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ABSTRACT

School of Graduate Studies
The University of Alabama in Huntsville

Degree Masters of Science College/Dept. Engineering/Electrical and

in Engineering Computer Engineering

Name of Candidate Igor Semenov

Title An implementation of ChaCha20 stream cypher

in all-programmable SoCs

An increased reliance on services offered online is an inherent aspect of the

Information Age. Such services often handle sensitive customers’ data and therefore

must ensure its confidentiality, for example, by using cryptographic algorithms. Some

algorithms, such as AES, have long been used for this purpose, but they impose

additional cost and/or performance overheads. However, new lightweight stream

cyphers, such as ChaCha20, are emerging as a faster alternative to conventional

algorithms without sacrificing the security. Development of hardware cryptographic

accelerators has been widely used to reduce performance overheads of cryptographic

algorithms. In the past, this approach was extremely expensive, but nowadays, widely

available all programmable SoCs make it more affordable. In this thesis, we present

an IP-core for ChaCha20 acceleration in a low-cost all-programmable SoC, Cyclone

V. We describe the design of our core, consisting of a ChaCha20 accelerator and a

custom DMA. We also present a software framework that employs multiple CPU cores

or hardware accelerators for file encryption. We explore different configurations of

this framework in order to find the optimal one. Our experiments show that two
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accelerators clocked at 50 MHz working concurrently provide the throughput of 120.5

MiB/s, a five-fold throughput improvement over the baseline software file encryption

executed on two ARM Cortex-A9 processor cores running at 800 MHz.
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Chapter 1

INTRODUCTION

Data confidentiality has become especially important in the Information Age.

Nowadays many services are provided online: governments, financial institutions, and

e-commerce companies interact with their customers remotely. Such interaction is

extremely convenient for all parties. However, service providers are required to store

and transfer sensitive customer’s data, which makes them a target for hacker attacks.

Sometimes customer’s data becomes exposed even without malicious actions, leading

to data leaks. To prevent detrimental consequences of unauthorized data access,

sensitive information can be encrypted using strong cryptographic algorithms. Such

algorithms are usually computationally difficult, which, together with ever growing

amounts of data, leads to the need of increasing the efficiency of data encryption. That

is why new lightweight cryptographic algorithms are being developed. An example of

such an algorithm is ChaCha20, which can outperform its conventional competitors.

Additionally, the performance of the encryption process can be improved by using

hardware accelerators, designed specifically to facilitate a certain cryptographic al-

gorithm. Even though fabrication of such accelerators is extremely expensive, some

technologies, such as field-programmable gate arrays, make it much more affordable.
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The goal of this work is to explore any performance improvements of imple-

menting a hardware accelerated ChaCha20 algorithm on a system-on-a-chip (SoC)

platform that contains an FPGA and a CPU. We focus on file encryption in the Linux

environment as the final application of our solution.

1.1 Technology trends

This thesis focuses on hardware implementation of ChaCha20 cypher in the

context of all-programmable SoCs. Our motivation for pursuing this topic arises from

the following technological trends.

The first trend we recognize is extensive application of hardware accelerators

for different tasks, including data encryption. Since strong cryptographic algorithms

are usually computationally intensive, replacing their software implementations with

hardware modules dramatically improves their performance. This is especially impor-

tant for embedded systems where resources are limited due to size, cost, or power

consumption requirements. Many companies whose products target embedded market

use hardware accelerators. For example, STMicroelectronics embeds an AES crypto-

processor in some families of their STM32 microcontrollers [1]. Texas Instruments

also uses AES hardware accelerators in some of their MSP430 microcontrollers [2].

Development of new stream cyphers is another technology trend. Many crypto-

graphic applications these days rely on block cyphers. Recently, stream cyphers started

gaining more attention because they are capable of providing higher security level with

the same performance. An example of such a cypher is ChaCha20 [3]. According to
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Langley [4] ChaCha20 shows better performance than Advanced Encryption Standard

(AES) algorithm [5], a de facto industry standard for encryption.

Heterogeneous computing is one more technological trend. Heterogeneous

systems may combine different types of computational units, suitable for different

tasks. For example, some computers these days contain a CPU to solve general

purpose tasks and a GPGPU that helps to accelerate parallelizable tasks. Another

instance is all-programmable system-on-a-chip products. These devices contain a hard

processor system and field-programmable gate array fabric on the same silicon die.

They are capable of solving the same problems as GPGPU-based platforms, but have

a more fine-grained structure that gives the developer more freedom for building a

custom architecture.

1.2 Contributions

This thesis presents the design and evaluation of a ChaCha20 cypher in hetero-

geneous all-programmable SoCs. Specifically, the thesis makes the following contribu-

tions:

� Presents a design and an implementation of an IP-core for efficient ChaCha20

computation in FPGA. To the best of our knowledge, this is the first freely

available ChaCha20 accelerator for FPGA, easily connectible to an HPS.

� Describes a software framework based on the Linux environment that allows

instantiation of our IP-core and its evaluation and comparison to software cyphers
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running on multiple CPU cores in order to evaluate and compare performance

of different configurations.

� Evaluates the performance of different configurations of our hardware accelerator,

demonstrating its superiority over the software solution. The throughput of our

hardware solution is 120.5 MiB/s, which is 5 times higher than the maximum

throughput of a software solution running on two CPU cores.

� Identifies DRAM bandwidth as the main bottleneck, limiting the performance

of our IP-core.

1.3 Thesis outline

The remaining sections of this thesis are organized as follows. Chapter 2 gives

background information that is essential for understanding the other sections of this

thesis. Chapter 3 overviews existing work that is related to the topic. Chapter 4

explains design choices we made in order to build an efficient hardware accelerator.

Chapter 5 describes the design of our IP-core for accelerating ChaCha20. It also

describes our software framework for file encryption with hardware acceleration or

without it. Chapter 6 lists experiments we carried out, presents their results and

gives some analysis of those results. Finally, Chapter 7 summarizes the work, draws

conclusions, and discusses future work. Additionally, Appendix A describes the

procedure of enabling the SDRAM-to-FPGA bridge, which was essential for the

practical part of this thesis.
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Chapter 2

BACKGROUND

This chapter contains information that is useful for better understanding of

the other chapters of this thesis. First, we explain what stream cyphers are and how

they are different from block cyphers. Then, we describe the stream cypher of our

interest, ChaCha20. We also give some information about the platform we used for

our experiments, as well as some technologies we used to implement ChaCha20 in

hardware and interface our implementation to software.

2.1 Block vs. stream ciphers

According to Christof Paar [6], encryption algorithms can be divided into two

groups: symmetric and asymmetric. In the former, the same secret key is used to

encrypt and decrypt the data, whereas for the latter, encryption and decryption keys

are different.

Symmetric cryptography algorithms are subdivided into two subgroups: block

ciphers and stream ciphers. In both cases a certain transformation is applied to a

plaintext (the original message that needs to be encrypted), yielding a cyphertext

(the encrypted message). This transformation is assumed to be irreversible in practice
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without knowing the secret key. The way such a transformation is applied to the

plaintext is different for block and stream ciphers.

In block ciphers the plaintext is split into blocks, size of which is algorithm-

specific. Then, each block of the plaintext is transformed into a block of the ciphertext

by applying some encryption function as follows:

CB = E(Key, PB) (2.1)

where CB is a block of the ciphertext; PB is a block of the plaintext; Key is the

secret key; and E is the encryption function.

In real block ciphers each bit of CB depends of each bit of PB. Moreover,

changing a single bit of PB alters CB in an unpredictable way. This property

differentiates block ciphers from stream ciphers.

In stream cyphers the encryption function is applied independently to each bit

of the plaintext. In other words, the encryption process is described as follows:

Ci = E(Key, Pi, i) (2.2)

where Ci is the i-th bit of the ciphertext; Pi is the i-th bit of the plaintext; and E is

the encryption function.

The result of E depends on the index, i, of the bit being encrypted. If E was a

function of Pi only, the ciphertext would be either a bitwise inverted or non-modified

plaintext. This, obviously, would give no protection at all.
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Usually, the E function is implemented as a bitwise XOR operation between P

and a pseudo-random number derived from Key. It is important to choose this number

such that it is not shorter than P and make sure it is used only once. Moreover, it

should be impossible to get Key from the pseudo-random number. Without these two

properties a stream cypher cannot be secure.

As opposed to block ciphers, changing Pi in a stream cipher affects only Ci,

but not Pj when j 6= i. This may give a malicious party a much better chance to

attack a specific part of the plaintext by altering the cyphertext. That is why if the

attacker can potentially modify the cyphertext, stream cyphers must be used together

with authentication algorithms.

According to [6], currently, block ciphers are used more frequently than stream

ciphers despite the fact that stream ciphers can provide similar or better performance.

That is why, stream cyphers have a great potential for improving performance of

cryptographic applications.

There are encryption algorithms that were designed as block ciphers, but can

be turned into stream ciphers. AES [5], a de facto industry standard for symmetric

encryption, is an example of such an algorithm. When used in the electronic codebook

mode (ECB), it works as a block cypher. In the counter mode, AES works as a stream

cypher.

The next section describes a relatively new stream cypher, ChaCha20. Even

though it is less flexible than AES, because it can only be used in the stream mode, it is

more efficient and secure, and its computation involves only relatively low-complexity
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operations. These properties make it promising for cryptographic applications, includ-

ing file encryption.

2.2 ChaCha20

ChaCha20 is a stream encryption algorithm proposed in 2008 by Daniel J.

