
  

  

Abstract— Recent advances in sensors, low-power system-on-

a-chip devices, and wireless communications, have prompted a 

proliferation of wireless sensor networks. As these networks  

require advanced integration, intensive onboard processing, 

and low power consumption, field programmable gate arrays 

(FPGAs) emerge as a technology that strikes an optimal balance 

between processing power, energy requirements, and flexibility. 

Through the power of reconfigurability, wireless sensor 

network designs containing reprogrammable logic can be 

upgraded, errors can be fixed, and limited-resource applications 

can be dynamically reprogrammed in the field. While powerful, 

this reconfiguration process can be costly in terms of labor and 

downtime. In order to address these issues we propose a 

REWISE framework (Reconfigurable Wireless Intelligent 

Sensor Networks) for real-time reconfiguration of the 

programmable logic on sensor nodes through the wireless 

sensor network communication infrastructure. 

I. INTRODUCTION 

ecent technological advances in integrated circuits, 

wireless communication, and sensors have enabled a 

new generation of wireless sensor networks that can be used 

in a number of military and civil applications. Typically, a 

large number of miniature and inexpensive sensor nodes is 

deployed to monitor and control environments without 

human intervention for a long period of time [1], [2].  A 

wireless sensor network usually consists of a number of 

wireless sensor nodes and a base station. Various 

communication models can be employed, such as direct, 

multi-hop, or clustering.  

Each sensor node typically incorporates the following: (a) 

one or more physical sensors capable of measuring the state 

of the environment; (b) actuators that affect the state of the 

environment; (c) a microprocessor that provides onboard 

processing of “raw” data from physical sensors, facilitates 

communication, and handles control messaging; (d) a radio 

interface to communicate information with neighboring 
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nodes or a base station and eventually to the external world; 

(e) a power source, typically a battery. Since the nodes in a 

wireless sensor network must operate under severe size, 

weight, and power consumption constraints, important 

hardware and software design decisions must be made in 

order to meet these requirements while fulfilling system 

goals. One possible option for meeting these objectives is to 

use an application-specific integrated circuit (ASIC). ASICs 

are specifically designed for a target application, and can 

achieve the best performance, but their lack of flexibility to 

accommodate design changes and long design-to-fabrication 

cycles usually prohibit their use in a sensor node. Another 

option is a general-purpose processor. This type of processor 

provides the flexibility that the ASIC cannot offer, but at the 

price of reduced processing speed and power efficiency. A 

good compromise between hardware inflexibility and 

software inefficiency can be found in low-power 

programmable logic [3].  Reprogrammable logic can be 

utilized to accelerate critical paths and reduce power 

consumption for a wide range of signal processing 

algorithms and communication functions required by sensor 

platforms [4]. Reconfigurable sensor platforms offer 

flexibility and cost-effective customization before 

deployment and provide for the possibility of run-time 

reconfiguration.  Furthermore, constructing sensor platforms 

with programmable logic and a customizable front-end may 

lower costs, as multiple target applications are able to share a 

common wireless platform.  

In this paper, we introduce a REWISE framework that 

allows dynamic reconfiguration of sensor nodes based on a 

variety of situations, from changes in mission goals, needed 

upgrades, and bug-fixes, to accommodating environmental 

changes, through initiation from the base or other nodes in 

the network.  The proposed framework can also be used as a 

“wireless JTAG” offering simultaneous hardware 

programming of multiple homogenous reconfigurable 

platforms.  This is significant in systems where the hardware 

is not easily accessible or is expensive to access, resulting in 

more efficient maintenance cycles and reduced costs. 

FPGA devices consist of an array of computational 

elements known as logic blocks, a set of routing elements, 

and a set of input/output cells, whose functionality is 

determined from configuration bits [5]. While the standard 

means for delivering configuration bits to the target FPGA is 

through a wired JTAG connection, other methods exist. One 

example describes a method for remotely reconfiguring 

FPGAs through the Internet [6].  This Internet 

Reconfigurable Logic (IRL) system includes a design 
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containing an embedded processor and an FPGA, 

implementing some custom hardware function.  New designs 

can be implemented on a host computer, and the 

reconfiguration payload can then be delivered to the target 

computer through a TCP/IP network.  A second example is 

illustrated by Hulme et al, where they describe a 

configurable fault-tolerant processor (CFTP) that is used for 

spacecraft onboard processing [7].  CFTP is intended to 

evaluate, in various orbital regimes, different reconfiguration 

system-on-chip designs, such as a triple-mode redundancy, 

fault-tolerant circuit aimed at overcoming single-event 

upsets.  In this example, the communication medium for 

passing the new FPGA configuration file is through the 

Internet, to a ground station, where the data is then 

transmitted to the orbiting satellite.   

The remainder of the paper is organized as follows.  

