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ABSTRACT 

With more computing platforms connected to 
the Internet each day, computer system security has 
become a critical issue. One of the major security 
problems is execution of malicious injected code. In 
this paper we propose new processor extensions 
that allow execution of trusted instructions only. 
The proposed extensions verify instruction block 
signatures in run-time. Signatures are generated 
during a trusted installation process, using a 
multiple input signature register (MISR), and stored 
in an encrypted form. The coefficients of the MISR 
and the key used for signature encryption are based 
on a hidden processor key. Signature verification is 
done in the background, concurrently with program 
execution, thus reducing negative impact on 
performance. The preliminary results indicate that 
the proposed processor extensions will prevent 
execution of any unauthorized code at a relatively 
small increase in system complexity and execution 
time. 

1. INTRODUCTION 

Most of today’s computers are connected to 
the Internet or at least to a local network, exposing 
system vulnerabilities to potential attackers. 
Consequently, computer security is becoming a 
critical issue, and current trends in hardware and 
software will bring it even more into focus. 
Following Moore’s law, in the next five years we 
can expect high-end processors with one billion 
transistors, and proliferation of Internet-enabled, 
low-end embedded systems, ranging from home 
appliances, cars, and sensor networks to personal 
health monitoring devices. Increased complexity of 
high-end systems and the large-scale deployment 
and diversity of low-end systems make it difficult to 
uncover system vulnerabilities. In addition, 
exhaustive testing is virtually impossible as 
software grows in size and complexity and time-to-
market decreases.  

One of the major security problems is 
execution of unauthorized and potentially malicious 
code. During execution of vulnerable programs an 
attacker is able to inject the code into a memory 
structure, for example a buffer, and then to change 
the code pointer, such as the return value on the 
stack [1]. One such example is the so-called “stack 
smashing”: an attacker exploits a possibility for a 
buffer overflow in the program by sending more 
data than the buffer can hold, overwriting the valid 
return address on the stack with the malicious code 
address and writing the malicious code also on the 
stack. When this code is executed, it will have the 
same privileges as the attacked program. Various 
other examples of attacks exist, such as heap 
overflow and format string attacks [2]. 

The ever-increasing available area on a chip so 
far has predominantly been used for faster 
execution. With more complex software having 
potentially a larger number of defects, increased 
number of attacks, and proliferation of networked 
computing platforms, we believe that dedicated 
processor resources should be used to provide more 
secure execution. Hardware-supported techniques 
have potential to provide secure program execution 
with lower overhead in performance, cost, and 
power consumption than techniques relying solely 
on software. 

In this paper we propose processor extensions 
that allow execution of trusted instructions only, by 
verifying instruction block signatures in run-time. 
An instruction block signature is determined during 
secure program installation, using a multiple input 
signature register (MISR) with linear feedback 
coefficients dependent on a secret processor key. 
Only instruction blocks that caused cache misses 
need to be verified, since an instruction cache is a 
read-only structure. 

We consider three implementations of this 
mechanism: SIGT, SIGE, and SIGC. In the SIGT 
and SIGE, an atomic code unit protected by its 
signature is a basic block. In the SIGT signatures 
are stored in a signature table in a separate code 
segment [3], and in the SIGE signatures are 



embedded in the code, so that each basic block 
contains its signature. The SIGT implementation 
requires more hardware resources, such as the 
cache-like structure for storage of the most recently 
needed signatures (IBST), while the SIGE requires 
an additional opcode or reserved instruction bit for 
signatures and increases the number of cache 
misses. Both SIGE and SIGT require compiler 
support to determine the list of basic blocks. 

The SIGC is a more efficient variation of the 
SIGE: instruction block signatures are also 
embedded in the code, but the size of an instruction 
block corresponds to a cache block size, not to a 
basic block. All signatures are stored at 
predetermined addresses, so there is no need for 
additional opcode or for compiler support. 
Although both SIGE and SIGC techniques store 
instruction block signatures in main memory and 
verify them at each instruction cache miss, in the 
SIGC signatures are not stored in the cache, since 
they are not needed after successful verification. 