Bernstein. The algorithm is based on Salsa20: another encryption algorithm proposed

by Bernstein earlier. According to the author, Salsa20 can be used instead of AES

in applications where the confidence in the cypher’s security can be sacrificed in

favor of speed [7]. ChaCha20 has even better characteristics: it provides higher

confidence, while being consistently faster than AES on machines without hardware

accelerators [4]. These properties allowed ChaCha20 to earn recognition in the

cryptographic community [3]. Moreover, the algorithm was standardized in two

documents RFC7539 [8] (now obsolete) and RFC8439 [9]. The novelty of ChaCha20

and its superb characteristics make it a good candidate for hardware implementation

for this research.

ChaCha20 is a classic stream cypher: it produces a stream of pseudo-random

bytes (one-time pad or OTP) that is XORed with the plaintext to produce the

cyphertext. Figure 2.1 demonstrates how a 512-bit chunk of such a stream is generated

according to RFC8439. First, the initial 512-bit state of ChaCha20 must be formed.

This state consists of a few fields that are explained in Table 2.1. Second, the initial

state is transformed by 20 round functions of two types: even and odd. Each round

function converts its 512-bit input into a 512-bit output. Finally, the initial state

is added to the result of the last round function. To do the summation stage, both
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Constants Key Nonce

128 bits 256 bits 32 bits 96 bits

Initial state (512 bits)

512-bit block of one-time pad

...

+

20 Rounds

Even round

Odd round

Block count

Carryless 
addition 
modulo 232

Figure 2.1: Graphical illustration of ChaCha20 algorithm

operands are viewed as arrays of 32-bit integer numbers with 16 elements. The

summation modulo 232 is done element-wise between the arrays. The result of the

summation is used to do encryption as follows:

Ci = Pi ⊕ PADi (2.3)

where Ci is the i-th bit of the ciphertext; Pi is the i-th bit of the plaintext; and PADi

is the i-th bit of ChaCha20 result.
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Table 2.1: Fields of ChaCha20 initial state

Name Bit size Byte size Description

Constant 128 bits 16 bytes A constant part of the state. It is always
initialized with the ASCII values of the
characters of the following string: ‘expand
32-byte k’

Key 256 bits 32 bytes The secret key.
Block count 32 bits 4 bytes A counter that starts from 0 and is incre-

mented to generate the next chunks of OTP.
There are 232 unique values of this field, so
the maximum length of the entire OTP with
the same secrete key and nonce is 256 GiB.

Nonce 96 bits 12 bytes A unique number that can be changed to
generate a new OTP with the same key.
Using each value of nonce no more than
once is crucial for providing a high level of
security.

To generate the next 512-bits of OTP, the the block count field of the initial

state is incremented and the process repeats.

The final result of ChaCha20 is extremely sensitive to changes of the initial

state: flipping even a single bit of the input leads to an unpredictable change of the

result. Moreover, despite the round functions being reversible, it is impossible to

convert the result of ChaCha20 back to the initial state, because of the summation

stage. This two properties make ChaCha20 suitable for stream encryption.

The round functions consist of one layer of quarter rounds, each working on

1/4 of the round’s input. Figure 2.2 shows the structure of the quarter round. The

input of the quarter round consists of 4 32-bit words taken from the input of the round.

Even and odd rounds supply the input to the quarter rounds differently. Tables 2.2
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+

+

XOR with
ROTL 16

XOR with
ROTL 12

XOR with
ROTL 8

XOR with
ROTL 7

+

+

Input (4 x 32 bit)

Output (4 x 32 bit)

+

XOR with
ROTL X

Caryless 
32-bit 
addition

XOR with 
shifting the 
result to 
the left by 
X bits

Figure 2.2: Graphical illustration of ChaCha20 round

and 2.3 show how the input words of the even and odd rounds are supplied to their

quarter rounds.

High performance of ChaCha20 can be ascribed to the fact that it is based

on a few primitive operations that execute in a minimum number of clock cycles on

modern 32-bit and 64-bit processors:

� Carryless addition of two 32-bit numbers: a + b mod 232.
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Table 2.2: ChaCha20 even round input words

Quarter round number Input words for the quarter round

1 0, 5, 10, 15
2 1, 6, 11, 12
3 2, 7, 8, 13
4 3, 4, 9, 14

Table 2.3: ChaCha20 odd round input words

Quarter round number Input words for the quarter round

1 0, 5, 10, 15
2 1, 6, 11, 12
3 2, 7, 8, 13
4 3, 4, 9, 14

� Exclusive OR between two 32-bit numbers: a⊕ b.

� Rotation of a 32-bit number by a fixed number of positions: ROTLn(a).

Even though having only such simple operations in an encryption algorithm

may seem insecure, Bernstein points out that his operators can simulate any circuit

and therefore provide the same security level as a set of more complex operations [7].

Having only such simple operations makes ChaCha20 attractive for implemen-

tation in hardware. We used Intel Cyclone V FPGA device for this purpose. The next

section describes the characteristics of this device.
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2.3 Intel Cyclone V

Intel Cyclone V is a family of affordable field-programmable gate array (FPGA)

devices. Some sub-families of Cyclone V are called System-on-a-Chip (SoC) because

they combine an FPGA and an ARM-based hard processor system (HPS) on a single

die. The following sub-families are available, targeting various applications with

different requirements for cost and performance [10]:

� Cyclone V E — lowest power, low cost, general logic and DSP applications

� Cyclone V GX — additionally contain 3.125 GiB/s transceivers

� Cyclone V GT — contain 6.144 GiB/s transceivers instead

� Cyclone V SE — same as E but with HPS

� Cyclone V SX — same as GX but with HPS

� Cyclone V ST — same as GT but with HPS

The chips are manufactured using the 28 nm TSMC Low-Power technology and

require only 1.1 V core voltage. The FPGA part of Cyclone V allows the engineer to

build custom hardware accelerators out of basic blocks called ALMs (Adaptive Logic

Modules). Each ALM contains an 8-input adaptive look-up table (LUT), 4 flip-flops,

and two full adders. In addition to ALMs, Cyclone V provides digital signal processing

(DSP) blocks, which include a 64-bit accumulator, a hard pre-adder supporting 18 and

27-bit modes, and cascaded output adders for systolic finite-impulse-response filters.

Cyclone V also contains embedded memory blocks, each providing 10 Kibit of space in
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a fast dual-port static RAM (SRAM) [10]. Although the ability to reconfigure FPGA

fabric introduces some overhead compared to application-specific integrated circuits

(ASICs), it is ideal for prototyping and building accelerators for products with low

production quantity.

The HPS part of the chip consists of an ARM-based processor, a shared multi-

port DRAM controller, and a few peripheral devices. These devices include a SD/MMC

card controller, an Ethernet MAC, a USB OTG, a NAND Flash controller, and a DMA

controller. The HPS provides additional performance boost in case the developer

needs a CPU and various external interfaces in the system. Even though FPGA

technology allows building an entire CPU out of ALMs and the other building blocks,

it is not the most efficient solution due to the overhead inherent in FPGAs. Having

the HPS eliminates this overhead. Additionally, designing a custom high-performance

CPU is not a trivial task. Instead, a third-party IP-core may be purchased, but such

a solution may be costly. Cyclone V gives the developer a powerful processor for a

low price.

The HPS part of Cyclone V can be interfaced with the FPGA fabric through

one of the following bridges:

� FPGA-to-HPS bridge. This bridge allows hardware modules implemented in

FPGA to access peripherals on the HPS side. It is also possible to have coherent

access to DRAM. This means that the CPU’s cache will be aware of DRAM

content changes and will invalidate corresponding cache lines. The bridge

supports burst transactions, so that multiple contiguous reads or writes can
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be done in a sequence. The maximum data width supported by this bridge is

128-bit. Having all these features, the bridge is suitable for high-throughput

data transfers initiated from the FPGA side.

� HPS-to-FPGA bridge. This bridge allows ARM core and HPS-side DMAs to

access data on the FPGA side. The bridge supports burst transactions and has

maximum data width of 128-bit. Thus, it is suitable for high-throughput data

transfers initiated from the HPS side.

� Lightweight HPS-to-FPGA bridge. This bridge also allows the ARM core to

access the data on the FPGA side, but it is primarily used for non-intensive

traffic. A good example of such traffic is reading and modification of control and

status register of custom hardware peripherals. Having a dedicated interface for

such communication offloads the high-speed HPS-to-FPGA bridge and improve

overall performance.

� FPGA-to-SDRAM bridge. This bridge allows FPGA peripherals to non-coherently

access DRAM. That is, the CPU’s cache will not be aware of changes in DRAM.

The interface supports burst transactions and its maximum data width for

unidirectional (read or write only) access is 256 bit. Thus, this interface is

suitable for high-throughput data transfers initiated from the FPGA side.

2.4 Terasic DE10-Nano Kit

Terasic DE10-Nano Kit is a Cyclone-V-based FPGA development board suitable

for application in embedded systems due to its compact size and low cost. The photo
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Figure 2.3: Photo of DE10-nano board

of the board is shown in Figure 2.3. Figure 2.4 depicts the resources that the board

has. The most important of them are the following:

� Cyclone V SE 5CSEBA6U23I7NDK FPGA chip, consisting of two parts:

– FPGA with 32,070 ALMs [12]. The number of ALMs is equivalent to 85,000

logic elements. The FPGA part is relatively big and has even more logic

than is needed for this work.

– 800MHz dual-core ARM Cortex-A9 CPU. The processor is capable of

running a fully-fledged Linux-based operating system.
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Figure 2.4: Block diagram of DE10-nano board [11]

� 1GB of DDR3 memory with a 32-bit data bus. This memory can be used as

RAM for Linix-based OS. It can also work as a storage for data produced by

custom FPGA modules.

� 1 Gigabit Ethernet PHY. The network connection this PHY provides is useful

for interacting with Linux running on the board remotely using SSH protocol.

� Micro SD card socket. SD card can be used to store Linux kernel and root file

system. It is also possible to store there FPGA configuration as an .rbf file and

load it to the FPGA fabric before booting Linux.