Section 2 introduces the case for real-time reconfiguration 

through wireless sensor networks. Section 3 describes the 

hardware components of the wireless sensor nodes used in 

the REWISE testbed, and Section 4 describes the software 

modules and initial results of the field tests.  Section 5 

concludes the paper.  

II. THE CASE FOR REWISE 

This section of the paper describes an example REWISE 

system that uses reconfiguration as a design parameter.  This 

system, as shown in Figure 1, is deployed in a military 

setting, behind enemy lines, where access is inherently 

limited, and it can be used to monitor types of traffic on local 

roads, capture vehicle signatures, obtain video or audio data, 

detect radiation sources, or monitor environmental 

conditions.  Furthermore, signal processing of acquired 

sensor data is performed in order to provide data points to a 

base station and/or a command center.  These data points can 

then be used to make strategic decisions for maintaining 

security in areas that are under surveillance.  

Base 
Station

Sensors
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Gateway 
layer

Command 
Center

 
Fig. 1.  A multi-tier reconfigurable wireless sensor network for surveillance 

and intelligent signal processing. 

 

The system is made up of three different tiers. Since 

wireless communication is a fairly expensive operation in 

terms of power and time, this framework uses local 

hardware/software repositories at each layer to facilitate 

reconfiguration. The upper layers keep track of 

hardware/software configurations at the lower layers, and a 

command can be sent either to initiate reconfiguration from a 

local repository, or if the needed configuration is not present, 

begin downloading the required hardware/software context. 

The sensor layer is at the lowest tier. A node at this level 

is comprised of a microprocessor, an FPGA, 

memory/storage, radio, an energy source, and an array of 

sensors capable of many different functions, such as 

measuring magnetic field, radiation, vibration, temperature, 

humidity, or gathering audio or video data.  The number of 

nodes at the sensors layer could number into the thousands, 

and the sensor nodes should be so small that they can be 

embedded in the environment and not easily detected.  As 

such, these nodes will have limited resources, requiring low-

power operation.  Since these nodes are resource-limited, the 

onboard storage can hold different hardware/software 

configuration data, which can be used to reprogram the 

FPGA as mission goals change (i.e., alter the function of a 

node from environmental monitoring to vehicle detection).  

Each sensor node will gather data, perform basic pre-

processing, and then transmit data up to the gateway layer.   

At the gateway layer, devices have more processing, 

storage, communication, and energy resources than at the 

sensors layer. These devices can be integrated with an 

available power grid, but this is not a requirement. A 

gateway node is comprised of a microprocessor, 

memory/storage, a radio, and possibly an FPGA, depending 

on processing needs. Gateway nodes could number into the 

hundreds, depending on the quantity of sensor nodes, and are 

responsible for establishing the communication network for 

the system.  A gateway node receives data from the cluster of 

sensors they control and synergistically processes this data to 

make intelligent decisions based on mission goals.  Each 

node at this level maintains a hardware/software repository 

with multiple FPGA configurations. Based on environmental 

conditions, the current mission, or the results of data 

processing, a gateway node can initiate reconfiguration at the 

sensors layer or download new hardware/software contexts 

to sensor nodes in preparation for near-term needs.   

The next level up from the gateway layer is a centralized 

base station.  The base station will have even more resources 

than nodes at the gateway layer and will serve as a means for 

providing global interface and control to the system.  The 

base station can be under human-control or operate 

autonomously. All data from gateway nodes is gathered and 

processed at the base station for making decisions regarding 

mission goals.  The base station can be used for initiating 

reconfiguration at the gateway layer or for downloading new 

hardware/software contexts to gateway nodes in preparation 

for future needs.   



  

Finally, depending on the deployment scenario of the 

proposed system – perhaps the REWISE system is deployed 

overseas – a command center can be used to correspond with 

each base station through satellite communication.  This 

would allow another means for communicating changing 

mission goals, and new hardware/software designs could be 

developed in a friendlier environment and then transferred to 

the system in the field.  Furthermore, if the base station 

needed to be abandoned, then the command center would 

provide another level of control for initiating 

reconfigurations or modifying system functionality. 

III. HARDWARE DESIGN 

The REWISE testbed that demonstrates reconfiguration 

through a wireless sensor network is shown in Figure 2.  It 

consists of a base station, which is connected to a transmit 

mote through a serial link, a number of relay motes, and a 

receive mote connected to the reconfigurable sensor node 

platform through JTAG.  The base station includes a 

software tool for initiating download of the configuration 

(XSVF file). The XSVF file is streamed serially to the 

transmit mote, and because of the limited resources of the 

hardware along the communication path, a flow-control 

scheme is used in order to direct the data reliably to the 

reconfigurable platform. The radio transceivers facilitating 

the wireless communication employ a networking protocol 

based on IEEE 802.15.4. Due to the limited range of this 

networking scheme, relay motes may be needed in order to 

traverse this path from source to destination. These relay 

motes will be a part of the wireless sensor network platform, 

and will typically employ some sensing function in addition 

to packet forwarding. Finally, a receive mote is connected 

through JTAG to the reconfigurable platform. The receive 

mote takes the configuration data and through a software 

JTAG module provides programming control of the 

reconfigurable device with the received XSVF file.   
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 Fig. 2.  The REWISE testbed. 

