaded soft-

ware we use the mTrace tool suite [6]. Figure 4.2 illustrates a trace generation flow. 

mTrace relies on the Intel’s binary instrumentation framework called Pin [27] that 

works like a just-in-time-compiler and enables custom binary instrumentation 

through a well-defined application programming interface. The mTrace tools are de-

veloped as Pin tools and capture functional traces. They take application input pa-

rameters, the number of threads, parameters controlling the tracing process, and 
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configuration parameters for new compression methods as input parameters, and 

generate raw trace files, optionally, compressed trace files. 

The mTrace tool suite consists of four different tools:  

 mcfTrace: a tool for capturing and compressing control-flow traces; 

 mlsTrace: a tool for capturing and compressing data traces; 

 mcfTRaptor: a tool for capturing and compressing control-flow traces using 

the TRaptor mechanism for multi-threaded programs; and 

 mlvCFiat: a tool for capturing and compressing data traces using the CFiat 

mechanism for multi-threaded programs. 

 

 

Figure 4.2 Functional trace generation using mTrace tool suite 
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4.2 Software to Hardware Trace Translation 

To enable evaluation of trace port bandwidth in the context of hardware trac-

ing on multicore platforms, we develop tools that perform software to hardware 

trace translation. These tools read raw traces generated by the mTrace tools, filter 

out redundant trace descriptors and redundant trace fields that can be inferred by 

the software debugger, and perform analysis to determine effective encoding of trace 

descriptors. The output of the trace analyzer tools is the overall trace port band-

width measured in bits per instruction executed.  

Figure 4.3 shows the flow from input software traces to output hardware 

traces.  Raw control-flow traces generated by the mcfTrace tool are filtered out and 

encoded to generate Nexus-like hardware control flow traces called mcfNX_b. The 

mcTRaptor control-flow traces generated by the mcfTRaptor tool are also filtered out 

and then encoded using either a fixed encoding mechanism to generate mcfTR_b 

compressed control-flow hardware traces or using a variable encoding mechanism to 

generate mcfTR_e compressed control-flow hardware traces. This way, we can sepa-

rately evaluate the effectiveness of the mcfTRaptor filtering mechanism and the ef-

fectiveness of encoding mechanisms.  Similarly, a memory load data value trace gen-

erated by the mlsTrace tool is filtered and encoded to generate a Nexus like hard-

ware load data value trace (mlvNX_b).  The mlvCFiat trace is filtered and encoded 

using a fixed or a variable encoding mechanism to generate compressed memory 

load data value traces mlvCF_b and mlvCF_e, respectively. The following subsec-

tions shed more light on each of these trace transformations. 
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Figure 4.3 Software to hardware trace translation 
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The mcfTrace tool captures all control-flow instructions and exceptions. Fig-

ure 4.4 (a) shows the format of a trace descriptor generated by mcfTrace. A de-
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block that ends with the control-flow instruction. A descriptor in ASCII format may 

require up to 58 bytes. 

To generate hardware control-flow traces, we filter out information that is 

not required to replay the program’s control-flow offline. To recreate the control-flow, 

the debugger only needs information about changes in the program flow due to tak-

en conditional branches or exceptions. For each change, we can send the program 

counter (PC address) and the branch target address (BTA) for branch instructions or 

exception target address (ETA) for exceptions. Yet, the trace with all (PC, BTA/ETA) 

pairs still contains redundant information that can be inferred by the debugger 

providing it has access to the program binary. Instead of sending the program coun-

ter we can send the number of instructions executed sequentially from the program 

starting address or from the target of the last taken branch. The target addresses of 

direct branches (BTA) can be inferred from the program binary and thus do not need 

to be streamed out.  The target addresses of indirect branches do need to be reported 

though. However, instead of sending the entire target address, we can send only the 

absolute difference (|DiffTA|) between the previous indirect branch target address 

and the current branch target address with sign bit.  

Thus, hardware control-flow trace requires tracing descriptors to be emitted 

as follows: 

 for taken direct conditional branches, the trace descriptor should include (Ti, 

Ti.SL, -), where Ti is the thread ID, Ti.SL is the number of instructions exe-

cuted in a given thread since the last reported trace descriptor; 

 for indirect unconditional branches, the trace descriptor should include (Ti, 

Ti.SL, Ti.DiffTA), where Ti.DiffTA is the difference target address; and 
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 for exceptions the trace descriptor should include (Ti, Ti.SL, Ti.ETA). 

The resulting format of a trace descriptor for Nexus-like control flow trace is 

shown in Figure 4.4 (b). To encode the thread index we use 0 bits when N = 1, 1 bit 

for N = 2, 2 bits for N = 4, and 3 bits for N = 8. The number of bits needed to encode 

the field Ti.SL varies with benchmarks and phases within a benchmark. Instead of 

using a long field that would encode any possible value of SL, we use Nexus-like en-

coding with each field divided into multiple chunks. Each chunk is followed by a 

connect bit that indicates whether it is the terminating chunk (C = 0) for the given 

field or more chunks follow (C = 1). For the Nexus-like control-flow trace, we adopt 

chunk size of 8 bits for the Ti.SL field. Similarly, we encode the absolute value of 

|diffTA| into two 32-bit chunks.  

 

  

Figure 4.4 mcfTrace and mcfNX_b trace descriptors 
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4.2.2 mcfTR_b and mcfTR_e 

The mcfTRaptor tool implementing the mcfTRapor trace compression gener-

ates mcfTRaptor trace descriptors as described in Table 4.1. It emits trace de-

scriptors upon (i) outcome misprediction of conditional branches, (ii) target address 

misprediction of indirect unconditional branches, and (iii) exceptions. In case of out-

come misprediction, a descriptor is emitted that includes information about the 

thread index, Ti, and the number of branch instructions encountered in a given 

thread since the last reported event, Ti.bCnt. For indirect unconditional branches, in 

addition to Ti and Ti.bCnt, the indirect target address, Ti.BTA, is included as well.  

Finally, in the case of exceptions, the Ti.bCnt is set to a zero, followed by a field with 

the number of instructions executed since the last reported event (Ti.iCnt), and the 

exception target address (Ti.ETA). Figure 4.5(a) illustrates the mcfTRaptor de-

scriptors in ASCII format that can require from 18 to 46 bytes.  

Table 4.1 mcfTRaptor events and trace descriptor fields 

mcfTRaptor Events Trace Descriptors 

Outcome misprediction for direct conditional branch <Ti, Ti.bCnt> 

Target address misprediction for indirect unconditional 

branch 

<Ti, Ti.bCnt, Ti.BTA> 

Exception event <Ti, 0, Ti.iCnt, 

Ti.ETA> 

 

 

The mcfTRaptor traces are filtered out to replace the target addresses, 

Ti.BTA with Ti.diffTA values. The Ti.bCnt and Ti.diffTA fields can take a number of 

values.  Similar to mcfNX_b trace encoding, the branch counter field is divided into 
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multiple 8-bit chunks. If an 8-bit field is sufficient to encode the counter value, the 

following connect bit C = 0, thus indicating the terminating chunk for Ti.bCnt. Oth-

erwise, C = 1, and the following chunk carries the next 8 bits of the branch counter 

value.  The trace descriptors for target address misprediction events carry infor-

mation about the correct target address. An alternative to reporting the entire ad-

dress (64-bit in our case) is to encode the difference between subsequent target ad-

dresses and thus exploit locality in programs to minimize the size of trace messages. 

The trace module maintains the previous target address, that is, the target address 

of the last mispredicted indirect branch (PTA). When a new target misprediction is 

detected, the trace module calculates the difference target address, diffTA, dif-

fTA = TA – PTA and PTA gets the value of current address TA, PTA = TA. The abso-

lute value of diffTA is divided into 32-bit chunks, and the connect bit indicates 

whether one or two 32-bit fields are needed to encode the message.  Figure 4.5 (b) 

shows the encoding of a generic trace descriptor for mcfTR_b.   

By analyzing profiles of reported counter values (Ti.bCnt and Ti.iCnt) as well 

as diffTA values, we find that the number of required bits for encoding trace mes-

sages can be further minimized by allowing for variable encoding. Instead of using 

fixed-length chunks for Ti.bCnt, we allow for chunks of variable size, i0, i1, i2, as 

shown in Figure 4.5 (c).  Similarly, we can use variable chunk sizes of lengths, j0, j1, 

j2, for encoding diffTA.  This encoding approach is called mcfTR_e.  The length of 

individual chunks is a design parameter and can be determined empirically. In de-

termining the length of individual chunks, we need to balance the overhead caused 

by the connect bits and the number of bits wasted in individual chunks. A detailed 

analysis to find good chunk sizes is performed and selected parameters are used for 
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all benchmarks. It should be noted that the variable encoding offers an additional 

level of flexibility to adjust encoding lengths for individual benchmarks or even in-

side different phases of a single benchmark. However, dynamic adaptation of the 

field lengths is left for future work. 

 

 

Figure 4.5 mcfTRaptor, mcfTR_b, and mcfTR_e trace descriptors 
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tion address (PC), the operand address, and the operand value. The software debug-

ger needs the following to faithfully replay the program offline: (i) an instruction set 

simulator (ISS) of the target platform, (ii) access to the program binary, (iii) the ini-

tial stage of the general purpose and special purpose registers of the individual 

cores, and (iv) the load data values read from memory or input/output devices.  

Thus, the trace generated by the mlsTrace tool can be filtered out to remove the load 

instruction addresses (PC) and the operand address that can be inferred in the ISS. 

Figure 4.6 (b) shows the trace descriptor for Nexus-like load data value trace.  The 

descriptor contains only the thread index and the load data value. The length of the 

load value field depends on the size of the operand specified by the instruction, and 

for the Intel 64 ISA varies between 1 byte and 120 bytes.  

 

 

 Figure 4.6 mlvTrace and mlvNX_b trace descriptors 
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instruction set simulator and program binary.  Figure 4.7 (b) shows trace descriptors 

for Nexus-like load data value trace (mlvCF_b).  The descriptor includes the thread 

index (Ti), the first access hit counter, Ti.fahCnt, and the load value (Ti.LV). The 

number of bits needed to encode Ti.fahCnt varies as a function of the first-access 

miss rate. With mlvCF_b we use at least 8 bits to encode the Ti.fahCnt. The connect 

bit (C) determines whether more 8-bit chunks are needed to fully encode Ti.fahCnt 

value (C = 1) or not (C = 0).  

 

 

Figure 4.7 mlvTrace, mlvCF_b, and mlvCF_e trace descriptors  
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4.3 Experimental Environment   

The goal of experimental evaluation is to determine the effectiveness of the 

newly proposed trace reduction techniques, mcfTRaptor and mlvCFiat, relative to 

the baseline Nexus-like control-flow, mcfNX_b, and load data value traces, 

mlvNX_b.  To explore the effectiveness of mcfTRaptor and mlvCFiat, their structure 

sizes and configurations are varied. As a measure of effectiveness, we use the aver-

age number of bits emitted on the trace port per instruction executed.  As the work-

load, we use control flow and load data value traces of 14 benchmarks from the 

Splash2x benchmark suite [28] collected on a machine executing the Intel 64 ISA.  

Machine setup is described in Section 4.3.1. The benchmarks are discussed in Sec-

tion 4.3.2.  Section 4.3.3 describes experiments conducted and Section 4.3.4 describes 

selection of encoding parameters for variable encoding mechanism.  

4.3.1 Experimental Setup 

The setup included a Dell PowerEdge T620 server with two octa-core Intel 

Xeon CPU E5-2650 v2 processors with total of 64 GB physical memory (Figure 4.8).  

The server runs the Ubuntu 14.04 operating system with 3.13.0-39-generic Linux 

kernel. The mTrace tools used Pin version 2.13. 

 

Figure 4.8 Block diagram of Intel Xeon E5-2650 v2 processor socket 
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4.3.2 Benchmarks 

As a workload we use a full set of SPLASH2x [28] benchmarks.  SPLASH2x 

is a collection of applications and kernels in the area of high performance and paral-

lel computing. Each benchmark was executed with N = 1, 2, 4 and 8 processor cores. 

Each benchmark has six different input sets as follows: Test and Simdev are used 

for testing and development; Simsmall, Simmedium and Simlarge are used for simu-

lations; finally, Native is used for the native program execution on actual hardware 

platforms. We use the Simsmall input set.  

The trace port bandwidth for control flow traces depends on benchmark char-

acteristics, specifically the frequency and type of control-flow instructions. Similarly 

the trace port bandwidth for load data value traces depends on the frequency and 

type of memory reads and data value sizes. Table 4.2 shows the control flow charac-

terization of all 14 benchmarks in the SPLASH2X suite.  The suite was compiled for 

the Intel 64 instruction set architecture with varying number of thread varies (N = 

1, 2, 4, and 8). We show the number of executed instructions (instruction count) and 

the number of instructions executed per clock cycle (IPC). The last four columns 

show the frequency of control flow instructions for single threaded programs (N = 1), 

as well as the frequency of conditional direct branches (C, D), unconditional direct 

branches (U, D), and unconditional indirect branches (U, I).  The number of instruc-

tions slightly increases with an increase in the number of threads due to overhead 

and data partitioning.  The number of instructions varies between 0.367 (lu_ncb) ~ 

3.2 (water-spatial) billion.  The SPLASH2x benchmarks exhibit diverse behavior 

with respect to control flow instructions; their frequency ranges from as high as 

~15% (raytrace, radiosity) to as low as 1.06% (radix). The total frequency of control 
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flow instructions is relatively low (9.57%).  Conditional direct branches are the most 

frequent type of branches.  

 

Table 4.2 Splash2x benchmark suite control flow characterization 

 

 

Table 4.3 shows the memory read flow characterization of Splash2x bench-

marks while varying the number of threads (N = 1, 2, 4, and 8).  We show the num-

ber of instructions executed, the number of instructions executed per clock cycle, and 

the frequency of memory read instructions with respect to the total number of in-

structions. The frequency of memory read instructions increases with an increase in 

the number of threads.  The percentage of memory read instructions varies between 

10.61% (radix) and 35.73% (barnes).  The overall frequency of read instructions is 

27.46% for N = 1 and 28.8% for N = 8.  The overall IPC as a function of the number 

of cores indicates how well performance of individual benchmarks scales.  For exam-

Benchmark

Thread 1 2 4 8 1 2 4 8 branch C,D U,D U,I

cholesky 0.889 0.916 0.976 1.047 2.28 2.93 3.75 4.03 6.11 5.43 0.45 0.22

fft 0.764 0.764 0.764 0.765 1.28 1.63 1.96 2.10 8.38 5.65 1.36 1.37

lu_cb 0.381 0.381 0.382 0.383 2.93 4.89 3.67 4.91 14.30 13.74 0.28 0.28

lu_ncb 0.367 0.367 0.368 0.369 2.02 2.82 3.54 2.84 14.86 14.35 0.22 0.29

radix 0.703 0.704 0.704 0.707 0.33 0.59 1.18 2.26 1.06 1.06 0.00 0.00

barnes 1.606 1.606 1.608 1.608 1.58 2.81 4.76 6.87 13.31 7.02 4.05 2.25

fmm 2.265 2.268 2.270 2.272 2.23 3.96 7.27 9.71 7.34 5.55 1.65 0.15

ocean_cp 1.316 1.317 1.334 1.337 1.58 2.41 3.02 3.21 2.91 2.47 0.40 0.04

ocean_ncp 1.293 1.294 1.308 1.311 0.51 1.35 1.80 2.52 2.59 2.57 0.02 0.001

radiosity 1.402 1.433 1.434 1.434 1.74 2.63 3.45 3.94 14.59 9.01 3.37 2.21

raytrace 1.646 1.646 1.649 1.651 1.47 2.34 3.34 3.17 15.27 11.28 2.14 1.85

volrend 0.741 0.758 0.783 0.807 1.50 2.65 3.34 3.10 6.30 5.48 0.66 0.17

water_nsq 0.431 0.432 0.433 0.435 1.84 2.77 4.16 5.58 11.74 10.32 0.71 0.70

water_spa 3.221 3.221 3.221 3.221 2.03 3.10 4.96 7.29 11.38 9.38 0.97 1.02

Total 17.024 17.107 17.232 17.346 1.30 2.26 3.33 4.12 9.57 7.16 1.48 0.93

% branches for Thread=1Instruction per CycleInstruction Count [x10 9 ]
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ple, radix scales well, reaching a speedup for 8 cores, S(8) = IPC(N= 8)/IPC(N=1) = 

6.6, but lu_ncb does not scale well because its 8-core speedup is only S(8) = 1.4. 

 

Table 4.3 Splash2x benchmark suite memory read characterization 

 

 

The memory trace port bandwidth depends not only on the frequency of read 

operations but also on operand sizes. Table 4.4 shows the frequency of memory reads 

for different operand sizes: byte (8 bit), words (16 bit), doubleword (32 bit), quadword 

(64 bit), extended precision (80 bit) operands, octaword (128 bit) operands, hexaword 

(256 bit) operands, and others. The results indicate that quad-word operands domi-

nate in all benchmarks except for radiosity which has mostly double word operands.   

 

Benchmark

Thread 1 2 4 8 1 2 4 8 1 2 4 8

cholesky 0.89 0.92 0.98 1.05 2.28 2.93 3.75 4.03 29.02 29.59 32.24 37.18

fft 0.76 0.76 0.76 0.76 1.28 1.63 1.96 2.10 21.61 21.61 21.62 21.62

lu-cb 0.38 0.38 0.38 0.38 2.93 4.89 3.67 4.91 26.03 26.04 26.07 26.11

lu-ncb 0.37 0.37 0.37 0.37 2.02 2.82 3.54 2.84 26.70 26.71 26.73 26.78

radix 0.70 0.70 0.70 0.71 0.33 0.59 1.18 2.26 10.61 10.64 10.69 10.81

barnes 1.61 1.61 1.61 1.61 1.58 2.81 4.76 6.87 35.72 35.72 35.72 35.73

fmm 2.27 2.27 2.27 2.27 2.23 3.96 7.27 9.71 15.61 15.63 15.65 15.71

ocean-cp 1.32 1.32 1.33 1.34 1.58 2.41 3.02 3.21 34.92 34.96 35.31 35.42

ocean-ncp 1.29 1.29 1.31 1.31 0.51 1.35 1.80 2.52 29.59 29.60 29.85 29.89

radiosity 1.40 1.43 1.43 1.43 1.74 2.63 3.45 3.94 30.42 31.03 30.90 31.02

raytrace 1.65 1.65 1.65 1.65 1.47 2.34 3.34 3.17 31.02 31.02 31.06 31.07

volrend 0.74 0.76 0.78 0.81 1.50 2.65 3.34 3.10 24.88 25.97 27.63 29.22

water-nsq 0.43 0.43 0.43 0.44 1.84 2.77 4.16 5.58 29.22 29.26 29.32 29.44

water-spa 3.22 3.22 3.22 3.22 2.03 3.10 4.96 7.29 29.92 29.92 29.92 29.92

Total 17.02 17.11 17.23 17.35 1.30 2.26 3.33 4.12 27.46 27.60 27.86 28.22

Instruction Count [x10 9 ] Instructions per Cycle %Load



45 

 

Table 4.4 Benchmark characterization of memory reads 

 

 

4.3.3 Experiments  

Table 4.5 lists the pairs (technique, configuration) considered in the experi-

mental evaluation. For control-flow traces we compare the trace port bandwidth of 

mcfNX_b versus mcfTR_b and mcfTR_e, while varying the number of threads (N=1, 

2, 4, and 8).  To assess the impact of organization and size of predictor structures in 

mcfTRaptor on its effectiveness, we consider the following configurations:  

 Small: it includes a p=512-entry gshare outcome predictor and an 8-

entry RAS; 

 Medium: it includes an p=1024-entry gshare outcome predictor, a 16-

entry RAS, and a 16-entry iBTB (2x8); and 

 Large: it includes a p=4096-entry gshare outcome predictor, a 32-entry 

RAS, and a 64-entry iBTB (2x32). 

