

Abstract— Recent advances in sensors, low-power system-on-

a-chip devices, and wireless communications, have prompted a

proliferation of wireless sensor networks. As these networks

require advanced integration, intensive onboard processing,

and low power consumption, field programmable gate arrays

(FPGAs) emerge as a technology that strikes an optimal balance

between processing power, energy requirements, and flexibility.

Through the power of reconfigurability, wireless sensor

network designs containing reprogrammable logic can be

upgraded, errors can be fixed, and limited-resource applications

can be dynamically reprogrammed in the field. While powerful,

this reconfiguration process can be costly in terms of labor and

downtime. In order to address these issues we propose a

REWISE framework (Reconfigurable Wireless Intelligent

Sensor Networks) for real-time reconfiguration of the

programmable logic on sensor nodes through the wireless

sensor network communication infrastructure.

I. INTRODUCTION

ecent technological advances in integrated circuits,

wireless communication, and sensors have enabled a

new generation of wireless sensor networks that can be used

in a number of military and civil applications. Typically, a

large number of miniature and inexpensive sensor nodes is

deployed to monitor and control environments without

human intervention for a long period of time [1], [2]. A

wireless sensor network usually consists of a number of

wireless sensor nodes and a base station. Various

communication models can be employed, such as direct,

multi-hop, or clustering.

Each sensor node typically incorporates the following: (a)

one or more physical sensors capable of measuring the state

of the environment; (b) actuators that affect the state of the

environment; (c) a microprocessor that provides onboard

processing of “raw” data from physical sensors, facilitates

communication, and handles control messaging; (d) a radio

interface to communicate information with neighboring

Manuscript received November 11, 2007. This work was supported in

part by National Science Foundation grant IIS-0434156.

J. L. Wilder is with the Electrical and Computer Engineering

Department, University of Alabama in Huntsville, Huntsville, AL 35899

USA. (phone: 256-876-5910; fax: 256-313-3717; e-mail:

wilderj@eng.uah.edu).

V. Uzelac is with the Electrical and Computer Engineering Department,

University of Alabama in Huntsville, Huntsville, AL 35899 USA (e-mail:

uzelacv@eng.uah.edu).

A. Milenković is with the Electrical and Computer Engineering

Department, University of Alabama in Huntsville, Huntsville, AL 35899

USA (e-mail: milenka@ece.uah.edu).

E. Jovanov is with the Electrical and Computer Engineering

Department, University of Alabama in Huntsville, Huntsville, AL 35899

USA (e-mail: jovanov@ece.uah.edu).

nodes or a base station and eventually to the external world;

(e) a power source, typically a battery. Since the nodes in a

wireless sensor network must operate under severe size,

weight, and power consumption constraints, important

hardware and software design decisions must be made in

order to meet these requirements while fulfilling system

goals. One possible option for meeting these objectives is to

use an application-specific integrated circuit (ASIC). ASICs

are specifically designed for a target application, and can

achieve the best performance, but their lack of flexibility to

accommodate design changes and long design-to-fabrication

cycles usually prohibit their use in a sensor node. Another

option is a general-purpose processor. This type of processor

provides the flexibility that the ASIC cannot offer, but at the

price of reduced processing speed and power efficiency. A

good compromise between hardware inflexibility and

software inefficiency can be found in low-power

programmable logic [3]. Reprogrammable logic can be

utilized to accelerate critical paths and reduce power

consumption for a wide range of signal processing

algorithms and communication functions required by sensor

platforms [4]. Reconfigurable sensor platforms offer

flexibility and cost-effective customization before

deployment and provide for the possibility of run-time

reconfiguration. Furthermore, constructing sensor platforms

with programmable logic and a customizable front-end may

lower costs, as multiple target applications are able to share a

common wireless platform.

In this paper, we introduce a REWISE framework that

allows dynamic reconfiguration of sensor nodes based on a

variety of situations, from changes in mission goals, needed

upgrades, and bug-fixes, to accommodating environmental

changes, through initiation from the base or other nodes in

the network. The proposed framework can also be used as a

“wireless JTAG” offering simultaneous hardware

programming of multiple homogenous reconfigurable

platforms. This is significant in systems where the hardware

is not easily accessible or is expensive to access, resulting in

more efficient maintenance cycles and reduced costs.