The potential of proposed techniques is 
evaluated using SPEC CPU2000 benchmarks. Most 
results indicate a minor increase in the execution 
time, at a relatively modest hardware cost. For the 
SIGT, very few applications have more than 1000 
IBST misses per one million instructions, for as low 
as 64 IBST entries. A convenient hash function can 
minimize the number of memory accesses on an 
IBST miss. For a reasonable instruction cache size 
of 32K, the number of misses is relatively low, so 
the increased code size in the SIGE does not 
significantly increase the absolute number of cache 
misses for most considered applications. The 
increase in the number of cache misses can be 
completely avoided with the SIGC, with very small 
increase in IPC, up to 0.075.  

We believe that the overhead of the 
architectural extensions is a small price to pay for 
added security. Instead of the vulnerability-specific 
solutions, the proposed implementations offer 
protection from a whole class of vulnerabilities that 
allow execution of a malicious code. The proposed 
extensions are cost-effective, do not require 
significant processor changes and changes in legacy 
source code. In addition, encrypted basic block 
signatures protect the code from software 
tampering, and enable fault detection in error-prone 
environments such as Space. 

This paper is organized as follows. Section 2 
describes the related work, and Section 3 describes 

the proposed techniques. Section 4 shows the 
preliminary results, and the last section concludes 
the paper. 

2. RELATED WORK 

One obvious but unattainable solution to the 
problem of injected code execution would be to 
write code that is not vulnerable to such attacks. 
Instead, we rely on various defense techniques that 
can be classified in two categories: those that are 
software-based and those that require some 
hardware support. The software techniques can be 
further classified into static techniques, which 
detect security defects in the code in compile time, 
and dynamic techniques, which augment the 
program to detect the execution of unauthorized 
code in run time. 

Static code analysis can find a significant 
number of security flaws and suggest where 
changes in the code should be made. However, the 
problem of static analysis is generally undecidable 
[4]. Completely automated tools for detection of 
security-related flaws must choose between precise 
but not scalable analysis and lightweight analysis 
that may produce a lot of false positives and false 
negatives. Wagner et al. proposed a tool for 
automated detection of code that might cause the 
buffer overflow [5]. The problem of buffer 
overflow is formulated as an integer constraint 
problem: a string buffer is modeled as a pair of 
integers, one for the current buffer length and 
another for the allocated size, so the tool needs to 
verify whether the maximum length is not greater 
than the allocated size. The authors admit they 
sacrificed precision in order to have a scalable tool. 
The need for precise automated analys is can be 
alleviated if the programmer adds specially 
formulated comments about constraints [6]. In a 
recent study, Dor et al. propose a tool for detection 
of all string manipulation errors, C String Static 
Verifier [7]. This tool is able to find all such errors, 
providing that the potentially vulnerable functions 
are annotated with so-called contracts, including 
pre-conditions, post-conditions, and potential side 
effects. The authors also propose algorithms for 
automated strengthening of post- and pre-
conditions, reducing the burden placed on the 
programmer, but at the cost of increased 
imprecision. 



Dynamic software techniques augment the 
code with run-time attack detection. Most of these 
techniques concentrate on one type of known 
attack, especially stack smashing. For example, the 
StackGuard compiler places a dummy value, the so-
called canary, between the return address and the 
rest of the stack [8]. A buffer overflow attack that 
overwrites the return address must also overwrite 
the canary. Hence, an attack is detected if the value 
of the canary has changed. Another approach is to 
check the range of referenced buffers in the 
function wrapper [9]. Run-time detection can be 
applied only to the critical library functions, such as 
string manipulation functions or malloc() [10] , or to 
the whole program, using modified C compilers [9, 
11, 12] or “safe dialects” of the C language [13]. 
Binary code can be directly modified [11] , but these 
techniques may have some false negatives or 
positives. Protection can also be implemented at the 
level of the operating system [14] , and there are 
several open source Linux distributions with 
security features, such as Hardened Gentoo, 
Kaladix Linux, Openwall, and RedHat [15]. One 
interesting approach is to obfuscate the addresses: 
the virtual addresses of code and data are 
randomized, making it difficult for an attacker to 
succeed [16, 17]. Each byte of the program code 
can be scrambled in load time using pseudorandom 
numbers [18]. All these techniques have a 
significant performance overhead. The overhead 
can be reduced if static analysis is used to 
determine which parts of the code should be 
protected by dynamic detection [19].  