� UART to USB converter, connected to a UART on the HPS side. Even though

having a network interface covers most needs for the user interaction with Linux,
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the network is only initialized after Linux has booted. Thus, it is useful to have

access to UART for observing boot process or changing boot configuration in

U-boot, a Linux loader. In this work U-boot was helpful to activate FPGA-to-

SDRAM bridge (see Appendix A).

� Three 50 MHz clock generators. These clock sources can be used to clock custom

FPGA logic. If needed, the frequency of 50 MHz can be multiplied using on-chip

phase locked loop (PLL) modules.

2.5 Avalon interfaces

Avalon is a group of interfaces available for use in Intel FPGAs. These

interfaces unify interaction between hardware modules. The group includes the

following interfaces that accommodate various needs [13]:

� Avalon-MM (Avalon Memory Mapped Interface) — an interface for read-

ing/writing data from/to devices that are or look like memory.

� Avalon-ST (Avalon Streaming Interface) — an interface for handling unidirec-

tional streams of data.

� Avalon Interrupt Interface — an interface for notifying hardware components

about events that they need to react on.

� Avalon Conduit Interface — an interface that encapsulates a custom set of signal

that are not encompassed by any other Avalon interfaces.
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The following subsections describe Avalon interfaces that are essential for this

work: Avalon-MM, Avalon-ST and Avalon Interrupt.

2.5.1 Avalon-MM interface

Avalon-MM interface connects memory-like peripheral devices to a CPU or a

DMA. Memory-like means that such a device must support reads or/and writes at

a certain range of addresses. However, it does not mean the the device must have

internal memory. The memory-like device is called the Slave (S) and the controlling

device is called the Master (M).

Data transfers through Avalon-MM happen as follows. On the first clock

cycle M asserts either read or write signal to indicate that it wants to read or write

data to S. If it is a read transaction, on the same clock cycle M sets the address

it wants to read from. If it is a write transaction, M also sets the data it wants to

write on the writedata bus. On the next clock cycle, M observes the waitrequest

signal, controlled by S. If this signal is asserted, M keeps all the signals it controls

for one or more cycles until waitrequest is deasserted. Once this happens, M can

read the readdata in the case of a read transaction. For a write transaction, having

waitrequest deasserted means that the transaction was successful.

Table 2.4 lists most important signals that are used in the Avalon-MM interface.

Additional information about the interface’s features and signals can be found in [13].

In our system we used the Avalon-MM interface to give the CPU access to

control and status registers of our peripheral devices. Through these registers the

CPU can configure peripheral devices and observe their current state. More details
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Table 2.4: Signals of Avalon-MM interface

Name Direction Description

address M�S Master uses this signal to let the slave know which
address it is going to read or write.

read M�S Master uses this signal to signalize that it is going
to read data from the slave.

write M�S Master uses this signal to signalize that it is going
to write data to the slave.

readdata S�M Slave outputs the data for reading by the Master
through this bus.

writedata M�S Master outputs the data for writing to the Slave
through this bus.

waitrequest S�M Slave uses this signal to indicate that it cannot
process the current read or write request from the
Master. The Master must repeat its request on the
next clock cycle if this signal is asserted.

about control and status registers of our peripherals can be found in Sections 5.1.1

and 5.1.2.

2.5.2 Avalon-ST interface

Avalon-ST interface is used to connect a data provider to a data consumer.

The data provider is called source (SRC) and the data consumer is called sink (SNK).

Usually a single data item is transmitted per clock cycle. Its size is static, but can

vary for different sources and sinks. SRC has the option not to send the data on a

specific clock cycle. It deasserts the valid signal to notify SNK about this. If a valid

data item is transmitted, the valid signal must be asserted. SNK has the option not

to accept the data on any clock cycle. It deasserts the ready signal on the next clock
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Table 2.5: Signals of Avalon-ST interface

Name Direction Description

valid SRC�SNK SRC uses this signal to indicate that its trying
to transfer valid data to SNK.

data SRC�SNK SRC uses this bus to transfer data to SNK.

ready SNK�SRC If SNK is unable to accept data from SRC, it
asserts this signal to stall SRC.

cycle to notify SRC about this. SRC must repeat data transfer until SNK asserts the

ready signal.

Table 2.5 lists most important signals that are used in the Avalon-ST interface.

Additional information about the interface’s features and signals can be found in [13].

In our system we used the Avalon-ST interface to output data from ChaCha20

accelerator (see Section 5.1.1). This interface allows us to supply data to the next

stage, a custom DMA, only if the data is ready to be transmitted: the accelerator

produces valid data only once every 20 clock cycles. Moreover, if the consumer cannot

handle the data (for example when DRAM controller is busy and DMA cannot access

it) the ready signal can stall the accelerator. More information about functioning of

our DMA ChaCha20 accelerator can be found in Sections 5.1.1 and 5.1.2.

2.5.3 Avalon interrupt

Avalon interrupt interface connects an interrupt sender to an interrupt receiver.

Such a connection is useful when a slave device needs to notify a master device about

some event as soon as possible. Usually this notification is handled by the master
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device in a timely manner, because master pauses its previous routine and processes

the signal.

We used the Avalon interrupt interface in our system to connect our IP-core

to the CPU. This allows the CPU to schedule a new computation as soon as the

previous one is finished and its result is transferred to DRAM. Using an interrupt

in this scenario minimizes the idle time of the IP-core. Section 5.1.2 contains more

detailed information about interrupts in our system.

2.6 Userspace I/O device drivers

In Linux-based operating systems (OS) applications are executed in a virtual

address space and with limited privileges. This restricted environment is called user

space. By keeping applications in the user space, the OS protects itself and other

applications from unauthorized access. This approach results in inability of regular

applications to directly interact with memory-mapped hardware devices: they are

controlled by reading and writing at dedicated addresses of CPU’s physical address

space, which is unavailable to user space programs.

Contrary to user-space applications, Linux kernel runs with higher privileges

and thus can directly control devices (can function as a device driver). However, it is

not always feasible to modify the kernel to add support of a custom device. That is

why Linux-based OSs can be extended by adding kernel modules. Such modules can

be loaded dynamically (when the kernel already runs). Even though the perspective

of developing a device driver as a kernel module looks attractive, this task is hard: a

bug in the module can crash entire OS.
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Generic Userspace Input/Output (UIO) driver [14] with interrupt handling

support (a.k.a. uio pdrv genirq driver) is a good alternative to custom kernel

modules. This module is a part of the Linux kernel code base and can be enabled by

configuring the kernel before its compilation.

This device driver covers most needs for custom memory-mapped hardware

devices. Through this driver user space programs can access device’s control status

registers (CSR) as well as handle interrupts. As a result, the major part of the device

interaction logic can be moved to the user space, making the debugging task much

easier as program errors do not crash entire system. The UIO driver even makes

possible controlling devices directly from a program written in a higher level language

such as Python.

Whenever the uio pdrv genirq module is loaded, it creates a device file

/dev/uioX, where X is the device number. This file serves for both CSR access and

interrupt handling. To access device registers the users space program opens this file

using open() function and makes mmap() system call. The mmap() function returns

a pointer to a virtual memory region that is mapped to the physical addressees of

device CSRs. By modifying and reading that region, the program can control the

device and observe its status.

To react on interrupt requests (IRQs), the user space program does a blocking

read from the /dev/uioX file by calling to the read() function. This operation

suspends the calling thread until the device triggers an interrupt. An interrupt event

unlocks the suspended thread, so it can process the interrupt request. Usually, when

reacting on an IRQ, device drivers write to certain CSR to deassert the interrupt
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line an be able to leave the interrupt service routine. However, the generic UIO

driver is not aware of the functionality of CSRs of a specific device. Thus, to clear

the interrupt, it disables the channel of the interrupt controller that belongs to the

processed interrupt. This means that the users space program, which is aware of

control and status register functionality, has to modify one of the registers to clear

the pending interrupt. Finally, to be able to accept new interrupts the users space

program does a file write operation on the /dev/uioX file. This operation activates

the interrupt channel that was previously disabled.

There is an alternative to the generic UIO driver: user space programs can

access physical address space by calling mmap() on the /dev/mem device file. This

method provides access to any physical addresses including those that are mapped

to CSRs of a custom device. The main advantage of this method is its availability

for virtually any precompiled kernel (/dev/mem is enabled by default). To enable

UIO support one often needs to configure and build their own kernel. However, the

/dev/mem has a serious drawback: it does not support handling interrupts. That is

why we used the generic UIO driver in our work instead of /dev/mem.

2.7 User space mappable DMA Buffer

Direct Memory Access (DMA) is an important feature in a system that is

expected to have a hight throughput. DMA can unload the CPU from moving memory

content and reduce overhead of this process. DMA modules usually expect to have

access to a physically contiguous region of memory. Operating system needs to be

aware of this buffer so that it does not use it to store some other data. One may think
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of using regular malloc() call to allocate space for a DMA buffer. This, howerer, will

not work: malloc() allocates a virtually contiguous region, but does not guarantee

its physical contiguity. /dev/mem will not work either: although it can give a user

space program access to physical memory in a contiguous manner, it cannot prevent

the OS from using the buffer for other purposes.

This problem is usually solved by using kmalloc() function, which can provide

physical contiguity. However, it is only available in the kernel space, which requires

developing a kernel module.

An alternative solution is the udmabuf Linux device driver developed by

Kawazome Ichiro [15]. This kernel module can reserve a contiguous chunk of memory

of required size. The user space code can easily map this buffer to its virtual address

space and find out its physical address to properly configure DMA using a UIO driver.

