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Abstract—Individuals with limited ambulatory skills are at 

high risk for all physical inactivity-related diseases, such as 

coronary disease and diabetes. Increased physical activity can 

significantly lower risks of these diseases. However, 

quantifying recommendations for increased physical activity 

remain challenging for individuals who use wheelchairs for 

mobility. In this paper we introduce a smart wheelchair that 

utilizes a smartphone with its built-in sensors to capture and 

record physical activity of manual wheelchair users in both 

unstructured and structured environments. We develop 

algorithms for data acquisition and processing on the 

smartphone and implement them in an Android application 

called mWheelness. The application is successfully tested in 

laboratory and free-living experiments using several modern 

smartphones.  

Keywords-mobile computing, body sensor networks, health 

monitoring, wheelchairs. 

I.  INTRODUCTION  

Public health groups have been advocating for an 
increase in physical activity levels as a way to lower the risk 
of inactivity-related diseases, such as cardiovascular disease, 
insulin resistance, hyperglycemia, and type 2 diabetes. 
Physically inactive individuals are almost twice as likely to 
develop coronary heart disease when compared to those who 
exercise regularly. Recent estimates suggest that the impact 
of physical inactivity on mortality risk is approaching 
tobacco as one of the leading causes of death in the able-
bodied population [1].  

People with limited ambulatory skills who use 
wheelchairs for mobility are especially at high-risk for all 
inactivity-related diseases. For example, it has been reported 
that a person with a spinal cord injury (SCI) has a 
significantly greater risk of mortality from coronary heart 

disease (225%) than an able-bodied person [1]. According to 
a 2005 U.S. Census Bureau’s Survey, over 3.3 million 
Americans use some type of wheelchairs for mobility and 
with aging population this number is likely to continue to 
grow.  

Many organizations developed specific physical activity 
recommendations for disabled adults. The U.S. Department 
of Health and Human Services recommends that disabled 
adults should accumulate 150 minutes per week of moderate-
intensity and 75 minutes per week of vigorous-intensity 
aerobic activity [2]. To quantify compliance with these 

recommendations, a method that can accurately estimate 
physical activity for this group of individuals is needed.  

There have been a number of studies focusing on activity 
monitoring in the able-bodied population that rely on step 
counters  and other accelerometer-based systems or on 
surveys [3], [4]. However, despite having a variety of 
different methods to utilize for the measurement of physical 
activity, each has its own limitations for manual wheelchair 
users. For example, pedometers and other step activity 
monitors will not apply to individuals who are unable to 
walk. Several studies focus on suitability of accelerometers 
for assessment of physical activity of individuals in 
wheelchairs [5]–[7], however they often require expensive 
and sophisticated wheelchair monitors and/or user 
instrumentation with wearable electronics that may impede 
normal daily activities. Alternatively, surveys are commonly 
used for the elderly and even individuals with disabilities. 
However, there are inherent problems with subjectivity and 
inaccuracy from recall and interpretation. This is of special 
concern for individuals who use wheelchairs because they 
often spend the majority of time in low-intensity activities. 
We know that individuals using wheelchairs for mobility are 
some of the most sedentary people in society, but assessing 
physical activity and quantifying compliance with prescribed 
exercise regimens are highly constrained due to lack of 
affordable and reliable systems for physical activity 
monitoring. Therefore, the development of affordable, 
unobtrusive, and easy-to-use systems to support assessment 
of physical activity of manual wheelchair users is of utmost 
importance. 

