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Abstract—In engineering wireless body area network platforms 
it is crucial to meet performance goals at minimal hardware cost 
and energy required. This paper describes a design flow that 
relies on processor customization of Tensilica’s Xtensa processor 
cores. We introduce custom instructions to expedite wavelet 
processing used in an ECG R-peak detection application. We 
explore several instruction extensions and show that customized 
processor cores significantly reduce program execution time and 
energy requirements for this application. 

 

I. INTRODUCTION 
Recent technological advances in sensors, low-power 

integrated circuits, and wireless communications have enabled 
the design of low-cost, miniature, lightweight, and intelligent 
physiological sensor nodes. These nodes, capable of sensing, 
processing, and communicating one or more vital signs, can 
be seamlessly integrated into wireless body area networks 
(WBANs) for wellness or health monitoring. The WBANs 
integrated with cloud-based medical services through the 
Internet are well-positioned to revolutionize the way people 
manage their health and wellness, by allowing inexpensive, 
non-invasive, continuous, ambulatory health or wellness 
monitoring, with almost real-time updates of medical records 
[1]. Such systems are a key technology in helping transition 
toward more proactive and affordable healthcare that focus on 
managing wellness rather than illness, preventive care, and 
early detection of disease.  

System designers of wearable health monitoring systems 
face a number of challenges as these platforms must reliably 
operate for extended periods of time, under stringent resource 
constraints in energy, communication bandwidth, memory 
capacity, and processing power. Early prototypes of WBAN 
platforms rely on off-the-shelf embedded processors that are 
designed to support a broad range of applications, and they 
may not be well-suited for physiological monitoring 
applications. On the other side, recent advances in engineering 
complex systems-on-the-chip [2] allow designers to rapidly 
explore the design space and customize embedded processor 

cores to meet performance requirements and design 
constraints. 

In this paper we describe a design flow that allows rapid 
design space exploration and hardware customization by 
utilizing Tensilica’s Xtensa design environment [3]. As an 
example WBAN application we use an R-peak detection. This 
application processes an input electrocardiogram signal (ECG) 
to determine time interval between two heart beats using a 
discrete wavelet transform. We start with the algorithm 
development and tuning in Matlab, and port this application to 
Tensilica’s Xtensa processing core. The next step in the design 
flow is application profiling to identify critical sections in the 
code. To accelerate critical sections and reduce the total 
energy consumed we introduce several custom instructions 
that are specifically designed for this application and integrate 
them into the Xtensa instruction set. We consider several 
design alternatives that differ in software implementation and 
hardware complexity. These candidate designs are then 
evaluated in a multi-dimensional design space that 
encompasses processor performance, hardware complexity, 
code size, and power consumption. 

The results of our experimental evaluation confirm that 
instruction set customization can significantly improve 
performance and reduce energy of the R-peak detection 
algorithm at the cost of slightly increased hardware 
complexity. For example, our best performing configuration 
with instructions that expedite wavelet computation speeds up 
the R-peak detection 5.7 times (19 times in the wavelet 
transform), reduces code size for almost 2 times, and requires 
almost 4.5 times less energy relative to the base configuration. 
We believe that hardware customization can provide similar or 
higher improvements in other WBAN applications as well.  

The rest of this paper is organized as follows. In Section II 
we describe the development and tuning of the R-peak 
detection algorithm. Section III describes five 
hardware/software configurations based on Tensilica’s Xtensa 
9 processor core, including two that support our custom 
instructions designed to expedite wavelet processing. Section 
IV gives the results of our experimental evaluation that 
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compares the configurations for execution time, code size, 
energy consumption, and hardware complexity. Section V 
gives concluding remarks. 

 

II. ECG R-PEAK DETECTION ALGORITHM  
Electrocardiogram (ECG) represents electrical 

manifestation of the contractile activity of the heart and it is 
one of the most important physiological signals. The ECG is 
characterized by a recurrent wave sequence of P, QRS, T and 
U waves associated with each heart beat. RR-intervals or 
inter-beat intervals are one of the most frequently used 
parameters. RR-intervals are crucial in heart rate variability 
(HRV) analysis; lower HRV may indicate congestive heart 
failure, diabetic neuropathy, and other medical conditions. In 
order to extract RR-intervals from an ECG signal we need a 
reliable and precise algorithm to detect R peaks.  

