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Abstract—Time synchronization is essential for most 
network applications. It is particularly important in a 
Wireless Sensor Network (WSN) as a means to correlate 
diverse measurements from a set of distributed sensor 
elements and synchronize clocks for shared channel 
communication protocols.  Wireless sensors are typically 
designed with very stringent constraints for size, cost, and 
especially power consumption.  The Flooding Time 
Synchronization Protocol (FTSP) was developed explicitly 
for time synchronization of mesh-connected wireless 
sensor networks.  However, ZigBee can also 
accommodate master-slave networks that can be more 
power-efficient.  We optimized the FTSP for master-slave 
WSNs and implemented it using TinyOS 1.1.8 and 
ZigBee-compliant hardware.  Our approach allows better 
synchronization and reduced power consumption of 
wireless nodes.  In this paper we present implementation 
and experimental results.  
 

I.  INTRODUCTION 
 
 Computing technologies have consistently followed a 
general trend of becoming more and more distributed and 
deeply embedded into the environment.  In keeping with this 
trend, the dream of truly ubiquitous computing will be 
empowered in part by a vast array of tiny computing 
elements wirelessly connected together providing detailed 
information about the world around us and acting upon the 
environment as well.   
 This is the role of a Wireless Sensor Network (WSN) as a 
collection of miniature computers designed for an extremely 
resource-constrained environment.  They must satisfy the 
following characteristics: 
• small size in order to be unobtrusive or hidden and not 

clutter up the landscape 
• very cheap so they can be affordably deployed in large 

numbers 
• extremely power efficient.  Power efficiency extends 

battery life or allows energy scavenging from the 
environment. Typical examples include solar energy, 
energy of vibrations, etc. 

 ZigBee is an emerging standard for wireless 

communication target for use in WSNs.  It was specifically 
designed with the severely resource-constrained sensor in 
mind.  Together with the IEEE 802.15.4 [4] standard which 
defines the physical and MAC-layer interface, ZigBee has 
very low power consumption requirements.  802.15.4 
networks can operate in either master-slave or peer-to-peer 
configuration.  The master-slave would be common in many 
sensor-based applications where a number of very limited 
slaves are controlled by a master controller, such as home 
automation or security systems.  802.15.4 provides a number 
of features to help conserve power, such as beacons, long 
superframe cycles, and guaranteed time slots with power 
efficient idle modes on sensors.  
 ZigBee supports both mesh network and a star network 
topology in which a node acts as master for a number of other 
slave nodes.  The master sends periodic beacon messages to 
the slaves, providing regular windows of time for the nodes 
to communicate.  This mode allows the nodes to sleep during 
inactive time slots, which is ideal for certain networks where 
it is critical to preserve power. 
 This paper is organized as follows. We present common 
time synchronization mechanisms for wireless sensor 
networks in the second section. Our implementation of time 
synchronization for Telos platform in ZigBee environment is 
given in the third section; experimental results and 
conclusions are presented in the last section.  
 

II.  TIME SYNCHRONIZATION 
 
 Time synchronization of distributed computing elements is 
a common requirement for many distributed applications.  
Precise time synchronization can be essential in a WSN to 
facilitate group operations, such as sensor localization, data 
aggregation, distributed sampling, source localization, etc.  
Synchronized time stamps can be critical for proper 
correlation of sensor information from the various sources.  
In addition, synchronized clocks are essential for shared 
channel communication protocols, such as Time Division 
Multiplexing. 
 Each application that relies on time synchronization has a 
different set of requirements.  Based on these requirements, a 
potential synchronization mechanism should be evaluated 



 

using several metrics [2] by answering questions such as 
these:  How much precision is needed?  Do the network 
nodes need to remain synchronized all the time or can they 
just achieve synchronization when needed (as when several 
nodes need to compare the detection time of a single event)?  
Do the nodes occupy a large geographic area, and does that 
area need to be completely covered?  How much time and 
power are available for the node to expend towards 
synchronization?  What is the cost to implement 
synchronization and does it require any special equipment or 
infrastructure?  In a WSN composed of a vast number of tiny, 
battery-powered nodes, the two most important factors would 
probably be power efficiency and cost. 
 A number of protocols and algorithms exist and have been 
implemented to provide time synchronization in computer 
networks.  The Network Time Protocol (NTP) [7] is perhaps 
the most widely used.  However it requires a significant 
amount of computation and computer resources, and it is not 
especially fault-tolerant, making it ill-suited for a WSN.  
Other protocols have been developed explicitly for WSNs 
such as the RBS [1] and TPSN algorithms [3]. 
 We chose to implement the Flooding Time 
Synchronization Protocol (FTSP) that was developed at 
Vanderbilt University [5, 6].  This protocol was developed to 
demonstrate a means of providing network-wide time 
synchronization to a large network of wireless sensors.  The 
FTSP was designed to accommodate network topology 
changes (which is necessary when the sensors are mobile) 
and to be robust despite the failure of individual nodes (a 
necessary consideration in a WSN).  The two design features 
that seem especially valuable for a WSN are MAC layer time 
stamping for increased precision and skew compensation 
with linear regression to account for clock drift.  The FTSP 
was demonstrated on a large network of 64 sensors using the 
Berkeley Mica2 mote. 
 The FTSP generates time synchronization with periodic 
time sync messages.  The network can dynamically elect a 
root node.  Whenever a node receives a time sync message, it 
rebroadcasts the message, thus flooding the network with 
time sync messages.  The message itself contains a very 
precise timestamp of when the message was sent.  The 
receiving node takes a timestamp when it gets the message.  
To remove sources of error, these timestamps are taken deep 
in the radio stack.  Comparing with the timestamps from the 
last several messages received, the node computes a simple 
linear regression to allow it to account for the offset 
difference in its clock from global time as well as the relative 
difference in frequency (Fig. 1).  This enables each node to 
maintain an accurate estimate of global time despite the fact 
that its local clock may be running slightly faster or slower 
than the global clock source. 
 The FTSP can provide a WSN with high-precision 
synchronization without requiring a lot of resource overhead.  
However, in some situations it could be optimized for greater 