Mobile computing devices such as smartphones, tablet 
computers, and e-readers have steadily been gaining market 
share, dethroning laptop and desktop computers as dominant 
personal computing platforms. According to an estimate for 
2011, vendors shipped 487.7 million smartphones (up 63% 
from the year before) [8]. It is forecast that the number of 
smartphones shipped in 2015 will reach 1.4 billion. Modern 
smartphones integrate a growing number of sensors, such as 
an accelerometer, magnetometer (digital compass), 
gyroscope, proximity, global positioning system (GPS), 
camera, microphone, ambient light, humidity, and 
temperature. Major mobile operating systems, such as 
Android, iOS, and Windows 8 support frameworks for 
managing the sensors, including continual sampling, thus 
enabling a wide variety of new applications in different 



domains, such as social networks, transportation, commerce, 
education, and entertainment. New companies emerged to 
offer wearable wireless biosensors targeting wellness 
applications [9], [10]. Convergence of smart biosensors, 
smartphones, and cloud services allows us to look beyond 
the existing fitness services and develop platforms for mobile 
health monitoring in unsupervised and unstructured 
environments such as continual monitoring during activities 
of daily living [11], [12]. 

To meet the challenge and provide an affordable, 
reliable, and easy to use solution for monitoring the physical 
activity of users who rely on wheelchairs for mobility we 
developed a smart wheelchair – a common wheelchair 
instrumented only with a smartphone that is used to track a 
user’s physical activity. We utilized the smartphone’s built-
in sensors such as a magnetic sensor for monitoring 
wheelchair speed and distance traveled, an accelerometer for 
monitoring smartphone’s orientation and wheelchair 
inclination, and a proximity sensor to determine whether the 
wheelchair is hand-propelled or pushed. In addition, we 
employ a wearable chest belt to monitor and record the 
user’s heart activity and energy expenditure. A smartphone 
application called mWheelness collects the data from the 
sensors and performs periodic uploads to an mHealth server.  

Our system enables collection of data about heart and 
physical activity during specialized rehabilitation sessions 
and during activities of daily living. Automatic uploads of 
monitored sessions into server databases enable healthcare 
professionals to quantitatively assess level and type of user’s 
activity when they return home; a critical component missing 
in current practices. With quantitative assessment of 
exercise, healthcare professionals can verify user’s 
compliance with prescribed exercise regimen, and can better 
understand correlation between exercise intensity and 
recovery. They can also assess the impact of new approaches 
for the treatment of people with inactivity-induced 
conditions. To the best of our knowledge this is the first 
system that relies exclusively on the built-in smartphone’s 
sensors for quantifying physical activity of wheelchair users. 
By utilizing smartphones we provide an inexpensive 
assistive platform that is easy to use. The proposed system 
can significantly improve the function, wellness, and overall 
quality of life for people with limited ambulatory skills as 
well as their caregivers and families.  

The rest of the paper is organized as follows. Section II 
describes the system view of the proposed system. Section 
III details wheelchair’s instrumentation, methods, and 
algorithms used to quantify activity of wheelchair users. 
Section IV describes mWheelness application and Section V 
gives test results and concluding remarks. 

II. SYSTEM ARCHITECTURE 

The mWheelness infrastructure for monitoring activity of 
wheelchair users features a 3-tiered architecture with inertial 
and heart sensors at Tier 1, a smartphone at Tier 2, and an 
mHealth server at Tier 3 (Figure 1). The system can record, 
log, display, and communicate information about the user’s 
physical and heart activity during normal daily activities or 
exercise sessions.  

Tier 1 includes a wearable chest belt for monitoring heart 
activity that wirelessly connects to the smartphone. For 
monitoring the user’s physical activity (e.g., speed and 
distance travelled) we rely solely on smartphone’s built-in 
sensors, including a magnetic sensor, an accelerometer, and 
a proximity sensor. Tier-2 consists of the mWheelness 
application that runs on the smartphone. The application 
supports (a) configuring, calibrating, and managing multiple 
sensors; (b) configuring exercise sessions; (c) data retrieval 
and analysis from individual sensors to extract and log the 
user status information, and (d) user interface. The collected 
physical activity and health status information is recorded 
locally on the smartphone and can be periodically uploaded 
to the mHealth server over the Internet.  
 

 
Figure 1. mWheelness: the system view. 