Benchmark

Total 

Memory 

Reads

Byte 

Operands

Word 

operands

Doubleword 

operands

Quadword 

operands

Extended 

Precision 

operands

Octaword 

operands

Hexaword 

operands

OtherSize 

operands

cholesky 257829613 1.41 0.01 0.37 93.55 0.00 0.50 0.00 4.16

fft 165033526 0.02 10.17 0.01 85.33 0.00 0.64 0.00 3.83

lu_cb 99130206 0.02 1.85 0.98 97.15 0.00 0.00 0.00 0.00

lu_ncb 97978154 0.02 1.88 0.36 97.75 0.00 0.00 0.00 0.00

radix 74608179 0.02 0.00 0.01 95.74 0.00 0.00 0.00 4.22

barnes 573750613 0.00 0.00 0.10 99.86 0.00 0.03 0.00 0.01

fmm 353635215 0.00 0.00 0.48 96.64 0.00 0.25 0.00 2.62

ocean_cp 459344111 0.00 0.00 0.01 94.42 0.00 0.00 0.00 5.57

ocean_ncp 382545985 0.00 0.00 0.01 98.37 0.00 0.62 0.00 1.00

radiosity 426368828 0.01 0.00 65.27 34.60 0.00 0.00 0.00 0.12

raytrace 510473124 0.96 0.00 1.28 97.74 0.00 0.02 0.00 0.00

volrend 184409952 15.50 10.90 38.24 35.34 0.00 0.01 0.00 0.00

water_nsq 125938251 0.46 0.00 0.27 99.00 0.00 0.27 0.00 0.00

water_spa 963693545 0.39 0.00 0.19 98.78 0.00 0.63 0.00 0.00

Total 4674739302 0.89 0.87 7.75 88.96 0.00 0.26 0.00 1.27
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The index function for the gshare outcome predictor is gshare.index = 

BHR[log2(p):0] xor PC[4+ log2(p):4], where the BHR register holds the outcome his-

tory of the last log2(p) conditional branches. The iBTB holds target addresses that 

are tagged. Both the iBTB tag and iBTB index are calculated based on the infor-

mation maintained in the path information register [29], [30].  

 

Table 4.5 Functional trace experiments 

 

 

For load data value traces, we compare the trace port bandwidth of mlvNX_b 

versus the mlvCF_b and mlvCF_e while varying the number of threads (N=1, 2, 4, 

and 8). To assess the impact of organization and size data caches on mlvCFiat effec-

tiveness, we consider the following cache configurations.  All cache structures are 4-

way set associative, use round robin replacement policy, feature a block size of 64 

bytes, and the first-access flag granularity is set to 4 bytes. We consider three con-

figurations as follows: 

 Small: 16 KB data cache; 

 Medium: 32 KB data cache; and 

 Large: 64 KB data cache. 

Method Small Medium Large Method Small Medium Large

mcf_NX_b mlv_NX_b

mcf_TR_b √ √ √ mlv_CF_b √ √ √

mcf_TR_e √ √ √ mlv_CF_e √ √ √

control flow (vary N = 1,2,4 & 8) load  flow (vary N = 1,2,4 & 8) 

√ √
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4.3.4 Variable Encoding 

To evaluate the impact of encoding mechanisms, we analyze trace port band-

width for both encoding approaches mcfTR_b and mcfTR_e. To select good encoding 

parameters (i0, i1, j0, j1, …), we profiled the Splash2x benchmarks to determine the 

minimum required bit length of Ti.bCnt and Ti.|diffTA| fields.  Figure 4.9 shows 

the cumulative distribution function (CDF) for the minimum number of bits needed 

to encode Ti.bCnt (left) and Ti.|diffTA| (right) for the raytrace, radiosity, and fft 

benchmarks with N = 1 and the Large mcfTRaptor configuration. These benchmarks 

are selected because they have a relatively high frequency of control-flow instruc-

tions. The number of bits needed to encode the value of Ti.bCnt counters depends on 

benchmark characteristics as well as on misprediction rates of the mcfTRaptor pre-

dictors, which makes the selection of good parameters a challenging task. However, 

we can see that ~60% of possible Ti.bCnt values encountered during tracing raytrace 

and radiosity can be encoded with 3 bits, and very few trace descriptors require more 

than 8 bits. Similarly, over 60% of Ti.|diffTA| values encountered in the trace re-

quire fewer than 16 bits to encode for raytrace and radiosity, and just 3 bits are suf-

ficient in case of fft that has a relatively high frequency of indirect branches.  

  

Figure 4.9 CDF of the minimum length for bCnt and |diffTA| fields 
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Whereas each (benchmark, mcfTRaptor configuration) pair may yield an op-

timal combination of the encoding parameters, we search for a combination that per-

forms well across all benchmarks. We limit the design space by requiring that 

i1=i2=… ik, and j1=j2=… =jl, where {i0, i1}={1-6} and {j0, j1}={1-12}. Figure 4.10 

shows the total average size of the bCnt and |diffTA| fields for a selected set of 

chunk sizes for N = 1, 2, 4, and 8. We find that i0 = 4, i1 = 2 results in the smallest 

average bCnt field size, regardless of the number of threads. Similarly, we find that 

j0 = 3 and j1 = 5 are chunk sizes that result in the smallest average |diffTA| field 

size. 

 

   

Figure 4.10 Total average bCnt and |diffTA| field sizes as a function of encoding 

 

To evaluate the impact of encoding mechanisms for load data value traces, we 

analyze trace port bandwidth for both encoding approaches mlvCF_b and mlvCF_e. 

To select good encoding parameters (i0, i1), we profiled the Splash2x benchmarks to 

determine the minimum required bit length of the Ti.fahCnt field.  Figure 4.11, left 

shows the cumulative distribution function of the Ti.fahCnt field length for selected 
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single threaded Splash2x benchmarks. The number of bits needed to encode the 

Ti.fahCnt varies as a function of benchmark characteristics (frequency load values, 

locality), cache configuration, and first-access granularity.  We can see that more 

than 60% of trace descriptors require fewer than 2 bits for encoding Ti.fahCnt, and 

more than 90% of descriptors require fewer than 6 bits.  Figure 4.11, right shows the 

average Ti.fahCnt field size as a function of chunk sizes (i0, i1) = {(2,2), ... (6,6)}. The 

results indicate that i0 = 2 and i1 = 2 chunk sizes give the shortest field sizes re-

gardless of the number of threads.  

 

   

Figure 4.11 CDF of the minimum length for Ti.fahCnt and the average Ti.fahCnt for 

variable encoding 
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CHAPTER 5  

 

TRACE PORT BANDWIDTH ANALYSIS FOR FUNCTIONAL TRACES 

 

Those who see invincible, can do impossible 

--Rev. Pandurang Shastri Athavale 

 

This chapter shows the main results of the experimental evaluation for func-

tional traces. We measure trace port bandwidths for control-flow and load data value 

traces as a function of the number of processor cores, encoding mechanism, as well 

as configuration parameters of the trace filtering structures. Trace port bandwidth 

is measured in bits per instruction executed [bpi], calculated as the number of bits 

needed to be streamed out through the trace port of a system-on-a-chip divided by 

the number of instructions executed.  In addition, we consider bits per clock cycles 

[bpc], calculated as the total number of bits streamed out through the trace port of a 

system-on-the-chip divided by the number of clock cycles needed to complete a 

benchmark of interest.  Section 5.1 discusses the results for control-flow functional 

traces, specifically the trace port bandwidth requirements for the Nexus-like control-

flow trace, mcfNX_b, as well as the trace port bandwidth for the mcfTRaptor tech-

nique with the fixed encoding, mcfTR_b, and the variable encoding, mcfTR_e.  Sec-

tion 5.2 discusses the results for memory load data value functional traces, specifi-

cally the trace port bandwidth requirements for the Nexus-like traces, mlvNX_b, 

and the mlvCFiat technique with the fixed, mlvCF_b, and the variable encoding, 

mlvCF_e.   
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5.1 Trace Port Bandwidth for Control-Flow Traces 

5.1.1 mcfNX_b  

Table 5.1 shows the trace port bandwidth (TPB) in bpi and bpc for the Nexus-

like control flow traces, mcfNX_b, for all the benchmarks as a function of the num-

ber of threads/cores (N = 1, 2, 4, and 8).  The last row shows the total trace port 

bandwidth when all benchmarks are considered together. The total bandwidth in bpi 

is calculated as the sum of trace sizes for all benchmarks divided by the sum of the 

number of instructions executed for all benchmarks. Similarly, the total bandwidth 

in bpc is calculated as the sum of trace sizes for all benchmarks divided by the sum 

of the execution times in clock cycles for all benchmarks. For single-threaded 

benchmarks (N = 1) the TPB ranges between 0.09 bpi for radix and 1.67 bpi for radi-

osity.  The required bandwidth varies across benchmarks and is highly correlated 

with the frequency of control-flow instructions.  Thus, radiosity, raytrace, water-

spatial and barnes have relatively high TPB in bpi requirements due to the relative-

ly high frequency of branch instructions and especially indirect branches (see Table 

4.2), conversely,  radix, has very low TPB in bpi requirements due to the extremely 

small frequency of control flow instructions.  The required trace port bandwidth in 

bits per instruction increases as we increase the number of cores, due to additional 

information such as Ti that needs to be streamed out.  Thus, when N = 8, the TPB 

ranges between 0.13 bpi for radix and 1.98 bpi for radiosity. The total bandwidth for 

the entire benchmark suite ranges between 0.93 bpi when N = 1 and 1.14 bpi when 

N = 8.  
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Table 5.1 Trace port bandwidth for mcfNX_b for Splash2x benchmark 

 

 

Whereas the bandwidth in bpi increases with the number of cores, it does not 

fully capture the pressure multiple processor cores place on the trace port,  a shared 

resource.  The trace port bandwidth in bits per clock cycle better illustrates this 

pressure.  Thus, control-flow trace of barnes with 8 threads executing on 8 cores re-

quires 13.36 bpc on average.  Generally, the trace port bandwidth in bpc is a func-

tion of benchmark characteristics as well as the scalability of individual bench-

marks.  The total TPB in bpc ranges between 1.21 bpc when N = 1 and 4.68 when 

N = 8.  These results indicate that capturing control-flow trace on the fly in multi-

cores requires significantly large trace buffers and wide trace ports. As shown in the 

next section, one alternative is to develop hardware techniques that significantly re-

duce the volume and size of trace messages that are streamed out. 

Benchmark

N (cores) 1 2 4 8 1 2 4 8

cholesky 0.40 0.46 0.51 0.60 0.92 1.35 1.93 2.40

fft 1.18 1.23 1.28 1.32 1.51 2.00 2.50 2.78

lu_cb 1.25 1.38 1.50 1.62 3.67 6.72 5.50 7.95

lu_ncb 1.31 1.43 1.56 1.69 2.63 4.05 5.53 4.79

radix 0.09 0.11 0.12 0.13 0.03 0.06 0.14 0.30

barnes 1.65 1.75 1.85 1.94 2.62 4.92 8.79 13.36

fmm 0.41 0.45 0.48 0.52 0.91 1.77 3.53 5.09

ocean_cp 0.20 0.22 0.24 0.27 0.32 0.53 0.73 0.86

ocean_ncp 0.20 0.22 0.25 0.27 0.10 0.30 0.45 0.69

radiosity 1.67 1.78 1.88 1.98 2.90 4.66 6.48 7.80

raytrace 1.45 1.54 1.63 1.71 2.14 3.61 5.43 5.44

volrend 0.63 0.74 0.88 1.04 0.95 1.95 2.96 3.23

water_nsq 0.98 1.06 1.14 1.22 1.81 2.94 4.75 6.82

water_spa 1.20 1.28 1.36 1.45 2.44 3.97 6.76 10.53

Total 0.93 1.00 1.07 1.14 1.21 2.26 3.55 4.68

Trace Port Bandwidth 

[bpc]

Trace Port Bandwidth 

[bpi]
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5.1.2 mcfTRaptor  

The effectiveness of mcfTRaptor in reducing the trace port bandwidth de-

pends on prediction rates as the trace messages are generated only on rare mispre-

diction events.  Table 5.2 shows the total misprediction rates collected on the entire 

benchmark suite for the Small, Medium, and Large predictor configurations, when 

the number of cores is varied between N = 1 and N = 8. Figure 5.1 illustrates the to-

tal outcome misprediction rates and Figure 5.2 shows the total target address mis-

prediction rates as a function of the number of threads and predictor configuration.  

The outcome misprediction rates decrease as we increase the size of the gshare pre-

dictor.  They also slightly decrease with an increase in the number of processor cores 

as fewer branches compete for the same resource.  Relatively high misprediction 

rates indicate that even better trace compression could be achieved if more sophisti-

cated outcome predictors are used.  However, this is out of scope of this thesis.  The 

target address misprediction rates are very low for the Medium and Large configu-

rations.  The Small configuration does not include the iBTB predictor resulting in 

higher target address misprediction rates. These results demonstrate a strong po-

tential of mcfTRaptor to reduce the trace port bandwidth requirements. 

 

Table 5.2  Outcome and target address misprediction rates 

 

Outcome Misprediction Rate [%] Target Address Misprediction Rate [%] 

Configuration N = 1 N = 2 N = 4 N = 8 N = 1 N = 2 N = 4 N = 8 

Small 8.20 7.95 7.95 7.54 21.78 21.84 21.86 21.88 

Medium 6.85 6.88 6.60 6.51 2.69 2.70 2.72 2.74 

Large 5.16 5.10 5.00 4.84 0.77 0.78 0.79 0.78 
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Figure 5.1 Outcome misprediction rates for Splash2x bechmark 

 

 

 

Figure 5.2 Target address misprediction rates for Splash2x benchmark 
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To quantify the effectiveness of mcfTRaptor, we analyze the total trace port 

bandwidth in bpi for the entire benchmark suite as a function of the number of 

threads (N = 1, 2, 4, and 8), the encoding mechanism (mcfTR_b and mcfTR_e), and 

the mcfTRaptor organization (Small, Medium, and Large)[Section 4.3.3]. Figure 5.3 

shows the total average trace port bandwidth.  

mcfTR_b dramatically reduces the total trace port bandwidth compared to 

mcfNX_b.  Specifically, we observe the following findings.  

 Small configuration: 0.14 bpi (N = 1) and 0.16 bpi (N = 8). This is equivalent 

to reducing the trace port bandwidth relative to mcfNX_b 6.65 times for N = 1 

and 6.98 times for N = 8. 

 Medium configuration: 0.05 bpi (N = 1) and 0.07 bpi (N = 8). This is equiva-

lent to reducing the trace port bandwidth relative to mcfNX_b 16.56 times for 

N = 1 and 15.40 for N = 8. 

 Large configuration: 0.03 bpi (N = 1) and 0.04 (N = 8). This equivalent to re-

ducing the trace port bandwidth relative to mcfNX_b 24.88 times for N = 1 

and 22.92 for N = 8. 

mcfTR_e further reduces the average trace port bandwidth as follow: 

 Small configuration: 0.07 bpi (N = 1) and 0.09 bpi (N = 8). This is equivalent 

to reducing the trace port bandwidth relative to mcfNX_b 12.45 times for 

N = 1 and 11.58 for N = 8. 

 Medium configuration: 0.03 bpi (N = 1) and 0.05 bpi (N = 8).  This is equiva-

lent to reducing the trace port bandwidth relative to mcfNX_b 26.56 times for 

N = 1 and 21.6 for N = 8. 
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 Large configuration:  0.02 bpi (N = 1) and 0.03 bpi (N = 8).  This is equivalent 

to reducing the trace port bandwidth relative to mcfNX_b 36.5 times for N = 1 

and 30.3 for N = 8. 

 

Table 5.3 shows the compression ratios for mcfTR_b relative to mcfNX_b, as a 

function of the predictor configuration (Small, Medium, Large) and the number of 

threads for each benchmark. The compression ratio is calculated as follows: 

TPB(mcfNX_b)/TPB(mcfTR_b).  For N = 1, the compression ratio ranges from 3.5 

(radiosity) to 699.6 (radix) for the Small configuration and from 6.5 (lu_ncb) to 948.8 

(radix) for the Large configuration.  For N = 8, the compression ratio ranges from 3.5 

(radiosity) to 399.7 (radix) for the Small configuration and from 6.3 (lu_ncb) to 565.2 

(radix) for the Large configuration. The gains in compression ratio achieved when 

increasing the number of cores (threads) are relatively more significant when using 

smaller predictor structures.  

 

 

Figure 5.3 Total trace port bandwidth in bpi for control flow traces 
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Table 5.3 Compression ratio for mcfTR_b relative to mcfNX_b 

 

 

Table 5.4 shows the compression ratios for mcfTR_e relative to mcfNX_b. 

mcfTR_e achieves higher compression ratios than mcfTR_b, especially when using 

the Small predictor structures that exhibit a relatively high number of mispredic-

tions and thus report Ti.bCnt values that can benefit from variable encoding. For 

N = 1, the compression ratio ranges from 7.8 (radiosity) to 1224.9 (radix) for the 

Small configuration and from 11.5 (lu_ncb) to 975.9 (radix) for the Large configura-

tion.  For N = 8, the compression ratio ranges from 6.5 (radiosity) to 1035.2 (radix) 

for the Small configuration and from 9.4 (lu_ncb) to 805.1 (radix) for the Large con-

figuration.  

