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A major problem in teaching com-
puter architecture and organization courses is
how to help students make the cognitive leap
that connects their theoretical knowledge with
practical experience. Numerous researchers
involved in computer architecture and orga-
nization education have tackled this problem,
resulting in a variety of educational tools for
computer system simulation. The tools differ
greatly in scope, target architecture complex-
ity, simulation level, and user interface, as the
“Related work” sidebar on p. 70 explains.

The available educational systems vary in
how they handle digital system simulation.
They usually offer tools for creating hardware
component libraries, viewing simulation
results, and conducting statistical analysis of
system performance. Available systems range
from sophisticated ones, for complex analysis,
to simpler ones that are more readily under-
stood by users, both instructors and students.

Beyond system simulation, an educational
system should support three key objectives.
First, it must cover an extensive range of com-
puter architecture and organization topics.
Second, it should graphically depict a com-
puter system, from the block level to the reg-
ister-transfer level. Third, it must provide the

means to follow system functions at the pro-
gram, instruction, and clock cycle levels. 

Because our analysis of available tools and
systems produced none that met the stated
objectives, we developed the integrated edu-
cational environment (so named because of its
multifaceted capabilities) described in this arti-
cle. We use this environment in two courses at
the University of Belgrade. The first course, a
second-year undergraduate course, covers basic
computer structure concepts, including
processor, memory, input/output subsystem,
and bus.1 The second course goes one step fur-
ther and covers, for example, CISC and RISC
processor architecture and organization, and
organization of pipelined processors, storage,
interconnections, and memory.2

Integrated environment
Our environment consists of several major

components:

• the Integrated Educational Computer
System (IECS) plus related reference
manuals, 

• the IECS software package (SPIECS),
which runs under Microsoft Windows or
WindowsNT, 
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• a set of laboratory experiments, and 
• the Computer Architecture Learning 

and Knowledge Assessment System
(CALKAS). 

The IECS, the authors’ original design, cov-
ers all the topics outlined in Table 1. SPIECS
supplies the software tools to select, config-
ure, and initialize the IECS, including graph-
ical simulators. The laboratory experiments
enable students to simulate practical work
with the IECS, and the CALKAS program
helps instructors evaluate the students’ work.

Hardware
The IECS portion of the environment

encompasses three self-contained systems: 

• RISC-processor-based computer system
(RCS),

• CISC-processor-based computer system
(CCS), and

• hierarchical memory system (HMS).

For both RCS and CCS, structures of the
memory, input/output subsystem, and bus are
similar, with memory capacities of 128 Kbytes
and 64 Kbytes, respectively. The input/out-
put subsystem supports 12 peripheral devices:
8 with peripheral device controllers and 4 with
direct memory access (DMA) controllers. An
asynchronous bus interconnects the compo-
nents.3

RCS and CCS differ primarily in processor
architecture and organization.

RCS architecture
RCS has a load/store processor architec-

ture with general-purpose registers and reg-
isters such as the program counter, stack
pointer, and so on. RCS supports 16-bit
signed and unsigned integer data types. It has
a three-address instruction format with a 32-
bit instruction length. The load/store
instructions’ addressing modes are immedi-
ate, memory direct, register indirect, and reg-
ister indirect with displacement. All
remaining instructions implicitly use the reg-
ister-direct-addressing mode. The instruc-
tion set includes the transfer, arithmetic,
logic, shift, rotate, and control instructions.
Interrupts are both internal and external. 

We implemented RCS as both a non-
pipelined and a pipelined processor. The non-
pipelined organization contains the processing
and control units. The processing unit con-
sists of the register file, execution unit, inter-
rupt service unit, and bus interface unit,
which interconnects with the 16-bit internal
bus. For the processing unit, we designed four
types of control units. One is hardwired; the
others are microprogrammed with the mixed
and vertical formats of microinstructions, as
well as nanoprogramming.

A five-stage organization characterizes the
pipelined processor, and each stage corre-
sponds to a separate instruction-execution
phase. These processor stages and instruction
phases are the instruction fetch, instruction
decode and operand read, operation execu-
tion, memory access, and result write. To
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Table 1. Computer architecture and organization topics that an educational environment system should address.