FPGA devices consist of an array of computational

elements known as logic blocks, a set of routing elements,

and a set of input/output cells, whose functionality is

determined from configuration bits [5]. While the standard

means for delivering configuration bits to the target FPGA is

through a wired JTAG connection, other methods exist. One

example describes a method for remotely reconfiguring

FPGAs through the Internet [6]. This Internet

Reconfigurable Logic (IRL) system includes a design

Runtime Hardware Reconfiguration in Wireless Sensor Networks

Joel L. Wilder, Vladimir Uzelac, Aleksandar Milenković, and Emil Jovanov

R

containing an embedded processor and an FPGA,

implementing some custom hardware function. New designs

can be implemented on a host computer, and the

reconfiguration payload can then be delivered to the target

computer through a TCP/IP network. A second example is

illustrated by Hulme et al, where they describe a

configurable fault-tolerant processor (CFTP) that is used for

spacecraft onboard processing [7]. CFTP is intended to

evaluate, in various orbital regimes, different reconfiguration

system-on-chip designs, such as a triple-mode redundancy,

fault-tolerant circuit aimed at overcoming single-event

upsets. In this example, the communication medium for

passing the new FPGA configuration file is through the

Internet, to a ground station, where the data is then

transmitted to the orbiting satellite.

The remainder of the paper is organized as follows.

Section 2 introduces the case for real-time reconfiguration

through wireless sensor networks. Section 3 describes the

hardware components of the wireless sensor nodes used in

the REWISE testbed, and Section 4 describes the software

modules and initial results of the field tests. Section 5

concludes the paper.

II. THE CASE FOR REWISE

This section of the paper describes an example REWISE

system that uses reconfiguration as a design parameter. This

system, as shown in Figure 1, is deployed in a military

setting, behind enemy lines, where access is inherently

limited, and it can be used to monitor types of traffic on local

roads, capture vehicle signatures, obtain video or audio data,

detect radiation sources, or monitor environmental

conditions. Furthermore, signal processing of acquired

sensor data is performed in order to provide data points to a

base station and/or a command center. These data points can

then be used to make strategic decisions for maintaining

security in areas that are under surveillance.

Base
Station

Sensors
layer

Gateway
layer

Command
Center

Fig. 1. A multi-tier reconfigurable wireless sensor network for surveillance

and intelligent signal processing.

The system is made up of three different tiers. Since

wireless communication is a fairly expensive operation in

terms of power and time, this framework uses local

hardware/software repositories at each layer to facilitate

reconfiguration. The upper layers keep track of

hardware/software configurations at the lower layers, and a

command can be sent either to initiate reconfiguration from a

local repository, or if the needed configuration is not present,

begin downloading the required hardware/software context.

The sensor layer is at the lowest tier. A node at this level

is comprised of a microprocessor, an FPGA,

memory/storage, radio, an energy source, and an array of

sensors capable of many different functions, such as

measuring magnetic field, radiation, vibration, temperature,

humidity, or gathering audio or video data. The number of

nodes at the sensors layer could number into the thousands,

and the sensor nodes should be so small that they can be

embedded in the environment and not easily detected. As

such, these nodes will have limited resources, requiring low-

power operation. Since these nodes are resource-limited, the

onboard storage can hold different hardware/software

configuration data, which can be used to reprogram the

FPGA as mission goals change (i.e., alter the function of a

node from environmental monitoring to vehicle detection).

Each sensor node will gather data, perform basic pre-

processing, and then transmit data up to the gateway layer.

At the gateway layer, devices have more processing,

storage, communication, and energy resources than at the

sensors layer. These devices can be integrated with an

available power grid, but this is not a requirement. A

gateway node is comprised of a microprocessor,

memory/storage, a radio, and possibly an FPGA, depending

on processing needs. Gateway nodes could number into the

hundreds, depending on the quantity of sensor nodes, and are

responsible for establishing the communication network for

the system. A gateway node receives data from the cluster of

sensors they control and synergistically processes this data to

make intelligent decisions based on mission goals. Each

node at this level maintains a hardware/software repository

with multiple FPGA configurations. Based on environmental

conditions, the current mission, or the results of data

processing, a gateway node can initiate reconfiguration at the

sensors layer or download new hardware/software contexts

to sensor nodes in preparation for near-term needs.

The next level up from the gateway layer is a centralized

base station. The base station will have even more resources

than nodes at the gateway layer and will serve as a means for

providing global interface and control to the system. The

base station can be under human-control or operate

autonomously. All data from gateway nodes is gathered and

processed at the base station for making decisions regarding

mission goals. The base station can be used for initiating

reconfiguration at the gateway layer or for downloading new

hardware/software contexts to gateway nodes in preparation

for future needs.