III. SMARTPHONE SENSORS FOR ACTIVITY MONITORING 

A. Wheelchair insrumentation 

Figure 2 illustrates the proposed wheelchair 
instrumentation with a smartphone. The smartphone is 
placed in a holder on a side of the wheelchair. A small 
magnet is attached on a wheel of the wheelchair. The 
smartphone’s magnetic sensor is sensing the Earth magnetic 
field and is normally used to aid navigation by determining 
the Earth’s magnetic poles and the smartphone’s orientation. 
The magnetic sensor senses the x, y, and z components of the 
magnetic field as illustrated in Figure 2 (the actual 
orientation may vary across different smartphones). By 
placing a small magnet on the wheel, we induce a change in 
the magnetic field sensed by the magnetic sensor of the 
smartphone when the magnet moves over the smartphone. 
This change produces a characteristic signature in the 
magnetic field signals that can be sensed, recorded, and 
processed on the smartphone. By processing the magnetic 
field signals we can detect and timestamp an event - when 
the magnet moves right over the smartphone which 
corresponds to one revolution of the wheelchair’s wheel. 

A smartphone’s accelerometer measures proper 
acceleration and is typically used to keep the screen upright 
regardless of the smartphone orientation. In our setup we 
process the x, y, and z acceleration components to determine 
smartphone’s orientation, i.e., whether it is placed in the 
wheelchair holder or not. Activity recording is enabled only 
when the smartphone is properly mounted on the wheelchair. 
In addition, the accelerometer data is used to determine slope 
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of the wheelchair which can further be used to determine 
vertical gain and loss during exercise. 
 

 

Figure 2. Smartphone instrumentation of a wheelchair. 

 
A smartphone’s proximity sensor is typically used to 

determine when the smartphone is brought up to the user’s 
ear and usually acts as a binary sensor. In our deployment, 
the smartphone’s proximity sensor is used to determine 
whether the user hand-propels the wheelchair or it is pushed. 
This information can be used to further qualify the user’s 
activity. 

The following subsections describe the sensing and 
algorithms for data processing used to determine the 
parameters of interest for activity monitoring. 

B. Measuring speed and distance 

Figure 3 shows the raw magnetic field components 
recorded by our custom application running on a smartphone 
mounted on a wheelchair as shown in Figure 2. The 
wheelchair is placed on a treadmill that moves at the constant 
speed of 1 mile per hour (mph) (Figure 3a), 2 mph (Figure 
3b), and 4 mph (Figure 3c). Whereas all three axes of the 
magnetic field (x, y, and z) show a distinct signature when 
the magnet moves over the smartphone, the changes in the z 
component are the most distinct. Consequently, our 
algorithm for detection of a wheel revolution focuses on this 
component of the magnetic field. The signal is such that even 
a simple visual inspection may be used to confirm the 
feasibility of the proposed approach - changes in the 
magnetic field induced by the magnet can indeed be used to 
determine the number of wheel revolutions. For example, we 
can identify 5 peaks in the z component of the magnetic field 
during a window of 20 seconds (Figure 3a). This 
corresponds to 5 revolutions of a 24” diameter wheel, which 
in turn corresponds to ~1 mph speed. Similarly, we can 
identify 19 peaks when the treadmill belt moves at 4 mph.  

Whereas the treadmill experiment confirms feasibility of 
the proposed approach, it presents somewhat idealized 

conditions. The wheelchair is fixed on the treadmill and its 
position relative to the Earth’s magnetic field remains 
unchanged during the experiment. In real-world conditions 
the wheelchair will constantly change its position relatively 
to the Earth’s magnetic field. This will result in changing the 
base values of the magnetic field observed by the 
smartphone’s magnetic sensor.  

Figure 4a shows the z component of the magnetic field 
recorded during a freewheeling experiment when a user 
propels himself in a wheelchair moving through a square-
shaped hallway, making a full round trip of approximately 
100 meters in length. We can observe a slow-changing DC 
component of the magnetic field due to changes in the 
smartphone position relative to the Earth’s magnetic field. 
Fortunately, the spikes induced by the proximity of the 
magnet on the wheel when the magnet moves over the 
smartphone can still be easily detected.   