 

Cores

Config S M L S M L S M L S M L

cholesky 7.8 13.9 19.9 8.1 11.7 19.6 8.5 13.0 19.7 9.2 15.0 20.7

fft 6.1 83.0 167.0 6.2 65.2 156.8 6.3 66.9 146.9 6.3 68.7 137.5

lu_cb 11.8 16.4 16.5 11.9 13.5 16.3 12.0 14.8 16.2 12.1 15.9 16.1

lu_ncb 5.6 6.5 6.5 5.6 5.3 6.4 5.6 5.8 6.4 5.6 6.3 6.3

radix 699.6 869.0 948.8 598.3 644.1 811.1 512.3 602.5 704.2 399.7 528.7 565.2

barnes 20.1 31.6 38.5 19.6 25.2 36.6 19.1 26.6 35.0 18.7 27.9 33.7

fmm 7.5 14.4 19.0 7.7 12.6 19.1 7.9 13.7 18.8 8.1 14.4 18.7

ocean_cp 15.5 53.9 56.9 15.7 42.1 54.6 14.0 32.6 39.0 13.1 31.2 36.3

ocean_ncp 72.9 82.4 86.8 59.1 56.7 73.6 36.4 38.5 46.4 28.0 32.8 38.2

radiosity 6.5 11.1 22.9 6.4 9.5 21.6 6.4 10.0 21.2 6.4 10.6 20.6

raytrace 3.5 7.2 12.2 3.5 6.1 11.9 3.5 6.5 11.5 3.5 6.8 11.3

volrend 5.3 9.8 12.5 5.7 8.9 13.7 6.5 10.6 15.3 7.3 12.6 16.4

water_ns 8.1 18.7 22.3 8.2 15.1 21.6 8.3 16.2 21.0 8.3 17.5 20.7

water_sp 6.4 78.1 117.1 6.8 48.1 114.4 6.8 67.6 109.0 7.3 53.9 107.1

Total 6.7 16.6 24.9 6.8 13.7 24.1 6.8 14.8 23.4 7.0 15.4 22.9

N=1 N=2 N=4 N=8
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Table 5.4 Compression ratio for mcfTR_e relative to mcfNX_b 

 

 

Figure 5.4 shows the total trace port bandwidth in bits per clock cycle for 

mcfNX_b (left), mcfTR_b and mcfTR_e (right).  mcfTR_e offers superior performance. 

Thus, the mcfTR_e for the Large configuration when N = 8 requires merely 0.154 bpc 

on average (ranging from ~0 to 0.51 bpc), whereas NX_b requires 4.68 bpc (ranging 

between 0.30 to 13.36 bpc).  These results further underscore the effectiveness of the 

proposed mcfTRaptor predictor structures for a range of diverse benchmarks. The 

results indicate that with mcfTR_e, even a single-bit data trace port would be suffi-

cient to stream out the control-flow trace from an 8-core system-on-a-chip, thus 

dramatically reducing the cost of on-chip debugging infrastructure. 

 

 

Cores

Config S M L S M L S M L S M L

cholesky 15.0 20.5 27.5 14.4 15.3 26.0 14.1 17.0 25.4 14.6 19.7 26.2

fft 23.1 123.1 209.3 21.6 86.3 191.6 20.4 88.8 177.1 19.3 90.9 162.8

lu_cb 17.7 19.6 19.7 17.2 15.4 19.1 16.8 16.8 18.6 16.4 18.1 18.3

lu_ncb 10.7 11.4 11.5 9.9 7.9 10.5 9.3 8.6 9.9 8.8 9.3 9.4

radix 1224.9 1417.3 1549.8 975.9 924.0 1246.6 796.5 862.4 1035.2 599.4 754.1 805.1

barnes 33.8 46.2 52.2 31.4 33.1 48.0 29.4 34.9 44.6 27.8 36.6 42.0

fmm 11.3 19.5 24.8 11.2 15.9 24.2 11.2 17.2 23.4 11.3 18.3 22.9

ocean_cp 37.4 63.9 65.9 35.1 48.7 63.1 26.8 38.0 44.9 23.5 37.4 42.0

ocean_ncp 78.5 83.7 86.2 65.0 58.6 73.7 41.5 41.5 48.4 33.4 37.4 41.5

radiosity 13.6 21.2 35.9 12.5 15.2 32.3 11.9 16.1 30.3 11.3 17.0 28.5

raytrace 7.8 11.9 18.9 7.3 9.0 17.6 6.9 9.5 16.5 6.5 10.0 15.6

volrend 8.4 15.5 18.9 8.7 12.2 19.5 9.6 14.6 21.1 10.5 17.4 21.9

water_ns 12.3 26.9 30.7 12.0 19.6 28.8 11.9 21.1 27.2 11.7 22.6 26.1

water_sp 9.7 103.8 148.0 10.2 57.8 140.6 10.0 83.6 132.5 10.5 64.9 128.4

Total 12.5 26.6 36.5 12.1 19.3 33.9 11.7 20.9 31.8 11.6 21.7 30.3

N=1 N=2 N=4 N=8
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Figure 5.4 Trace port bandwidth in bpc for control-flow traces 

 

5.2 Trace Port Bandwidth for Memory Load Data Value Traces 

5.2.1 mlvNX_b 

Table 5.5 shows the trace port bandwidth in bpi and in bpc for the Nexus-like 

load data value traces, mlvNX_b, for all benchmarks as a function of the number of 

threads/cores (N=1, 2, 4, and 8).  The last row shows the total trace port bandwidth 

when all benchmarks are considered together. The total bandwidth in bpi is calcu-

lated as the sum of trace sizes for all benchmarks divided by the sum of the number 

of instructions executed for all benchmarks. Similarly, the total bandwidth in bpc is 

calculated as the sum of trace sizes for all benchmarks divided by the sum of the ex-

ecution times in clock cycles for all benchmarks.  

For single-threaded benchmarks (N = 1), the TPB ranges between 8.80 bpi for 

radix and 31.06 bpi for ocean_cp.  The required bandwidth varies across benchmarks 

and is highly correlated with the frequency and type of memory reads.  Thus, barnes, 
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ocean_cp have relatively high TPB requirements due to the relatively high frequency 

of load instructions and especially those with large operand sizes (see Table 4.3 and 

Table 4.4), unlike radix, which has very low TPB requirements due to extremely 

small frequency of memory read instructions.  The trace port bandwidth increases 

slightly with an increase in the number of cores for two reasons: (a) an increase in 

the number of bits needed to report thread index, and (b) an increase in the frequen-

cy of load instructions caused by synchronization primitives. Thus, when N = 8, the 

TPB ranges between 9.23 bpi for radix and 31.99 bpi for ocean_cp. The total band-

width for the entire benchmark suite ranges between 18.25 bpi when N = 1 and 

19.08 bpi when N = 8.  

Whereas the bandwidth in bpi increases with the number of cores, it does not 

fully capture the pressure multiple processor cores place on the trace port, a shared 

resource.  The trace port bandwidth in bpc better illustrates this pressure.  Thus, 

load data value trace for ocean_cp reaches 49.11 bpc when N = 1 and 102.83 bpc 

when N = 8; barnes requires 36.23 when N = 1 and 164.38 bpc when N = 8.  The total 

trace port bandwidth in bpc ranges from 23.76 bpc when N = 1 to 78.56 when N = 8.  

The trace port bandwidth in bpc is heavily influenced not only by the frequency and 

type of memory reads but also by the scalability of individual benchmarks. For ex-

ample, barnes, water_spa, and fmm exhibit high scalability (see IPC in Table 4.3), 

which contributes to a significant increase in the trace port bandwidth requirements 

for N = 4 and N = 8.  These results indicate that capturing load data value trace on 

the fly in multicores requires large trace buffers and wide trace ports.  It also shows 

that capturing load data value trace is a much more challenging proposition than 

capturing control-flow trace.  As shown in the next section, one alternative is to de-
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velop hardware techniques that significantly reduce the volume and size of trace da-

ta that are streamed out. 

Table 5.5  Trace port bandwidth for mlvNX_b for Splash2x benchmark 

 

 

5.2.2 mlvCFiat  

The effectiveness of mlvCFiat directly depends on the first access flag miss 

rate – the lower it is,  the fewer trace messages need to be streamed out through the 

trace port.  Figure 5.5 shows the total first-access miss rate as a function of the 

number of cores for three data cache configurations (Small, Medium, Large).  The 

total first-access miss rate is calculated as the total number of first-access misses 

when all benchmarks are considered together divided by the total number of data 

reads. The first-access miss rate decreases with an increase in the number of cores, 

Benchmark

Thread 1 2 4 8 1 2 4 8

cholesky 23.80 21.98 21.98 23.11 54.23 64.50 82.53 93.03

fft 16.57 16.78 17.00 17.21 21.16 27.39 33.30 36.14

lu_cb 16.34 16.59 16.84 17.06 47.88 81.09 61.81 83.77

lu_ncb 16.82 17.07 17.32 17.55 33.90 48.23 61.26 49.81

radix 8.80 8.92 9.05 9.23 2.87 5.24 10.67 20.90

barnes 22.87 23.22 23.56 23.91 36.23 65.23 112.09 164.38

fmm 11.82 11.98 12.15 12.33 26.42 47.51 88.35 119.74

ocean_cp 31.06 31.42 31.62 31.99 49.11 75.79 95.41 102.83

ocean_ncp 20.38 20.65 20.91 21.17 10.45 27.79 37.57 53.39

radiosity 13.27 13.58 13.84 14.21 23.08 35.66 47.69 55.96

raytrace 19.56 19.87 20.17 20.47 28.79 46.58 67.33 64.96

volrend 9.42 10.14 11.11 12.00 14.14 26.88 37.16 37.26

water_nsq 18.65 18.94 19.22 19.48 34.35 52.40 79.97 108.64

water_spa 19.19 19.49 19.78 20.08 38.96 60.35 98.04 146.35

Total 18.25 18.43 18.71 19.08 23.76 41.66 62.32 78.56

Trace Port Bandwidth [bpc]Trace Port Bandwidth 
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e.g., from 6.4% when N = 1 to 5.6% when N = 8 for the Medium configuration.  As 

expectedly, larger data caches result in a smaller number of miss events and thus a 

smaller number of first-access miss events. e.g., the first-access miss rate ranges 

from 7.9% for the Small configuration to 4.2% for the Large configuration when the 

number of cores is set to four (N = 4).  Figure 5.5 also indicates the minimum and 

the maximum first-access miss rates.  Thus, the first-access miss rate reaches as 

high as ~30% for ocean-ncp and as low as 0.3% - 1% for water-spa, depending on the 

number of cores and data cache size. These results confirm that mlvCFiat indeed 

can reduce the number of trace messages. 

 

 

Figure 5.5 First access miss rate for Splash2x benchmark 

 

Figure 5.6 shows the total average trace port bandwidth for Nexus–like memory 

read flow traces (mlvNX_b), and mlvCFiat (mlvCF_b, mlvCF_e) as a function of the 

number of threads (N = 1, 2, 4 and 8) and the mlvCFiat configuration (Small, Medi-
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um and Large).  Table 5.6 shows the trace port bandwidth for Large configuration.  

For N = 1, mlvNX_b requires on average 18.25 bpi when N = 1 and ranges between 

31.06 bpi (ocean_cp) and 8.80 bpi (radix); for N = 8, mlvNX_b requires on average 

19.08 bpi (N = 8) ranges between 31.99 (ocean_cp) and 9.23 (radix).  

 

Figure 5.6 Trace port bandwidth bpi for load data value trace 

 

mlvCF_b dramatically reduces the average trace port bandwidth as follows: 

 Small configuration: 4.98 bpi (N = 1) and 4.34 bpi when N = 8. This is equiva-

lent to reducing the trace port bandwidth relative to mlvNX_b 3.66 times for 

N = 1 and 4.38 times for N = 8. 

 Medium configuration: 3.70 bpi (N = 1) and 3.42 bpi when N = 8. This is 

equivalent to reducing the trace port bandwidth relative to mlvNX_b 4.93 

times for N = 1 and 5.56 times for N = 8. 
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 Large configuration: 2.88 bpi (N = 1) and 2.70 bpi when N = 8. This is equiva-

lent to reducing the trace port bandwidth relative to mlvNX_b 6.33 times for 

N = 1 and 7.04 times for N = 8. 

 

Table 5.6 TPB for mlvNX_b, mlvCF_b, and mlvCF_e for large configuration 

 

 

mlvCF_e further reduces the average trace port bandwidth as follow: 

 Small configuration: 4.69 bpi (N = 1) and 4.10 bpi when N = 8. This is equiva-

lent to reducing the trace port bandwidth relative to mlvNX_b 3.89 times for 

N = 1 and 4.64 times for N = 8. 

 Medium configuration: 3.50 bpi (N = 1) and 3.25 bpi when N = 8. This is 

equivalent to reducing the trace port bandwidth relative to mlvNX_b 5.21 

times for N = 1 and 5.86 times for N = 8. 

 Large configuration: 2.74 bpi (N = 1) and 2.58 bpi when N = 8. This is equiva-

lent to reducing the trace port bandwidth relative to mlvNX_b 6.66 times for 

N = 1 and 7.39 times for N = 8. 

Thread

Mechanism -> mlvNX_b mlvCF_b mlvCF_e mlvNX_b mlvCF_b mlvCF_e mlvNX_b mlvCF_b mlvCF_e mlvNX_b mlvCF_b mlvCF_e 

Benchmark

cholesky 23.802 4.816 4.651 21.979 3.700 3.562 21.979 3.125 2.995 23.108 2.568 2.446

fft 16.570 2.889 2.791 16.785 2.904 2.806 16.997 2.922 2.824 17.206 2.937 2.839

lu_cb 16.342 1.116 1.060 16.594 0.947 0.890 16.837 0.939 0.883 17.062 0.875 0.816

lu_ncb 16.816 6.340 5.838 17.074 6.410 5.910 17.322 6.488 5.989 17.551 6.557 6.060

radix 8.797 3.538 3.430 8.917 3.566 3.457 9.054 3.608 3.498 9.230 3.678 3.565

barnes 22.867 0.831 0.786 23.224 0.810 0.767 23.558 0.822 0.779 23.913 1.028 0.976

fmm 11.824 0.385 0.364 11.982 0.399 0.378 12.146 0.407 0.386 12.335 0.418 0.396

ocean_cp 31.056 12.317 11.937 31.420 12.833 12.413 31.619 12.459 12.069 31.986 12.464 12.074

ocean_ncp 20.376 12.702 11.791 20.654 11.447 10.691 20.915 11.460 10.715 21.173 11.149 10.440

radiosity 13.274 0.353 0.335 13.581 0.362 0.344 13.836 0.360 0.343 14.206 0.379 0.360

raytrace 19.562 0.789 0.742 19.866 0.821 0.772 20.174 0.840 0.791 20.466 0.835 0.786

volrend 9.421 0.109 0.098 10.141 0.130 0.118 11.110 0.174 0.157 12.001 0.204 0.184

water_nsq 18.653 0.308 0.290 18.940 0.315 0.297 19.218 0.298 0.283 19.480 0.308 0.291

water_sp 19.186 0.156 0.147 19.485 0.172 0.162 19.784 0.175 0.166 20.083 0.176 0.167

Average 18.252 2.882 2.738 18.425 2.771 2.638 18.710 2.736 2.605 19.076 2.708 2.579

81 2 4
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Table 5.7 shows the compression ratio of mlvCF_e relative to mlvNX_b, as a 

function of the number of threads (N = 1, 2, 4 and 8) and configuration (S, M, L) cal-

culated as TPB(mlvNX_b)/TPB(mlvCF_e).  For the Small configuration average 

compression ratio is 3.9 (N = 1) and 4.6 (N = 8).  For the Medium configuration the 

average compression ratio is 5.2 (N = 1) and 5.9 (N = 8).  For the Large configuration 

the total compression ratio is 6.7 (N = 1) and 7.4 (N = 8).  The best performing is wa-

ter-spatial (N = 1) and the worst performing is ocean_ncp (N = 8). 

 

Table 5.7 Compression ratio of mlvCF_e relative to mlvNX_b  

 

 

Cores
Config. S M L S M L S M L S M L

cholesky 3.0 4.1 5.1 3.7 5.0 6.2 4.4 5.9 7.3 5.5 7.6 9.4

fft 4.1 5.3 5.9 4.2 5.4 6.0 4.2 5.4 6.0 4.2 5.4 6.1

lu-cb 13.4 14.2 15.4 13.3 14.7 18.6 13.4 14.8 19.1 13.6 17.5 20.9

lu-ncb 1.5 1.6 2.9 1.5 1.6 2.9 1.5 1.7 2.9 1.5 1.7 2.9

radix 2.2 2.3 2.6 2.3 2.4 2.6 2.3 2.4 2.6 2.3 2.4 2.6

barnes 4.9 8.6 29.1 4.9 8.3 30.3 5.0 8.4 30.2 5.0 8.0 24.5

fmm 11.1 20.9 32.5 9.4 20.7 31.7 10.3 20.5 31.5 10.2 20.3 31.1

ocean-cp 1.6 2.3 2.6 1.6 2.3 2.5 2.3 2.6 2.6 2.3 2.5 2.6

ocean-ncp 1.6 1.6 1.7 1.6 1.7 1.9 1.6 1.7 2.0 1.7 1.9 2.0

radiosity 14.2 29.4 39.6 12.8 28.5 39.5 12.7 28.5 40.4 12.8 29.6 39.5

raytrace 5.2 9.6 26.4 5.1 9.5 25.7 5.1 9.6 25.5 5.1 9.0 26.0

volrend 22.9 44.9 96.5 27.8 52.7 86.2 30.2 53.4 70.9 31.8 52.8 65.1

water-nsq 10.9 11.3 64.2 10.9 11.3 63.7 10.9 11.4 67.9 10.9 11.6 66.9

water-spa. 39.3 71.8 130.4 41.3 70.3 120.3 41.1 70.6 119.3 41.2 71.4 120.3

Total Avg. 3.9 5.2 6.7 4.0 5.4 7.0 4.5 5.6 7.2 4.6 5.9 7.4

N=1 N=2 N=4 N=8
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Figure 5.7 shows the total trace port bandwidth in bits per clock cycle. CF_e 

and CF_b are highly effective in reducing the trace port bandwidth. When N = 8, the 

total required bandwidth for mlvCF_e is just 10.62 bpc compared to 78.56 for 

mlvNX_b. Our variable encoding scheme in mlvCF_e offers improvement in range of 

~5% when compared to fixed encoding mlvCF_b for the Large configuration.  