efficiency.  A node in a WSN expends a significant amount 
of energy for wireless communications.  The radio 
transmitter certainly consumes a lot of energy sending each 
message, but the receiver does too, even when it is just 
listening.  Ideally, in a very energy-constrained network, a 
node will transmit as little as possible and even turn off its 
receiver until it expects to receive something.  The ZigBee 
star network topology is well suited for this environment 
because of its master-slave hierarchy.  Periodically, the 
master node transmits a beacon message to its slave nodes to 
maintain the communication link.  Commonly the slave 
nodes may be tiny, simple sensors with a very limited power 
source.  With this in mind, the FTSP could be optimized for a 
master-slave network such that only the master nodes 
transmit the periodic time sync messages and the slave nodes 
simply receive without having to transmit at all.  In fact, a 
slave node could even disable its radio and enter low-power 
mode between messages.  And highly accurate time 
synchronization could enable a slave node to sleep for a very 
long time and still wake up just before the next message was 
due, making the most of its limited energy supply. 
 
III.  IMPLEMENTATION OF TIME SYNCHRONIZATION 

ON TELOS PLATFORMS 
 
 In implementing the FTSP on the Telos platform, we 
assumed a master-slave configuration and a star network 
topology, taking advantage of the optimizations described 
above.  Slight modifications to the program could allow a 
mote to operate in either a generic mesh network where time 
sync messages must be flooded or in a star network topology 
where only the master transmits the messages.  It could even 
switch between the two modes of operation if network 
conditions warrant.  Thus, the FTSP could be used in its 
original robust form or this simplified and optimized form as 
needed.  
 The Telos platform [9] is designed to serve as a node in a 
WSN.  It comes equipped with a MSP430 microcontroller 
and a ZigBee-compliant ChipCon CC2420 intelligent 
wireless controller.  It is also one of the platforms supported 
by the TinyOS operating system [10].  This is convenient 
because the FTSP was first implemented as a part of TinyOS 
[11].  However, porting the FTSP to Telos was not trivial, 
since the original implementation was based on the Mica2. 
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Figure 1.  To synchronize to global time, a node must compute the offset 
between its local clock and the global time as well as the skew or rate at 
which its clock is drifting slower or faster than global time.  The numbers
shown are merely illustrative. 



 

 
 For time synchronization to work, there must be a fixed 
point in time from which both sender and receiver can 
reference the timestamp in a given message.  For a ZigBee 
message, this point is at the end of the Start of Frame 
Delimiter (SFD), as depicted in Fig. 2.  The sender makes a 
timestamp immediately after it has transmitted the SFD and 
inserts the timestamp into the message (note that the message 
has already begun transmission when the timestamp is made 
and added to the message).  The receiver makes a timestamp 
when it receives the SFD and stores it with the message.  
Later, the processor will compare the two timestamps to 
determine the offset between local time and global time and 
the degree to which the local clock is running at a faster or 
slower rate than the global clock.  On the Telos platform, the 
wireless controller provides a signal to the microcontroller to 
indicate when the SFD byte has been received or transmitted.  
This signal was configured to generate a timer capture and an 
interrupt, enabling extremely accurate timestamps of each 
message.  This is an improvement over even the Mica2 
implementation, which creates very accurate timestamps 
deep in the radio stack. 
 Unlike Mica2 boards where the processor directly controls 
the wireless bit-stream, the Telos wireless controller provides 
FIFOs for transmit and receive data.  The processor 
communicates with the controller using a synchronous 
peripheral interface (SPI).  Generally, when transmitting a 
message, the processor loads up the transmit FIFO with the 
entire message and then enables transmission.  However, the 
FTSP messages contain a timestamp that is generated after 
the message has begun transmission.  To implement this on 
the Telos platform, most of the message is placed in the FIFO 
and transmission is enabled.  When the SFD interrupt occurs, 
the captured timer value is retrieved and converted to a global 
timestamp.  The timestamp is inserted into the message and 
the rest of the message is placed in the FIFO.  Assuming this 
can all be done quickly enough, the entire message is 
transmitted properly.  If however the process is too slow, the 