Several researchers suggest intrusion detection 
by monitoring the system calls of a program [20-
23]. If the system call sequence for a particular 
program deviates from a normal behavior, an 
intrusion is suggested. The normal program 
behavior is obtained either by profiling, or by 
encoding the specification of expected behavior 
using a special high-level specification language. If 
profiling is used, false positives may be generated 
when a rarely used region of the code is executed. 
A specification-based approach, on the other hand, 
is as error prone as the coding process itself. 
Finally, although a malicious code is very likely to 
encompass a system call, such as the system() 
command, an attacker may potentially devise an 
attack with the same call sequence as the vulnerable 
program, or inflict some damage even without 
system calls. Another profiling approach [24] 

suggests using the values of performance 
monitoring registers to verify whether the program 
deviates from its expected behavior. 

Some of the performance overhead may be 
reduced with hardware support. Xu et al. propose an 
architectural support against the buffer overflow 
attack: a return address is saved on both the Secure 
Return Address Stack and on the “regular” stack 
[25]. An attack is detected if the two addresses do 
not match. Similar efforts expand this idea [26, 27]. 
The main drawback of these techniques is that they 
provide protection from only one type of attack. 
Techniques such as specific randomized instruction 
sets for each process may prevent code injection in 
general [28], but at the price of a significant 
increase in execution time.   

Kirovski et al. propose the Secure Program 
Execution Framework for intrusion prevention [29]. 
The underlying idea is that the executable of a 
program can have different representations that 
produce the correct program behavior. Possible 
code transformations include instruction 
scheduling, basic block reordering, branch-type 
selection, register permutation, etc. During 
installation, a transformation-invariant (TI) hash 
value is calculated for each instruction block and is 
encrypted using a secret processor key. The 
encrypted hash value defines the transformation of 
the instruction block. During execution, the verifier 
component calculates the TI hash for every 
instruction block that is fetched after an instruction 
cache miss. It then encrypts the hashed value, and 
verifies whether the obtained transformation is 
equal to the actual code. If there is no match, an 
abort signal is sent to the processor. This solution 
successfully prevents execution of injected code, 
but at the cost of relatively significant performance 
overhead. It must be customized for different 
platforms and a particular instruction set. 

An interesting approach is to tag all data 
coming from “the outside world” (e.g., I/O 
channels) as spurious and to prevent execution of 
any control transfer instruction if the target address 
depends on spurious data [30]. This approach may 
generate some false positives, since the target 
address may be input-dependant, for example in 
switch constructs. Generally, input data can 
propagate to a target address through a series of 
calculations, so this technique requires a relatively 
complex data dependency analysis. 



Signatures of instruction blocks of various 
granularity are frequently used in fault-tolerant 
computing [31]. Joseph and Avizienis proposed the 
idea of a virus protection technique using an 
extended Program Flow Monitor -- an error 
detection mechanism that verifies the signature of 
the sequence of instructions without any branch 
instructions [32]. However, the paper does not 
include any implementation details or evaluation.  

3. PROCESSOR EXTENSIONS FOR 
TRUSTED INSTRUCTION EXECUTION 

All three approaches introduce relatively 
modest changes in processor organization. We will 
first describe the details of the SIGT mechanism, 
and then the differences between the SIGT and the 
other two proposed processor extensions.  

3. 1. SIGT Implementation 
Processor and Memory Segment 

Modifications. A secure processor includes a 
dedicated resource for signature verification, the 
Instruction Block Signature Verification Unit 
(IBSVU) (Figure 1), dedicated registers, and 
additional control logic. The processor also includes 
the Instruction Block Signature Table (IBST). The 
IBST is a cache-like structure that keeps relevant 
information about the most recently needed 
instruction block signatures. The signature 
information for all instruction blocks is stored in the 
IBST_M table in main memory. 

Compilation and Program Installation. The 
program compilation process generates a list of all 
basic blocks in the code and appends it to the 
executable (Figure 1). Disassembling can extract 
this list from the executable with more than 99% 
accuracy [11], but some basic blocks may not be 
easily recognized. During secure installation, the 
code is augmented with encrypted instruction block 
signatures, where a signature is a function of the 
instruction words in the block. Although different 
functions can be used for the signature, we propose 
the use of a multiple input signature register 
(MISR). The signature of a block is calculated with 
the instruction words as consecutive inputs to the 
MISR. The calculated signature is then encrypted 
using a processor key hidden in hardware, which is 
unique to each processor, and some symmetric 
secure encryption algorithm such as AES 
(Advanced Encryption Standard). For each new 
block, the MISR is initialized to the same value. 