 

 

Figure 5.7  Trace port bandwidth in bpc for load data value trace 
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CHAPTER 6  

 

EXPERIMENTAL EVALUATION FOR TIMED TRACES 

 

Progress of mankind is progress of mind and intellect 

--Rev. Pandurang Shastri Athavale 

 

Timed program execution traces capture complete information about program 

execution including a correct intra-thread and inter-thread ordering of traced 

events.  Unlike functional traces, timed traces include time stamped trace de-

scriptors.  We use timed traces to explore the challenges and opportunities of hard-

ware tracing in multicore platforms and to evaluate the effectiveness of different 

techniques and their sensitivity to system parameters.  

This chapter focuses on experimental flow based on timed traces. Figure 6.1 

shows the experiment flow for determining trace port bandwidth requirements for 

timed traces in the number of bits per instruction executed (bpi) and the number of 

bits per clock cycle (bpc).  The flow includes three major components, as follows: (a) 

trace generation using TmTrace tool suite, (b) software to hardware trace transla-

tion using custom tools that model trace compressors (tmcfTRaptor and tmlvCFiat), 

and (c) trace port bandwidth analysis using a custom tool suite.   

The TmTrace tool suite that generates timed control-flow and load data value 

traces is described in Section 6.1. Whereas TmTrace tools are designed to support a 

range of trace applications, such as ISA profiling and trace-drive simulation, they 

donot include support for analyzing the hardware tracing and trace message encod-



68 

 

ing at the trace port level, and software trace compression.  We develop custom sim-

ulators (tmcfTRaptor and tmlvCFiat) and translators that generate timed versions 

of control-flow traces (tmcfNX_b, tmcfTR_b and tmcfTR_e) and load data value trac-

es (tmlvNX_b, tmlvCF_b, and tmlv_CF_e). Section 6.2 describes the tmcfTRaptor 

simulator. Section 6.3 describes the tmlvCFiat simulator. The Software to hardware 

trace conversion described in Section 6.4 invokes similar steps to those used for 

functional traces.  Section 6.4 describes the experimental environment. The timed 

traces are generated for the Splash2 benchmark suite [31], a predecessor of the 

Splash2x benchmark suite used to generate functional traces. These benchmarks are 

compiled for the IA32 ISA.  

 

 

Figure 6.1  Experiment flow for timed traces  
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6.1 Software Timed Trace Generation 

TmTrace (Timed Multithreaded Traces) is a software tool developed to cap-

ture timed program execution traces.  It is designed as an extension of a heterogene-

ous cycle-accurate system simulator called Multi2Sim [7].  TmTrace can be directed 

to capture a timed control flow trace (tmcfTrace) or a timed memory read or write 

trace (tmlsTrace).  Section 6.1.1 gives a functional description of TmTrace, Section 

6.1.2 describes format of TmTrace-generated traces, Section 6.1.3 describes TmTrace 

implementation, and Section 6.1.4 describes TmTrace verification.  

6.1.1 Functional Description 

The TmTrace tool can generate the following types of traces: control flow, 

memory read, memory write, and a trace that includes all committed instructions.  

Figure 6.1 shows a system view of generating software timed traces the using Mul-

ti2Sim simulator.  The Multi2sim simulator takes as inputs the following: (a) the 

number of threads, (b) a target application executable (x86 32-bit ISA), and (c) the 

application input parameters.  In addition, it takes a system configuration that in-

cludes processor model, memory hierarchy, and the system interconnect. Multi2Sim 

generates general statistics related to program execution including instruction 

count, IPC, branch accuracy, and simulation time. The TmTrace component takes 

custom flags that control trace generation and consequently generates compressed 

ASCII trace files.   

Table 6.1 shows flags that control the captures of software timed traces.  The 

mTrace flag enables the tracing feature in the Multi2Sim simulator.  Additional 

flags specify the type of the trace to be generated (mcf for control flow, mld for 



70 

 

memory reads, and mst for memory writes).  To study a segment of a program, one 

can use flags to specify how many instructions should be skipped before the tracing 

is turned on (mTraceSkip) and how many instructions should be traced (mTrace-

Length).  The Intel ISA instructions are implemented as a sequence of micro instruc-

tions in the Multi2Sim simulator. The mTraceMax flag enables capturing micro in-

struction for traced instructions.  The mTraceSysPrg flag enables capturing the in-

structions executed by the simulator in system calls. 
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Table 6.1 TmTrace custom flags  

Parameter Description 

--mTrace <file.gz> Captures program execution trace for x86 in ASCII format. 

The program execution trace includes relevant information 

for committed instructions only. Note: if –mTraceSysPrg is 

used, both system and user program traces are captured; 

otherwise only user program traces are captured.  

--mcf Captures control flow program execution trace.  Note: re-

quires –mTrace flag. 

--mld Captures memory reads. Note: requires –mTrace flag. 

--mst Captures memory writes. Note: requires–mTrace flag. 

--mTraceSkip  

<#Skipped INS> 

Specifies the number of instructions skipped before the 

tracing is turned ON. Note: requires -mTrace and -

mTraceLength flags.  

--mTraceLength  

<Length in #INS> 

Specifies the number of instructions to be traced. Note: re-

quires -mTrace and -mTraceSkip flags. 

--mTraceSysPrg Enables tracing of system code. Note: requires -mTrace 

flag. 

--mTraceMax Captures assembly instructions and micro instructions for 

control flow instructions and load values for memory read 

operations. 

 

6.1.2 Format of Timed Trace Descriptors 

Figure 6.2 shows the format of a trace descriptor generated when a trace with 

all committed instructions is generated.  The trace descriptor includes the following 

fields:  

 CC: clock cycle in which the instruction is committed; 

 Ti: thread index; 
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 PC: instruction address; and 

 ASM and UASM: assembly language instruction and micro instruction. 

An example descriptor shown in Figure 6.2 is interpreted as follows: at clock 

cycle 135 from the start of the program simulation, a thread with index 0 commits 

an instruction at the address 0x8048d0a; the assembly instruction is xor ebp, ebp.  

 

 

Figure 6.2 Trace descriptor when all committed instructions are traced 

 

Figure 6.3 shows a timed control flow trace descriptor captured by TmTrace 

when the mTrace and mcf flags are set.  The descriptor is generated for each control-

flow instruction and includes the following fields: 

 CC: clock cycle in which the instruction is committed; 

 Ti: thread index; 

 PC: branch instruction address;  

 TA: target address of the branch; 

 InstSize: size of the instruction; 

 D/I: type of the branch, direct or indirect; 

 C/U: type of the branch, conditional or unconditional; 

 T/N: branch outcome, taken or not taken;  

Timed committed instruction trace
Legend:
CC Clock Cycle

Ti Thread / Core ID 
PC Instruction Address
ASM Assembly Instruction
UASM Micro Instruction135, 0, 8048d0a, xor ebp, ebp, zps/ebp [0x11,16]x

Ti PCCC ASM UASM
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 BrType: type encoded as follows: call – 1, ret – 2, syscall – 3, ibranch – 4, 

jump – 5, branch – 6; 

 BBL: the number of instructions in a basic block ending with the branch.   

An example descriptor shown in Figure 6.3 is interpreted as follows: at clock 

cycle 463 in thread 0 a control-flow instruction at the address of 0x804814c is com-

mitted; its target address is 0x8058090 and the instruction size is 5 bytes. The in-

struction is a direct unconditional taken branch of type “call”. The number of in-

structions executed in the program since the previous descriptor is 13.  

 

 

Figure 6.3 Trace descriptor for timed control-flow trace 

 

Figure 6.4 shows several types of trace descriptors generated for memory 

read (with –mld switch) and memory write operations (–mst switch).  Figure 6.4 (a) 

shows a trace descriptor generated for both memory reads and writes. It includes the 

following fields: 

 CC: time in clock cycles in which the memory instruction is committed; 

 Ti: thread index; 

 L/S: read (L=0) or write (S=1) operation; 

 PC: instruction address; 

Timed control-flow trace (tmcfTrace)

Ti PCCC TA D/I C/U T/N BrType BBL

Legend:
CC Clock Cycle

Ti Thread / Core ID 
PC Instruction Address
TA Target Address
InstSize Instruction Size
D/I Direct / Indirect
C/U Conditional / Unconditional
T/N Taken / Not Taken
BrType Type of branch [call, jump …]
BBL Basic Block Length

463, 0, 804814c, 8058090, 5, D, U, T, 1,13

InstSize
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 Oaddr: operand address; 

 Osize: operand size. 

An example descriptor shown in Figure 6.4 (a) is interpreted as follows: at 

clock cycle time 456 in thread 0 a load instruction residing at the address 0x8048132 

reads a 4-byte operand from the address 0xbfff0000.  The following descriptor de-

scribes a store operation committed at clock cycle 457 in thread 0; the address of the 

instruction is 0x8048138 and it writes a 4-byte operand at the address 0xbffefffc in 

memory.  Figure 6.4(b) shows the trace descriptor format when only memory reads 

or memory writes are generated.  Figure 6.4(c) shows the trace descriptor format 

when memory reads with the operand values are generated.   

 

 

Figure 6.4 Trace descriptors generated for memory reads and writes  

 

(a) Timed memory read and write trace descriptor 

(b) Timed memory read or write trace descriptor 

(c) Timed extended memory read trace descriptor

Legend:
CC Clock Cycle

Ti Thread / Core ID 
PC Instruction Address
L/S Load / Store
OAddr Operand Address
OSize Operand Size
OValue   Operand Value
ASM Assembly Instruction
UASM Micro Instruction

456, 0, 0, 8048132, bfff0000, 4
457, 0, 1, 8048138, bffefffc, 4

TiCC PC Oaddr OsizeASM UASM OValue

TiCC PC Oaddr Osize

Ti L/SCC PC Oaddr Osize
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6.1.3 TmTrace Implementation Details 

TmTrace is implemented as a component in Multi2Sim, a cycle accurate com-

puter system simulator.  Whereas Multi2Sim supports several instruction set archi-

tectures including Intel x86 (IA32), MIPS-32, ARM, AMD GPU, and NVIDIA GPU, 

TmTrace is implemented for Intel’s IA32 ISA.  The simulator offers a range of input 

parameters that can be configured to model processor, memory hierarchy, and inter-

connection network.  More details about Mult2Sim can be found at its web site [32].  

Mult2Sim’s modular software design with well-defined interfaces allow researchers 

to add new functionality.  

Figure 6.5 illustrates capturing timed control-flow traces enabled by the 

mTrace and mcf flags.  The timing simulator models all pipeline stages from the 

fetch to the commit stage. TmTrace augments the fetch stage to capture relevant 

information about control-flow instructions needed to create a trace descriptor. 

However, we do not emit a trace descriptor in the fetch stage. Some control-flow 

instructions may be discarded in the pipeline. If the control-flow instruction 

commits, then a corresponding trace descriptor is generated and written into a file, 

including the current clock cycle time.  

 

 

Figure 6.5 Capturing timed control flow traces 

 

Fetch* Decode Dispatch Issue WriteBack

if (Type == Control-flow)

  Capture record;

Commit*

If (Type == Control-flow)

  Write record into a file;
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Figure 6.6 illustrates capturing timed memory read and/or write traces ena-

bled by the mTrace, mld, and/or mst flags. If an instruction is identified as a memory 

referencing instruction, in the fetch stage we capture relevant information for a 

trace descriptor and store it into a data structure (address, operand address, size, 

load value).  If a memory referencing instruction is committed, its corresponding 

trace descriptor will be written into a trace file.  

 

 

Figure 6.6 Capturing timed memory read and write traces 

 

6.1.4 Verification Details 

To verify that TmTrace captures complete control-flow or memory read and 

write traces, we develop a number of assembly language test programs. These test 

programs are designed to include a wide variety of characteristic instructions that 

result in trace events. For each test program, an expected trace is derived and then 

compared to the one generated by TmTrace.  

Figure 6.7 (a) shows a selected portion of the testControlEnumeration.s test 

program.  The selection includes a number of conditional direct branches and all of 

them are not taken.  Figure 6.7(b) shows trace descriptors for the selection from Fig-

Fetch* Decode Dispatch Issue WriteBack

if (Type == Read or Write)

  Capture record;

Commit*

If (Type == Read or Write)

  Write record into a file;
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ure 6.7(a).  All trace descriptors match the expected ones and thus we can conclude 

that we captured a correct tmcfTrace. 

Figure 6.8 (a) shows a program section with unconditional and indirect 

branch instructions.  Both jmp and call instructions are unconditional direct branch 

instructions, while the return is an indirect branch. The captured descriptors shown 

in Figure 6.8 (b) correspond to the expected ones. 
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(a) Code Sample  

<<~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

#section 1 

#unsigned conditional direct branches 

#all branches will not be taken 

#branch if strictly above 

#Taken when CF and ZF are both zero 

mov %eax, 1 

mov %eax, 2 

jnbe exit1 

 

#branch if strictly below 

#Taken when CF is 1 

mov %eax, 2 

mov %eax, 1 

jb exit1 

 

#branch if  not equal/ not zero 

#Taken when ZF is 0 

mov %eax, 1 

cmp %eax, 1 

jnz exit1 

 

#branch if not parity/parity odd 

#Taken when PF is 0 

jnp exit1 

 

#branch if CX is zero 

mov %eax, 1 

jecxz exit1 

#End of unsigned conditional direct branches 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~>> 

(b) tmcfTrace (timed control-flow)  

<<~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

. . . 

637711, 0, 80483e1, 804844c, 2, D, C, N, 5, 6 

637712, 0, 80483ed, 804844c, 2, D, C, N, 3, 6 

637713, 0, 80483f7, 804844c, 2, D, C, N, 3, 6 

637713, 0, 80483f9, 804844c, 2, D, C, N, 1, 6 

637713, 0, 8048400, 804844c, 2, D, C, N, 2, 6 

. . . 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~>> 

Figure 6.7 Conditional branches in testControlEnumeration.s 
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(a) Code Sample 

<<~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

        #Unconditional Direct jump 

        jmp Label1 

        #Not executed 

        test %eax, %eax 

Label1: 

        #send the string to console 

        mov     DWORD PTR [esp], OFFSET FLAT:.LC0 

        #unconditional direct branch - call 

        call    puts 

        mov     eax, 1 

exit1: 

        leave 

        .cfi_restore 5 

        .cfi_def_cfa 4, 4 

        ret 

        .cfi_endproc 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~>> 

(b) tmcfTrace (timed control flow) 

<<~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

. . . 

637718, 0, 8048437, 804843b, 7, D, U, T, 5, 2 

637768, 0, 8048442, 80482f0, 5, D, U, T, 1, 2 

637893, 0, 80482f0, 80482f6, 7, I, U, T, 5, 1 

637894, 0, 80482fb, 80482e0, 7, D, U, T, 5, 2  

637900, 0, 80482e6, 144f0, 7, I, U, T, 5, 2 

663378, 0, 804844d, b7dfca83, 1, I, U, T, 2, 3  

. . . 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~>> 

Figure 6.8 Unconditional branches in testControlEnumeration.s 

 

Figure 6.9 demonstrates how to run the Mult2Sim with tracing functions en-

abled.  It shows a command line that simulates a benchmark execution (./one).  The 

timed control-flow trace is captured for a selected code segment of a test program 

(./one) that starts after the first 85,717 instructions are committed and includes 20 

instructions.   
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tmcfTrace (timed control flow) 

<<~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

amrishktewar@eb136i-lacasa-gx280:~/Desktop/multi2sim/multi2sim-

4.2/samples/x86$ m --x86-sim detailed --x86-config x86-config --mTrace six-

teen.gz --mcf --mTraceSysPrg --mTraceSkip 85717 --mTraceLength 20 ./one 

amrishktewar@eb136i-lacasa-gx280:~/Desktop/multi2sim/multi2sim-

4.2/samples/x86$ more sixteen 

mTrace: x86.init version="1.671" num_cores=8 num_threads=1 

mTrace: Only Committed instructions for User Code 

tMcf: MultiThread control flow traces 

SIZE: 8, 31 

tMcf: clock cycle,CoreID, PC, TA, instSize, Direct-D/ Indirect-I , Cond-

C/UnCond-U, Outcome [T / NT], brcategory, BBL 

tMcf: brcategory [call 1 / ret 2 / syscall 3 / ibranch 4 / jump 5 / branch 

6] 

657710, 0, b7e539eb, b7f0a5eb, 5, D, U, T, 1, 3 

657711, 0, b7f0a5ee, b7e539f0, 1, I, U, T, 2, 2 

657713, 0, b7e539ff, b7e53b58, 2, D, C, N, 6, 5 

657714, 0, b7e53a08, b7e53a58, 2, D, C, N, 6, 2 

657715, 0, b7e53a0f, b7e53b80, 2, D, C, N, 6, 3 

657716, 0, b7e53a1b, b7e53b28, 2, D, C, N, 6, 3 

657717, 0, b7e53a24, b7e53ae8, 2, D, C, N, 6, 2 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~>> 

Figure 6.9 Tracing enabled for a specific code segment 

 

Software generation of timed read and write traces is tested with a program 

that executes memory read operations with varying operand sizes.  We have verified 

memory reads of 8-, 16-, 32- and 64-bit signed and unsigned integers, floats, doubles, 

extended precision, and SIMD (single instruction multiple data).  In this section, we 

look at the load data value output for 8 bit signed / unsigned integers, extended pre-

cision and SIMD type of data types. 

Figure 6.10 (a) shows a program that creates an unsigned and a signed 8 bit 

array.  The code in lines 8-10 prints the addresses of the arrays in memory, and the 

code in 11-14 touches the elements of the arrays. Figure 6.10 (b) shows the address-

es of both arrays. Figure 6.10 (c) shows the trace snippet for the lines 12, 14. It 

shows that the array addresses and values are correct (Figure 6.10(b) & (c)) 
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(a) Code sample 

<<~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

1. int i; 

2. volatile uint8_t uint8[17]; 

3. volatile int8_t sint8[17]; 

4. for(i=0;i<17;i++){ 

5.   uint8[i] = i; 

6.   sint8[i] = -i; 

7. } 

8. printf("uint8 address: %p\n",uint8); 

9. printf("sint8 address: %p\n",sint8);  

10. printf("Begin uint8/int8 test\n"); 

11. for(i=0;i<17;i++) 

12.    uint8[i];     

13. for(i=0;i<17;i++) 

14.    sint8[i] 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~>> 

(b) Run time 

<<~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

amrishktewar@eb136i-lacasa-gx280:~/Desktop/multi2sim/multi2sim-

4.2/samples/x86$ m --x86-sim detailed --x86-config x86-config --mTrace 

mlvTest_ld_trace.gz --mld  ./mlvTest_akt                

; Multi2Sim 4.2 - A changed Simulation Framework for CPU-GPU Heterogeneous 

Computing 

. . . 

uint8 address: 0xbffeff3a 

sint8 address: 0xbffeff4b 

Begin uint8/int8 test 

. . . 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~>> 

(c) tmlsTrace (timed Memory read trace) 

<<~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

. . . 