FIFO will underrun and the message transmission will abort.  
This is a real concern since ZigBee specifies a fairly speedy 
effective bit rate of 250 kbps. 
 Time measurements were taken to ensure adequate margin 
and instill confidence that the FTSP could run reliably 
without FIFO underrun.  The SPI interface between the 
microcontroller and the wireless controller on the Telos 
platform runs at 500 kbps, twice as fast as the message is 
transmitted over the radio, so there seemed to be hope.  It 
takes about 700 µs to transmit a time sync message and about 
150 µs to calculate and insert the timestamp.  It takes another 
300 µs to send the second part of the message over the SPI 
and finish filling the FIFO.  This means that the entire 
message makes it into the FIFO with about 250 µs to spare, 
which ought to be adequate. 
 The implementation for the Telos platform includes an 
interface that provides applications access to the time 
synchronization information.  It can give the current global 
time, convert a local timestamp to global time, or calculate 
how long until a future global time will occur.  This last 
facility would be useful for an application that wants to do 
something at a specific global time.  For example, a common 
use might be for a node to be able to sleep until the next 
communication window.  If the next window will occur at a 
particular global time, the node can find out how long it will 
be until then in local time and then set a timer accordingly so 
it can wake up and be ready to listen. 
 All timestamps and clocks were based on the 32768 Hz 
crystal on the Telos board.  The crystal exhibits good short-
term stability, which is essential for the FTSP to work 
properly.  However, with a period of about 30.5 µs, it does 
not support very high-resolution synchronization.  An attempt 
was made to implement the FTSP based on a nominal 1 MHz 
clock derived from the microcontroller’s internal Digitally 
Controlled Oscillator (DCO), but its short-term stability was 
too poor, and it could not be used for time synchronization.  
 

IV.  RESULTS AND CONCLUSION 
 
 Testing of the FTSP implementation indicated very good 
time synchronization.  The tests consisted of a master node 
and slave nodes connected to a common signal.  Once the 
network was synchronized, the nodes would report the 
associated global timestamp every time the signal changed 
state.  For each event, the master’s timestamp was compared 
to the slave’s timestamp to determine the slave’s error.  In all 
cases, the slave node’s error was never more than ±2 ticks 
(61 µs). 
 It is expected that the more frequently time sync messages 
are sent, the better the network nodes will be able to maintain 
synchronization.  However, increasing the time between 
messages did not significantly degrade performance.  Testing 
consisted of four scenarios (A-D) defined by the time sync 
message frequency and the test duration.  Each test ran long 
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Figure 2.  Illustrates a time synchronization message being transmitted and
received.  The transmitter captures a global timestamp at the end of the
Start of Frame Delimiter (SFD) and inserts it into the message.  The
receiver captures a local timestamp at the end of the SFD and compares
that with the timestamp embedded in the message.  The messages are not
perfectly aligned due to propagation delays. 



 

enough to provide at least 500 event timestamps for error 
comparison; test D provided more than 1400 timestamps.  
The results, shown in Table I, are very good and indicate that 
highly accurate synchronization could likely be achieved 
with a high frequency clock source (i.e. several MHz) of 
adequate stability.  Our attempts to demonstrate high-
resolution synchronization failed because of the poor quality 
DCO clock source available on the Telos board. 
 Coupling the strengths of the FTSP and the master-slave 
configuration of ZigBee promises to be a profitable means of 
implementing time synchronization in a WSN.  The FTSP 
can be tailored to require even less from slave sensors while 
still providing the same degree of reliability and precision.  
Other peer-to-peer portions of the ZigBee network could 
continue to use the FTSP in its original form.  In the master-
slave portions of the network, the master elements can 
periodically include the time sync information with their 
regular beacon message.  The slaves would not be required to 
respond and could thus conserve energy.  Additionally, they 
can even sleep most of the time, ignoring most broadcasts 
from the master and only needing to wake up to hear the time 
sync broadcast.  The precise time synchronization could also 
provide the added benefit of beacon messages being required 
even less frequently to keep communications synchronized 
between the master and slaves.  We implemented an 
application-specific time synchronization protocol using 
specific ZigBee features in master-slave configuration using 
the Telos mote platform and the TinyOS development 
environment. This paper presents the implementation and 
performance measures collected in an experimental setup. 
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TABLE I:  TESTING RESULTS 
 A B C D 

Message Freq. (sec) 2 10 30 30 
Test Duration (min) 2 2 2 120 
Average Error (ticks) 0.49 0.61 0.81 0.67 
Std. Deviation (ticks) 0.56 0.53 0.48 0.59 
 