 

 
Figure 3. Smartphone recordings of the x, y, and z components of the 

magnetic field for different wheelchair speeds: (a) 1 mph; (b) 2 mph; and 

(c) 4 mph. 

 
Figure 4. From signals to information: (a) z component of the magnetic 

field; (b) processed z component; (c) calculated speed; and (d) proximity 

sensor data.  

The next step is to transform the original signal 
representing the z component of the magnetic field into a 
signal that allows for efficient detection of peaks. By 
detecting and time-stamping peaks in the transformed signal, 
we can precisely derive the wheelchair speed and distance 
traveled. In developing the signal processing algorithm our 
goal is to achieve accuracy and reliability at minimum cost in 
computation time and energy consumed. 
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The transformation should remove a slow changing 
component caused by changes in the smartphone orientation 
relative to the Earth’s magnetic field and amplify the 
component of the signal caused by the proximity of the 
magnet on the wheel. An incoming sample, z(i), is stored in a 
sliding buffer that keeps a window of 40 most recent 
samples - this corresponds to 1 second in time with the 
sampling frequency of 40 Hz. Note: in general the window 
size is a function of the sampling frequency. The processed 
signal, pz, is calculated as shown in (1). Figure 4b shows the 
transformed signal. 
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The second step is to detect peaks in the processed signal 
pz. Our algorithm for peak detection involves a state machine 
with three states, Pre-Peak, Expect-Peak, and Post-Peak. 
Pre-Peak is maintained as long as the processed signal 
samples, pz(i), are below a certain threshold. When a sample 
is above the threshold we enter the Expect-Peak state. The 
algorithm exits the Expect-Peak state once the processed 
samples are below the threshold. The threshold is set at 13 
µT. In this state the samples are buffered and searched for 
the maximum. The sample number of the maximum is used 
to precisely timestamp the moment when the peak occurred. 
To avoid false positives, Post-Peak is entered. The state 
machine remains in this state for a pre-defined period of 
time. The duration of the Post-Peak state is determined by 
the maximum speed we would like to detect. For example, at 
the speed of 10 mph, which is twice as the realistic 
maximum speed of 5 mph, the time distance between two 
peaks is 0.428 seconds for a wheelchair with 24” wheel. This 
means that in normal operation no two valid peaks can 
possibly be detected in a period shorter than 0.428 seconds.   

Figure 4b shows the transformed signal with blue circles 
identifying peaks detected by the proposed algorithm. The 
visual inspection indicates that algorithm achieves 100% 
accuracy. The algorithm has been extensively tested in both 
treadmill experiments and in hand-propelled wheelchair 
experiments.  

Measuring speed and distance travelled can easily be 
derived from the sequence of time-stamped peaks. Let us 
assume a sequence of peak timestamps ti-1, ti, ti+1. The speed 
at time ti, v(ti), is calculated as shown in (2), where d is the 
diameter of the wheel. If no peak is detected during a 
predefined time window (e.g., 8 seconds), the speed is reset 
to zero. Figure 4c shows the calculated speed over time for 
the free-wheeling experiment. The distance travelled, D, is 
maintained by simply counting the number of detected 
revolutions, N, and can be calculated using (3).  
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In designing the peak detection algorithm and speed 
estimation we need to consider the sampling frequency of the 

smartphone’s magnetic sensor. Higher sampling frequency 
provides better resolution of timestamps and consequently 
more accurate speed estimation. Lower sampling frequency 
may reduce the compute complexity and storage 
requirements for the peak detection as well as the power 
consumption of the smartphone. In determining the sampling 
frequency we start from an application requirement - what is 
required accuracy for speed estimation. For example, if we 
want to achieve accuracy of v=0.1 mph, the minimum 
required sampling frequency, FS, for a given speed v can be 
determined using (4). Thus, to distinguish between 0.9 mph 
and 1 mph, the minimum sampling frequency is 2.1 Hz 
(assuming a 24’’ wheel). If we want to distinguish between 
3.9 and 4.0 mph, the minimum required sampling frequency 
is 36.4 Hz. Finally, if we want to distinguish between 5.9 
mph and 6.0 mph, the minimum sampling frequency is 82.6 
Hz. For all practical applications where wheelchair speed is 
rarely to exceed 4 mph, the sampling frequency of 40 Hz is 
adequate. 
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C. Detection of hand propulsion 