Finally, depending on the deployment scenario of the

proposed system – perhaps the REWISE system is deployed

overseas – a command center can be used to correspond with

each base station through satellite communication. This

would allow another means for communicating changing

mission goals, and new hardware/software designs could be

developed in a friendlier environment and then transferred to

the system in the field. Furthermore, if the base station

needed to be abandoned, then the command center would

provide another level of control for initiating

reconfigurations or modifying system functionality.

III. HARDWARE DESIGN

The REWISE testbed that demonstrates reconfiguration

through a wireless sensor network is shown in Figure 2. It

consists of a base station, which is connected to a transmit

mote through a serial link, a number of relay motes, and a

receive mote connected to the reconfigurable sensor node

platform through JTAG. The base station includes a

software tool for initiating download of the configuration

(XSVF file). The XSVF file is streamed serially to the

transmit mote, and because of the limited resources of the

hardware along the communication path, a flow-control

scheme is used in order to direct the data reliably to the

reconfigurable platform. The radio transceivers facilitating

the wireless communication employ a networking protocol

based on IEEE 802.15.4. Due to the limited range of this

networking scheme, relay motes may be needed in order to

traverse this path from source to destination. These relay

motes will be a part of the wireless sensor network platform,

and will typically employ some sensing function in addition

to packet forwarding. Finally, a receive mote is connected

through JTAG to the reconfigurable platform. The receive

mote takes the configuration data and through a software

JTAG module provides programming control of the

reconfigurable device with the received XSVF file.

Base station (PC)

Transmit
Mote

...

Relay
Mote

Receive
Mote

Reconfigurable

Platform

JTAG

Serial

Link ...

Base station (PC)

Transmit
Mote

...

Relay
Mote

Receive
Mote

Reconfigurable

Platform

JTAG

Serial

Link ...

 Fig. 2. The REWISE testbed.

All three types of wireless motes are based on a common

platform that includes a Texas Instruments MSP430

microcontroller and a Chipcon CC2420 radio transceiver for

wireless communication. The MSP430 includes a UART

peripheral for communication with the base station and a

synchronous peripheral interface (SPI) module for handling

communication with the CC2420. The CC2420 implements

the IEEE 802.15.4 networking protocol and achieves transfer

rates of up to 250 kilobits per second.

On the transmit mote (Figure 3), the MSP430 uses direct

memory access (DMA) transfer in order to efficiently pass

data from the UART peripheral into memory buffers. These

buffers constitute a buffering scheme that is used to

differentiate between the two tasks of receiving data from the

base station and transmitting data downstream through the

radio. The MSP430 also handles the flow control for

passing data successfully between the base station and the

downstream motes. This is necessary because there is not

enough onboard storage to allow transfer of the entire XSVF

file at once, but it must be divided into smaller blocks.

Chipcon
CC2420

Power Supply

TI MSP430

UART DMA

......

......

Buffer 0

Buffer 1
Send

Packets
CC2420

MSP430

RS232

Fig. 3. Transmit mote diagram.

The receive mote (Figure 4) is connected to a

reconfigurable wireless intelligent platform, which is used to

both take readings and initiate control over the surrounding

environment through sensors and actuators. The MSP430 on

the receive mote handles the flow control responsibilities of

the XSVF data stream, receiving the data from upstream

nodes. It also implements the JTAG protocol for

reprogramming the FPGA device.

Transducers

Signal

Conditioning
Circuitry

Analog-to-Digital
Converter

Power
Supply

Sensor Probes

Digital-to-Analog
Converter

Signal

Conditioning
Circuitry

Actuators
FPGA

Configuration

Memory

Chipcon
CC2420

TI MSP430

Fig. 4. Reconfigurable wireless intelligent platform with receive mote.

IV. SOFTWARE DESIGN

The software design in the REWISE testbed includes the

modules for the base station, the transmit mote, and the

receive mote. We start by describing the data flow that

begins at the base station. This is a custom application

running on a personal computer (i.e., the base station) and is

responsible for initiating the reconfiguration process. This

application, as described in Figure 5, takes a configuration

file, which was created by design tools targeting a

reprogrammable logic device and is in the compressed

XSVF file format, and forwards this data serially on a byte-

by-byte basis to the transmit mote. The transmit mote

algorithm, as depicted in Figure 6, receives the byte sent

from the base station into its MSP430 UART peripheral and

subsequently feeds it into one of two memory buffers

(henceforth referred to as the IN/OUT buffers) via a direct-

memory access module. This process continues until one

block of data (1 kB) has been sent.