Since udmabuf provides a buffer that satisfies all the requirements for DMA, we used

it in our work.
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Chapter 3

RELATED WORK

Developing custom cryptographic accelerators in hardware is a popular topic

in scientific and engineering literature. Some articles feature an FPGA-based chip or

a hybrid SoC as the target platform. Other use ASIC (application-specific integrated

circuit) or do not mention any platform at all, discussing only a general architecture

of the proposed design. Many publications feature AES as the accelerated algorithm.

A few projects are devoted to acceleration of ChaCha20.

Cowart et al. present and discuss the results of their experiments where

they measure the performance of hardware AES accelerators implemented in an

all-programmable SoC [16]. Their target platform is Zedboard, a Zynq-7000-based

development board. The authors discuss two AES IP-cores placed in the FPGA fabric:

a non-pipelined core for the ECB and CBC AES modes, and a fully pipelined core for

the CTR (counter) AES mode. They compared the performance of these cores to that

of the OpenSSL library compiled for the ARM architecture. As a result, they did not

manage to see a significant speedup for the non-pipelined core, but demonstrated that

the pipelined one is almost 7 times faster than OpenSSL. The maximum performance

26



observed for the non-pipelined core was 25 MiB/s and 350 MiB/s for the pipelined

one.

Baskaran and Rajalakshmi present an AES accelerator fabricated using a

0.18-µm CMOS technology [17]. Their design supports the ECB (electronic codebook),

OFB (output feedback), and CBC (cipher block chaining) modes of operation of AES

and runs at the frequency of 330 MHz. The accelerator can be configured using a

memory-mapped interface of a LEON 32-bit (SPARC V8) processor. The maximum

throughput they manage to get in such setting is 480 MiB/s.

Silex Insight implemented ChaCha20-Poly1305 Crypto Engine as an IP-core [18].

The core supports the Authenticated Encryption with Associated Data (AEAD) mode.

In such a mode only a part of the input message is encrypted. The other part is

transmitted as is. However, both parts are authenticated [19]. The core is claimed to

have multi Gibit/s speeds. However, the company’s official website does not give any

information about the core’s exact throughput [20], so it is difficult to evaluate it.

Kanda and Ryoo propose an accelerator supporting ChaCha20-Poly1305-based

AEAD [21]. Their target platform is Virtex 7, a high-end family of FPGAs from

Xilinx. Their design can run at the clock frequency of 161.02 MHz, giving the resulting

throughput of 515 MiB/s for ChaCha20 encryption without message authentication.

The resource utilization of their design is 1692 LUTs and 566 registers. No information

is provided about the way this core can be connected to a CPU.

Another work describes a compact co-processor that facilitates ChaCha com-

putation as well as the computation of BLAKE and Skein — ChaCha-based hashing

algorithms [22]. Instead of directly implementing ChaCha rounds, the authors propose
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Table 3.1: Summary of the performance characteristics for various hardware cyphers

Source Algorithm Platform Frequency Performance

Cowart et al.[16] AES CBC Zynq-7000 100 MHz 25 MiB/s
Cowart et al.[16] AES CTR1 Zynq-7000 100 MHz 350 MiB/s
Baskaran and Rajalak-
shmi[17]

AES 0.18-µm CMOS 330 MHz 480 MiB/s

Kanda and Ryoo[21] ChaCha20 Virtex 7 161 MHz 550 MiB/s
At et al.[22] ChaCha20 Virtex 6 266 MHz 362 MiB/s
Strömbergson[23] ChaCha20 Cyclone V 60 MHz 159 MiB/s2

This thesis ChaCha20 Cyclone V 50 MHz 120.5 MiB/s3

an architecture that can efficiently pipeline the primitive arithmetic operations that the

algorithm involves. They argue that such an approach can significantly reduce resource

utilization, but keep a high throughput. As a result, their architecture provides the

throughput of 266 MiB/s at the clock frequency of 362 MHz for ChaCha20 algorithm

while consuming only 49 slices and 2 block RAMs on Virtex-6 FPGA.

One more ChaCha20 implementation is available in a GitHub repository [23].

This project contains a standalone ChaCha20 module. According to its author the

module has a non-pipelined design. The latency of producing one OTP is 23 clock

cycles. When compiled for Cyclone V, this design is capable of working at 60 MHz and

consumes 1939 ALMs (basic logic blocks of Cyclone V). This results in 159.22 MiB/s

of theoretical throughput. Unlike our solution, this design does not have any processor

interfaces, so it cannot be connected to HPS systems without additional modification.

1a fully pipelined design is used
2theoretical throughput
3the result of using two IP-cores for file encryption
4custom DMA is not included
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Table 3.2: Summary of the resource consumption for various hardware cyphers
implemented in FPGA

Source Algorithm Platform Registers Logic

Kanda and Ryoo[21] ChaCha20 Virtex 7 566 1692 LUTs
At et al.[22] ChaCha20 Virtex 6 — 49 slices
Strömbergson[23] ChaCha20 Cyclone V 1940 1939 ALMs
Silex Insight [18] ChaCha20-

Poly1305
Zynq-UP-
MPSoC

— 3769 LUTs

This thesis ChaCha20 Cyclone V 1040 1440 ALMs4

This thesis is different from the above-mentioned works in several aspects. First,

we offer a ready-to-use open-source solution for hardware ChaCha20 acceleration that

can easily be integrated in existing processor systems. Second, we provide a software

framework that allows interfacing multiple hardware modules and using them for

file encryption in the Linux environment. Finally, we carry out experiments that

demonstrate the performance of our core under realistic conditions and show how it

compares to a multi-threaded software implementation. The experiments have been

done for a real-world application, file encryption.

Table 3.1 summarizes the performance of all related implementations mentioned

in this section, including the implementation described in this thesis. Table 3.2 gives

the summary of the resource consumption of all FPGA-based projects mentioned

above. Both tables exclude implementations that do not mention the parameters of

interest.
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Chapter 4

DESIGN CONSIDERATIONS

In order to see how beneficial hardware realization of ChaCha20 encryption

algorithm in all-programmable SoC can be, we developed a ChaCha20 IP-core in

SystemVerilog. In this chapter we describe design decisions made to build a cost-

effective and high-throughput IP core.

4.1 Pipelining

If an algorithm consists of a sequence of steps and this sequence does not

depend on the input data, building a pipeline can greatly increase the throughput of

a system. At the same time pipelining may require considerably more resources. If

the data produced by a pipelined module cannot be utilized properly by the other

modules, the pipeline will stall, leading to poor resource utilization. Alternatively,

if all the steps of an algorithm are identical (the algorithm consists of a loop), a

non-pipelined design with a feedback loop can be used. On one hand, such design

will demonstrate N times lower performance, where N is the number of steps in the

algorithm. On the other hand it will consume almost N time less resources. The

pipelined and non-pipelined designs are shown in Figure 4.1. Blue rectangles depict
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(b) A non-pipelined design with a feedback loop

Figure 4.1: A pipelined design vs a non-pipelined design with a feedback loop

registers and yellow rectangles depict combinational logic. The non-pipelined design

contains a multiplexer that feeds the input data to the operation logic on the first

step and connects the result of the operation to its input for the following steps. Once

N steps are computed, the output becomes valid.

The decision between a pipelined design and a non-pipelined must be justified.

ChaCha20 is a perfect candidate for pipelining as it consists of a static sequence of

steps. A pipelined ChaCha20 module can produce 512 bits of OTP every clock cycle.

Considering the clock rate of 50 MHz, it provides the data rate of:

64 bytes · 50 MHz = 3.2 GiB/s (4.1)
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At the same time, a non-pipelined implementation that computes one round

per clock cycle produces 512 bits of OTP every 20 clock cycles. This results in the

data rate of:

64 bytes · 50 MHz

20 cc
= 160 MiB/s (4.2)

Let us consider the DRAM of the DE1-SoC board as the storage for OTP.

The board has two DDR3 memory chips that are connected to the memory controller

by a 64-bit data bus. The clock rate of the memory is 400 MHz. Since DDR3 is a

double data rate memory (two data transfers happen per clock cycle) the theoretical

throughput of this DRAM is:

8 bytes · 400 MHz · 2 = 6.4 GiB/s (4.3)

Even though DRAM throughput is twice as high as the data rate of the

pipelined ChaCha20, it does not mean that the pipelined version can be efficiently

utilized. First, it is just a theoretical upper limit: the real speed may be a few times

lower due to long memory timings [24]. Second, ChaCha20 module is not the only

device accessing DRAM: the software part that does encryption needs to access OTP

with the same rate.

Even if DRAM could handle the required data throughput, the FPGA-to-

SDRAM bridge (see Section 2.3) would cause an additional limitation. Its maximum

data width is 256 bit and its clock rate equals to the clock rate of the FPGA fabric.

This means that if a pipelined ChaCha20 accelerator produced 512 bits of data every
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clock cycle, the bridge would require 2 clock cycles to send this data to the DRAM

controller. Thus, the accelerator would stall every second clock cycle, waiting for the

bridge.

One can argue that once a pipelined version is implemented, it can be success-

fully used in systems without sufficient throughput if the pipeline stalls properly. This

can make the module more universal. However, pipelining is costly in terms of chip

area. Let us assume that R is the number of logic gates required to build ChaCha20

round function and S is the number of flip-flops needed for a register, holding one

ChaCha20 state. In this case, resource consumption of a pipelined module that

computes 20 rounds will be 20R logic elements and 21S flip-flops. At the same time

a non-pipelined implementation will take roughly R logic elements and 2S flip-flops.

That is, for systems with a limited throughput, 95% of logic gates and 90% of flip-flops

will be wasted.

Considering the problem with low DRAM bandwidth, an insufficient width of

the FPGA-to-SDRAM bridge, and low resource utilization of the pipelined ChaCha20

version, we have chosen a non-pipelined approach.