The MISR linear feedback coefficients are also 
based on the hardware encryption key. Signatures 
are stored in a separate code segment: the 
instruction block signature table in memory 
(IBST_M). Each entry in the IBST_M includes the 
IB.SA (Instruction Block Starting Address Offset) 
and IB.S (Instruction Block Signature) fields. The 
IB.SA is the offset of the address of the first 
instruction in the basic block from the beginning of 
the code. This field is used as a key for accessing 
the IBST_M.  
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Figure 1 SIGT: Compilation and installation, 

and memory and processor modifications  
Legend: MMU – Memory Management Unit, IF – 
Instruction Fetch Unit, FPUs – Floating Point Unit(s), 
Control – Control Unit, L1D – Level 1 Data Cache,  L1I 
– Level1 Instruction Cache, IBST – Instruction Block 
Signature Table, IBST_M – Instruction Block Signature 
Table in Memory, IBSVU – Instruction Block Signature 
Verification Unit. 

 
The library code deserves a special note. If a 

static library is used, only the necessary functions 
are linked with the rest of the application into one 
executable file. Basic block signatures are 
calculated for that file, so the signature table 
includes signatures of basic blocks in the used 
library functions. Each dynamically linked library 
(DLL) has its own signature table, and the pointers 



to that table can be loaded at load time, so all code 
can be safely verified. 

Program Loading. Signatures can be 
decrypted during program loading from a hard disk 
to memory, or when a particular signature is fetched 
from memory during program execution. If the 
IBST_M is decrypted at load time, the decryption 
overhead is concentrated at the beginning of 
program execution. This approach also avoids re-
decryption of the same signature when that 
signature must be fetched in the IBST from the 
IBST_M more than once. A memory region with 
the signatures must be protected, so it is accessible 
only by the IBSVU. Otherwise, an attacker might 
inject malicious basic blocks and change the 
corresponding signatures.  

The alternative approach for signature 
decryption is to decrypt signatures in the run time, 
possibly by a dedicated hardware resource. Run-
time decryption does not require protected memory, 
since signatures in the memory are encrypted. 

A subset of signatures can be preloaded into 
the processor’s IBST, and that subset can be chosen 
in various ways: by spatial locality, by applying 
profiling information, or randomly. Another option 
is not to preload the IBST, but to fill it dynamically, 
just like a regular cache structure.  

Program Execution. To reduce the number of 
verifications, we can optionally perform verification 
only for the last basic block in an instruction stream 
(a dynamic basic block), since any injected code 
will most likely change the control flow. Without 
loss of generality, we consider a case where the size 
of all instructions is 4 bytes, and the mechanism 

verifies the signature of the last basic block in an 
instruction stream. Figure 2 shows a block scheme 
of program flow monitoring. 

When the instruction decoder recognizes the 
end of a basic block, i.e., a control-flow changing 
instruction, it asserts the signal NewIB (New 
Instruction Block) for instruction that follows. The 
offset of the new basic block from the beginning of 
the code is calculated by deducting the value in the 
PC register from the value stored in the SA 
(program Starting Address) register, and stored in 
the CB.SA (Current Block Starting Address) 
register. The signature for the current basic block is 
calculated by using values of instruction words 
stored in the IR register, and the same MISR 
coefficients that are used for signature generation. 
The MISR is reset at the start of each new basic 
block. The current basic block signature is stored in 
the CB.S (Current Block Signature) register.  

The IBSVU needs to verify a basic block 
signature only if that block caused at least one 
instruction cache miss (signal ICacheMiss), and 
when that basic block was the last block in an 
instruction stream (signal NewStream). The end of 
the current instruction stream is detected by 
comparison of the PC (Program Counter) and PPC 
(Previous Program Counter) registers, where the 
PPC is an additional register saving the value of the 
previous PC. 

If both the NewStream and ICacheMiss signals 
are asserted, current values of the CB registers 
(CB.SA and CB.S) are transferred to the 
corresponding LB (Last Block) registers in the 
IBSVU.