A number of approaches, varying in complexity and 
precision, have been developed for R-peak detection [4]. In 
this paper we focus on an R-peak detection algorithm that uses 
a discrete wavelet transform [5], specifically the Daubechies 
D4 (Figure 1, lines 1-7). The first step is to process a raw ECG 
signal using four recursive calls of the Daubechies D4 wavelet 
transform as shown in Figure 1 (lines 9-12). The absolute 
values of the processed signal are then filtered using a 
threshold filtering: all samples lower than a threshold are set 
to zero. The threshold is set to be 15% of the maximum in the 
processed signal. The processed samples are kept in a sliding 
window array. This array is searched for local maximums, 
which represent potential R-peak signals. Once the potential 
R-peaks are located in the processed signal, the original ECG 
signal is searched to precisely locate a potential R-peak. 
Finally, the potential R-peak is upgraded to a true R-peak if 
there were no other true R-peaks in the previous 200 ms.  

The original R-peak detection algorithm, which is geared 
toward post-processing of ECG signals, is adapted for real-
time implementation. We apply the wavelet transform on 
input vectors with 64 samples. Four rounds of the wavelet 
transform give four processed samples that are used in 
detecting R-peaks as described above. The maximum used in 
the threshold filtering is determined on a 5 second training 
period, rather than on an entire ECG signal.  

The real-time R-peak detection algorithm is first verified 
in Matlab. As an input we used a selected subset of ECG 
recordings from the MIT Physionet database [6]. The selected 
ECG recordings cover a wide range of possible ECG signals, 
differing in amplitude, sampling frequency, offset, and units 
of measure (mV/µV). Figure 2 illustrates the R-peak detection 
algorithm for one exemplary ECG signal from the database. 
The signal is sampled with sampling frequency of 750 Hz, 
has an offset of -6 mV, and units of measure are in millivolts. 
The original ECG signal (blue) is processed by the 4 rounds 
of wavelet transform to get the processed signals (red). The 
potential R-peaks are marked with green circles, and detected 
R-peaks are marked with red circles. The visual inspection of 
the R-peaks on the selected set of ECG signals confirms high 
precision and robustness of the algorithm – the number of 

false positives and false negatives is negligible and present 
only in cases of poor quality ECG signals.  

 

III. PROCESSOR CUSTOMIZATION 
Wearable devices for health monitoring are powered by 

batteries. To increase the operating time and allow for small 
and lightweight devices, reducing energy consumed by typical 
health monitoring applications is of utmost importance. 
Whereas application specific integrated circuits require 
minimal energy, such solutions lack flexibility offered by 
microprocessor-based systems. On the other side, general-
purpose embedded processors may offer a good performance 
for a broad range of applications, but they may be suboptimal 
for a given application. An alternative approach is to use 
customizable processors that allow designers rapid and risk-
free configuration and customization. We use a Tensilica’s 
Xtensa customizable processor and demonstrate how it can be 
customized for the R-peak detection algorithm. 

Tensilica offers a set of tools and techniques for rapid 
design exploration and customization of the Xtensa embedded 
processors to fit specific needs of the target application. The 
Xtensa Xplorer design environment allows designers to 
quickly profile the application software, configure the Xtensa 
core, and add new instructions to optimize performance. 

Figure 2 R-peak detection algorithm: an illustration.  