4.2 XOR stage

The XOR stage of ChaCha20 is used to encrypt and decrypt data (see Sec-

tion 2.2). This operation is unique comparing to the other 21 stages (20 rounds plus

the summation stage) of the algorithm, so it requires additional resources that are not

used for the rest of the algorithm. As a result, we could expect a low utilization ratio

33



for the XOR gates involved:

1 clock cycle (XOR stage)

22 clock cycles (total number of stages)
= 4.54% (4.4)

To prudently use FPGA resources, the XOR stage can be handled by software.

Keeping this stage on the HPS side should not significantly affect the performance: in

Section 6.2.3 we will show that file access together with XOR operation is far from

the critical path. Moreover, having XOR stage in HPS avoids moving plaintext (for

encryption) or cypertext (for decryption) to the FPGA side and reading back the

result: only moving OTP from FPGA to HPS is necessary. As a result, our design

choice can reduce HPS-to-FPGA bridge traffic by two times.

4.3 Summation stage

The summation stage adds 32-bit words of the initial state to the result of 20

rounds (see Section 2.2). This operation is unique comparing to the other 21 stages

(20 rounds plus the XOR stage) of the algorithm, so it requires additional resources

that are not used for the rest of the algorithm. As a result, we could expect a low

utilization ratio for the adders involved:

1 clock cycle (summation stage)

22 (total number of stages)
= 4.54% (4.5)

To prudently use FPGA resources, the summation stage can be handled by

software. Keeping this stage on the HPS side should not significantly affect the
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performance. The summation stage requires the same number of instructions as the

XOR stage (16 add instructions versus 16 xor instructions per 512 bits of OPT),

which is also handled by software (see Section 4.2). According to the data presented

in Section 6.2.3, even if the number of instructions on the CPU side doubles, the CPU

part will still be far from the critical path, so we expect no significant performance

degradation caused by this design decision.

4.4 Summary

As the result of careful consideration the following design decisions have been

made:

� A non-pipelined architecture has been chosen;

� Only the round function will be implemented in hardware;

� The summation and the XOR stages will be handled in software.
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Chapter 5

DESIGN DESCRIPTION

In order to see how beneficial hardware realization of ChaCha20 encryption

algorithm in all-programmable SoC can be, we developed a ChaCha20 IP-core in

SystemVerilog and designed a software framework to employ it for file encryption and

compare it with our software implementation. This chapter describes the design of

the IP core and the software framework for evaluating its effectiveness, using a file

encryption/decryption as an exemplar workload.

5.1 FpgaCha IP-core

FpgaCha is a hardware IP-core for ChaCha20 algorithm acceleration that we

implemented to do this research. FpgaCha is packaged as an Intel Platform Designer

(an Intel’s tool for system integration) subsystem, so it can easily be connected to

different processor systems such as Nios II or an ARM-based HPS. Internal modules

of FpgaCha are implemented in SystemVerilog. According to the Timing Analyzer,

the Fmax parameter of this core is 54.38 MHz for the Slow 1100 mV 100 C° model (a

conservative model). We use a slightly lower frequency of 50 MHz to clock the core as

it is easier to derive. The source code of the IP-core is available at [25].
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Figure 5.1: Hardware components of FpgaCha

Figure 5.1 shows all components of the core and how it is interfaced to to the

HPS. Blue rectangles represent custom modules and gray rectangles represent modules

already available in the Intel Platform Designer.

FpgaCha IP-core functions as follows. The HPS configures ChaCha20 accelera-

tor and S2M (Avalon-ST to Avalon-MM) adapter through the lightweight HPS-to-

FPGA bridge (LW bridge in Figure 5.1). AXI to Avalon adapter connects a simpler

Avalon-MM slave interface to the AXI bus that is native to the bridge. ChaCha20

accelerator configuration includes setting encryption parameters (key, nonce, initial

block count) and the number of OTP blocks that needs to be produced. S2M adapter
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configuration includes setting the target address of SDRAM and the number of 256-bit

chunks to transfer (twice the number of OTP blocks set in ChaCha20 accelerator).

Right after configuring, ChaCha20 accelerator starts producing OTP blocks. They go

to the S2M adapter through a FIFO buffer with the capacity of 16 512-bit items. The

buffer helps to avoid stalling ChaCha20 accelerator if S2M adapter cannot accept data

for a short period of time. S2M adapter accepts data from the queue and moves it to

SDRAM through the FPGA-to-SDRAM bridge. One more AXI to Avalon adapter is

used here for connecting the Avalon-MM master interface to AXI bus of the bridge.

Once all scheduled transfers are finished, the adapter sends an interrupt request to

the HPS. Upon accepting the request, the HPS clears pending interrupt flag in S2M

adapter and the cycle repeats if more OTP blocks are needed. Now HPS can access

generated blocks in the DRAM.

The following two subsections describe the functionality of our custom modules:

ChaCha20 accelerator and S2M adapter in more detail.

5.1.1 ChaCha20 accelerator

ChaCha20 accelerator is a custom SystemVerilog module that is capable of

computing 20 rounds of ChaCha20 algorithm in 20 clock cycles. The module has a

non-pipelined architecture and does not include the summation stage.

From the programmer’s point of view the module looks like a set of control

registers. Their functionality is summarized in Table 5.1. To configure the module

the programmer, first, needs to set up the initial ChaCha20 state (see Section 2.2).

Second, the programmer should decide how many OTP blocks the module will generate
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Table 5.1: Register map of ChaCha20 accelerator

Name Byte offset Description

INIT STATE[0:15] 0x0000 – 0x001F A 16-word (32 bits per word) initial
state for ChaCha20 algorithm. This
register consists of multiple fields such
as key, nonce, and block count (see
Table 2.1).

PAD COUNTER 0x0020 The number of one-time pads (with-
out the summation stage) to generate.
The module start computation upon
modification of this register.

and set the PAD COUNTER register. The bigger this number is, the less significant the

configuration overhead will be. On the other hand, bigger numbers require more

memory to store OTP. Upon modification the PAD COUNTER register, the module

starts producing OTP blocks and outputs them through Avalon-ST interface. When

generating blocks the module automatically increments the block count field of the

INIT STATE register.

The data path of the module is shown in Figure 5.2. This diagram demonstrates

how a single OTP (without the summation stage) is calculated by the module. Blue

rectangles represent registers and yellow clouds depict combinational logic. Initially,

the round number register (not accessible by the programmer) contains 0. The register

is incremented by 1 every clock cycle until it reaches 19. The current state register is

also updated every clock cycle and contains the last result of the round function. In

the first round, the current state is computed based on the initial state (configured

by the programmer). In the following rounds, the previous value of the current state
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Figure 5.2: The data path of ChaCha20 accelerator. Its feedback loop allows
computation of multiple ChaCha rounds iteratively

serves as the input for the round function. Once 20 rounds have been computed,

the result is available through the Avalon-ST source interface. If Avalon-ST (see

Section 2.5.2) sink deasserts the ready line, signalizing its inability to accept data, the

module stalls, so that no data gets lost. If Avalon-ST sink accepts the data, the block
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Table 5.2: FPGA resource utilization of ChaCha20 accelerator

Resource type Available [12] Used Utilization ratio

ALMs 32,070 1,440 4.5%
Registers 128,300 1,094 0.9%
Block memory bits 4,065,280 0 0.0%
DSP blocks 87 0 0.0%

count field in the initial state register is incremented, the PAD COUNTER is decremented,

and the process of computing 20 rounds is repeated until PAD COUNTER reaches 0.

The module is quite compact as it takes only 4.5% of the logic resources

available in the FPGA chip. Its resource utilization is summarized in Table 5.2

5.1.2 S2M adapter

S2M adapter is a custom SystemVerilog module that accepts 512-bit data

items through the Avalon-ST sink interface, splits them into two 256-bit chunks and

transfers these chunks through the 256-bit Avalon-MM master interface at a certain

address configurable by the programmer. To reach better performance, the module

does those transfers in bursts of two. In the IP-core the module is used to transfer

data from ChaCha20 accelerator to DRAM. Basically, the adapter functions as a

DMA, but has a smaller size as it contains only essential functionality. It also supports

a 512-bit Avalon-ST interface, which is not supported by the DMAs available in

Platform Designer.

From the programmer’s point of view the module looks like a set of control

registers. Their functionality is summarized in Table 5.3. To configure the module the
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Table 5.3: Register map of S2M adapter

Name Byte offset Description

LENGTH 0x0000 The number of 256-bit chunks of data to
be transferred. Modification of this register
initiates a data transfer

ADDRESS 0x0004 Starting address in the DRAM for transfer-
ring data at

IRQ 0x0008 Modification of this register clears a pend-
ing interrupt request

programmer, first, needs to chose the destination address in DRAM and set it to the

ADDRESS register. Second, the programmer has to decide how many 256-bit chunks of

data should be transfered from ChaCha20 accelerator to DRAM, and set this number

to the LENGTH register. Since each block of OTP is 512-bit long, this number must be

2 times bigger than the number used in the PAD COUNTER register (see Section 5.1.1)

of ChaCha20 accelerator. Improperly chosen value of LENGTH will cause undefined

behavior. Modification of LENGTH starts data transfer. Once LENGTH 256-bit chunks

have been transferred, the module generates an interrupt, signalizing about the end

of the transfer. The programmer is supposed to modify the IRQ register to clear the

pending interrupt.

S2M adapter supports the waitrequest signal from the Avalon-MM slave

interface. This signal can stall the module if the DRAM controller is busy. Moreover,

if necessary, the module can stall the Avalon-ST source interface, by deasserting the

ready signal. This feature prevents data loss when the DRAM controller experiences

high load. Also, it allows connection of multiple FpgaCha modules to the same DRAM
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Table 5.4: FPGA resource utilization of S2M adapter

Resource type Available [12] Used Utilization ratio

ALMs 32,070 186 0.6%
Registers 128,300 354 0.3%
Block memory bits 4,065,280 0 0.0%
DSP blocks 87 0 0.0%

port: the arbitration logic introduced by Platform Designer uses waitrequest signal

to stall the Avalon-MM masters that lose arbitration.