740363, 0, 8048604,------------,load edx/ea [0xbffeff3a,1],bffeff3a,1,0 

740364, 0, 8048604,------------,load edx/ea [0xbffeff3b,1],bffeff3b,1,1 

740365, 0, 8048604,------------,load edx/ea [0xbffeff3c,1],bffeff3c,1,2 

740366, 0, 8048604,------------,load edx/ea [0xbffeff3d,1],bffeff3d,1,3 

. . . 

740425, 0, 8048616,------------,load edx/ea [0xbffeff4b,1],bffeff4b,1,0 

740426, 0, 8048616,------------,load edx/ea [0xbffeff4c,1],bffeff4c,1,ff 

740427, 0, 8048616,------------,load edx/ea [0xbffeff4d,1],bffeff4d,1,fe 

740432, 0, 8048616,------------,load edx/ea [0xbffeff4e,1],bffeff4e,1,fd 

. . . 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~>> 

Figure 6.10 Testing TmTrace load data value traces: an example 

 

Figure 6.11(a) shows a program accessing an extended precision array.  Lines 

2 initialize the extended precision array, and lines 3-4 print the address and value 

respectively. Figure 6.11(b) shows the address of the array at runtime.  Figure 6.11 



82 

 

(b) & (c) shows that the address 0xbffeff60 and value 1.2(line 2) match the ad-

dress and value 3FFF999999999999980 (in hex format) printed in the program.  

 

(a) Code sample 

<<~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

1. volatile long double ex[1]; 

2. ex[0] = 1.2; 

3. printf("double address: %p\n",ex); 

4. ex[0]; 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~>> 

(b) Run time 

<<~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

amrishktewar@eb136i-lacasa-gx280:~/Desktop/multi2sim/multi2sim-

4.2/samples/x86$ m --x86-sim detailed --x86-config x86-config --mTrace 

mlvTest_akt_trace.gz --mld --x86-debug-isa isa.txt  ./mlvTest_akt_extended 

 

; Multi2Sim 4.2 - A changed Simulation Framework for CPU-GPU Heterogeneous 

Computing 

. . . 

double address: 0xbffeff60 

. . . 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~>> 

(c) tmlsTrace (timed Memory read trace) 

<<~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

. . . 

11646, 0, 8048e7f, ------------,load data/ea [0xbffeff60,10],bffeff60,10, 

3FFF999999999999980 

. . . 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~>> 

Figure 6.11 Testing TmTrace for an extended data type 

 

Figure 6.12(a) shows a test program which uses an SIMD (single instruction, 

multiple data) vector instruction.  Lines 1-2 show __m128i directives for initializing 

two 128-bit variables.  Lines 3 – 7 show assembly instructions that calculate an xor 

function for two input variables. Line 8 prints the result.  Figure 6.12(b) shows the 

result in hex string while running the program. Figure 6.12 (c) shows a trace seg-

ment for the SIMD variables.  The first four trace messages show loading of the val-

ues in to the registers. The last trace descriptor at clock cycle 82560 shows the cor-

rect hex result matching the running program. 
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(a) Code sample 

<<~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

1. __m128i a = _mm_setr_epi32(0x00ffff00, 0x00ffff00, 0x00ffff00, 

0x10ffff00); 

2. __m128i b = _mm_setr_epi32(0x0000ffff, 0x0000ffff, 0x0000ffff, 

0x0000ffff), x; 

3. asm( 

4. "pxor %2, %0;" 

5. :"=x"(a) 

6. :"x"(a), "x"(b) 

7. ); 

8. print128(a); 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~>> 

(b) Run time 

<<~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

amrishktewar@eb136i-lacasa-gx280:~/Desktop/multi2sim/multi2sim-

4.2/samples/x86$ m --x86-sim detailed --x86-config x86-config --mTrace 

mlvTest_akt_trace.gz --mld ./MMX 

 

; Multi2Sim 4.2 - A changed Simulation Framework for CPU-GPU Heterogeneous 

Computing 

. . . 

10ff00ff00ff00ff 00ff00ff00ff00ff 

. . . 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~>> 

(c) tmlsTrace (timed memory read trace) 

<<~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

. . . 

82266, 0, 8048f29,------------,load xmm_data/ea [0xbffeff50,16],bffeff50,16, 

10FFFF0000FFFF0000FFFF0000FFFF00 

82554, 0, 8048fca,------------,load xmm_data/ea [0xbffeff60,16],bffeff60,16, 

0000FFFF0000FFFF0000FFFF0000FFFF 

82556, 0, 8048fd9,------------,load xmm_data/ea [0xbffeff30,16],bffeff30,16, 

10FFFF0000FFFF0000FFFF0000FFFF00 

82557, 0, 8048fdf,------------,load xmm_data/ea [0xbffeff40,16],bffeff40,16, 

0000FFFF0000FFFF0000FFFF0000FFFF 

82560, 0, 8048fef,------------,load xmm_data/ea [0xbffeff30,16],bffeff30,16, 

10FF00FF00FF00FF00FF00FF00FF00FF 

. . . 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~>> 

Figure 6.12 Testing TmTrace for SIMD data types 

 

6.2 tmcfTRaptor Simulator 

The tmcfTRaptor simulator takes a timed control-flow trace as an input, 

models multicore trace predictor structures, and generates a timed tmcfTRaptor 

compressed control-flow trace. The tmcfTRaptor maintains TRaptor predictor struc-
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tures for each thread separately and carries out steps that correspond to hardware 

trace compression in the trace module.  Mispredicted trace descriptors are written 

into an output trace file.  Section 6.2.1 gives functional description for the tmcfTRap-

tor, Section 6.2.2 describes its implementation, and Section 6.2.3 describes the veri-

fication of the tmcfTRaptor simulator.  

6.2.1 Functional Description 

Table 6.2 shows flags for controlling behavior of tmcfTRaptor.  These flags 

are used for specifying: (i) output file size, (ii) TRaptor branch predictor structures, 

and (iii) output file name.  tmcfTRaptor contains a gshare branch outcome predictor, 

a return address stack (RAS), and an indirect branch target buffer (iBTB).  We can 

specify the number of entries for the gshare outcome predictor (0, 256, 512, 1024, 

2048, and 4096), the RAS (0, 8, 16, and 32), and iBTB (0, 16, 32, and 64).   

Figure 6.13 shows the format of trace descriptors generated by tmcfTRaptor.  

There are three types of distinct trace descriptors for (i) outcome mispredictions, (ii) 

target mispredictions, and (iii) exceptions.   
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Table 6.2 tmcfTRaptor flags 

Parameter Description 

--help Generates help messages 

--f [size] Output file size in MB. If file exceeds the specified size, 

tracing stops. Default 50000 MB 

--gshare [entries] gshare – outcome predictor with entries = {0, 256, 512, 

1024, 2048, 4096}. Note: entries = 0 means no gshare. De-

fault is 256. 

--ras [entries] RAS – return address stack with entries = {0, 8, 16, 32}. 

Note: entries = 0 means no RAS. Default is 8. 

--ibtb [entries] iBTB – 2 way set associativity indirect branch target buffer 

with {0, 16, 32, 64} entries. Note: entries = 0 means no 

iBTB. Default is 64. 

--o [filename] Specifies output trace file filename. Default – tMcfTRa-

tor_out_yr_mon_day_hr_min_sec. Note: *.txt = descriptors, 

*.Statistics = Statistics 

 

 

Figure 6.13 tmcfTRaptor trace descriptor formats  

 

tmcfTRaptor Trace

Mispredicted Outcome

Mispredicted Target

Exception

Legend:
CC Clock Cycle

Ti Thread ID 
TA Target Address
T Taken 
bCnt Branch Counter
Excep Exception
iCnt Instruction Counter

TiCC bCnt

TiCC bCnt T TA

TiCC Excep iCnt TA
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Figure 6.14(a) shows a sample output trace file generated by tmcfTRaptor.  

Figure 6.14 (b) shows a statistics report generated when running the barnes bench-

mark.  The statistics file includes information about the type and frequency of con-

trol flow instructions, the predictor structure statistics, and binary sizes for individ-

ual descriptor fields that can be used in evaluating the effectiveness of the 

tmcfTRaptor. 
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 (a) tmcfTRaptor trace  

<<~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

akt0001@eb245-drina:/mnt/drive02/ttraces/benRun_Detail_v1/barnes/1$ head 

LargeTRaptorSerialBarnes.txt 

1413, 0, 1 

1426, 0, 10 

2371, 0, 4, T, 0x08073380 

2600, 0, 1 

2831, 0, 2, T, 0x080731d0 

2847, 0, 1 

2861, 0, 2, T, 0x08073368 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~>> 

(b) tmcfTRaptor Statistics 

<<~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

akt0001@eb245-drina:/mnt/drive02/ttraces/benRun_Detail_v1/barnes/1$ more 

LargeTRaptorSerialBarnes.Statistics 

; tmcfTRaptor: Instrumentation Time 617331 ms 

; timed Control Flow Stats 

Recorded 218360061 control transfer instructions. 

        70954154 ( %32.49 ) Conditional Direct Taken 

        59093985 ( %27.06 ) Conditional Direct Not Taken 

        51871988 ( %23.76 ) Unconditional Direct 

        36439934 ( %16.69 ) Unconditional Indirect 

; timed Control Flow TRaptor Stats 

tmcfTRaptor: Recorded 218360061 direct conditional branches, indirect uncon-

ditional branches, and exceptions 

181919908 conditional direct branches 

        172325660 ( %94.73 ) outcomes predicted 

        9594248 ( %5.27 ) outcomes mispredicted 

36440153 unconditional indirect branches 

        36439991 ( %100.00 ) targets predicted 

        162 ( %0.00 ) targets mispredicted 

0 exceptions 

; TRaptor structure stats 

        correct ,Total(%hitRate) structure type 

        172325660       ,181919908 ( %94.73 ) gshare 

        36302064        ,36302067 ( %100.00 ) ras 

        137927  ,138086 ( %99.88 ) ibtb 

; branch stats 

        Total # 

        call instruction:       36302072 

        ret instruction:        36302067 

        syscall instruction:    0 

        ibranch instruction:    219 

        jump instruction:       15707783 

        branch instruction:     130047920 

; File size in Binaries 

; Type, TotalSizeofTime, TotalSizeofLine, TotalSize 

Input, 1746880488, 6769161891, 8516042379 

OutputDirect, 76753984, 47971240, 124725224 

OutputIndirect, 1296, 1620, 2916 

OutputException, 0, 0, 0 

Output, 76755280, 47972860, 124728140 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~>> 

Figure 6.14 tmcfTRaptor output files 
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6.2.2 Implementation Details 

Figure 6.15 shows the organization of the tmcfTRaptor simulator. It takes 

two inputs: (i) a timed control flow trace generated by the tmcfTrace tool, and (ii) 

tmcfTRaptor configuration parameters (Table 6.2).  It gives two output files: (i) trace 

descriptors for mispredicted events in the mcfTRaptor structures, and (ii) statistics 

of input and output traces.  The simulator reads the input trace descriptors, analyz-

es them (doAnalysisOnBranch()), and writes emitted trace descriptors and statistics 

into the output files.  The doAnalysisOnBranch procedure checks the type of branch 

and invokes corresponding procedures as follows: Private_DirectConditional for di-

rect branch and call instructions, Private_Ret for return instructions, Pri-

vate_IndirectCall for indirect call instructions, and Pri-

vate_OtherUnconditionalIndirect for all other unconditional indirect branch instruc-

tions.  

Private_DirectConditional checks whether its input is a conditional branch or 

a call. For conditional branches it performs a lookup in the gshare branch outcome 

predictor structure. A gshare index is generated and the predicted outcome is re-

trieved and compared to the actual outcome.  If the prediction is incorrect, an ASCII 

descriptor associated with instruction is created and stored in a dequeue ADT (ab-

stract data type) structure. The gshare is then updated accordingly.  If the branch is 

a call instruction, the return address is pushed on to the RAS structure.  

Private_Ret accesses the RAS structure and retrieves the target address from 

the top. If the predicted address does not match the actual one, an ASCII descriptor 

associated with the instruction is created and stored in the dequeue ADT structure. 
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Private_IndirectCall and Private_OtherUnconditionalIndirect access the 

iBTB structure in mcfTRaptor.  An iBTB index is generated and a lookup is per-

formed to retrieve a predicted target address.  If the prediction is incorrect, an 

ASCII descriptor associated with the instruction is created and stored in the 

dequeue ADT structure. The iBTB structure is updated.  If the indirect branch is a 

call instruction, its target address is pushed onto the RAS structure.  

 

 

Figure 6.15 tmcfTRaptor simulator organization 
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6.2.3 Verification Details 

tmcfTRaptor has been tested using custom test programs tailored to verify 

the behavior of the predictor structures, namely the gshare outcome predictor,  the 

return address stack, and the indirect branch target buffer. This section describes 

test programs for each structure. Figure 6.16(a) shows a program used to verify the 

gshare structure.  The program includes a for loop which terminates after iterating 

20 times (0 to 19). The last instruction of the for loop is a direct conditional branch, 

which is taken for 20 times and not taken the last time. This loop branch will be in-

correctly predicted 5 times until the branch history register (BHR) and the gshare 

entries are warmed up (the gshare entries are initialized in the weak not taken 

state). Figure 6.16 (b) illustrates the trace events for the loop branch.  We track the 

state of the bCnt counter and relevant entries in the gshare predictor through warm-

ing up (lines 1-30). The first six instances of the loop branch result in trace messages 

as shown. Once the predictor structures are warmed up, all lookups occur in the 

gshare entry with index 187.  The last trace message is emitted on the loop exit: a 

trace message includes bCnt = 15 (14 correctly predicted outcomes with the last one 

incorrectly predicted because the predictor is trained to be in the strong taken state 

and the actual branch is not taken).  
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(a) Code Sample 

<<~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

volatile int x; 

for( x = 0; x < 20; x++ ); 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~>> 

(b) tmcfTRaptor: Gshare entries 

<<~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

1. bCnt: 1 

2. prediction is correct 0 

3. Actual Result: T 

4. Next GSHARE[35]: 2 (WT) 

5. Mis-predicted outcome descriptor 0, 1 

 

6. bCnt: 1 

7. prediction is correct 0 

8. Actual Result: T 

9. Next GSHARE[139]: 2 (WT) 

10. Mis-predicted outcome descriptor 0, 1 

 

11. bCnt: 1 

12. prediction is correct 0 

13. Actual Result: T 

14. Next GSHARE[219]: 2 (WT) 

15. Mis-predicted outcome descriptor 0, 1 

 

16. bCnt: 1 

17. prediction is correct 0 

18. Actual Result: T 

19. Next GSHARE[123]: 2 (WT) 

20. Mis-predicted outcome descriptor 0, 1 

 

21. bCnt: 1 

22. prediction is correct 0 

23. Actual Result: T 

24. Next GSHARE[59]: 2 (WT) 

25. Mis-predicted outcome descriptor 0, 1 

 

26. bCnt: 1 

27. prediction is correct 0 

28. Actual Result: T 

29. Next GSHARE[187]: 2 (WT) 

30. Mis-predicted outcome descriptor 0, 1 

 

31. bCnt: 1 

32. prediction is correct 1 

33. Actual Result: T 

34. Next GSHARE[187]: 3 (ST) 

. . .  

86. bCnt: 15 

87. prediction is correct 0 

88. Actual Result: N 

89. Next GSHARE[187]: 2 (WT) 

90. Mis-predicted outcome descriptor 0, 15 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~>> 

Figure 6.16 GShare verification example and results 
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Figure 6.17 (a) shows a test program for verifying the return address stack. 

The test include multiple nested calls, main calls the functions f0 and f4, whereas 

f0 calls f1, f1 calls f2, f2 calls f3, f3 calls f4, and f4 does not call other functions.  

Figure 6.17 (b) shows the results with the RAS updates and the status after each 

step.  All returns are correctly predicted except the exit from main.  

 

(a) Code Sample 

<<~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

void f4(int x){ x; } 

void f3(int x){ f4(x); } 

void f2(int x){ f3(x); } 

void f1(int x){ f2(x); } 

void f0(int x){ f1(x); } 

int main() { 

   volatile int x; 

   f0(x); 

   f4(x); 

} 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~>> 

(b) tmcfTRaptor: RAS updates and hit  

<<~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Instruction call f0(x) 

RAS[2] = 804848f  

Instruction call f1(x)  

RAS[3] = 804846c   

Instruction call f2(x) 

RAS[4] = 8048459  

Instruction call f3(x)  

RAS[5] = 8048446   

Instruction call f4(x)  

RAS[6] = 8048433   

Instruction ret from f4(x) 

isRASHit = 1 

RAS[5] = 8048446 

Instruction ret from f3(x) 

isRASHit = 1 

RAS[4] = 8048459 

Instruction ret from f2(x) 

isRASHit = 1 

RAS[3] = 804846c 

. . . 

Instruction ret from main 

isRASHit = 0 

RAS[0] = b7669470 

Emitted descriptor 0, 7, T, 0xb7dfca83 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~>> 

Figure 6.17 Return address stack example 
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Figure 6.18 shows a program for testing the indirect branch target buffer. It 

includes a loop that calls a function through a pointer 20 times.  Table 6.3 has iBTB 

structure parameters PC, TA, index mask, path information register (PIR), iBTB 

index, prediction hit or miss, and the number of iterations.  These results can be in-

dependently verified to match the expected events. Once the iBTB is fully warmed 

up, the iBTB provides correct target address for the last 13 iterations of the loop.  