Wait for XON

from TxMote

Read & send a byte

from XSVF file to UART

End of file ?

1KB sent ?

END

XSVF File

Custom Application

XSVF File

Custom ApplicationCustom Application

NO

NO

Fig. 5. Base station software application for initiating reconfiguration.

Wait for XON from RxMote

& IN buffer to be ready

Switch IN/OUT buffers
Send XON to serial port

Prepare a radio packet (sN=0)

ACK received?

End of

IN buffer

Send a radio packet

Wait for ACK

Prepare a radio packet (sN++)

Radio Interface ISR

Read and decode

radio packet

XON received

ACK received

Send data to the

Base Station
YES

NO

Fig. 6. Transmit mote algorithm.

After sending the first block of data, the base station

application halts and waits to receive a transmit-on character

(XON) from the transmit mote. Having received 1 kB of

data from the base station, the transmit mote waits to receive

an XON character from the receive mote. Upon receiving

this response from the receive mote, the transmit mote

switches its IN/OUT buffers and sends an XON character to

the base station, requesting more data. While the base

station begins sending data to the IN buffer in the transmit

mote, 64 bytes of data from the OUT buffer are sent to the

CC2420 radio transceiver for wireless transmission. These

two tasks can occur simultaneously because the transfer of

data into the memory buffer occurs via DMA, which is

separate from processor control, allowing the processor to

transfer data to the CC2420. The radio sends this packet of

data and waits for a given period of time for an

acknowledgment from a downstream mote (either a relay

mote or a receive mote, as described in the REWISE

testbed). If the acknowledgment is not received, then the

radio packet is resent. If the acknowledgement is

successfully received, the packet sequence number (sN) is

incremented and the next 64 bytes from the OUT buffer is

packetized and transferred to the radio in preparation for

wireless transmission. This process continues on the

transmit mote until the full kilobyte of data is sent from the

OUT buffer.

 The software application for the receive mote is

provided in Figure 7. The receive mote gathers the packets

that are sent from the transmit mote, as described in the

previous paragraph.

Wait for IN buffer to be ready

Switch IN/OUT buffers
Send XON to TxMote

Start retry timer

End of
OUT buffer?

Read byte from buffer
Generate command

Send to JTAG

Radio Interface ISR

Read and decode

radio packet

XON ACK
received

Data packet received

Send ACK

Send programming

status to TxMote

sN == (sNold+1)?

Pointer ++

End of
file?

Timer ISR

Send XON

Start retry timer

XON ACK

RX?

NO

NO

NO

YES

Fig. 7. Receive mote software algorithm.

Upon receiving a packet into the radio, it checks whether this

is a data packet, and if so, sends the acknowledgment for that

packet. At this point, the packet is decoded in order to

ensure that it contains new data. This is done by checking

the sequence number and making sure that this value is the

same as the previously received packet’s sequence number

plus one. If that is the case, a pointer is incremented, and the

data is transferred to one of two memory buffers (henceforth

referred to as the IN/OUT buffers). If the new sequence

number equals the old sequence number, then the transmit

mote did not successfully receive the previous

acknowledgment and this packet is discarded, while the

acknowledgment is resent. This process will continue until

16 packets have been received, indicating that the IN buffer

is now filled with a kilobyte of data. At this point the

IN/OUT buffers are switched and an XON message is sent to

the transmit mote. This XON message has the end goal of

telling the base station that the next kilobyte of data can be

sent.

In order to ensure that the configuration data stream flow

is not cut off, the receive mote requires an acknowledgment

of this XON message from the transmit mote. This is

accomplished through a “retry timer”. The retry timer is

started as soon as the XON message is sent. Once the timer

reaches a certain count, the interrupt service routine is

entered and a check is performed to see if the XON message

has been acknowledged. If it has not been acknowledged,

then the XON message is resent in order to not cutoff the

flow of data, and the retry timer is started again.

After the IN/OUT buffers have been switched, data begins

to be read from the OUT buffer and sent to the JTAG

configuration software module, which then controls the

emulated JTAG lines on the MSP430 for the purpose of

configuring the reprogrammable device. This JTAG module

reads the instructions and arguments from the XSVF file,

operating on successive bytes from the OUT buffer until the

end is reached. Subsequently, the application returns to the

state of waiting for the IN buffer to fill, and then the process

is repeated until the end of the XSVF file is reached. At this

point, the JTAG module provides notification for whether

the FPGA was successfully reconfigured. This status is

communicated to the transmit mote through the radio, which

passes these results to the base station.