The module is quite compact as it takes only 0.6% of the logic resources

available in the FPGA chip. Its resource utilization is summarized in Table 5.4

5.2 Software organization

In order to carry out experiments and compare the hardware solution to the

software one, we have implemented a small software framework. The framework is

written in C++ programming language. Its source code is freely available at [25].

We designed the framework to satisfy the following requirements:

� support for multi-threading;

� support for multiple hardware accelerators;

� simplicity of adding or removing hardware accelerators and varying the number

of threads;

� capability of testing performance of data consumers and producers separately;
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Figure 5.3: Structure of our software framework

� the system must be self-balancing: if data producer or data consumer is faster

than its counterpart, it must stall.

The structure of the framework is shown in Figure 5.3. It consists of the

following components: tasks (objects that represent the need for OTP blocks or

produced OTP blocks; the flow of tasks is depicted as arrows), queues (buffers

temporary storing tasks; depicted as yellow rectangles), workers (threads that perform

tasks by generating OTP blocks), and cryptors (threads that use solved tasks to do

data encryption). The following subsections describe those components in detail and

explain how they function as a whole.
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5.2.1 Task

Task is a C++ struct that represents a job that needs to be done on some

data. Arrows in Figure 5.3 represent the flow of tasks. The type of work that needs to

be done is determined by the consumer of a task. In Figure 5.3 the tasks that enter

workers represent the need of the cryptor for OTP. The tasks that exit the workers

represent ready-to-use OTP blocks that can be used for data encryption.

Each task contains the following fields:

� id: the sequence number of a task. There are no two tasks with the same id in

the system.

� buffer: a pointer to the buffer with the input data (if any) for the task. This

buffer is used to store the result (if any) of the task as well.

� length: the number of words available in the buffer.

There is a constant number of tasks in the system. This property helps to

prevent excessive memory consumption if the producer of tasks produces them faster

than the consumer can handle.

5.2.2 Queue

In our framework, queue is a fixed capacity blocking FIFO (first in first out)

buffer with the support of a shutdown mode. Such a queue can be efficiently used to

synchronize consumer and producer threads even if there are many consumers and

producers. In Figure 5.3 queues are depicted as yellow rectangles. The number inside

each rectangle specifies the the capacity of the queue.
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If a consumer thread tries to extract an element from an empty queue, the

thread is blocked until the queue becomes non-empty. If a producer thread tries to

place an element in a queue that is full, the thread is blocked until at least one element

is extracted from the queue.

The queue supports a shutdown mode. Upon activation of this mode all threads

waiting on the queue are notified about its new status. This signal means that no

more data needs to be consumed or produced. The shutdown mode is used to safely

terminate all threads involved when no more tasks need to be processed.

5.2.3 Worker

Worker is a data producer that generates OTP for encryption and decryption.

Each worker contains one or more threads. A worker consumes a task from the queue

of scheduled tasks and generates a series of OTP blocks, placing them in the buffer.

The key and nonce are set when the worker is created. Block count is chosen based

on task id such that two consequent task ids match consequent series of OTP blocks.

The following types of workers are available for use:

� StubWorker. This worker takes a task from the queue of scheduled tasks and

immediately inserts it in the queue of finished tasks. As a result, the buffer of

a finished task keeps its old invalid data. Even though this worker does not

produce an OTP that can be used for real encryption, it has a relatively high

throughput, and thus, can help to measure the performance of other parts of

the system.
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Figure 5.4: Structure of FpgaChaWorker

� ChaCha20Worker. This worker takes a task from the queue of scheduled tasks

and generates a series of OTP blocks, placing them in the task’s buffer. After

that, the task is placed into the the queue of finished tasks. This worker employs

the software ChaCha20 implementation. More than one ChaCha20Worker can

be used to exploit multi-threaded execution.

� FpgaChaWorker. This worker is shown in Figure 5.4. It does the same job

as ChaCha20Worker, but employs a single instance of FpgaCha instead of the

software ChaCha20 implementation to compute the result of 20 rounds. The

summation stage (see Section 4.3) is computed in software.

FpgaChaWorker consists of two threads. Thread 1 takes a task from the queue

of scheduled tasks, configures FpgaCha to calculate a series of OTP blocks (only

20 rounds without the summation stage) to fill the buffer of the task. After that,

Thread 1 goes into the wait mode until the computation in hardware is finished.

While being in the wait mode, Thread 1 consumes no CPU time, effectively
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offloading the CPU. Once hardware computation is over, Thread 1 wakes up,

invalidates the content of the cache lines (if any) holding data of the buffer and

puts the task in the the intermediate 1-element queue. After that, it repeats the

process.

Thread 2 consumes a task from the intermediate queue and does the summation

stage of ChaCha20 algorithm over the task’s buffer content. The result goes

back to the buffer and the task is placed in the queue of finished tasks. This

process repeats again until the shutdown mode is activated.

Having two threads in FpgaChaWorker overlaps the summation stage with the

hardware computations and thus increases the throughput.

5.2.4 Cryptor

Cryptor is a data consumer that consumes OTP blocks produced by workers

to do data encryption. Cryptor also reschedules the tasks it processed, giving them

new constantly increasing IDs.

The following types of cryptors are available:

� StubCryptor. This cryptor takes a task from the queue of finished tasks and

immediately inserts it in the queue of scheduled tasks, assigning it a new ID.

Even though this cryptor does not do any useful work with the OTP it consumes,

it provides basically unlimited throughput and thus can be used to measure the

performance of the workers.
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� FileCryptor. This cryptor encrypts or decrypts a file using OTP blocks received

from workers. In order to do this it opens two files: input and output. It

maps these files onto the virtual memory of its process to improve file access

performance by reducing the number of system calls and avoiding copying data

from the kernel space to the user space. Then, it waits on the finished tasks

queue for the next finished task. Upon getting one, it uses its buffer to XOR

it word by word with the content of the input file and writes the result in the

output file. The processed task is rescheduled after assigning it a new ID. Finally,

it starts waiting for the next finished task and repeating the cycle until all words

of the input file are processed.

5.2.5 Queue of finished tasks

The framework contains a special queue: a queue of finished tasks. Basically,

this data structure is an array of single-element blocking queues. Workers pick a queue

to insert a finished task into, based on its id according to the following formula:

Queue index = task.id mod N (5.1)

where N is the number of queues in the array. If the destination index contains a full

queue, the worker stalls until the queue is empty.

The cryptor takes tasks from the queues in the round robin manner. If the

next queue it needs to access is empty, the cryptor stalls until the queue is full.
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By organizing the queues this way we allow the cryptor to process finished

tasks in the ascending order of their IDs. This guarantees that all generated OTP

blocks are used consequently even if two workers finish their tasks out of order.

5.2.6 Overall framework description

The framework functions as follows. Initially the queue of scheduled tasks

contains N tasks. with the following IDs: 0, 1, ..., N − 1. Workers consume those tasks

and generate OTP blocks. The tasks with ready-to-use OTP blocks are placed in the

queue of finished task to reorder them. The cryptor extracts finished tasks one by one,

and performs file encryption/decryption. After using a task with OTP, the cryptor

assigns it a new ID: LastUsedId + 1. Then, it puts it in the queue of scheduled tasks.

This process repeats until the cryptor reaches the end of the input file. Upon reaching

the end, the cryptor turns on the shutdown mode for all queues in the system, which

leads to the termination of all threads waiting on the queues.

Figure 5.5 shows the framework, configured to have 3 slots in the queue of

scheduled tasks and 6 slots in the queue of finished tasks. The total number of task

objects circulating in the system is also 6 (Block 21, Block 22, Computing block 23,

Computing block 20, Request for block 24, and Request for block 25). There are two

workers, processing the tasks. The figure depicts the system at some arbitrary moment

of time. At this moment the cryptor is waiting on Queue 2 for OTP block 20, which

is being computed by Worker 1. Once Worker 1 finishes the computation, it will place

the block in Queue 2, unlocking the cryptor. Queue 2 will be chosen for Block 20

because 20 ≡ 2 mod 6. After consuming and processing Block 20, cryptor, based
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Figure 5.5: Example of the framework with 2 workers and a 6-slot queue

on its internal counter, will place a request for block 26 in the queue of scheduled

tasks and increment its internal counter to 27. After that it will go to the next queue,

Queue 3, and try to fetch OTP block 21, which is already there. The cryptor continues

this process iteratively, wrapping around from Queue 5 to Queue 0. Once Workers 1

and Worker 2 finish their current computations, they will fetch the next requests

for OTP blocks from the queue of scheduled tasks. If the cryptor is slower than the

workers, they will eventually process all the tasks and will slow down by locking on

the queue of scheduled tasks and waiting for the cryptor to schedule more requests.
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In the opposite situation, when the cryptor is faster than the workers, the cryptor

will lock on the queue of finished tasks, waiting while workers process more tasks.

The capability of the faster part to slow down its counterpart, makes this system

self-balancing.
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Chapter 6

EXPERIMENTS AND RESULTS

This chapter presents the results of functional testing and performance mea-

surements done for our software and hardware ChaCha20 implementations. The

chapter also contains discussion of the results.

6.1 Correctness of software and hardware

In order to prove that both software and hardware ChaCha20 modes produce

correct results, we carried out two experiments: functional testing of the single-

threaded software mode (reference mode) and file encryption testing of the other

modes to verify that they produce the same results as the reference mode.