NewStream

PPCPPC PCPC

PC-PPC = 4? CB.SACB.SA
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Figure 2 SIGT program flow monitoring with fixed instruction size  

Legend: PC – Program Counter, PPC – Previous Program Counter, IR – Instruction Register, SA- Starting Address, IBSVU 
- Instruction Block Signature Verification Unit, CB.S/LB.S – Current Block/Last Block Signature Register, CB.SA/LB.SA 
Current Block/Last Block Starting Address Offset. Control signals are shown in dotted lines: ICacheMiss – indication of an 
instruction cache miss during basic block execution, NewIB – control signal from the decoder, indicating the beginning of a 
new basic block, NewStream – indication of the beginning of the new stream. 



The CB registers then continue to capture the 
relevant information of the currently executed basic 
block, while concurrently the IBSVU is verifying the 
signature of the last basic block in the previous 
stream by comparing it to the corresponding data in 
the IBST. The signature can be captured in parallel 
with the execution pipeline stage for in-order 
execution, and after the decode stage for out-of-order 
execution. 

The IBST lookup results in a miss or a hit. In the 
case of a signature hit the executed instruction stream 
has no malicious code. A signature miss can be an 
infrequently executed basic block or injected code, so 
the IBST_M must be searched for the signature with 
the matching starting address offset. Since an 
IBST_M does not change for a given program, the 
secure installation process may find a near-perfect 
hash function for a particular application, or choose 
the most suitable hash function from a predefined set 
of functions. The information about the chosen hash 
function can be kept in the program header in an 
encrypted form. If there is a corresponding entry in 
the IBST_M and there is a signature match, the 
instruction stream is not injected: the execution 
continues as usual, and the IBST is updated. 
Otherwise, it means that a malicious instruction 
stream has been executed, so the IBSVU traps the 
operating system. The operating system then halts the 
program execution and audits the intrusion event.  

3. 2. SIGE implementation 
Processor and Memory Segment Modifications. 

The SIGE requires less complex hardware resources 
than the SIGT, since there is no IBST table. Since the 
signatures are embedded in the code, there is no 
additional memory segment for signatures. 

Compilation and Program Installation. 
Similarly to the SIGT, during secure installation 
signatures are generated using a list of basic blocks 
prepared by the compiler. The signatures are 
embedded in the code, with each signature placed 
before the first instruction in the corresponding 
instruction block (Figure 3). The instruction decoder 
must be able to tell the difference between the 
signature and a regular instruction. This can be 
achieved by reserving one instruction bit for the 
signature flag, or by using a special opcode that 
indicates to the decoder that the following instruction 
is the signature. 

Program Loading . Signatures are loaded in 
main memory together with the code, and decrypted 

when they are fetched from main memory to the 
cache. 
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Figure 3 SIGE compilation and Installation 

Program Execution. The verification process is 
similar to the SIGT: when current basic block is the 
last one in an instruction stream and caused at least 
one instruction cache miss, the signature embedded 
in the block is compared to the signature calculated 
during basic block execution. 

3. 3. SIGC implementation 
Processor and Memory Segment Modifications. 

In the SIGC, the IBSVU is a part of the cache 
controller (Figure 5), and the processor requires no 
changes. The organization of memory segments is 
not modified either.  

Compilation and Program Installation. The 
SIGC does not require any changes in the 
compilation process, so it is even more suitable for 
legacy code. The signatures are calculated, encrypted, 
and inserted in the code during program installation, 
for each instruction block that corresponds to the size 
of the cache block in a given architecture. If the last 
instruction block is shorter than a cache block, it is 
padded with randomly chosen instructions that do not 
change the state of the processor. Since all instruction 
blocks in the SIGC have the same size, there is no 
need for the change of the ISA.   

Original 
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Figure 4 SIGC Installation 

Program Loading. A signature of an instruction 
block is decrypted when that block is fetched from 
main memory. 