                            Processor                                     

Architecture Organization Memory Bus Input/output

CISC vs. RISC
Programming registers
Data types
Instruction formats
Addressing modes
Instruction sets
Interrupt mechanisms

Processing unit (PU):
pipelined vs.
nonpipelined

Control unit for
pipelined PU

Control unit for
nonpipelined PU:
hardwiring,
microprogramming,
(horizontal, mixed,
vertical formats),
nanoprogramming

Memory management
and TLB units

Cache memory
Memory interleaving

Asynchronous vs.
synchronous

Atomic vs. split-
transaction

Arbitration

Programmed I/O:
polling vs. interrupt-
driven

Block transfers with
DMA

Peripheral device and
DMA controller
implementations



avoid structural hazards, RCS contains sepa-
rate instruction and data caches, and the reg-
ister file that simultaneously allows two
registers to be read and one to be written.
Data forwarding eliminates read-after-write
data hazards, and dynamic prediction with
the branch target buffer minimizes control
hazards. 

CCS architecture
The CCS processor architecture features

separate data, address, base, and index regis-
ters, plus the standard program counter, stack
pointer, and program status word registers,

among others. The processor, which supports
8-bit signed and unsigned integer data types,
16-bit floating-point numbers, and character
strings, executes one-address instructions in
lengths up to 4 bytes. These instructions
include transfer, arithmetic with integer and
floating-point data types, logic, shift, rotate,
control, loop control, and string. Ten address-
ing modes are supported: register direct, reg-
ister indirect, memory direct, memory
indirect, base, index, base index, relative, reg-
ister indirect with auto increment and auto
decrement, and immediate. Finally, interrupts
are both internal and external.
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One group of educational tools centers on rudimentary architectures
with fewer than 20 instructions.1,2 The tools support functional-level sim-
ulation, which enables students to follow the processor dataflow graph-
ically. The educational systems described by Verplaetse and Campenhout3

as well as by Zhang4 center on the DLX instruction set.5

Verplaetse and Campenhout present a system that supports microc-
ode or pipelined organizations. Each provides a window showing the sys-
tem structure, register states, and signal lines. Users can view and edit
memory, and view pipeline activity. 

Zhang’s simulator provides animated versions of the key figures and
tables from Patterson and Hennessy.5 Users follow pipeline activity details
at the clock or instruction level.

In a second category of tools, several powerful simulators demonstrate
commercial processor functions. These include the SparcV86 and Power-
PC601,7 both of which provide rich instruction sets, numerous addressing
modes and data types, and high simulation speeds. In addition, these sim-
ulators can run Unix programs, C compilers, and SPEC92 benchmarks. The
primary goals of these simulators are as-fast-as-possible simulations of tar-
get systems, statistical analysis, and time diagram viewing. Visualization,
however, is either nonexistent or rudimentary at best.

In a third category is the HASE system,8 which is based on an object-ori-
ented database management system that runs in an X-Windows/Motif
environment. This system’s aim is high-level simulation and visualization.
Users have access to the read-only HASE component library and can also
create their own component libraries. Users create the system architecture
to be simulated via a graphical program in which system components are
selected, placed, and linked. During the simulation, the HASE system cre-
ates an event trace file that contains all required data about the current sim-
ulation run. The program that animates the simulation, or the program for
viewing time diagrams, can use this file as an input. 

Bechennec9 describes a system similar to the HASE. Users develop a
C++ application that enables system block creation, system configura-
tion, and simulation runs. Available classes include those for blocks, links,
data transfers, data classes, and simulators. With these classes, users cre-
ate and link blocks, define data transfer rules, and finally configure the

whole system. Textual reports show simulation results, including para-
meter values.
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Eight units comprise the CCS processor:
the instruction fetch, decode, operand address
calculation, and operand reading unit; five
execution units (integer, floating-point, string,
control, and loop control); interrupt service
unit; and bus interface unit. Each unit has its
own processing and control.

HMS
The HMS comprises the virtual memory

and translation looka-side buffer (TLB), cache
memory, and main memory. Initially, we
planned to develop an HMS in which the
process of accessing the TLB, the cache mem-
ory, and the interleaved memory could be real-
ized altogether. Although this environment
was feasible, such a system would be too com-
plex and difficult for students’ use. Therefore,
we split the HMS environment into three sep-
arate entities: virtual memory and TLB, cache
memory, and interleaved memory.