1. function [s d] = D4_Transform(S) 
2.  N = length(S); 
3.  s1 = S(1:2:N-1) + sqrt(3)*S(2:2:N); 
4.  s2 = S(2:2:N) - sqrt(3)/4*s1 - (sqrt(3)-

2)/4*[s1(N/2) s1(1:N/2-1)]; 
5.  s = (sqrt(3)-1)/sqrt(2) * (s1 - 

[s2(2:N/2) s2(1)]); 
6.  d = (sqrt(3)+1)/sqrt(2) * s2; 
7. end  
 
8. function D4 = wavelet_trans(S) 
9.  [S1 D1] = D4_Transform(S); 
10.  [S2 D2] = D4_Transform(S1); 
11.  [S3 D3] = D4_Transform(S2); 
12.  [S4 D4] = D4_Transform(S3); 
13. end 

Figure 1 Daubechies D4 transform used in ECG processing. 
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System designers can explore multiple processor 
configurations and architectural enhancements by making 
area, speed, power and code-density design tradeoffs, based 
on real-time feedback from the design environment. Once the 
design requirements are met, Xtensa Processor Generator 
automatically creates a tailored application specific 
embedded processor, including a matching tool chain.   

System designers can build a processor core by selecting 
and configuring a broad range of features, including: (a) 
choosing among several basic processor cores that differ in 
performance and cost; (b) configuring the number and type of 
functional units (e.g., integer multipliers or dividers, 
multiply-and-accumulate units); (c) enabling special 
instructions (e.g, zero-loop, conditional stores); (d) selecting 
and configuring size and organization of instruction and data 
caches; (e) configuring specialized memories and buses, (f) 
memory protection options, and so on.   

The Xtensa instruction set architecture (Xtensa ISA) can 
be extended with user-defined instructions. Tensilica 
Instruction Extension (TIE) language [3] can be used to 
specify new states, register file extensions, new instructions, 
coprocessor extensions, and new data transfer interfaces. For 
new instructions the TIE language allows designers to specify 
schedules – pipeline stages at which instructions use input 
operands and produce outputs.  

To evaluate effectiveness of the proposed hardware 
customization for the R-peak detection application, we 
consider five hardware/software configurations, shown in 
Table I, named BASE, FLPC, FIXP, FIPM, and DW3O. As 
we target a low-end embedded application, we use an ultra 
low-power and low-complexity Xtensa 9 processor core as the 
BASE configuration. It includes a fully pipelined integer 32-
bit multiplier, 1 kilobyte instruction cache, and 1 kilobyte data 
cache. With maximum frequency of 250 MHz, the estimated 
power consumption is only 12mW [3]. 

The R-peak detection application is ported from Matlab to 
C with minimal changes. The input ECG signal is represented 
as single-precision floating-point data and all wavelet 
operations and the R-peak detection are carried out on this 
data. The BASE processor configuration does not include a 
floating-point co-processor, so floating-point computations are 
emulated in software. Profiling the BASE configuration 
confirms our expectation that the wavelet computation is 
indeed a performance bottleneck.  

The second processor configuration FLPC adds a floating-
point co-processor with support for instructions that can 
operate on single-precision floating-point numbers. We expect 
this configuration to significantly improve performance, at the 
cost of additional complexity caused by the floating-point co-
processor.   

The next step in design space exploration is to re-design 
the R-peak detection software to read and process ECG 
samples represented in fixed-point data formats. We opt for a 
16:16 format (both integer and fractional portions are 16-bit 
long), because it provides a good balance between the range 
and precision, without any assumptions on the scale and units 
of the input ECG signal. The FIXP configuration has a 

hardware configuration identical to BASE, but the software 
implementation is re-designed to read and compute fixed-
point numbers. The critical operations are multiplication, 
addition, and subtraction of fixed-point numbers (see lines 3-6 
in Figure 1). 

Profiling of the new R-peak detection application shows 
that about 70 percent of the execution time is spent in fixed-
point multiplication. The fixed-point addition is identical to 
integer addition. However, fixed-point multiplication requires 
one integer multiplication and one addition. A custom 
instruction, shown in Figure 3, is added to support this 
operation. This hardware/software configuration is named 
FIPM. We expect this configuration to yield significant 
performance improvements at the cost of added complexity. 

Finally, the last configuration DW3O adds 3 more 
characteristic instructions to accelerate typical operations 
found in D4 wavelet transform (lines 3-6 in Figure 1). Rather 
than including separate hardware resources for each of these 
operations, they all share a fixed-point multiplier. We expect 
this configuration to further improve performance at the cost 
of additional hardware complexity.  

