

TECHNIQUES FOR CAPTURING AND
FILTERING DATA VALUE TRACES

IN MULTICORES

by

MOUNIKA PONUGOTI

A THESIS

Submitted in partial fulfillment of the requirements

for the degree of Master of Science in Engineering

in

The Department of Electrical & Computer Engineering

to

The School of Graduate Studies

of

The University of Alabama in Huntsville

HUNTSVILLE, ALABAMA

2016

ii

In presenting this thesis in partial fulfillment of the requirements for a master’s de-

gree from The University of Alabama in Huntsville, I agree that the Library of this

University shall make it freely available for inspection. I further agree that permis-

sion for extensive copying for scholarly purposes may be granted by my advisor or, in

his/her absence, by the Chair of the Department or the Dean of the School of Gradu-

ate Studies. It is also understood that due recognition shall be given to me and to

The University of Alabama in Huntsville in any scholarly use which may be made of

any material in this thesis.

(student signature) (date)

iii

THESIS APPROVAL FORM

Submitted by Mounika Ponugoti in partial fulfillment of the requirements for the

degree of Master of Science in Engineering in Computer Engineering and accepted

on behalf of the Faculty of the School of Graduate Studies by the thesis committee.

We, the undersigned members of the Graduate Faculty of The University of Ala-

bama in Huntsville, certify that we have advised and/or supervised the candidate on

the work described in this thesis. We further certify that we have reviewed the the-

sis manuscript and approve it in partial fulfillment of the requirements for the de-

gree of Master of Science in Engineering in Computer Engineering.

 Committee Chair

(Dr. Aleksandar Milenkovic) (date)

(Dr. Rhonda Gaede)

(Dr. Earl Wells)

 Department Chair

(Dr. Ravi Gorur) (date)

 College Dean

(Dr. Shankar Mahalingam) (date)

 Graduate Dean

(Dr. David Berkowitz) (date)

iv

ABSTRACT

The School of Graduate Studies

The University of Alabama in Huntsville

Degree Master of Science in Engineering

College/Dept. Engineering/Electrical & Computer Engineering

Name of Candidate Mounika Ponugoti

Title Techniques for Capturing and Filtering Data Value Traces in Multicores

Software testing and debugging represent critical aspects of the design of modern

multicore-based embedded computer systems due to growing hardware and software

complexity, increased integration, and tightening time-to-market. The existing trac-

ing and debugging techniques offer limited visibility of the system under test or rely

on large on-chip buffers and wide trace ports that increase the system cost. This the-

sis introduces three hardware/software techniques for capturing and filtering load

data value traces in multicores. They track memory read accesses in data caches on

the target platform and simulate their behavior in the software debugger to signifi-

cantly reduce the number of trace events that need to be streamed out of the target

platform. Our experimental evaluation explores the effectiveness of the proposed

techniques by measuring the trace port bandwidth as a function of system parame-

ters. The results show that the proposed techniques significantly reduce the total

trace port bandwidth. The improvements relative to the existing Nexus-like load da-

ta value tracing range from 10 to 60 times for a single core and from 19 to 74 times

for an octa core.

Abstract Approval: Committee Chair

 Department Chair

 Graduate Dean

v

vi

ACKNOWLEDGMENTS

The work presented in this thesis would have been incomplete without

thanking people who helped me directly and indirectly. First, I would like to express

my sincere gratitude to my advisor Dr. Aleksandar Milenkovic for his unlimited

support at every stage of this work, and for supporting me as a graduate research

assistant. He inspired me personally and professionally with his patience and his

interest towards student learning. This work was supported in part by US National

Science Foundation (NSF) grant CNS-1217470.

I would like to thank Mr. Amrish K. Tewar who developed TmTrace module

that I used in my research. I would like to thank Mr. Tewar and Mr. Armen

Dzhagaryan for helping me to get started in the laboratory.

I would like to thank Dr. Rhonda Gaede and Dr. Earl Wells for serving on my

committee. I would also like to thank all the professors and staff members who

helped me during my time at the University of Alabama in Huntsville.

Also, I would like to thank Srinivas R. Mynampally and his family for giving

me great support since the first day of my arrival to the United States.