The smartphone’s proximity sensor can be utilized to 
determine whether the wheelchair is propelled by the user or 
possibly pushed by another person. A modern smartphone’s 
proximity sensor typically reports only two states – an object 
is closer or farther than triggering distance of the sensor. 
Depending on the type of the sensor built in the smartphone, 
the triggering distance is typically 3-10 cm. The proposed 
placement of the smartphone on the wheelchair makes it 
possible to detect hand propulsion - when the user places 
his/her hand on the hand rim of the wheel he/she will likely 
trigger the proximity sensor. When the wheelchair is pushed 
by another person, the user’s hand is not likely to interfere 
with the smartphone’s proximity sensor.  

Our approach is to simply maintain a status of the 
proximity sensor: if it reported a change in a certain time 
window, we consider the wheelchair to be hand-propelled by 
the user. Figure 4d shows the raw values reported by the 
proximity sensor of a Motorola RAZR M smartphone during 
the free-wheeling experiment. The proximity sensor reports 
two distances, 3 cm and 100 cm. Frequent changes of the 
reported distance indicate hand propulsion during the entire 
experiment.  

Whereas the proposed algorithm works well in our initial 
studies, it has its limitations – the user’s hand may not 
always be close enough to trigger the proximity sensor and 
detection strongly depends on triggering distance of the 
proximity sensor. An alternative approach, albeit costlier in 
terms of processing and storage requirements, is to process 
still images or video captured by the smartphone camera in 
order to detect whether the user hand propels the wheelchair. 

D. Tilt and Incline Calculation 

Tracking of physical activity is conditioned by the 
smartphone being in the upright position in the wheelchair 
holder. This can be detected by calculating the smartphone 



tilt as shown in Figure 5a. The angle  can be estimated as in 
(5). The tilt of the wheelchair in normal operation is unlikely 
to exceed a certain range (e.g., -10 to +10 degrees) and we 
use this property to determine whether the smartphone is in 
the holder or not. If this angle exceeds a certain predefined 
range, we consider the smartphone to be taken by the user, 
and the processing of the magnetometer signals for detection 
of wheel revolutions is suspended.  

In a similar fashion we calculate the smartphone slope as 
shown in Figure 5b. Whereas the wheelchair propulsion will 
have an impact on the x and z components of the 
acceleration, Ax and Az respectively, the x and y components 
of the acceleration, Az and Ay, will still be dominated by the 

Earth’s gravity. By filtering the calculated angle  (5), we 
can extract the slope of the wheelchair and thus use this 
information to determine the vertical gain and drop during an 
exercise session. An alternative approach to eliminate the 
impact of forces due to propelling is to consider only 
acceleration samples when the square root of the sum of 
squared acceleration components is very close to the Earth’s 
gravity (9.81 m/s

2
).  

 

 
Figure 5. Tracking tilt (a) and incline (b).  
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The described algorithms for determining the 
smartphone’s tilt and incline assume a perfect alignment of 

the wheelchair holder - angles  and  are both equal to 0 
degrees when the wheelchair is on flat surface as shown in 
Figure 5. To accommodate for imperfect holder placement, 
we go through a calibration process where we calculate 

offsets o and o, and the measured angles are compensated 
for these offsets.  

An alternative approach to determining that the 
smartphone is in the wheelchair holder is to place an 
inexpensive NFC tag in the holder. The NFC capable 
smartphones can utilize this tag to detect when the 
smartphone is placed in the holder. In addition, this event can 
be used to automatically start the smartphone application. 