 With the MSP430 processor on the receive node

running at 8 MHz, the MSP430 processor on the transmit

node running at 6 MHz, and the RS232 port on the base

station configured for 115.2 kbits/sec, initial test results

based on the REWISE testbed show that it takes 6 msec to

transmit and receive acknowledgment of one packet

containing 64 bytes worth of data. Thus, it takes 96 msec to

transmit 16 packets or 1kB worth of data. This corresponds

to a bandwidth of 83 kbits/sec. With a Virtex family FPGA

needing an XSVF file containing 675 kB of configuration

data, this requires 65 seconds to transmit. Smaller XSVF

files are on the order of 45 kB, while larger devices would

need around 2.7 MB. FPGAs with a greater degree of

capability need more SRAM bits for programming. These

values indicate file sizes for complete reconfiguration of the

FPGA. However, it is now possible to only perform partial

reconfiguration of a device, so this would lower the amount

of data needed for transfer, and therefore decrease the

overall time required for reconfiguration. Factoring in the

JTAG programming time performed on the receive node,

which is done in 1kB blocks (set according to the buffer size

and available resources in the MSP430 processor) it takes

210 msec for 1kB worth of data transfer. This is the amount

of time it takes for the transmit node to send 1kB of data

until the XON message is received from the downstream

node and the next 1 kB of data is ready to be sent. Thus, the

effective bandwidth for transfer and JTAG programming

becomes 38 kbits/sec. For an XSVF file containing 675 kB

of configuration data, this requires 142 seconds to complete

the programming of the downstream reconfigurable node.

V. CONCLUSIONS

FPGAs emerge as a technology of choice that strikes an

optimal balance between processing power, energy

requirements, and flexibility. Furthermore, leveraging the

ability to reprogram FPGAs allows systems to be

reconfigured after deployment, which is valuable in terms of

handling upgrades, fixing bugs, accommodating modified

goals and environmental changes, and maintaining a large

amount of hardware in difficult-to-reach locations. To

achieve these desired goals, we have proposed a REWISE

framework, which consists of reconfigurable wireless

intelligent sensor nodes, capable of broadening the

functionality and capability of wireless sensor networks. We

have given a test case that illustrates the power of a REWISE

system, and we have described hardware and software

components of a prototype design.

For rapid prototyping, a commercially-available hardware

development board was chosen as the basis for the design.

The resource limitations of the processor and the radio led to

the design choices that were made, such as the transfer block

size that was chosen (due to packet overhead and available

memory in the MSP430), and the available speed of the

point-to-point communication scheme that was used. Higher

effective bandwidths and faster FPGA configuration times

could be achieved with a higher-performance processor and

a radio with enhanced resources. In light of these

considerations, the prototype design is a positive first-step

towards achieving a REWISE system and demonstrates the

proof of the concept.

REFERENCES

[1] D. Culler, D. Estrin, M. Srivastava, “An Overview of Sensor

Networks”, IEEE Computer, pp. 41 – 49, August 2004.

[2] D. Culler, W. Hong, “Wireless Sensor Networks”, Communications of

the ACM, Vol. 47, No. 6, pp. 30 – 33, June 2004.

[3] Xilinx, “Spartan-3L Low Power FPGA Family”, September 2005.

[4] J. Rabaey, M. Ammer, J. Silva Jr., D. Patel, S. Roundy, “PicoRadio

Supports Ad Hoc Ultra-Low Power Wireless Networking”, IEEE

Computer, Vol. 33, No. 7, pp. 42 – 48, July 2000.

[5] K. Compton, S. Hauck, “Reconfigurable Computing: A Survey of

Systems and Software”, ACM Computing Surveys, Vol. 34, No. 2,

pp. 171 – 210, June 2002.

[6] Xilinx, “Architecting Systems for Upgradability with Internet

Reconfigurable Logic”, June 2001.

[7] C.A. Hulme, H. H. Loomis, A. A. Ross, and R. Yuan, “Configurable

Fault-Tolerant Processor (CFTP) for Spacecraft Onboard Processing,”

2004 IEEE Aerospace Conference Proceedings, Vol. 4, pp. 2269 –

2276, March 2004.