Finally, I would like to express my deepest gratitude to my parents, Bhaga-

vanth Rao and Vimala, for their unconditional love and support. I would like to

thank my life partner, Vamshi Krishna, for providing continuous support and en-

couragement for higher studies.

vii

TABLE OF CONTENTS

Contents Page

LIST OF FIGURES..…………………………………………………………………………..ix

LIST OF TABLES.…………………………………………………………………………....xii

CHAPTER 1 ... 1

1.1 Background and Motivation .. 1

1.2 Scope of this Thesis .. 2

1.3 Contributions .. 4

1.4 Outline ... 5

CHAPTER 2 ... 6

2.1 Tracing in Embedded Multicores .. 6

2.2 Memory Data Traces .. 9

2.3 Related Work ... 11

CHAPTER 3 ... 15

3.1 mlvCFiat .. 15

3.2 mc2RT .. 22

3.3 mc2RFiat .. 33

CHAPTER 4 ... 45

4.1 Software Timed Trace Generator .. 46

4.2 mlvCFiat Simulator .. 47

4.2.1 Implementation Details .. 51

4.2.2 Verification Details ... 54

4.3 mc2RT Simulator .. 61

4.3.1 Implementation Details .. 63

4.3.2 Verification Details ... 65

4.4 mc2RFiat Simulator .. 73

viii

4.4.1 Implementation Details .. 73

4.4.2 Verification Details ... 75

4.5 Software to Hardware Trace Translation ... 84

4.6 Experimental Environment ... 88

4.6.1 Experimental Setup .. 88

4.6.2 Benchmarks ... 90

4.6.3 Experiments ... 92

4.6.4 Granularity Study ... 93

4.6.5 Variable Encoding ... 95

CHAPTER 5 ... 99

5.1 Trace Port Bandwidth for Load Data Value Traces 99

5.1.1 NX_b ... 99

5.1.2 mlvCFiat .. 104

5.1.3 mc2RT ... 111

5.1.4 mc2RFiat ... 117

5.2 Dynamic Trace Port Bandwidth Analysis for Load Data Value Traces..... 124

5.3 Putting It All Together ... 126

CHAPTER 6 ... 130

REFERENCES .. 133

ix

LIST OF FIGURES

Figure Page

Figure 2.1 Debugging and tracing in multicores: a detailed view 9

Figure 2.2. Memory read trace: an example a) C program b) equivalent x86

assembly c) memory read flow traces .. 11

Figure 3.1 A system view of mlvCFiat... 16

Figure 3.2. mlvCFiat structures for core i ... 18

Figure 3.3 mlvCFiat operations on the target core i for a) memory reads, b)

memory writes, and c) external invalidations .. 20

Figure 3.4 mlvCFiat operations in the software debugger on core i for a)

memory reads, b) memory writes, and c) external invalidations 22

Figure 3.5 A system view of mc2RT ... 23

Figure 3.6 mc2RT structures for core i .. 25

Figure 3.7 mc2RT operation on the target core i for memory reads 27

Figure 3.8 Coherent Read Transaction in mc2RT on the target core i 28

Figure 3.9 mc2RT operation on the target core i for memory writes 30

Figure 3.10 Coherent Read and Invalidate in mc2RT on target core i 31

Figure 3.11 Coherent Invalidate in mc2RT on target core i 31

Figure 3.12 mc2RT operation in the software debugger on core i for a)

memory reads b) memory writes .. 33

Figure 3.13 A system view of mc2RFiat ... 35

Figure 3.14 mc2RFiat structures for core i .. 36

Figure 3.15 mc2RFiat operation on the target core i for memory reads 38

x

Figure 3.16 Coherent Read Transaction in mc2RFiat on the target core i 39

Figure 3.17 mc2RFiat operation on the target core i for memory writes 41

Figure 3.18 Coherent Read and Invalidate in mc2RFiat on the target core i 42

Figure 3.19 Coherent Invalidate in mc2RFiat on the target core i 42

Figure 3.20 mc2RFiat operation in the software debugger on core i for a)