IV. SMARTPHONE APPLICATION 

The mWheelness smartphone application implements the 
algorithms described in the previous section to support 
activity monitoring and logging. In addition, it supports 

monitoring and logging of heart activity. The recorded logs 
of registered users can optionally be uploaded to the mHealth 
databases. 

Figure 6 shows characteristic screens of mWheelness. A 
configuration screen shown on the left allows a user to enter 
his/her gender, weight, age, wheel diameter, as well as the 
sampling rate, and the magnetic sensor detection threshold. 
In addition, the screen allows for configuring what type of 
information will be logged into a file on the smartphone 
and/or uploaded to the databases. It also guides the user 
through a calibration process providing acoustic clues to start 
calibration, place the smartphone in the holder, and remove it 
after the calibration is performed.  

The user starts recording physical activity and heart 
activity by pressing the Start Recording button – please note 
that processing of the signals from the magnetic sensor will 
not start before the smartphone is in the upright position. 
During an exercise session mWheelness displays current 
inclination, speed, and distance travelled. In addition, it 
displays information about heart activity.  
 

   
Figure 6. mWheelness Android application screens. 

To monitor the user’s heart activity we employ a 
commercially available Zephyr HXM heart monitor [9] that 
can be paired with the smartphone over Bluetooth. The 
monitor is mounted on a chest belt with textile electrodes. It 
sends a message every second containing the average heart 
rate and time stamps of the last 15 heart beats. mWheelness 

estimates energy expenditure in calories, C, using (6) for 
men and (7) for women as proposed by Keytel et. al. [13]. It 
is a function of the heart rate (HR), the user’s weight in 
kilograms (W), and the age in years (A). We update the total 

energy every second (T=1 sec).  
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V. DISCUSSION AND CONCLUSIONS 

The mWheelness application is tested on several Android 
smartphones in controlled and free-living conditions. The 
controlled experiments are conducted on a treadmill while 
varying speed and inclination. The distance traveled and 
inclination reported by the application are compared against 
the corresponding parameters reported by the treadmill. 
mWheelness can run in a special mode that has additional 
support for logging all raw samples from the smartphone 
sensors. This allows us to verify inner workings of our 
algorithms offline – the raw data are processed in Matlab to 
generate events that are compared against the events logged 
by mWheelness.  

Free-wheeling experiments involved five able-bodied 
individuals hand propelling the wheelchair on a rectangular-
shaped course of 201 meters in length. As test platforms we 
used Motorola RAZR M and HTC One X. Each individual 
completed the course two times, once in each direction. The 
average distance and standard deviation reported by 
mWheelness is 198.8±3.1 meters for Motorola RAZR M and 
200±3 meters for HTC One X. This is an excellent result if 
we know that the maximum precision we can achieve is 
within two circumferences of the wheel from the course 
length (3.8 meters in our case). The RAZR M’s proximity 
sensor with triggering distance of 3 cm occasionally misses 
hand movements during hand propelling for some users, 
whereas the HTC One X’s proximity sensor with triggering 
distance of 9 cm performed flawlessly. 

 

 
 Figure 7. Heart Rate, Speed, and Hand Propelling during a freewheeling 

experiment 

Figure 7 shows user’s heart activity, wheelchair speed, 
and hand propelling flag recorded by mWheelness during an 
experiment. The wheelchair is pushed for the first 75 
seconds, and hand propelled by the user afterwards. We can 
observe a steep increase in heart rate once the user started 
hand propelling. 

To estimate maximum operating time of the mWheelness 
application with a single battery charge, we conducted 
several experiments on Motorola RAZR M. The operating 
time when only physical activity is logged (with WLAN, 

Bluetooth, and mobile data turned off) is slightly over 20 
hours. The operating time when both physical and heart 
activity are logged (with WLAN and mobile data turned off, 
Bluetooth is on) is slightly over 18 hours. The entire system 
is currently undergoing testing in a local rehabilitation 
hospital in both supervised and free-living conditions. 
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