Program Execution. On a cache miss, the 
corresponding block is fetched from the memory; the 
signature is stored in the signature register, and the 
instruction block is stored in the cache without its 
signature. Hence, there will be no additional cache 



misses due to embedded signatures as in the SIGE, 
although we can expect a slight increase in the 
number of page misses. As an encrypted signature 
precedes its instruction block, it is fetched first and 
decrypted concurrently with the transfer of the rest of 
the block from memory. The calculation of the actual 
signature using a MISR is also overlapped with the 
memory transfer, so the whole verification process 
can be done in the background. The SIGC includes a 
simple mechanism for translation of program 
addresses into domain of addresses with embedded 
signatures. 
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Figure 5 SIGC mechanism 

4. PRELIMINARY RESULTS 

Preliminary evaluation has been performed to 
assess the performance overhead. Due to the ever-
increasing processor-memory speed gap, the memory 
access overhead will be the predominant overhead 
component. To assess this overhead, we measured the 
number of IBST misses for the SIGT, and the number 
of additional instruction cache misses for the SIGE. 
The miss rates are measured using an originally 
developed functional trace-driven simulator and 
SPEC CPU2000 traces collected for Alpha 
architecture [33]. The overhead of the SIGC 
mechanism is evaluated using a modified 
SimpleScalar simulator [34]: we take into account the 
latency due to additional memory accesses for  
signature fetching and to TLB misses due to address 
translation. 

We use 10 integer (INT) and 12 floating-point 
(FP) applications (Table 1). Each application is run in 
two segments for the reference data input: the first 
two billion instructions (F2B), and the two billion 
instructions after skipping 50 billion (M2B). The 
IBST_M and the code with embedded signatures are 
generated using the complete code, and not only the 

executed basic blocks. The instruction cache size is 
fixed for all experiments, with 64B lines, 4 ways, 128 
sets, and the least recently used replacement policy 
(LRU). 

Table 1 shows the number of unique basic 
blocks executed in each traced segment (F2B/M2B), 
executed in complete benchmark execution (All), and 
identified in the code (Code). The results in the table 
indicate feasibility of the SIGT, as the number of 
executed basic blocks is relatively small and as they 
exhibit strong temporal locality. The code expansion 
for all three mechanisms can be calculated as: 

)/( izeSignatureSNumBlocksCodeSizeExpansion ×= , 
where NumBlocks is the number of basic blocks in 
the code for SIGT and SIGE and the code size 
divided by the size of a cache block for SIGC. Our 
preliminary evaluation does not include effects of the 
increased code size in main memory. In the future we 
plan to simulate context switches between several 
applications and additional hard disk I/O due to the 
increased code size. 

Table 1 Unique basic blocks and code size  

 Unique basic blocks Code Size 
[B] 

 F2B M2B All Code  
164.gzip 872 327 1480 8660 212992 
176.gcc 29133 25777 32493 98478 1990656 
181.mcf 981 327 1399 7401 163840 
186.crafty 4161 1692 4801 17761 442368 
197.parser 4193 4145 5597 14663 319488 
252.eon 3885 675 4298 24285 794624 
253.perlbmk 10425 7542 12290 43294 876544 
254.gap 3580 542 3740 47365 933888 
255.vortex 8086 3823 11765 33336 819200 
300.twolf 2842 1195 5425 17931 450560 

FP      
168.wupwise 2132 312 2435 32989 819200 
171.swim 2268 793 2510 32759 819200 
172.mgrid 1909 1082 2140 32312 802816 
177.mesa 2177 763 2452 33757 917504 
178.galgel 2518 166 5797 41805 1048576 
179.art 549 502 1222 9600 237568 
183.equake 668 395 1629 9436 253952 
188.ammp 1100 566 2032 19917 385024 
189.lucas 1318 458 1833 33246 851968 
191.fma3d 2447 1082 5820 59790 1867776 
200.sixtrack 4325 144 7859 61938 2596864 
301.appsi 2439 636 3867 35393 1114112 



The SIGT and SIGE experiments use a 32-bit 
signature. An attacker may have knowledge only  
about the program code, and not about the signatures, 
so it is very difficult to discover the MISR function 
by cryptanalysis [28]. For example, a brute force 
buffer overflow attack would need to overflow the 
buffer up to 232 times to find a basic block with a 
signature that is accepted by the system. 
Nevertheless, if more security is needed, we may use 
longer signatures or a different MISR function for 
each installed program, with the corresponding MISR 
coefficients stored in the program header in an 
encrypted form. Since SIGC is simulated in more 
details, we use a more realistic signature size of 128 
bits. 