 

All three types of wireless motes are based on a common 

platform that includes a Texas Instruments MSP430 

microcontroller and a Chipcon CC2420 radio transceiver for 

wireless communication. The MSP430 includes a UART 

peripheral for communication with the base station and a 

synchronous peripheral interface (SPI) module for handling 

communication with the CC2420. The CC2420 implements 

the IEEE 802.15.4 networking protocol and achieves transfer 

rates of up to 250 kilobits per second.   

On the transmit mote (Figure 3), the MSP430 uses direct 

memory access (DMA) transfer in order to efficiently pass 

data from the UART peripheral into memory buffers.  These 

buffers constitute a buffering scheme that is used to 

differentiate between the two tasks of receiving data from the 

base station and transmitting data downstream through the 

radio.  The MSP430 also handles the flow control for 

passing data successfully between the base station and the 

downstream motes.  This is necessary because there is not 

enough onboard storage to allow transfer of the entire XSVF 

file at once, but it must be divided into smaller blocks. 
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Fig. 3.  Transmit mote diagram. 

 

The receive mote (Figure 4) is connected to a 

reconfigurable wireless intelligent platform, which is used to 

both take readings and initiate control over the surrounding 

environment through sensors and actuators.  The MSP430 on 

the receive mote handles the flow control responsibilities of 

the XSVF data stream, receiving the data from upstream 

nodes. It also implements the JTAG protocol for 

reprogramming the FPGA device. 
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Fig. 4. Reconfigurable wireless intelligent platform with receive mote. 

 

IV. SOFTWARE DESIGN 

The software design in the REWISE testbed includes the 

modules for the base station, the transmit mote, and the 

receive mote.  We start by describing the data flow that 

begins at the base station.  This is a custom application 

running on a personal computer (i.e., the base station) and is 

responsible for initiating the reconfiguration process.  This 

application, as described in Figure 5, takes a configuration 

file, which was created by design tools targeting a 

reprogrammable logic device and is in the compressed 

XSVF file format, and forwards this data serially on a byte-



  

by-byte basis to the transmit mote.  The transmit mote 

algorithm, as depicted in Figure 6, receives the byte sent 

from the base station into its MSP430 UART peripheral and 

subsequently feeds it into one of two memory buffers 

(henceforth referred to as the IN/OUT buffers) via a direct-

memory access module.  This process continues until one 

block of data (1 kB) has been sent.   
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Fig. 5. Base station software application for initiating reconfiguration. 
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Fig. 6. Transmit mote algorithm. 

 

After sending the first block of data, the base station 

application halts and waits to receive a transmit-on character 

(XON) from the transmit mote.  Having received 1 kB of 

data from the base station, the transmit mote waits to receive 

an XON character from the receive mote.  Upon receiving 

this response from the receive mote, the transmit mote 

switches its IN/OUT buffers and sends an XON character to 

the base station, requesting more data.  While the base 

station begins sending data to the IN buffer in the transmit 

mote, 64 bytes of data from the OUT buffer are sent to the 

CC2420 radio transceiver for wireless transmission.  These 

two tasks can occur simultaneously because the transfer of 

data into the memory buffer occurs via DMA, which is 

separate from processor control, allowing the processor to 

transfer data to the CC2420.  The radio sends this packet of 

data and waits for a given period of time for an 

acknowledgment from a downstream mote (either a relay 

mote or a receive mote, as described in the REWISE 

testbed).  If the acknowledgment is not received, then the 

radio packet is resent.  If the acknowledgement is 

successfully received, the packet sequence number (sN) is 

incremented and the next 64 bytes from the OUT buffer is 

packetized and transferred to the radio in preparation for 

wireless transmission.    This process continues on the 

transmit mote until the full kilobyte of data is sent from the 

OUT buffer.   

 The software application for the receive mote is 

provided in Figure 7.  The receive mote gathers the packets 

that are sent from the transmit mote, as described in the 

previous paragraph.   
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Fig. 7.  Receive mote software algorithm. 