6.1.1 Functional testing of the reference mode

We did functional testing of the reference mode to prove that it functions

according to the standard. We used the test vector from [9] to generate the first 512

bits of OTP. This test vector is listed in Table 6.1. Based on the test vector our

reference implementation produced the result shown in Table 6.2. This output exactly
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Table 6.1: Test vector for reference mode functional testing

Field name Field content

Key 0x03020100 0x07060504 0x0b0a0908 0x0f0e0d0c

0x13121110 0x17161514 0x1b1a1918 0x1f1e1d1c

Block count 0x00000001

Nonce 0x09000000 0x4a000000 0x00000000

Table 6.2: The result of the reference ChaCha20 implementation operating on the
test vector

e4e7f110 15593bd1 1fdd0f50 c47120a3

c7f4d1c7 0368c033 9aaa2204 4e6cd4c3

466482d2 09aa9f07 05d7c214 a2028bd9

d19c12b5 b94e16de e883d0cb 4e3c50a2

matches the exemplary OTP specified in [9], proving the correctness of the reference

mode.

6.1.2 File encryption test of the other modes

To make sure that the other modes produce the same results as the reference

one we did the file encryption test. We created a 256 MiB text file with random

content using the following command:

base64 /dev/urandom | head -c 256M >./ramdisk/in

After that we generated a reference file by encrypting the random file using

the reference mode. Next, we decrypted the reference file using the other ChaCha20

modes: a two-threaded software mode, and hardware modes with 1, 2, and 4 FpgaCha

modules. We saved the results of decryption in separate files and computed SHA-2
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Table 6.3: SHA-2 hashes of files decrypted using different modes

Decryption mode File size SHA-2 hash (16 lower bytes)

Original file 256 MiB 84822395bbf0471da6fb0107bc3e5e89

ChaCha20Worker ×2 256 MiB 84822395bbf0471da6fb0107bc3e5e89

FpgaChaWorker ×1 256 MiB 84822395bbf0471da6fb0107bc3e5e89

FpgaChaWorker ×2 256 MiB 84822395bbf0471da6fb0107bc3e5e89

FpgaChaWorker ×3 256 MiB 84822395bbf0471da6fb0107bc3e5e89

FpgaChaWorker ×4 256 MiB 84822395bbf0471da6fb0107bc3e5e89

hashes of the decrypted files. Then we compared the hashes to the hash of the

original random file. As a result, all hashes matched, allowing us to deem all our

implementation to be correct. Even though we only tested decryption, this conclusion

holds true for encryption as well, because there is no difference between encryption

and decryption for stream cyphers. Table 6.3 lists SHA-2 hashes resulting from our

experiments.

6.2 Throughput evaluation

In order to measure performance of our solution and identify bottlenecks, we

carried out a series of experiments. Table 6.4 summarizes those experiments. The

meaning of the content in its columns should be clear after reading Section 5.2. All

software components were compiled with the -Ofast flag. The task length (see

Section 5.2.1) in all experiments was 256 KiB. All FPGA modules were running at the

clock rate of 50 MHz. The HPS was running at 800 MHz. The throughput evaluation

was done by measuring the execution time of the program using Linux time utility.
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Table 6.4: Experiments for throughput evaluation of software and hardware
ChaCha20 implementations

Name Worker Cryptor

A StubWorker FileCryptor
B1 ChaCha20Worker ×1 StubCryptor
B2 ChaCha20Worker ×2 StubCryptor
C ChaCha20Worker ×2 FileCryptor
D1 FpgaChaWorker ×1 StubCryptor
D2 FpgaChaWorker ×2 StubCryptor
D3 FpgaChaWorker ×4 StubCryptor
E1 FpgaChaWorker ×1 FileCryptor
E2 FpgaChaWorker ×2 FileCryptor
E3 FpgaChaWorker ×4 FileCryptor

For experiments A, C, and Ex we allocated a tmpfs (a file system residing in

RAM) with the size of 600 MiB, and created a file with pseudo random content with

the size of 256 MiB. This file is called the input file. The input file is supplied to the

compiled program for encryption. The result of the encryption is saved in the output

file located in the same tmpfs. By using tmpfs in our experiments we eliminated

speed limitations imposed by non-volatile storage.

The results of the experiments are summarized in Figure 6.1. The bars of the

same color depict similar in nature experiments. The following subsections describe

the experiments and present the analysis of their results.

6.2.1 File I/O throughput (Experiment A)

File I/O can be a limiting factor for the file encryption process. In order to

understand where this limit is on the current platform, we conducted Experiment A.
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Figure 6.1: Overall system throughput for different combinations of data producers
and data consumers

Conditions of this experiment (StubWorker as data supplier and FileCryptor as data

consumer) simulate the situation when OTP is generated almost instantly, and major

time is spent reading data from the input file, XORing it with OTP and writing it in

the output file.

The experiment finished in 1.2 s. Considering the input file size of 256 MiB,

this gives us the encryption throughput of 212.6 MiB/s.

6.2.2 Software ChaCha20 throughput (Experiments Bx)

In order to reveal the limitations of our software ChaCha20 cypher we conducted

experiments B1 and B2. These experiments use 1 and 2 CPU cores to generate OTP,

but the output data is not saved anywhere and rather discarded. Such conditions

allow us to estimate pure performance of the software ChaCha20 without limitations

imposed by file access.
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Experiment B1 finished in 19.9 s and experiment B2 finished in 10.1 s. Con-

sidering the input file size of 256 MiB, this gives us the encryption throughputs of

12.9 MiB/s and 25.3 MiB/s. The increase in performance almost by two times when

moving from one core to two cores suggests that ChaCha20 is perfectly parallelizable

on 2 CPU cores. Additionally, the fact that the throughput in Experiment A exceeded

the throughput in Experiment B2 by 8.54 times indicates that there is an opportunity

for accelerating ChaCha20 by implementing it in hardware.

6.2.3 Software-based file encryption throughput (Experiment C)

Experiments A and Bx demonstrate throughput limits for the cases when only

the data producer or the data consumer does the work. Those experiments allow us to

understand the limits of different parts of a cryptographic application. However, the

situations those experiments simulate are obviously useless in a real application. It is

also not clear whether the real application can show the performance of its weakest

part as a separate component or it will be even worse than that because of competition

for shared resources. To understand the properties of a real file encryption process we

conducted Eexperiment C, which features software ChaCha20 working on two CPUs

as the data producer and FileCryptor as the data consumer.

Experiment C finished in 10.8 s. Considering the input file size of 256 MiB,

this gives us the encryption throughputs of 23.8 MiB/s. This speed is only 11% of

the maximum throughput possible on this platform (see Section 6.2.1), so such result

indicates that software ChaCha20 can be accelerated by a hardware module.
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Given only 7% performance degradation comparing to Experiment B2, we can

conclude that the data producer and the data consumer almost do not compete for

shared resources such as DRAM bandwidth and CPU time. This fact, as well as the

data consumer being much faster than the data producer (see Section 6.2.2), suggests

that only OTP computation is on the critical path, so XOR operation can stay in

software without hurting performance.

6.2.4 Hardware ChaCha20 throughput (Experiments Dx)

In order to reveal the limitations of our hardware ChaCha20 cypher we con-

ducted experiments D1, D2 and D3. These experiments use 1, 2, and 4 FpgaCha cores

to generate OTP, but the output data is not saved anywhere and rather discarded.

Such conditions allow us to estimate pure performance of the hardware ChaCha20

without limitations imposed by file access.

Experiment D1 finished in 2.8 s, experiment D2 in 1.4 s and experiment D3 in

1.1 s. Considering the input file size of 256 MiB, this gives us the encryption through-

puts of 91.4 MiB/s, 178.3 MiB/s and 229.2 MiB/s. This data clearly demonstrates

that performance of a single FpgaCha core by far exceeds the performance of the

software solution which runs on two CPU cores. Additionally, this data shows that

adding the seconds FpgaCha core improves the the performance by 2 times. However,

adding two more cores (4 cores in total) does not significantly improve the situation.

This observation can be ascribed to the limitations of the DRAM throughput because

all cores work independently and DRAM is the only shared resource.
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6.2.5 Hardware-based file encryption throughput (Experiments Ex)

Similarly to Experiment C we conducted experiments E1, E2 and E3 to

understand how hardware ChaCha20 accelerator behaves in a realistic scenario. These

experiments use 1, 2, and 4 FpgaCha cores to generate OTP, which is used to encrypt

the input file.

Experiment E1 finished in 3.0 s, experiment E2 in 2.1 s and experiment E3

in 2.2 s. Considering the input file size of 256 MiB, this gives us the encryption

throughputs of 86.0 MiB/s, 120.5 MiB/s and 117.5 MiB/s.

Experiment E1 clearly shows that adding real file encryption to a single

FpgaCha core does not significantly hurt performance (it reduced only by 5.9%

comparing to Experiment D1). This means that at this data rate, FpgaCha and CPU

almost do not compete for shared resources. Additionally, E1 indicates that even a

single instance of our hardware accelerator running at 50 MHz can beat the software

solution running on 2 CPU cores with the clock rate of 800 MHz. The speedup of the

hardware solution over the software one is 3.6 times.

Efficiency of the computation in Experiment E2 comparing to Experiment E1

is 0.7. This indicates that two FpgaCha cores in a realistic scenario are not very

efficient. At the same time E2 demonstrates the speedup of 1.4 over Experiment E1,

so two cores instead of one still can considerably increase the overall performance.

Moreover, E2 shows the speedup of 5 times over the best software solution, which is

quite a good result. However, this performance is still quite far from the platform’s
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limitation: the experiment showed only 56.6% of the maximum possible performance

(see Experiment A in Section 6.2.1).

Efficiency of the computation in Experiment E3 comparing to Experiment

E1 is 0.34. This indicates that four FpgaCha cores in a realistic scenario are not

efficient at all. Moreover, E2 demonstrates the speedup of 1.37 over Experiment E1,

which is less than in experiment E2. This means that it does not make sense to use

4 FpgaCha cores in a real situation on the current platform. This observation can

be ascribed to the fact that the data producers and the data consumer compete for

DRAM bandwidth.