Figure 6 shows the number of IBST misses per 
one million executed instructions (SIGT). Each IBST 
miss causes additional memory accesses for the 
IBST_M search. The simulated IBST is filled 
dynamically, has LRU replacement policy, and two 
ways; one IBST block contains one signature. We 
simulated the IBST that can hold 32, 64, 128, 256 
and 512 signatures. Only three INT applications in 
the F2B segment have over 1000 misses per 1M 
instructions for all simulated sizes -- 255.vortex, 
176.gcc, and 253.perlbmk  -- and of the FP 
applications only 191.fma3d in the F2B segment has 
over 1000 misses, and only for the smallest simulated 
sizes. On average, the number of IBST misses is 
smaller in the M2B segment than in the F2B, due to 
the smaller number of cache misses in the M2B, 
when most applications enter the main program loop. 
The results indicate that a very small IBST size is 
enough for most simulated applications. We also 
evaluated the influence of IBST associativity to the 
number of misses for an IBST with 128 entries, and 
direct mapped organization, 2, 4, and 8 ways. Most 
applications do not significantly benefit from more 
than two ways. 

In the SIGE the signatures are fetched from 
memory into the instruction cache together with the 
regular instructions, so there are no extra memory 
accesses for signature verification, but the overall 
number of cache misses increases. To assess the 
SIGE potential, we compared the number of 
instruction cache misses per one million instructions 
for the original code and for the code with embedded 
signatures (Figure 7).  
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Figure 6 IBST misses per 1M instructions  

Since most applications have relatively few 
instruction cache misses, the SIGE should not 
significantly influence overall program performance. 
For one application in the F2B segment, 183.equake, 
the number of cache misses is even reduced, due to 
the better alignment of some portions of the code. 
However, for some applications the increase in the 
number of cache misses can be considerable: for 
example, for 252.eon this number increases for one 



order of magnitude, from about 300 to about 4000 
cache misses per one million instructions. 
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Figure 7 Instruction cache misses for SIGE vs. 

code without embedded signatures 

The increase in the number of cache misses is 
avoided with the SIGC, since signatures are stripped 
before an instruction block is stored in the cache. The 
overhead of the SIGC is evaluated by comparing IPC 
(instructions per cycle) measure for original code and 
the code with embedded signatures. All sim-outorder 
simulator parameters except cache sizes have default 
values. We simulated two instruction cache L1 sizes: 
32K (64B line, 4 ways, LRU) and 4K (32B line, 
direct mapped). The L1 data cache is the same as the 
instruction cache, and there is no L2 cache. Figure 8 
shows the results for the F2B segment. Since a 
signature is stored at the beginning of an instruction 
block, we assume that signature decryption can be 
overlapped with memory accesses for the rest of the 
block. For simulated architectures the SIGC does not 
significantly change the IPC: up to 0.075 for 4K 
cache, and up to 0.056 for 32K cache. 
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Figure 8 IPC increase with SIGC 

5. CONCLUSION 

The contributions of this paper are as follows: 
- Proposal of a cost-effective architecture for 

trusted program execution based on the verification 
of the instruction block signatures. We believe that 
processor extensions for verification of instruction 
block signatures can be an efficient and inexpensive 
defense against attacks injecting malicious code. 

- Three implementations of the proposed 
extensions, with signatures stored in the separate 
code section (SIGT), embedded in the code (SIGE), 
embedded in the code but not stored in the cache 
(SIGC). The proposed trusted execution mechanism 
can be applied to other purposes, such as fault-
tolerant execution, virus protection, and protection 
from software tampering. 

- Initial performance evaluation, based on the 
functional simulation of execution of SPEC 
CPU2000 benchmarks. The results suggest that the 
proposed implementations do not impose significant 
burden on the overall performance. In the SIGT the 
number of IBST misses is relatively small, even for 
the smallest simulated IBST: for 16 sets and 2 ways, 
the number of IBST misses per one million 
instructions varies from less than 1 to 5700. In the 
SIGC, simulated with cycle -by-cycle simulator, the 
increase in the IPC ranges from 0 to 0.075. 

Future work will include cycle -by-cycle 
simulation in the design space of current and future 
microprocessors, the effects of signature decryption 
and context switching, and power analysis. Different 
IBST_M access functions should also be explored, as 
well as whether profiling information can reduce the 
number of IBST misses. We also plan to evaluate a 
variant of the SIGT, where the size of an instruction 
block is equal to the cache block size. 
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