 

Upon receiving a packet into the radio, it checks whether this 

is a data packet, and if so, sends the acknowledgment for that 

packet.  At this point, the packet is decoded in order to 

ensure that it contains new data.  This is done by checking 

the sequence number and making sure that this value is the 

same as the previously received packet’s sequence number 

plus one.  If that is the case, a pointer is incremented, and the 

data is transferred to one of two memory buffers (henceforth 

referred to as the IN/OUT buffers).  If the new sequence 

number equals the old sequence number, then the transmit 

mote did not successfully receive the previous 

acknowledgment and this packet is discarded, while the 

acknowledgment is resent.  This process will continue until 

16 packets have been received, indicating that the IN buffer 

is now filled with a kilobyte of data.  At this point the 

IN/OUT buffers are switched and an XON message is sent to 

the transmit mote.  This XON message has the end goal of 

telling the base station that the next kilobyte of data can be 



  

sent.   

In order to ensure that the configuration data stream flow 

is not cut off, the receive mote requires an acknowledgment 

of this XON message from the transmit mote.  This is 

accomplished through a “retry timer”.  The retry timer is 

started as soon as the XON message is sent.  Once the timer 

reaches a certain count, the interrupt service routine is 

entered and a check is performed to see if the XON message 

has been acknowledged.  If it has not been acknowledged, 

then the XON message is resent in order to not cutoff the 

flow of data, and the retry timer is started again.   

After the IN/OUT buffers have been switched, data begins 

to be read from the OUT buffer and sent to the JTAG 

configuration software module, which then controls the 

emulated JTAG lines on the MSP430 for the purpose of 

configuring the reprogrammable device.  This JTAG module 

reads the instructions and arguments from the XSVF file, 

operating on successive bytes from the OUT buffer until the 

end is reached.  Subsequently, the application returns to the 

state of waiting for the IN buffer to fill, and then the process 

is repeated until the end of the XSVF file is reached.  At this 

point, the JTAG module provides notification for whether 

the FPGA was successfully reconfigured.  This status is 

communicated to the transmit mote through the radio, which 

passes these results to the base station. 

 With the MSP430 processor on the receive node 

running at 8 MHz, the MSP430 processor on the transmit 

node running at 6 MHz, and the RS232 port on the base 

station configured for 115.2 kbits/sec, initial test results 

based on the REWISE testbed show that it takes 6 msec to 

transmit and receive acknowledgment of one packet 

containing 64 bytes worth of data.  Thus, it takes 96 msec to 

transmit 16 packets or 1kB worth of data.  This corresponds 

to a bandwidth of 83 kbits/sec.  With a Virtex family FPGA 

needing an XSVF file containing 675 kB of configuration 

data, this requires 65 seconds to transmit.  Smaller XSVF 

files are on the order of 45 kB, while larger devices would 

need around 2.7 MB.  FPGAs with a greater degree of 

capability need more SRAM bits for programming.  These 

values indicate file sizes for complete reconfiguration of the 

FPGA.  However, it is now possible to only perform partial 

reconfiguration of a device, so this would lower the amount 

of data needed for transfer, and therefore decrease the 

overall time required for reconfiguration.  Factoring in the 

JTAG programming time performed on the receive node, 

which is done in 1kB blocks (set according to the buffer size 

and available resources in the MSP430 processor) it takes 

210 msec for 1kB worth of data transfer.  This is the amount 

of time it takes for the transmit node to send 1kB of data 

until the XON message is received from the downstream 

node and the next 1 kB of data is ready to be sent.  Thus, the 

effective bandwidth for transfer and JTAG programming 

becomes 38 kbits/sec.  For an XSVF file containing 675 kB 

of configuration data, this requires 142 seconds to complete 

the programming of the downstream reconfigurable node. 

V. CONCLUSIONS 

FPGAs emerge as a technology of choice that strikes an 

optimal balance between processing power, energy 

requirements, and flexibility. Furthermore, leveraging the 

ability to reprogram FPGAs allows systems to be 

reconfigured after deployment, which is valuable in terms of 

handling upgrades, fixing bugs, accommodating modified 

goals and environmental changes, and maintaining a large 

amount of hardware in difficult-to-reach locations. To 

achieve these desired goals, we have proposed a REWISE 

framework, which consists of reconfigurable wireless 

intelligent sensor nodes, capable of broadening the 

functionality and capability of wireless sensor networks. We 

have given a test case that illustrates the power of a REWISE 

system, and we have described hardware and software 

components of a prototype design.  

For rapid prototyping, a commercially-available hardware 

development board was chosen as the basis for the design. 

The resource limitations of the processor and the radio led to 

the design choices that were made, such as the transfer block 

size that was chosen (due to packet overhead and available 

memory in the MSP430), and the available speed of the 

point-to-point communication scheme that was used. Higher 

effective bandwidths and faster FPGA configuration times 

could be achieved with a higher-performance processor and 

a radio with enhanced resources. In light of these 

considerations, the prototype design is a positive first-step 

towards achieving a REWISE system and demonstrates the 

proof of the concept. 
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