None of the realistic Ex experiments managed to demonstrate the results that

are close to ideal scenario of Experiment A. This means that neither FgaCha, nor

file encryption process is the bottleneck, and the overall performance is limited by a

shared resource: DRAM bandwidth.
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Chapter 7

CONCLUSION

Efficient cryptographic algorithms are especially important nowadays because

they can protect ever growing amounts of data at lower cost. New lightweight stream

cyphers are being developed in order to satisfy this demand. Development of hardware

accelerators for cryptographic algorithms is another way to make data protection more

efficient. In this work we use both approaches together to accomplish better results:

we picked a state-of-the-art stream cypher, ChaCha20, and improved its performance

by making for it a hardware accelerator in FPGA.

7.1 What has been done

As our target platform we chose Cyclone V: a low-cost heterogeneous SoC with

an FPGA and a CPU on a single die. Having both parts on the same chip reduces

the cost associated with system integration. We designed a hardware ChaCha20

IP-core for this platform, consisting of two parts: the cryptographic accelerator itself

and an auxiliary custom DMA that transfers data from the accelerator to DRAM.

We justified the optimality of our design decisions. For example, we kept the XOR

and the summation stages of ChaCha20 in software because this improves resource
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utilization of our core without sacrificing its performance. As a result, we managed

to develop an IP-core that requires only about 5% of the on-chip FPGA resources

available on the given platform. Additionally, we developed software for a Linux-based

OS to interface multiple instances of our core and employ them for file encryption.

This framework also has the capability of employing a software ChaCha20 running

on multiple CPU cores in order to compare the software and the hardware solutions.

Finally, we tested our IP-core to prove that it is implemented correctly and carried

out multiple experiments to asses its performance.

7.2 Results

Our tests include functional testing and performance measurements. Func-

tional testing showed that our implementation is correct. Performance measurements

demonstrated that in a realistic environment, a single hardware accelerator working

at the frequency of only 50 MHz is 3.6 times faster than a software solution running

on two 800 MHz CPU cores. Two hardware accelerators provide the speedup of 5

over the same software solution. The data we gathered shows that the throughput of

file encryption cannot be higher than 212.6 MiB/s on the given platform. Software

ChaCha20 can only reach 11% of this limit, whereas our hardware cores could go up

to 56.6%. Attempts to increase the throughput by employing more than 2 accelerators

did not give better results. Thus, we conclude that the maximum encryption rate on

the given platform is 120.5 MiB/s. We ascribe this constraint to a limited bandwidth

of the DRAM because the DRAM is the only shared resource that our IP-cores use.

63



7.3 Future work

The following efforts can constitute a continuation of this work.

First, an attempt to improve the performance of our IP-core can be made. This

can be achieved by optimizing the critical path of the accelerator and thus increasing

its clock frequency. In the case when two FpgaCha cores are used, a higher clock

frequency may not help to improve the maximum encryption throughput because

of DRAM bandwidth limitations on the current platform. However, a higher clock

frequency can possibly improve the performance of a single IP-core, so it is still worth

pursuing. Using high-end SoC chips such as Stratix V from Intel or Virtex UltraScale+

from Xilinx, is another way to improve performance. Not only can they provide higher

clock frequency due to faster logic, but also they may have a faster DRAM controller

and may be available on development boards with a faster DRAM.

Second, ChaCha20 alone has limited application: the algorithm only provides

data confidentiality without data integrity, which is especially important for stream

cyphers as they produce a malleable cyphertext. That is, a malicious party can modify

the cyphertext and cause predictable changes in the plaintext. In order to address this

issue, ChaCha20 needs to be accompanied by a cryptographic message authentication

algorithm. RFC8439 [9] proposes Poly1305 for this purpose. The combination of these

two algorithms is called ChaCha20-Poly1305. It is possible to use ChaCha20-Poly1305

as AEAD [19]. Thus, modifying our IP-core to enable support for Poly1305 can widen

its application scope.
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Finally, comparison of hardware ChaCha20 to hardware AES may be of interest

for people who are considering moving to faster cryptographic solutions. AES has long

been a de facto industry standard, so hardware manufacturers embed AES accelerators

in their products. At the same time, to the best of our knowledge, no ChaCha20

accelerators are available in mass commercial products. Since ChaCha20 involves only

simple operations as opposed to AES, it is reasonable to assume that a hardware

ChaCha20 can outperform a hardware AES. If this assumption comes out to be true,

it can create an incentive for hardware manufacturers to consider ChaCha20 as an

alternative for AES.
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Appendix A

ENABLING FPGA-TO-SDRAM BRIDGE USING U-BOOT

The FPGA-to-SDRAM bridge in Cyclone V is useful for accessing the DRAM

from the FPGA side (see Section 2.3). Unfortunately, this bridge is disabled by default.

In order to enable it, one needs to modify certain registers inside HPS. In general, HPS

control registers can be accessed from Linux OS. However, the registers responsible

for the FPGA-to-SDRAM bridge have a special requirement: they cannot be modified

after the SDRAM controller is started being used. Since Linux relies on storing data

in DRAM, enabling the bridge after the OS boots will violate this requirement.

Fortunately, this problem can be solved using U-Boot, a boot loader that is

often used to start Linux on the ARM platform. U-Boot does not require access to

the DRAM controller, so using it for enabling the bridge is acceptable. The command

interface of U-Boot has mw command (memory write). The command accepts two

arguments: hexadecimal address of the memory location that needs to be accessed

and a value that will be placed there [26]:

mw address value

Table A.1 contains information about the registers that need to be modified

in order to enable FPGA-to-SDRAM bridge in Cyclone V [27]. When configuring
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Table A.1: Register map of some registers of HPS

Name Address Bits Description

sdr.

fpgaportrst.

portrstn

FFC25080 13:0 This register should be written to with a 1
to enable the selected FPGA port to exit
reset. Writing a bit to a zero will stretch
the port reset until the register is written.
Read data ports are connected to bits 3:0,
with read data port 0 at bit 0 to read data
port 3 at bit 3. Write data ports 0 to 3 are
mapped to 4 to 7, with write data port 0
connected to bit 4 to write data port 3 at
bit 7. Command ports are connected to bits
8 to 13, with command port 0 at bit 8 to
command port 5 at bit 13.

sdr.

staticcfg.

applycfg

FFC2505C 3 Write with this bit set to apply all the set-
tings loaded in SDR registers to the memory
interface. This bit is write-only and always
returns 0 if read.

the sdr.fpgaportrst register we set bits from 4 to 7 to enable the write ports (our

IP-core only needs to write data to DRAM). If the read or command ports are needed

the corresponding bits should be set as well. When configuring the sdr.staticcfg

register, we set bit 3 in order to make the configuration of the previous register effective.

Since mw does not support bit masking, it is impossible to keep the values of the other

bits in the registers, so we read the old values of both registers using mr command,

modified necessary bits in the velues we got and wrote the new values using mw. The

final mw commands to enable the the bridge look as follows:

mw 0xFFC25080 0x1F0

mw 0xFFC2505C 0xA
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[10] A. Milenković, CPE523: Hardware/Software Co-Design, University Lecture, The
University of Alabama in Huntsville, 2019.

[11] (Jun. 18, 2020). “Terasic — SoC Platform — Cyclone — DE10-Nano Kit,”
Terasic, [Online]. Available: https://www.terasic.com.tw/cgi-bin/page/
archive.pl?Language=English&No=1046 (visited on 06/18/2020).

[12] (May 7, 2018). “Cyclone V Device Overview,” Intel, [Online]. Available: https://
www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/

hb/cyclone-v/cv_51001.pdf (visited on 06/15/2020).

[13] (May 7, 2020). “Avalon Interface Specifications,” Intel, [Online]. Available:
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/

literature/manual/mnl_avalon_spec.pdf (visited on 05/15/2020).

69

http://www.st.com/resource/en/product_training/stm32l4_security_aes.pdf
http://www.st.com/resource/en/product_training/stm32l4_security_aes.pdf
https://www.ti.com/lit/ug/slau208q/slau208q.pdf?ts=1592364725411
https://www.ti.com/lit/ug/slau208q/slau208q.pdf?ts=1592364725411
https://cr.yp.to/chacha/chacha-20080120.pdf
https://www.imperialviolet.org/2014/02/27/tlssymmetriccrypto.html
https://www.imperialviolet.org/2014/02/27/tlssymmetriccrypto.html
https://doi.org/https://doi.org/10.1016/S1353-4858(10)70006-4
https://doi.org/https://doi.org/10.1016/S1353-4858(10)70006-4
http://www.sciencedirect.com/science/article/pii/S1353485810700064
http://www.sciencedirect.com/science/article/pii/S1353485810700064
https://doi.org/10.1007/978-3-540-68351-3_8
https://tools.ietf.org/html/rfc7539
https://tools.ietf.org/html/rfc8439
https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&No=1046
https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&No=1046
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/cyclone-v/cv_51001.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/cyclone-v/cv_51001.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/cyclone-v/cv_51001.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/manual/mnl_avalon_spec.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/manual/mnl_avalon_spec.pdf


[14] H.-J. Koch. (Dec. 2006). “The Userspace I/O HOWTO,” The Linux Kernel
documentation, [Online]. Available: https://www.kernel.org/doc/html/v4.
13/driver-api/uio-howto.html (visited on 05/15/2020).

[15] K. Ichiro. (2020). “User space mappable dma buffer device driver for Linux,”
GitHub, [Online]. Available: https://github.com/ikwzm/udmabuf (visited on
05/15/2020).

[16] R. Cowart, D. Coe, J. Kulick, and A. Milenković, “An Implementation and
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