 

IV. RESULTS 
In our experimental evaluation we compare performance, 

code density, and hardware complexity for all five 
configurations. We consider execution time spent in the D4 
wavelet transform and the total time spent in the R-peak 
detection algorithm. We also consider the code size for the 
wavelet transform procedure and the R-peak detection 
procedure. These parameters are reported by the Xtensa 
Xplorer design environment. In addition, we evaluate the total 
energy required for each hardware/software configuration 
assuming a 45 nm technology process. 

TABLE I. HARDWARE/SOFTWARE CONFIGURATIONS. 

Name 

Hardware Extensions Software  
Impl. 

FPU 
Coproc. 

HW FixedP  
MUL 

Wavelet  
OPER(1-3) 

Data types for 
ECG samples 

BASE × × × Floating-point 
FLPC √ × × Floating-point 
FIXP × × × Fixed-point 
FIPM × √ × Fixed-point 
DW3O × √ √ Fixed-point 

1. operation mul {out AR outR, in AR inpR1, in 
AR inpR2}{} 

2. { 
3.  wire do_signed = 1'b1; 
4.  wire cbit = 0; 
5.  wire[63:0] do_const = 32768; 
6.  wire[63:0] temp = TIEmul(inpR1[31:0], 

 inpR2[31:0], do_signed); 
7.  wire[63:0] temp1 = 

 TIEadd(temp,do_const,cbit);   
8.  assign outR = temp1[47:16]; 
9. } 

Figure 3 TIE language description of fixed-point multiplier. 
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The main results of our experimental eval
in Table II. As expected, the BASE and FIX
have the worst performance, requiring ~
million clock cycles for the R-peak detection
time is spent in the D4 wavelet transform
million of clock cycles, respectively. Howev
core is rather small and requires mere 22 kilo
configuration with a floating-point co-pro
performance of the wavelet processing fo
times relative to the BASE configur
performance of the R-peak detection for sligh
However, it requires an additional 12 kilog
hardware complexity of slightly over 34 kilog

The processor core with a custom
multiplication instruction, FIPM, achiev
improvement over the BASE configuration 
in the wavelet transform function, and 5.2 tim
detection algorithm. This result is achieve
additional ~6 kilogates relative to the ba
which is one half of the complexity require
point co-processor. Finally, the extensio
characteristic operations found in the w
DW3O, achieve the best performance, impro
transform function performance for almost 19
the BASE configuration. However, the 
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This is not surprising, if we know that the fix
shared resource, and the time spent is the w
cease to be a bottleneck at this design point.  

The results in Table II for code siz
customized instructions used in the FIP
configurations significantly reduce the c
wavelet transform procedure, whereas the s
detection function remain fairly constant. 

Figure 4 shows a statistical estimation fo
spent in the R-peak detection (includi
processing), broken into dynamic and leak
each hardware/software configuration we co
points with 60 MHz and 250 MHz clock fre
see that the FIPM and DW3O configuration

Figure 4 Energy profiles for hardware/software

luation are shown 
XP configurations 
~18.4 and ~15.7 
n. The majority of 
m, 15.9 and 13.3 
ver, the processor 
ogates. The FLPC 
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wavelet transform 

e show that the 
PM and DW3O 

code size in the 
size in the R-peak 

or the total energy 
ing the wavelet 
kage energy. For 
nsider two design 

equencies. We can 
ns provide 4- to 5-

fold reductions in the total energy
underscores the benefits of the custom

 

V. CONCLUSIO
Optimizing performance and redu

and battery requirements is of 
engineering wearable health monitor
we demonstrate how rapid customi
with application-specific instruc
performance and reduces energy req
peak detection application. We belie
prove useful in optimizing processo
platforms for other health monitoring
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SIZE, AND COMPLEXITY 

de Size [bytes] Complexity 
D4 
velet 

R_peak_
detect 

[gates] 

6908 1140 22,292

6344 1152 34,070

5352 1104 22,292

4984 1104 28,301

3628 1104 31,097
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