Virtual memory and TLB. The virtual memo-
ry comprises the paged, segmented, and seg-
ment-paged organizations, and includes the
TLB with the direct, associative, and set-asso-
ciative mappings. The TLB typically receives
the virtual address, accesses the appropriate
descriptor, performs the access rights and
bounds checks, and generates the real address.
Occasionally, the TLB brings a new descrip-
tor from the segment and/or page table and
replaces a TLB entry with the descriptor
according to the LRU and FIFO algorithms,
when appropriate.

Cache memory. The cache memory supports the
direct, associative, and set-associative mappings.
It receives a main memory request, checks the
cache memory for a hit, and performs the read
or write, according to the specific mapping tech-
nique’s features. The cache memory implements
the FIFO and LRU replacement algorithms
where needed and uses both write-back and
write-through main memory updating tech-
niques. It implements block transfers from the
main memory in case of a cache miss, including
the block-buffering, critical-word-first, and
early-processor-start techniques.

Interleaved main memory. This part of the sys-
tem consists of 16 units, 16 memory modules,
the bus, and the arbiter. Users can configure

each unit to generate either the single-word or
the block accesses. Each unit includes the bus
interface and the requester. The bus interface
contains all circuitry for the appropriate oper-
ations when the unit is either a master or a
slave. The requester simulates parts of a proces-
sor or a DMA controller, which generates the
memory reads and writes, and accepts data
returned in response to a read. 

A memory module consists of the bus inter-
face, which contains all circuitry for the
appropriate operations when the unit is either
a slave or a master, and the RAM. Users can
specify five ways of interleaving memory mod-
ules. We implemented the split-transactions
synchronous bus and the parallel arbiter.

Software
SPIECS includes the graphical simulators

of the IECS and the tools for selecting, set-
ting up, and running them. Users must per-
form three steps in working with this
software. First, they select the simulator of
either the RCS, CCS, or HMS. If they select
the HMS, they must also select one of three
simulators for the virtual memory and TLB,
cache memory, and interleaved memory.
Further, users must, for the virtual memory
and cache memory, select one of three types
of TLBs and cache memories. Next, they set
up the simulator; then run the simulator. 

Setting up the simulator
Simulator setup is similar for all three sys-

tems. For simplicity, we use the RCS as our
example throughout. Although our intent is
for instructors to use the setup procedure in
preparing laboratory experiments, students
can also perform the procedure. Ideally, this
would occur much later in their course work.

The first step in setting up an RCS system
simulator is configuration. The user chooses
the number of peripheral devices and DMA
controllers, selects processing and control units
via the screen shown in Figure 1a (next page),
and defines clock and access times via the
screen in Figure 1b.

Initialization of the simulator encompasses
initialization of the processor, memory, and
peripheral device and DMA controllers.
Processor initialization involves loading of the
programmable registers. Similarly, memory
initialization includes loading the appropri-
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ate memory locations with values either inter-
actively entered or obtained as the result of
using the assembler, linker, and loader. To ini-
tialize the peripheral device and DMA con-
trollers, the user loads the simulated input
peripheral device with the data and time
sequence that this device will generate.

Users can choose either partial or complete
simulator setup. If partial, they must sepa-
rately initialize each part of the system. A
complete setup initializes the whole system
all at once.

Figure 1a shows the RCS screen for config-
uring the I/O subsystem, and the processing
and control units. The I/O subsystem can
contain up to four DMA controllers, denot-
ed as DMA1.x. The subsystem can contain
eight peripheral device controllers, denoted
as KP1.x and KP2.x, in which x = 1,…,4.
Each controller can be disconnected or recon-
nected by consecutive mouse clicks on the
appropriate box. 

The Complete Initialization box at the top
right-hand corner of the screen includes but-
tons (Open RCS and Save RCS) that let users
configure and initialize the whole system
from, or save the current state into, a file. The
next box lets users choose a pipelined or a
nonpipelined processing unit implementa-
tion. If nonpipelined is specified, users must
select the control unit to be used with the pro-
cessing unit, from the Control unit box.

Restore buttons on the lower right-hand
side of the screen let users cancel some or all
interactively made changes, respectively. The
Services button lets users call up the clock and
access times screen shown in Figure 1b.

The Clock service box at the top of the
screen shown in Figure 1b lets users interac-
tively specify the system clock and the clocks
for the CPU, memory, DMA1.x, KP1.x, and
KP2.x. The Clock stop check box lets users
select which clocks should stop the
simulation. 