 

1. <<~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

2. int loop_inc (int loop_count) { 

3.  return ++loop_count; 

4. } 

5. int main(void) { 

6.  int loop; 

7.  int (*pf)(int); 

8.  pf = loop_inc; 

9.  for (loop = 0; loop < 20; loop++) 

10.   pf (1); 

11.  return 1; 

12. } 

13. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~>> 

14. Assembly code  

15. <<~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

16. 08048e50 <main>: 

17.  8048e50: 55                    push   ebp 

18.  8048e51: 89 e5                 mov    ebp,esp 

19.  8048e53: 83 e4 f0              and    esp,0xf0 

20.  8048e56: 83 ec 20              sub    esp,0x20 

21.  8048e59: c7 44 24 1c 44 8e 04  mov    DWORD PTR 

[esp+0x1c],0x8048e44 

22.  8048e60: 08  

23.  8048e61: c7 44 24 18 00 00 00  mov    DWORD PTR [esp+0x18],0x0 

24.  8048e68: 00  

25.  8048e69: eb 12                 jmp    8048e7d 

26.  8048e6b: c7 04 24 01 00 00 00  mov    DWORD PTR [esp],0x1 

27.  8048e72: 8b 44 24 1c           mov    eax,DWORD PTR [esp+0x1c] 

28.  8048e76: ff d0                 call   eax 

29.  8048e78: 83 44 24 18 01        add    DWORD PTR [esp+0x18],0x1 

30.  8048e7d: 83 7c 24 18 13        cmp    DWORD PTR [esp+0x18],0x13 

31.  8048e82: 7e e7                 jle    8048e6b 

32.  8048e84: b8 01 00 00 00        mov    eax,0x1 

33.  8048e89: c9                    leave 

34.  8048e8a: c3                    ret 

35.  8048e8b: 66 90                 xchg   ax,ax 

36.  8048e8d: 66 90                 xchg   ax,ax 

37.  8048e8f: 90                    nop 

38. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~>> 

Figure 6.18 iBTB test example 
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Table 6.3 iBTB status and updates for the test example 

 

 

6.3 tmlvCFiat Simulator 

The tmlvCFiat simulator takes a timed memory read and write trace as an 

input, implements the mlvCFiat compression, and generates an output timed load 

data value trace.  The tmlvCFiat maintains private CFiat structures per processor 

core. Section 6.3.1 gives functional description for the tmlvCFiat, Section 6.3.2 de-

scribes its implementation, and Section 6.3.3 describes verification efforts. 

6.3.1 Functional Description 

Table 6.4 shows the flags for controlling the behavior of tmlvCFiat. These 

flags are used to control the following: (i) output file size, (ii) CFiat structures size 

and configuration, and (iii) output file name.  tmlvCFiat contains a data cache model 

with first access mechanism.  We can set different parameters for the data cache, 

including cache size, cache line size, and cache associativity. In addition, we can set 

first-access flag granularity, i.e., the number of bytes in a data cache block guarded 

PC TA

index 

Mask PIR index

Miss/

Hit

New 

PIR

Lastway 

Used

Prediction 

correct iteration

8048e76 8048e44 1f 13c9 20 Miss 4fc3 0 0

8048e76 8048e44 1f 4fc3 8 Miss 3feb 1 0

8048e76 8048e44 1f 3feb 24 Miss ff4b 0 0

8048e76 8048e44 1f ff4b 24 Hit fdcb 0 1 1

8048e76 8048e44 1f fdcb 26 Miss f7cb 1 0

8048e76 8048e44 1f f7cb 16 Miss dfcb 0 0

8048e76 8048e44 1f dfcb 24 Hit 7fcb 0 1 1

8048e76 8048e44 1f 7fcb 24 Hit ffcb 0 1 1

8048e76 8048e44 1f ffcb 24 Hit ffcb 0 1 12

3

2
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by a single first-access flag.  Figure 6.19 shows the format of trace descriptors gen-

erated by the tmlvCFiat simulator.  

 

Table 6.4 tmlvCFiat flags 

Parameter Description 

--help Generates help messages 

--f [size] Output file size in MB. If file exceeds the specified size the 

tracing stops. Default 50,000 MB. 

--cs [kilobytes] Cache size in kilobytes. Default is 32 KB. 

--cls [line size] Cache line size in bytes. Default is 32 B. 

--ca [associativity] Sets the associativity of the cache. Default is 4.  

--cfg [granularity] First access flag granularity, with each flag protecting an 

operand of size granularity in a cache line. Default is 4 

words (8 bytes). 

--o [filename] Specifies output trace file name. Default is 

tmlvCFiat_out_yr_mon_day_hr_min_sec 

Note: *.txt = descriptors, *.Statistics = Statistics of 

tmlvCFiat 

 

 

Figure 6.19 tmlvCFiat trace descriptor format 

 

tmlvCFiat Trace

OsizeTi FahCntCC

Legend:
CC Clock Cycle

Ti Thread ID 
Osize Operand size
FahCnt First access Hit Counter
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6.3.2 Implementation Details 

Figure 6.20 shows the organization of the tmlvCFiat simulator. The tool 

takes two inputs: (i) a timed memory read and write trace generated by the tml-

sTrace tool, and (ii) the tmlvCFiat flags shown in Table 6.4.  The tool gives two out-

puts: (i) emitted tmlvCFiat compressed load value trace, and (ii) statistics of input 

and output memory read value traces.  The simulator reads the input trace de-

scriptors, analyzes them (doAnalysisMemoryInst()), and writes emitted trace de-

scriptor and statistics into the output files.  The doAnalysisMemoryInst procedure 

checks the type and size of operand value and invokes corresponding procedures as 

follows: Load_SingleCacheLine for reads that touch a single cache line, 

Store_SingleCacheLine for writes that touch a single cache line, 

Load_MultiCacheLine for reads that span multiple cache lines, and 

Store_MultiCacheLine for stores that span multiple cache lines.  

Here we take a closer look at the Load_MultiCacheLine procedure. It handles 

memory read operations that may extend over multiple cache lines.  tmlvCFiat has a 

private CFiat structure for each thread, so the respective private structure is re-

trieved using thread id information for that memory write instruction. The operand 

is looked up in the cache. If it is a cache miss, the descriptor associated with that op-

erand is pushed to a deque ADT and the Ti.fahCnt is reset and the requested cache 

lines are loaded into the cache. If it is a cache hit, the corresponding first-access 

flags are checked. A first-access hit occurs when all flags associated with the re-

quested operand are set. If at least one first-access flag is not set, we have a first-

access miss event.  
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Figure 6.20 tmlvCFiat simulator organization 

 

6.3.3 Verification Details 

tmlvCFiat was tested with test programs to verify the correct behavior of sin-

gle cache line operands and multi cache line operands.  Figure 6.21(a) shows a test 

program for variables that fit into a single cache line.  The program traverses a 4-

byte integer array with 9 elements.  The data cache parameters are as follows: 32-
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byte cache size, 16-byte line size, 2-way set associativity, and first-access flag granu-

larity of 16 bytes. The program should cause three misses.  

Figure 6.21(b) captures the behavior of the for loop in line number 5. Each 

entry contains information of memory read instruction and tmlvCFiat structure pa-

rameters tag, set index, line index, new way index, is cache hit, and is descriptor 

emitted.  We see total three cache misses (line 1-4, 5-8 and 21-24). Last two cache 

misses (5-8, and 21-24) is followed by three iteration of hits (9-12, 13-16, 17-20, and 

25-28, 29-32, 33-36). 

 

(a) Code sample 

<<~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

1. volatile uint32_t uint32[9]; 

2. for (int i = 0; i< 9; i++){ 

3.  uint32[i] = 256 + i;} 

4. printf("uint32 address: %p\n", uint16); 

5. for (int i = 0; i< 9; i++){ 

6.  uint32[i];} 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~>> 

(B) Run time 

<<~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

amrishktewar@eb136i-lacasa-gx280:~/Desktop/multi2sim/multi2sim-

4.2/samples/x86$ m --x86-sim detailed --mTrace mlvCFiat_NINE_v1.gz --mld --mst 

./mlvCFiat_NINE 

 

; Multi2Sim 4.2 - A changed Simulation Framework for CPU-GPU Heterogeneous 

Computing 

. . . 

uint32 address: 0xbffeff3c 

. . . 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~>> 

(C) tmlvCFiat parameter  

<<~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

1. 6191139, 0,  804860e, bffeff3c, 4 

2. tag = bffeff3 setIndex = 0 lineIndex = c 

3. cacheHit = 0 New wayIndex = 0 

4. emit ? 1 

 

5. 6191185, 0,  804860e, bffeff40, 4 

6. tag = bffeff4 setIndex = 0 lineIndex = 0 

7. cacheHit = 0 New wayIndex = 1 

8. emit ? 1 

 

9. 6191186, 0,  804860e, bffeff44, 4 

10. tag = bffeff4 setIndex = 0 lineIndex = 4 

11. cacheHit = 1 Found in  wayIndex = 1 

12. emit ? 0 
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13. 6191187, 0,  804860e, bffeff48, 4 

14. tag = bffeff4 setIndex = 0 lineIndex = 8 

15. cacheHit = 1 Found in  wayIndex = 1 

16. emit ? 0 

 

17. 6191188, 0,  804860e, bffeff4c, 4 

18. tag = bffeff4 setIndex = 0 lineIndex = c 

19. cacheHit = 1 Found in  wayIndex = 1 

20. emit ? 0 

 

21. 6191190, 0,  804860e, bffeff50, 4 

22. tag = bffeff5 setIndex = 0 lineIndex = 0 

23. cacheHit = 0 New wayIndex = 0 

24. emit ? 1 

 

25. 6191191, 0,  804860e, bffeff54, 4 

26. tag = bffeff5 setIndex = 0 lineIndex = 4 

27. cacheHit = 1 Found in  wayIndex = 0 

28. emit ? 0 

 

29. 6191192, 0,  804860e, bffeff58, 4 

30. tag = bffeff5 setIndex = 0 lineIndex = 8 

31. cacheHit = 1 Found in  wayIndex = 0 

32. emit ? 0 

 

33. 6191193, 0,  804860e, bffeff5c, 4 

34. tag = bffeff5 setIndex = 0 lineIndex = c 

35. cacheHit = 1 Found in  wayIndex = 0 

36. emit ? 0 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~>> 

Figure 6.21 Testing tmlvCFiat: single cache line access 

 

Figure 6.22(a) shows a test program for operands spanning multiple cache 

lines.  The program stores and loads an 8-byte double precision operand.  The cache 

parameters are set as follows: 8-byte cache size, 4-byte line size, associativity of 2, 

and first-access flag granularity of 4 bytes.  As the operand size exceeds the cache 

line size, it takes two cache lines to store a single operand value.  A write operation 

is followed by a read operation, so we expect to get a read hit.  Figure 6.22(b) shows 

the results of program memory read and write traces and run time operand address-

es.  Figure 6.22(c) shows the behavior of tmlvCFiat structures.  Each entry contains 

memory read / write trace and tmlvCFiat structure parameters address, tag, set in-

dex, line index, new way index, is local hit, and next cache line address.  The simula-
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tor dump shows a hit in multi-line read access (lines 9-13, and 14-17), thus matching 

our expectations. 

(a) Code sample 

<<~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

volatile double db[1]; 

db[0] = 1.2; 

db[0]; 

printf("double address: %p\n",db); 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~>> 

(b) Run time 

<<~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

amrishktewar@eb136i-lacasa-gx280:~/Desktop/multi2sim/multi2sim-

4.2/samples/x86$ m --x86-sim detailed --mTrace mlvCFiat_MLine_v1.gz --mld --mst 

./mlvCFiat_akt_double 

 

; Multi2Sim 4.2 - A changed Simulation Framework for CPU-GPU Heterogeneous 

Computing 

. . . 

double address: 0xbffeff58 

. . . 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~>> 

(c) tmlsTrace (timed Memory read and write trace) 

<<~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

. . . 

663730, 0, 1,  804847c, bffeff58, 8 

663731, 0, 0,  8048480, bffeff58, 8 

. . . 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~>> 

(d) tmlvCFiat parameter 

<<~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

1. 663730, 0, 1,  804847c, bffeff58, 8 

2. storeMulti: highAddr = bffeff60 

3. storeMulti:  tag = 2fffbfd6 setIndex = 0 lineIndex = 0 

4. localHit = 0 cacheAllHit = 0 new wayIndex is = 0 

 

5. next cache line address = bffeff5c 

6. storeMulti:  tag = 2fffbfd7 setIndex = 0 lineIndex = 0 

7. localHit = 0 cacheAllHit = 0 new wayIndex is = 1  

8. next cache line address = bffeff60 

 

9. 663731, 0, 0, 8048480, bffeff58, 8 

10. loadMulti: highAddr = bffeff60 

11. loadMulti:  tag = 2fffbfd6 setIndex = 0 lineIndex = 0 

12. localCacheHit = 1 cacheAllHit = 1 localFlagHit = 1  

13. Found in wayIndex = 0 next cache line address = bffeff5c 

 

14. loadMulti:  tag = 2fffbfd7 setIndex = 0 lineIndex = 0 

15. localCacheHit = 1 cacheAllHit = 1 localFlagHit = 1  

16. Found in wayIndex = 1 next cache line address = bffeff60 

17. Mulitipleload: emit ? 0 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~>> 

Figure 6.22 Testing tmlvCFiat: multi-line cache access  
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6.4 Software to Hardware Trace Translation 

Similarly to functional control-flow and load data value traces, we translate 

software traces generated by our simulators into hardware traces by eliminating re-

dundant fields and applying our encoding schemes (see Figure 6.1).   

Figure 6.23 shows the format of trace messages for control-flow traces, 

tmcfNX_b, tmcfTR_b, and tmcfTR_e.  Figure 6.24 shows the format of trace messag-

es for load data value traces, tmlvNX_b, tmlvCF_b, and tmlvCF_e.  These descriptors 

correspond to the corresponding descriptors used for functional traces described in 

Section 4.2.  The only difference is that all trace messages include a time stamp.  In-

stead of encoding a full time stamp that may require a large number of bits to en-

code, we apply a differential encoding.  The time stamp is reported relatively to the 

last reported time stamp and contains the number of clock cycles that expired from 

the last reported trace event.  The differential time stamp is divided into chunks of 8 

bits, with the connect bit indicating whether this is a terminating chunk (C = 0) or 

not (C = 1). In case of tmcfTR_e and tmlvCF_e we allow variable encoding of the dif-

ferential time stamp with chunk sizes h0 and h1 that are determined experimental-

ly.   
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Figure 6.23 Trace descriptors for tmcfNX_b, tmcfTR_b, and tmcfTR_e 

 

 

Figure 6.24 Trace descriptors for tmlvNX_b, tmlvCF_b, and tmlvCF_e 
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6.5 Experimental Environment   

The goal of experimental evaluation is to determine the effectiveness of the 

newly proposed trace reduction techniques, mcfTRaptor and mlvCFiat, relative to 

the baseline Nexus-like control-flow and load data value traces for timed traces.  As 

a measure of effectiveness, we use the average number of bits emitted on the trace 

port per instruction executed and the average number of bits emitted per clock cycle.  

As the workload, we use control flow and load value traces of 10 benchmarks from 

the Splash2 benchmark suite [31].  Machine setup is described in Section 4.3.1. The 

benchmarks are discussed in Section 6.5.2.   

6.5.1 Experimental Setup 

The Multi2sim simulator supports building a cycle-accurate model for a mul-

ticore processor including processor and memory hierarchy. Figure 6.25 shows a 

block diagram of a multicore used to generate timed traces.  We use a multicore with 

8 single-threaded x86 processor cores.  Each core has its private L1 instruction and 

data caches. L1 data cache size is set to 8KB and L1 instruction cache size is set to 

8KB with a latency of 2 clock cycles per core.  The multicore has a shared L2 cache 

with a hit latency of 4 clock cycles.  L2 cache size is 64KB x Number of cores e.g for 1 

core L2 cache size is 64KB, and similar way for 8 core L2 cache size is 512KB. It has 

main memory with a block size of 256 KB and a latency of 200 clock cycle.  The net-

works between L1 ~ L2 cache and L2 ~ Main Memory are identical in buffer size and 

bandwidth. The experiments are conducted on a Dell PowerEdge T620 server de-

scribed in Section 5.3.1. 
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Figure 6.25 Block diagram of a modeled multicore in Mult2Sim 

6.5.2 Benchmarks 

The workload used is the Splash2 suite of [28] benchmarks.  Splash2 bench-

marks are predecessor benchmarks to Splash2x. The benchmarks are precompiled 

for Intel’s IA32 ISA by Multi2Sim developers [31] .  Each benchmark was executed 

with N = 1, 2, 4 and 8 processor cores using the Simsmall input set.  

The trace port bandwidth for control-flow traces depends on benchmark 

characteristics, specifically the frequency and type of control-flow instructions. Simi-

larly, the trace port bandwidth for load data value traces depends on the frequency 

and type of memory reads and data value sizes.  

Table 6.5 shows the control flow characterization of Splash2 benchmarks.  

We show the number of executed instructions (instruction count) and the number of 

instructions executed per a clock cycle (IPC). The last four columns show the fre-

quency of control flow instructions for single threaded programs (N = 1), as well as 

the frequency of conditional direct branches (C, D), unconditional direct branches (U, 
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D), and unconditional indirect branches (U, I).  The number of instructions slightly 

increases with an increase in the number of threads due to overhead and data parti-

tioning.  The number of instructions varies between 0.45 (lu) and 5.03 billion (water-

spatial).  The Splash2 benchmarks exhibit diverse behavior with respect to control 

flow instructions; their frequency ranges from as high as ~14% (water-nsquared, lu, 

raytrace) to as low as 3.96% (radix).  The total frequency for the entire benchmark 

suite is relatively low (10.46%).  The conditional direct branches are the most fre-

quent type of branches.  