The Access service box, below the Clock
service box, lets users define access times,
addresses, and duration of the interrupt pulse
for selected peripheral device and DMA con-
trollers. It also lets them specify the memory
access time; connect or disconnect device
FAULT, and define when it should raise the
nonmaskable interrupt. The Configuration
button at the lower right-hand side of the win-
dow returns users to the RCS configuration
screen of Figure 1a.

The Clock service window at the bottom
of the screen provides comments related to
the specified clocks.

Running the simulator
By running the simulator, users can follow

the RCS’s signal values during program exe-
cution after a clock, an instruction, or a com-
plete program.

Figure 2 shows the root of the hierarchical

70

INTEGRATED ENVIRONMENT

IEEE MICRO

Figure 1. RCS system configuration (a) and RCS clock and access times (b). 

(a)

(b)



scheme we developed for the RCS. The large
block diagram window occupies most of the
screen. If the user is simulating a nonleaf
block, this window contains a composition
of subblocks, and combinatorial and sequen-
tial circuits. The user can further select each
subblock until reaching the leaf block, which
contains only combinatorial and sequential
circuits.

The window at the upper right of the screen
shows the CPU’s hierarchy. The user can
directly reach any level in the hierarchy by
selecting the appropriate box in this window.

For convenience, any screen can be reached
in two ways. The first one is by clicking at the
subblocks in the block diagram window until
the design is reached. The second one is to
click the corresponding box in the hierarchy
window.

The Info window at the bottom contains
the Sequence window and the Status but-
tons. The Sequence window shows the
microprogram or step counter’s value and
the control signals generated for that clock
period. It briefly explains the actions to
occur during that clock period. The Status
PC, T, and Tclk buttons display the current
values of the program counter and the step
counter, and the number of the CPU clock
periods executed.

The Command window contains three
groups of command buttons: Navigation,
Miscellaneous, and Simulation. The UP com-
mand button in Navigation lets users move
up one level from the current screen, while
Main returns to the root hierarchical screen
of Figure 2.

Of the Miscellaneous command buttons,
More opens the window that allows users to
examine and set the values of memory loca-
tions, processor and peripheral device, and
DMA controller’s registers. This window also
lets users draw the timing diagrams of a
selected set of signals. Clear resets the current
simulation state and returns the simulation
to the initial state. Help activates the RCS
help system. 

The Simulation command button Clk+ lets
users continue the simulation until the first
clock appears. The Ins+ and Prg+ buttons do
the same with the number of clock periods
required to complete the current instruction
or program.

The signal graph window in the screen’s
lower right shows simulation control para-
meters and clock-timing diagrams. Here users
specify the number of clocks and instructions
executed until the first stop. The stops become
valid when the user marks the appropriate
check boxes.

The signal graph window also displays the
timing diagrams of the CPU, memory, DMA,
KP1, and KP2 clocks when the simulation
stops. The first vertical line points to the sys-
tem parts where the clocks occurred, while the
next two lines point to where the next two
clocks will occur. 

The status window at the very bottom of
the screen shows several key parameters:
what the block diagram window shows, the
parts of the system where the clocks
occurred, and the total number of elapsed
system clocks.

Simulation process walk-through
The simulation begins with the root hierar-

chical screen, which in our example depicts the
RCS block structure, as Figure 2 shows. If users
need a more detailed structure of any block,
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Figure 2. The root hierarchical screen shows, at the block level, how the
processor, memory, peripheral device controllers’ lines (KP1.x and KP2.x), and
DMA controllers’ line (DMA1.x) interconnect through the system bus. The
data (DBUS) and address bus (ABUS), appear in green if they are in the state
of high impedance; otherwise they appear gray with hexadecimal values. The
control bus lines (RDBUS, WRBUS, and FCBUS) appear in blue if the signal
has a logical value of zero; and red, if the value is one. 



they can move one level down in the hierarchy
by pointing and clicking the mouse at the
appropriate block. For example, if the cursor is
positioned at the block CPU in the block dia-
gram window, the resulting screen shows the
block structure of the nonpipelined RISC

processor with subblocks, one of them being
the Register File (RF). By positioning the cur-
sor at the RF subblock, users move down one
level in the hierarchy, and the resulting screen
shows the RF unit block structure. Similarly,
the same actions applied to the general-purpose
registers (GPR) subblock calls up the screen of
the hierarchy’s last level, as Figure 3 shows. 

This screen, which can be obtained direct-
ly by clicking on the GPR box in the hierar-
chy window, shows the block design at the
level of standard sequential elements. Ele-
ments include registers and flip-flops, and
combinatorial elements, such as decoders and
logical circuits. 

Users click on the More button to call up the
show registers screen to examine and set the
memory, CPU, DMA, KP1, and KP2 registers,
as Figure 4 shows. Similarly, users would click
More to get the timing diagram of selected sig-
nals from the beginning of the simulation until
the current clock period, as Figure 5 shows.

Experiments
Essentially, experiments are designed to

help students perform simulation scenarios in
which they apply what they have learned to
real-world sorts of situations but in a labora-
tory setting. Accordingly, instructors devise
experiments with the SPEICS software. The
first and second courses comprise five and ten
laboratory experiments, respectively. 

A laboratory experiment contains one or
more examples, depending on the topic. For
example, an experiment on interrupts includes
examples that illustrate the jump to the inter-
rupt routine, the return from the interrupt
routine, interrupt masking, nesting, priority,
and so on. 

In preparation, instructors carefully choose
values for the simulator setup’s initialization step
to demonstrate real-world situations of interest
to students. Students then run the simulator to
execute all prepared examples. At simulation
stops, students examine the signal values of
combinatorial and sequential circuits with the
simulator’s graphical facilities. This helps stu-
dents grasp a computer system’s inner workings.

Assessment
The last component of our environment,

the Computer Architecture Learning and
Knowledge Assessment System (CALKAS)
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Figure 3. The general-purpose registers screen shows the implementation of
GPRs including multiplexers (MP), decoder (DC), registers (R0-R3), and logical
elements, and the interface to the internal bus (M15...M0).

Figure 4. The show registers screen displays the contents of the CPU regis-
ters and buses, in the upper half, and the contents of the KP1.1 registers with
the contents of the simulated peripheral device registers (REGi, i=0-15) in the
lower part.



program, helps instructors evaluate students’
progress.4

Instructors initialize the CALKAS program
database with information about students,
such as the student ID and name, and also
specify the laboratory experiments for a par-
ticular course. Additionally, instructors enter
questions, related to the topics covered by the
laboratory experiments, into the database.
Finally, instructors obtain reports about the
students’ laboratory work.

Typically, instructors request a report that
indicates if an individual student has carried
out a particular laboratory experiment. This
report includes the date and time of the exper-
iment, and indicates if the student has suc-
cessfully answered the experiment’s associated
questions.

Instructors can also examine the log file for
each laboratory experiment of each student
and learn how the student performed each
particular experiment. The CALKAS program
thereby helps us maintain complete records
of student achievement.

For their part, students follow three steps
in carrying out the experiments. First, stu-
dents register by entering their name and pass-
word. If the registration is successful, the
CALKAS program invokes the SPIECS,
which lets students perform the second step:
to select and carry out the appropriate labo-
ratory experiment.

The third step is the assessment of the stu-
dents’ understanding of the topic covered by
the laboratory experiment. For each experi-
ment, the CALKAS program randomly gen-
erates a number of questions with
multiple-choice answers from an existing
database. Students then take the test and, by
activating the appropriate button, submit
their answers then learn immediately whether
they passed or failed. 

Instructors can modify the number of test
questions and answers, as well as the amount
of time students have to answer them and the
number of positive answers needed to pass the
test. The students’ complete interaction with
CALKAS is recorded in a log file and becomes
part of the students’ records. 

We have used the integrated education-
al environment for five years. On the

basis of exam results and discussions with stu-

dents, the educational environment has ful-
filled its design objectives in two ways. First,
the average grade has roughly improved 20%.
Second, the students show deeper under-
standing of the topics lectured. The software
has enabled many students to work at home
and prepare for working in the laboratory.

Our ongoing work is two-pronged. First, we
want to make the SPIECS a Web-based appli-
cation, which will foster distance education and
eliminate the crowding in the labs. Second, we
want to develop a user-friendly environment
that lets students design their own computer
systems by using the library of standard com-
binatorial and sequential modules. MICRO
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Figure 5. The timing diagrams screen contains the 12 most frequent clocks
(Tclk = 16–27). Buttons near the bottom of the screen (Go Tclk and so forth)
move the time frame to the desired clock. Users can select any combination
of the processor, peripheral device, or DMA controllers signals.
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