 

Table 6.5 Splash2 benchmark suite control flow characterization 

 

 

Table 6.6 shows the memory read flow characterization of Splash2 bench-

marks while varying the number of threads (N = 1, 2, 4, and 8).  We show the num-

ber of instructions executed, the number of instructions executed per clock cycle, and 

the frequency of memory read instructions with respect to the total number of in-

Benchmark

Thread 1 2 4 8 1 2 4 8 branch C,D U,D U,I

barnes 2.13 2.13 2.13 2.14 0.405 0.827 1.515 2.760 10.25 6.10 2.44 1.71

cholesky 1.27 1.37 1.85 2.77 0.307 0.610 1.372 3.034 7.11 6.50 0.42 0.18

fft 0.92 0.92 0.92 0.92 0.280 0.563 1.000 1.584 8.35 6.06 1.14 1.14

fmm 2.79 2.79 2.84 2.88 0.403 0.800 1.570 2.942 7.05 6.57 0.36 0.12

lu 0.45 0.45 0.45 0.45 0.577 1.088 1.896 2.995 13.63 11.98 0.83 0.82

radiosity 2.23 2.32 2.31 2.31 0.636 1.242 2.354 4.419 11.70 6.48 3.40 1.81

radix 1.59 1.59 1.59 1.60 0.219 0.373 0.605 0.752 3.96 1.85 1.06 1.06

raytrace 2.47 2.47 2.47 2.47 0.501 1.166 2.164 3.601 12.12 7.74 2.65 1.73

water-nsq 0.74 0.74 0.74 0.75 0.701 1.458 3.038 5.293 14.12 11.56 2.16 0.41

water-sp 5.03 5.03 5.03 5.03 0.820 1.346 2.204 3.510 13.53 11.49 1.51 0.53

Total 19.61 19.81 20.33 21.31 0.453 0.867 1.564 2.567 10.46 7.82 1.69 0.95

Instruction Count [x10
9

] Instructions per cycle % branch for Thread = 1
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structions. The frequency of memory read instructions increases with an increase in 

the number of threads.  The percentage of memory read instructions varies between 

13.02 (fmm) and 35.09 (radix). The overall frequency of read instructions is 22.77% 

for N = 1 and 23.57% for N = 8. The overall IPC as a function of the number of cores 

indicates how well the performance of individual benchmarks scale.  For example, 

cholesky scales well, reaching speedup S(8) = IPC(N= 8)/IPC(N=1) = 9.8 for 8 cores, 

but radix does not scale well because its 8-core speedup is only S(8) = 3.4 

Table 6.6 Splash2 benchmark suite memory read characterization 

 

 

The memory trace port bandwidth depends not only on the frequency of read 

operations but also on operand size. Table 6.7 shows the frequency of memory reads 

for different operand sizes: 8-bit bytes, 16-bit words, 32-bit double words, 64-bit 

quad words, 80-bit extended precision operands, 128-bit octa-word operands, 256-bit 

hexa-word operands, and others. The results indicate that double-word and quad-

Benchmark

Thread 1 2 4 8 1 2 4 8 1 2 4 8

barnes 2.13 2.13 2.13 2.14 0.405 0.827 1.515 2.760 28.78 28.78 28.78 28.79

cholesky 1.27 1.37 1.85 2.77 0.307 0.610 1.372 3.034 27.78 29.37 30.17 31.08

fft 0.92 0.92 0.92 0.92 0.280 0.563 1.000 1.584 19.20 19.20 19.20 19.21

fmm 2.79 2.79 2.84 2.88 0.403 0.800 1.570 2.942 13.02 13.06 13.36 13.68

lu 0.45 0.45 0.45 0.45 0.577 1.088 1.896 2.995 20.20 20.22 20.25 20.31

radiosity 2.23 2.32 2.31 2.31 0.636 1.242 2.354 4.419 27.51 27.49 27.42 27.02

radix 1.59 1.59 1.59 1.60 0.219 0.373 0.605 0.752 35.09 35.09 35.09 35.09

raytrace 2.47 2.47 2.47 2.47 0.501 1.166 2.164 3.601 28.49 28.47 28.51 28.48

water-nsq 0.74 0.74 0.74 0.75 0.701 1.458 3.038 5.293 16.31 16.33 16.36 16.42

water-sp 5.03 5.03 5.03 5.03 0.820 1.346 2.204 3.510 17.38 17.38 17.38 17.38

Total 19.61 19.81 20.33 21.31 0.453 0.867 1.564 2.567 22.77 22.92 23.17 23.57

Instruction Count [x10
9

] Instructions per cycle % Load for Thread = 1
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word operands dominate in all benchmarks except of radix which has a majority of 

word operands.   

Table 6.7 Characterization of memory reads in Splash2 

 

 

6.5.3 Experiments  

Table 6.8 lists (technique, configuration) pairs considered in the experimental 

evaluation. For control-flow traces we compare the trace port bandwidth of 

tmcfNX_b versus tmcfTR_b and tmcfTR_e, while varying the number of threads 

(N=1, 2, 4, and 8).  To assess the impact of organization and size of predictor struc-

tures in tmcfTRaptor on its effectiveness, we consider the following configurations:  

 Small: 512-entry gshare outcome predictor and an 8-entry RAS; 

 Medium: 1024-entry gshare outcome predictor, a 16-entry RAS, and a 

16-entry iBTB (2x8); and 

 Large: 4096-entry gshare outcome predictor, a 32-entry RAS, and a 64-

entry iBTB (2x32). 

Benchmark

Total Memory 

reads

Byte 

operand

Word 

operand

Doubleword 

operand

Quadword 

operand

Extended 

precesion 

operand

Octaword 

operands Others

barnes 613094350 0 3.26 60.1 36.65 0 0 0

cholesky 352542968 1.33 0 54.09 44.59 0 0 0

fft 176253017 0.01 9.52 41.16 49.31 0 0 0

fmm 362805364 0 0.15 16.3 83.55 0 0 0

lu 90032624 0 2.04 41.77 56.19 0 0 0

radiosity 613310395 0 0 90.61 9.39 0 0 0

radix 558024069 4.51 29.31 57.16 9.02 0 0 0

raytrace 702413242 0.8 0.96 58.93 39.3 0 0 0

water-nsq 120913483 0.6 0.01 23.2 76.19 0 0 0

water-sp 874383921 0.55 0.02 22.63 76.8 0 0 0

Total 4463773433 0.92 4.70 50.25 44.14 0.00 0.00 0.00



108 

 

The index function for the gshare outcome predictor is gshare.index = 

BHR[log2(p):0] xor PC[4+ log2(p):4], where the Branch History Register (BHR) regis-

ter holds the outcome history of the last log2(p) conditional branches. The iBTB 

holds target addresses that are tagged. Both the iBTB tag and the iBTB index are 

calculated based on the information maintained in the path information register 

[29], [30].  

 

Table 6.8 Timed trace experiments 

 

 

For load data value traces, we compare the trace port bandwidth of tmlvNX_b 

versus tmlvCF_b and tmlvCF_e while varying the number of threads (N=1, 2, 4, and 

8). To assess the impact of organization and size data caches on tmlvCFiat effective-

ness, we consider the following cache configurations.  All cache structures are 4-way 

set associative, use round robin replacement policy, feature line size of 64 bytes, and 

first-access flag granularity is set to 4 bytes. We consider three configurations as fol-

lows: 

 Small: data cache of 16 KB; 

 Medium: data cache of 32 KB; and 

 Large: data cache of 64 KB. 

Timed 

Method Small Medium Large

Timed 

Method Small Medium Large

tmcf_NX_b tmlv_NX_b

tmcf_TR_b √ √ √ tmlv_CF_b √ √ √

tmcf_TR_e √ √ √ tmlv_CF_e √ √ √

load  flow (vary N = 1,2,4 & 8) control flow (vary N = 1,2,4 & 8)

√ √
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6.5.4 Variable Encoding 

Similarly to Section 4.3.4, we analyze the generated traces to find optimal 

variable length chunk sizes for the descriptor fields such as Ti.CC (time), Ti.bCnt, 

and Ti.fahCnt in both timed control-flow (tmcfTR_e) and timed load data value 

(tmlvCF_e) traces.  Table 6.9 summarizes chunk sizes that work well for all bench-

marks.  To encode differential time stamps, our results indicate the first chunk 

should have 4 bits, followed by a connect bit, and every other chunk should have 2 

bits.  Interestingly, this combination (h0, h1) = (4, 2) works well regardless of the 

size of predictor structures or caches and is used in both tmcfTR_e and tmlvCF_e.  

 

Table 6.9 Summary variable encoding parameter for different fields 

 

 

  

Mechanism fields small medium large

Time 4_2 4_2 4_2

bCnt 3_2 3_2 3_2

DiffTA 3_4 3_4 3_4

Time 4_2 4_2 4_2

fahCnt 2_2 2_2 2_2

Variable Encoding paramter i_j

tmlvCFiat

tmcfTRaptor
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CHAPTER 7  

 

TRACE PORT BANDWIDTH ANALYSIS FOR TIMED TRACES 

 

God does not work for you, he works with you 

--Rev. Pandurang Shastri Athavale 

 

This chapter shows the main results of the experimental evaluation for timed 

traces. We measure the trace port bandwidth for control-flow and load data value 

traces as a function of the number of processor cores, encoding mechanism, as well 

as configuration parameters of the trace filtering structures. Trace port bandwidth 

is measured in bits per instruction executed [bpi], calculated as the number of bits 

needed to be streamed divided by the number of instructions executed.  In addition, 

we consider bits per clock cycles [bpc], calculated as the total number of bits 

streamed divided by the number of clock cycles needed to complete a benchmark of 

interest.  Section 7.1 discusses the results for timed control-flow functional traces, 

specifically the trace port bandwidth requirements for the Nexus-like timed control-

flow trace, tmcfNX_b, as well as the trace port bandwidth for the tmcfTRaptor tech-

nique with the fixed encoding, tmcfTR_b, and with the variable encoding, tmcfTR_e.  

Section 7.2 discusses the results for timed memory load data value traces, specifical-

ly the trace port bandwidth requirements for the Nexus-like traces, tmlvNX_b, and 

the tmlvCFiat technique with the fixed, tmlvCF_b, and with the variable encoding, 

tmlvCF_e.  
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7.1 Trace Port Bandwidth for Timed Control-Flow Traces 

7.1.1 tmcfNX_b  

Table 7.1 shows the trace port bandwidth (TPB) in bpi and bpc for the Nexus-

like timed control flow traces, tmcfNX_b, for all benchmarks as a function of the 

number of threads/cores (N=1, 2, 4, and 8).  The last row shows the total trace port 

bandwidth when all benchmarks are considered together. The total bandwidth in 

bits per instruction is calculated as the sum of trace sizes for all benchmarks divided 

by the sum of the number of instructions executed for all benchmarks. Similarly, the 

total bandwidth in bits per cycle is calculated as the sum of trace sizes for all 

benchmarks divided by the sum of the execution times in clock cycles for all bench-

marks. For single-threaded benchmarks (N = 1), the TPB ranges between 0.83 bpi 

for fmm and 2.45 bpi for lu.  The required bandwidth varies across benchmarks and 

is highly correlated with the frequency of control-flow instructions.  Thus, lu, radios-

ity, raytrace and barnes have relatively high TPB requirements due to the relatively 

high frequency of branch instructions and especially indirect branches (see Table 

6.5), unlike fmm, which has very low TPB requirements due to the extremely small 

frequency of control flow instructions.  The required trace port bandwidth in bits per 

instruction increases as we increase the number of cores, due to additional infor-

mation such as Ti that needs to be streamed out.  Thus, when N = 8, the TPB ranges 

between 1.06 bpi for fmm and 2.81 bpi for lu. The total bandwidth for the entire 

benchmark suite ranges between 1.57 bpi when N = 1 and 1.90 bpi when N = 8.  

 

 



112 

 

Table 7.1 Trace port bandwidth for tmcfNX_b for Splash2 benchmark 

 

 

Whereas the bandwidth in bits per instruction increases with the number of 

cores, it does not fully capture the pressure on multiple processor cores place on the 

trace port, a shared resource.  The trace port bandwidth in bits per clock cycle better 

illustrates this pressure.  Thus, the control-flow trace for radiosity with 8 threads 

executing on 8 cores requires 10.74 bits per clock cycle on average. Generally, the 

trace port bandwidth in bits per clock cycle is a function of benchmark characteris-

tics as well as the scalability of individual benchmarks. The total TPB in bpc ranges 

between 0.71 bpc when N = 1 and 4.94 bpc when N = 8.  These results indicate that 

capturing control-flow trace on the fly in multicores requires significantly large trace 

buffers and wide trace ports. As shown in the next section, one alternative is to de-

velop hardware techniques that significantly reduce the volume and size of trace 

messages that are streamed out. 

Benchmark

Cores 1 2 4 8 1 2 4 8

barnes 1.95 2.16 2.17 2.18 0.79 1.79 3.29 6.03

cholesky 1.00 1.14 1.72 2.11 0.31 0.71 2.36 6.91

fft 1.62 1.81 1.81 1.81 0.45 1.02 1.81 2.86

fmm 0.83 0.97 1.06 1.15 0.33 0.78 1.67 3.41

lu 2.45 2.81 2.81 2.81 1.41 3.06 5.33 8.41

radiosity 2.10 2.35 2.38 2.38 1.33 2.92 5.56 10.74

radix 1.11 1.23 1.31 1.36 0.24 0.46 0.79 1.02

raytrace 2.08 2.32 2.32 2.33 1.04 2.70 5.02 8.37

water-ns 1.51 1.73 1.73 1.74 1.06 2.53 5.26 9.19

water-sp 1.55 1.78 1.78 1.78 1.27 2.40 3.92 6.25

Total 1.57 1.78 1.83 1.90 0.71 1.54 2.87 4.94

Trace port Bandwidth [bpi] Trace Port Bandwidth [bpc]
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7.1.2 tmcfTRaptor  

The effectiveness of tmcfTRaptor in reducing the trace port bandwidth de-

pends on prediction rates as the trace messages are generated only on rare mispre-

diction events. Table 7.2 shows the total misprediction rates collected on the entire 

Splash2 benchmark suite for the Small, Medium, and Large predictor configura-

tions, when the number of cores is varied between N = 1 and N = 8.  Figure 7.1 illus-

trates the total outcome misprediction rates and Figure 7.2 shows the total target 

address misprediction rates as a function of the number of threads and predictor 

configuration.  The outcome misprediction rates decrease as we increase the size of 

the gshare predictor.  They also slightly decrease with an increase in the number of 

processor cores as fewer branches compete for the same resource.  Relatively high 

misprediction rates indicate that even better trace compression could be achieved if 

more sophisticated outcome predictors are used.  However, this is out of scope of this 

work.  The target address misprediction rates are very low for the Medium and 

Large configurations. The Small configuration does not include the iBTB predictor 

resulting in higher target address misprediction rates. These results demonstrate a 

strong potential of tmcfTRaptor to reduce the trace port bandwidth requirements. 

Table 7.2 Total outcome and target address misprediction rates for Splash  

 

 

 

Configuration N=1 N=2 N=4 N=8 N=1 N=2 N=4 N=8

Small 7.86 7.83 7.20 6.23 8.47 8.59 8.58 8.55

Medium 6.69 6.67 6.14 5.31 2.05 2.12 2.08 2.05

Large 5.27 5.26 4.84 4.20 0.57 0.58 0.57 0.57

Outcome Misprediction Rate [%] Target Address Misprediction Rate [%]
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Figure 7.1 Outcome misprediction rates for Splash2 benchmark 

 

 

Figure 7.2 Target address misprediction rates for Splash2 benchmark 
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To quantify the effectiveness of tmcfTRaptor, we analyze the total trace port 

bandwidth in bits per instruction for the entire benchmark suite as a function of the 

number of threads (N = 1, 2, 4, and 8), the encoding mechanism (tmcfTR_b and 

tmcfTR_e), and the tmcfTRaptor organization (Small, Medium, and Large). Figure 

7.3 shows the total average trace port bandwidth.  

TR_b dramatically reduces the total trace port bandwidth as follows:  

 Small configuration: 0.19 bpi (N = 1) and 0.20 bpi (N = 8). This is equivalent 

to reducing the trace port bandwidth relative to tmcfNX_b 8.41 times for N=1 

and 9.71 times for N=8. 

 Medium configuration: 0.136 bpi (N = 1) and 0.144 bpi (N = 8). This is equiva-

lent to reducing the trace port bandwidth relative to tmcfNX_b 11.57 times 

for N = 1 and 13.19 times for N = 8. 

 Large configuration: 0.10 bpi (N = 1) and 0.11 (N = 8). This is equivalent to 

reducing the trace port bandwidth relative to tmcfNX_b 14.98 times for N = 1 

and 17.02 for N = 8. 

TR_e further reduce the average trace port bandwidth as follow: 

 Small configuration: 0.13 bpi (N = 1) and 0.14 bpi (N = 8). This is equivalent 

to reducing the trace port bandwidth relative to tmcfNX_b is 12.11 times for 

N = 1 and 13.26 for N = 8. 

 Medium configuration: 0.11 bpi (N = 1) and 0.12 bpi (N = 8).  This is equiva-

lent to reducing the trace port bandwidth relative to tmcfNX_b is 14.89 times 

for N = 1 and 16.35 for N = 8. 
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 Large configuration:  0.087 bpi (N = 1) and 0.095 bpi (N = 8).  This is equiva-

lent to reducing the trace port bandwidth relative to tmcfNX_b is 18.15 times 

for N = 1 and 20.07 for N = 8. 

 

Table 7.3 shows the compression ratio for tmcfTR_b relative to tmcfNX_b, as 

a function of the predictor configuration (Small, Medium, Large) and the number of 

threads for each benchmark. The compression ratio is calculated as follows: 

TPB(tmcfNX_b)/TPB(tmcfTR_b).  For N = 1, the compression ratio ranges from 4.07 

(raytrace) to 30,296 (radix) for the Small configuration and from 10.91 (water-sq) to 

42,393 (radix) for the Large configuration.  For N = 8, the compression ratio ranges 

from 4.04 (raytrace) to 13,570 (radix) for the Small configuration and from 10.76 

(water-nsquared) to 13,570 (radix) for the Large configuration.  The gains in com-

pression ratio achieved when increasing the number of cores (threads) are relatively 

more pronounced when we are using smaller predictor structures.  

 

 

Figure 7.3 Total trace port bandwidth in bpi for timed control flow traces 
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Table 7.3 Compression ratio for tmcfTR_b relative to tmcfNX_b 

 

 

Table 7.4 shows the compression ratio for tmcfTR_e relative to tmcfNX_b. 

tmcfTR_e achieves higher compression ratios than tmcfTR_b, especially when using 

the Small predictor structures that have a relatively high number of mispredictions 

and thus reported bCnt values will be shorter. For N = 1, the compression ratio 

ranges from 6.70 (raytrace) to 56,102 (radix) for the Small configuration and from 

12.77 (water-nsquared) to 69,711 (radix) for the Large configuration.  For N = 8, the 

compression ratio ranges from 6.20 (raytrace) to 13,570 (radix) for the Small configu-

ration and from 12.45 (water-nsquared) to 13,570 (radix) for the Large configuration.  

 

cores

Config S M L S M L S M L S M L

barnes 15.66 19.14 19.61 15.36 18.60 19.04 15.31 18.51 18.96 15.32 18.50 18.98

cholesky 18.49 29.52 34.03 18.97 28.71 32.85 33.99 49.95 57.07 60.78 87.51 99.95

fft 90.07 91.59 92.64 88.09 89.84 90.74 86.70 87.96 89.26 85.26 86.90 87.74

fmm 11.79 13.30 14.49 12.40 13.91 15.19 13.73 15.41 16.77 15.08 16.92 18.42

lu 19.34 19.41 19.51 19.09 19.17 19.27 19.08 19.17 19.28 18.98 19.10 19.24

radiosity 5.75 8.53 13.74 5.64 8.28 13.24 5.68 8.34 13.27 5.94 8.74 13.87

radix 30296 41510 42393 12335 30124 30610 13085 13085 13085 13570 13570 13570

raytrace 4.07 7.22 11.13 4.08 7.12 10.98 4.07 7.09 10.95 4.04 7.01 10.80

water-ns 7.80 9.48 10.91 7.77 9.49 10.93 7.76 9.49 10.92 7.69 9.39 10.76

water-sp 9.25 10.01 11.62 9.18 9.93 11.53 9.19 9.93 11.53 9.18 9.92 11.51

Total 8.41 11.57 14.98 8.39 11.42 14.80 8.85 12.04 15.57 9.71 13.19 17.02

N=1 N=2 N=4 N=8
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Table 7.4 Compression ratio for tmcfTR_e relative to tmcfNX_b 

 

 

Figure 7.4 shows the total trace port bandwidth in bits per clock cycle for 

tmcfNX_b (left), tmcfTR_b and tmcfTR_e (right).  tmcfTR_e offers superior perfor-

mance, the tmcfTR_e for Large configuration when N = 8 requires merely 0.246 bpc 

on average (ranging from ~0 to 0.739 bpc), whereas tmcfNX_b requires 0.290 bpc 

(ranging between ~0 to 0.854 bpc). These results further underscore the effective-

ness of the proposed tmcfTRaptor predictor structures for a range of diverse bench-

marks. The results indicate that with tmcfTR_e even a single-bit data trace port is 

sufficient to stream out the control-flow trace from an 8-core system-on-a-chip, thus 

dramatically reducing the cost of on-chip debugging infrastructure. 

The improvements of tmcfTR_b and tmcfTR_e over tmcfNX_b are slightly 

smaller than those observed for of functional traces due to the overhead required for 

reporting time stamps.   

 

 

cores

Config S M L S M L S M L S M L

barnes 21.17 24.07 24.59 19.98 22.73 23.24 19.94 22.67 23.18 20.00 22.71 23.24

cholesky 28.60 34.14 38.02 27.27 32.66 36.42 48.27 57.64 64.07 85.73 101.88 113.39

fft 95.36 95.93 97.08 92.59 93.54 94.52 91.06 91.98 92.92 88.17 89.48 90.38

fmm 14.09 15.17 16.15 14.49 15.60 16.70 16.03 17.26 18.45 17.63 18.97 20.31

lu 20.36 20.41 20.52 20.06 20.12 20.22 20.08 20.15 20.26 20.03 20.11 20.26

radiosity 9.38 12.69 18.06 8.60 11.65 16.75 8.64 11.71 16.80 9.02 12.23 17.54

radix 56102 68676 69711 37431 44227 45303 26580 31397 32878 13570 13570 13570

raytrace 6.70 9.90 14.15 6.26 9.29 13.48 6.24 9.27 13.47 6.20 9.21 13.36

water-ns 9.90 11.43 12.77 9.52 11.11 12.48 9.51 11.12 12.50 9.47 11.09 12.45

water-sp 11.27 11.93 13.57 10.83 11.49 13.11 10.80 11.45 13.06 10.77 11.42 13.03

Total 12.11 14.89 18.15 11.48 14.17 17.43 12.10 14.93 18.34 13.26 16.35 20.07

N=1 N=2 N=4 N=8
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Figure 7.4 Trace port bandwidth in bpc for control flow traces 

 

7.2 Trace Port Bandwidth for Timed Memory Load Data Value Traces 

7.2.1 tmlvNX_b 

Table 7.5 shows the trace port bandwidth in bpi and in bpc for the Nexus-like 

timed load data value traces, tmlvNX_b, for all benchmarks as a function of the 

number of threads/cores (N=1, 2, 4, and 8).  The last row shows the total trace port 

bandwidth when all benchmarks are considered together. The total bandwidth in 

bits per instruction is calculated as the sum of trace sizes for all benchmarks divided 

by the sum of the number of instructions executed for all benchmarks. Similarly, the 

total bandwidth in bits per cycle is calculated as the sum of trace sizes for all 

benchmarks divided by the sum of the execution times in clock cycles for all bench-

marks.  

For single-threaded benchmarks (N = 1), the TPB ranges between 8.82 bpi for 

fmm and 15.29 bpi for cholesky.  The required bandwidth varies across benchmarks 
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and is highly correlated with the frequency and type of memory reads.  Thus, barnes 

and cholesky have relatively high TPB requirements due to the relatively high fre-

quency of load instructions, unlike fmm which has very low TPB requirements due 

to the extremely low frequency of memory read instructions.  The trace port band-

width increases slightly with an increase in the number of cores for two reasons: (a) 

an increase in the number of bits needed to report thread index, and (b) an increase 

in the frequency of load instructions (caused by synchronization primitives). Thus, 

when N = 8, the TPB ranges between 9.30 bpi for fmm and 16.01 bpi for raytrace. 

The total bandwidth for the entire benchmark suite ranges between 12.34 bpi when 

N = 1 and 12.98 bpi when N = 8.  

Whereas the bandwidth in bits per instruction increases with the number of 

cores, it does not fully capture the pressure multiple processor cores place on the 

trace port, a shared resource.  The trace port bandwidth in bits per clock cycle better 

illustrates this pressure, load data value trace for cholesky reaches 4.69 bpc when 

N = 1 and 47.61 bpc when N = 8; fmm requires 3.55 when N = 1 and 27.63 bpc when 

N = 8.  The total trace port bandwidth in bpc ranges from 5.59 when N = 1 to 33.79 

when N = 8.  The trace port bandwidth in bpc is heavily influenced not only by the-

frequency and type of memory reads but also by the scalability of individual bench-

marks. For example, barnes, water_spa, and fmm exhibit high scalability (see IPC in 

Table 6.6) which contributes to a significant increase in the trace port bandwidth 

requirements for N = 4 and N = 8.  These results indicate that capturing load data 

value traces on the fly in multicores requires large trace buffers and wide trace 

ports. As shown in the next section, one alternative is to develop hardware tech-
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niques that significantly reduce the volume and size of trace data that are streamed 

out. 

Table 7.5  Trace port bandwidth for tmlvNX_b for Splash2 benchmark 

 

 

7.2.2 tmlvCFiat  

The effectiveness of tmlvCFiat directly depends on the first-access flag miss 

rate – lower values result in fewer trace messages needing to be streamed out 

through the trace port. Figure 7.5 shows the total first-access miss rate as a function 

of the number of cores for three data cache configurations (Small, Medium, and 

Large).  The total first-access miss rate is calculated as the total number of first-

access misses when all benchmarks are considered together divided by the total 

number of data reads. The first-access miss rate decreases with an increase in the 

number of cores, e.g., from more than 3.09% when N = 1 to 2.81% when N = 8 for the 

Medium configuration.  As expected, larger data caches result in a smaller number 

of miss events and thus a smaller number of first-access miss events. e.g., the first-

Benchmark

Cores 1 2 4 8 1 2 4 8

barnes 15.04 15.89 15.87 15.81 6.09 13.15 24.07 43.81

cholesky 15.29 16.53 16.29 14.54 4.69 10.28 22.28 47.61

fft 10.65 11.21 11.20 11.20 2.98 6.31 11.20 17.74

fmm 8.82 9.22 9.29 9.30 3.55 7.38 14.59 27.63

lu 11.86 12.46 12.47 12.47 6.84 13.56 23.64 37.36

radiosity 12.11 12.90 13.00 12.45 7.71 16.04 30.32 55.95

radix 13.42 14.47 14.45 14.52 2.94 5.39 8.75 10.92

raytrace 15.18 16.02 16.01 16.01 7.60 18.67 34.51 57.56

water-ns 10.65 11.14 11.14 11.15 7.46 16.24 33.84 59.02

water-sp 11.38 11.90 11.90 11.90 9.33 16.02 26.22 41.77

Total 12.34 13.06 13.13 12.98 5.59 11.34 20.50 33.79

Trace port Bandwidth [bpi] Trace Port Bandwidth [bpc]
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access miss rate ranges from 4.74 % for the Small configuration to 1.73 % for the 

Large configuration when the number of cores is set to four (N = 8).  Figure 7.5 also 

indicates the minimum and the maximum first-access miss rates.  Thus, the first-

access miss rate reaches as high as ~14.26% for fft and as low as 0.48% for water-

spa, depending on the number of cores and the data cache size. These results con-

firm that tmlvCFiat indeed can reduce the number of trace messages. 

 

Figure 7.5 First Access Miss Rate for Splash2 benchmark 

 

Figure 7.6 shows the total average trace port bandwidth for Nexus–like 

memory read flow traces (tmlvNX_b), tmlvCFiat (tmlvCF_b, tmlvCF_e) as function of 

the number of threads (N = 1, 2, 4, and 8 ) and the tmlvCFiat configuration (Small, 

Medium and Large).  Table 7.6 shows the trace port bandwidth for Large configura-

tion.  For N = 1, tmlvNX_b requires on average 12.34 bpi when N = 1 and ranges be-
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tween 8.8 bpi (fmm) and 15.29 bpi (cholesky); for N = 8, tmlvNX_b requires 12.98 bpi   

ranges between 9.29 (fmm) and 16.01 (cholesky).  

 

 

 

Figure 7.6 Trace port bandwidth bpi for timed load data value trace 

 

tmlvCF_b dramatically reduces the average trace port bandwidth as followa: 

 Small configuration: 1.08 bpi (N = 1) and 0.98 bpi when N = 8. This is equiva-

lent to reducing the trace port bandwidth relative to NX_b 11.41 times for    

N = 1 and 13.24 times for N = 8. 

 Medium configuration: 0.59 bpi (N = 1) and 0.57 bpi when N = 8. This is 

equivalent to reducing the trace port bandwidth relative to NX_b 20.6 times 

for N = 1 and 22.64 times for N = 8. 

 Large configuration: 0.317 bpi (N = 1) and 0.339 bpi when N = 8. This is 

equivalent to reducing the trace port bandwidth relative to NX_b 38.9 times 

for N = 1 and 38.25 times for N = 8. 
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Table 7.6 Trace port bandwidth for tmlvNX_b and tmlvCFiat  

 

 

tmlvCF_e further reduces the average trace port bandwidth as follows: 

 Small configuration: 0.977 bpi (N = 1) and 0.893 bpi when N = 8. This is 

equivalent to reducing the trace port bandwidth relative to tmlvNX_b 1.10 

times for N = 1 and 1.09 times for N = 8. 

 Medium configuration: 0.54 bpi (N = 1) and 0.52 bpi when N = 8. This is 

equivalent to reducing the trace port bandwidth relative to tmlvNX_b 1.09 

times for N = 1 and 1.09 times for N = 8. 

 Large configuration: 0.287 bpi (N = 1) and 0.310 bpi when N = 4. This is 

equivalent to reducing the trace port bandwidth relative to tmlvNX_b 1.10 

times for N = 1 and 1.09 times for N = 8. 

Table 7.7 shows the compression ratio or speedup of tmlvCF_e relative to 

tmlvNX_b, calculated as TPB(tmlvNX_b)/TPB(tmlvCF_e) as a function of the num-

ber of threads (N = 1, 2, 4 and 8) and configuration (Small, Medium, Large).  For the 

Small configuration, the average compression ratio is 12.63 for N = 1 and 14.54 for 

N = 8.  For the Medium configuration, the average compression ratio is 22.65 for N = 

1 and 24.75 for N = 8.  For the Large configuration, the average compression ratio 

Thread

Mechanism tmlvNX_b tmlvCF_b tmlvCF_e tmlvNX_b tmlvCF_b tmlvCF_e tmlvNX_b tmlvCF_b tmlvCF_e tmlvNX_b tmlvCF_b tmlvCF_e

barnes 15.041 0.414 0.382 15.888 0.414 0.383 15.867 0.462 0.429 15.810 0.837 0.775

cholesky 15.292 0.951 0.861 16.534 0.897 0.813 16.294 0.691 0.626 14.537 0.430 0.388

fft 10.651 1.401 1.260 11.209 1.433 1.303 11.201 1.426 1.300 11.196 1.423 1.296

fmm 8.821 0.200 0.183 9.219 0.209 0.192 9.285 0.207 0.192 9.299 0.205 0.190

lu 11.858 0.488 0.492 12.464 0.323 0.319 12.466 0.329 0.326 12.474 0.253 0.244

radiosity 12.108 0.062 0.053 12.902 0.070 0.062 12.999 0.076 0.066 12.450 0.072 0.064

radix 13.424 0.723 0.636 14.467 0.759 0.675 14.454 0.758 0.676 14.519 0.767 0.683

raytrace 15.176 0.223 0.199 16.025 0.234 0.211 16.010 0.234 0.211 16.012 0.234 0.210

water-ns 10.646 0.033 0.031 11.137 0.033 0.031 11.139 0.033 0.031 11.150 0.044 0.041

water-sp 11.379 0.040 0.039 11.900 0.046 0.044 11.899 0.047 0.045 11.899 0.046 0.044

Total 12.342 0.317 0.287 13.065 0.321 0.293 13.127 0.321 0.293 12.982 0.339 0.310

N=1 N=2 N=4 N=8
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42.98 for N = 1 and 41.95 for N = 8.  The best performing is water-spatial (N = 1) and 

the worst performing is fft (N = 8). 

 

Table 7.7 Compression ratio of tmlvCF_e ralative to tmlvNX_b  

 

 

Figure 7.7 shows the total trace port bandwidth in bits per clock cycle. 

tmlvCF_e and tmlvCF_b are highly effective in reducing the trace port bandwidth. 

When N = 8, the total required bandwidth for tmlvCF_e is just 2.32 bpc compared to 

33.78 for tmlvNX_b for the Small configuration. Our variable encoding scheme in 

tmlvCF_e offers improvement in the range of 9 % when compared to fixed encoding 

tmlvCF_b for the Large configuration.  

cores

Config S M L S M L S M L S M L

barnes 5.65 10.68 39.40 5.68 10.55 41.45 5.65 10.20 37.01 5.70 9.64 20.41

cholesky 5.75 11.67 17.77 7.92 14.61 20.33 11.07 19.37 26.05 17.17 28.93 37.46

fft 4.63 6.84 8.46 4.72 6.95 8.60 4.70 6.95 8.61 4.71 6.97 8.64

fmm 16.95 28.95 48.12 17.16 29.08 47.99 17.60 29.57 48.46 18.04 30.15 48.99

lu 18.42 20.62 24.12 18.57 22.37 39.07 18.60 22.37 38.24 19.17 32.26 51.06

radiosity 35.50 100.15 227.17 35.12 86.42 209.79 34.71 99.53 195.76 34.58 105.87 196.06

radix 16.36 18.44 21.10 16.51 18.68 21.44 16.40 18.57 21.38 16.17 18.35 21.26

raytrace 11.02 27.11 76.15 10.93 26.84 76.09 10.82 26.31 76.02 10.68 26.16 76.21

water-ns 21.83 22.48 345.65 21.79 22.66 359.25 21.65 23.07 364.00 21.49 22.65 270.64

water-sp 126.85 175.60 295.55 130.05 173.47 271.69 128.78 171.71 265.02 132.21 174.22 269.82

Total 12.63 22.65 42.98 13.25 23.21 44.65 13.70 23.71 44.80 14.54 24.75 41.95

N=1 N=2 N=4 N=8
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Figure 7.7  Trace port bandwidth in bpc for timed load data value trace 
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CHAPTER 8  

 

CONCLUSIONS 

 

Knowledge, Action and Devotion are complementary to each other 

--Rev. Pandurang Shastri Athavale 

 

Modern embedded and cyber-physical computer systems are shaped by their 

increasing sophistication and complexity, diversification, proliferation, as well as 

ever-tightening time-to-market. A growing number of such systems relies on multi-

core systems-on-a-chip. More complex software stacks running on more sophisticat-

ed and complex hardware platforms place additional burdens on software developers 

who spend a significant portion of development time on software debugging and test-

ing.  Developing hardware/software techniques to help developers locate and correct 

software bugs faster is critical in meeting time-to-market deadlines, reducing system 

cost, and improving system reliability by providing well-tested bug-free software.  

Capturing all events of interest for debugging in hardware and streaming them out 

of the chip is cost prohibitive because a huge amount of debug and trace data gener-

ated on systems with multiple processor cores running at clock frequencies in GHz.  

This research focuses on developing and evaluating hardware techniques for 

unobtrusive capturing and filtering of control-flow and load data value traces in re-

al-time for multicore systems.  These traces coupled with sophisticated software de-

buggers enable a faithful reconstruction of events from the target platform in the 

software debugger, thus helping software developers locate and correct bugs faster.  
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The thesis introduced mcfTRaptor and mlvCFiat hardware structures to capture 

and compress control-flow and load data value traces, respectively.  To dramatically 

reduce the number of trace messages that needs to be streamed out, these structures 

are modelled in a software debugger as well and work in sync with corresponding 

hardware structures. This way, trace messages are generated only in the case of rare 

miss events on predictor or cache structures on the target platforms – events that 

cannot be properly inferred by the software debugger.   

Our experimental evaluation demonstrated the effectiveness of the proposed 

techniques by evaluating trace port bandwidth requirements on a selected set of 

benchmark programs.  The experimental evaluation is based on functional traces 

that assume that events are ordered on the target platform and timed traces that 

include explicit time stamps.  The evaluation is performed while varying the number 

of processor cores, size and organization of tracing structures, and encoding 

schemes.  We evaluate several encoding schemes and find those that minimize the 

number of bits that needs to be streamed out of the chip.    

The results of our experimental evaluation show that mcfTRaptor dramati-

cally reduces the trace port bandwidth when compared to the current state-of-the-

art.  The total improvements are between ~12 times for the Small configuration and 

over ~30 times for the Large configuration.  The proposed method is robust, reducing 

the trace port bandwidths regardless of the number of processors on a chip.  Similar-

ly, mlvCFiat proves to be very effective in reducing the trace port bandwidth for load 

data value traces when compared to the state-of-the-art.  It reduces the bandwidth 

in the range of 3.9 – 4.6 times for relatively the Small configuration and 6.7 to 7.4 

times for the Large configuration.  
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The research tools designed in this thesis can be used to support future re-

search in the area of on-the-fly tracing in multicores.  The proposed techniques 

mcfTRaptor and mlvCFiat may utilize shared resources (predictors and caches).  

Another promising research area is to expand mlvCFiat technique to utilize cache 

coherence protocols and thus further reduce the number of trace messages that need 

to be reported. 
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