memory reads, and b) memory writes ... 44

Figure 4.1 Experiment flow to create hardware traces 46

Figure 4.2 Trace messages generated for memory reads and writes 47

Figure 4.3 mlvCFiat trace descriptor format .. 49

Figure 4.4 mlvCFiat simulator statistics example ... 50

Figure 4.5 mlvCFiat simulator functional flow .. 53

Figure 4.6 Testing mlvCFiat: single cache block access 57

Figure 4.7 Testing mlvCFiat: multi cache block access 61

Figure 4.8 mc2RT trace descriptor format ... 62

Figure 4.9 mc2RT simulator statistics example .. 63

Figure 4.10 Testing mc2RT: single cache block access 69

Figure 4.11 Testing mc2RT: multi cache block access 72

Figure 4.12 Testing mc2RFiat: single cache block access 80

Figure 4.13 Testing mc2RFiat: multi-cache block access 84

Figure 4.14 Formats of trace messages for NX_b, CF_b, CF_e, RT_b, RT_e,

RF_b and RF_e .. 87

Figure 4.15 Multicore model in Mult2Sim .. 89

Figure 4.16 Normalized trace port bandwidth as a function of first-access

granularity for mlvCFiat .. 94

xi

Figure 4.17 Normalized trace port bandwidth as a function of first-access

granularity for mc2RFiat .. 95

Figure 4.18 CDF of the minimum length for fahCnt for mlvCFiat 96

Figure 4.19 CDF of the minimum length for dCC for mlvCFiat 96

Figure 4.20 Average fahCnt and dCC fields as a function of chunk sizes for

mlvCFiat .. 97

Figure 5.1 Breakdown of trace port bandwidth for NX_b for Splash2

benchmarks .. 102

Figure 5.2 First Access Miss Rate for mlvCFiat for Splash2 benchmarks ... 106

Figure 5.3 Total average trace port bandwidth in bpi for CF_b and CF_e .. 107

Figure 5.4 Total average trace port bandwidth in bpc for CF_b and CF_e . 111

Figure 5.5 Trace Miss Rate for mc2RT for Splash2 benchmarks 112

Figure 5.6 Total average trace port bandwidth in bpi for RT_b and RT_e . 113

Figure 5.7 Total average trace port bandwidth in bpc for RT_b and RT_e . 117

Figure 5.8 First Access Miss Rate for mc2RT for Splash2 benchmarks 119

Figure 5.9 Total average trace port bandwidth in bpi for RF_b and RF_e . 120

Figure 5.10 Total average trace port bandwidth in bpc for RF_b and RF_e 124

Figure 5.11 Dynamic trace port bandwidth in bpc during execution of

raytrace for N=8 ... 125

Figure 5.12 Dynamic trace port bandwidth in bpc during execution of water-

ns for N=8 ... 126

Figure 5.13 Trace port bandwidth in bpi for CS64 configuration 127

Figure 5.14 Trace port bandwidth in bpc for CS64 configuration................ 128

xii

LIST OF TABLES

Table Page

Table 4.1 mlvCFiat flags ... 49

Table 4.2 Splash2 benchmark suite characterization 91

Table 4.3 Characterization of memory reads in Splash2 92

Table 4.4 Experiments conducted .. 93

Table 4.5 Summary of variable encoding parameters for different fields 98

Table 5.1 Trace port bandwidth for NX_b for Splash2 benchmarks 101

Table 5.2 Compression ratios achieved by gzip .. 104

Table 5.3 Trace port bandwidth bpi for CF_b ... 108

Table 5.4 Trace port bandwidth bpi for CF_e.. 109

Table 5.5 Compression ratio of CF_e relative to NX_b 110

Table 5.6 Trace port bandwidth bpi for RT_b ... 114

Table 5.7 Trace port bandwidth bpi for RT_e ... 115

Table 5.8 Compression ratio of RT_e relative to NX_b 116

Table 5.9 Trace port bandwidth bpi for RF_b ... 121

Table 5.10 Trace port bandwidth bpi for RF_e ... 122

Table 5.11 Compression ratio of RF_e relative to NX_b 123

1

CHAPTER 1

INTRODUCTION

1.1 Background and Motivation

Growing complexity and sophistication of modern embedded systems and the

shift toward multicores make software testing and debugging one of the most critical

aspects of system development. Faster and cheaper processors with an increased

level of integration have enabled new applications that were impossible just a dec-

ade ago. Users’ expectations and their reliance on embedded systems have also gone

up. As a result, the complexity of the software stack in embedded systems keeps

growing and the time-to-market is decreasing. A recent report from the Internation-

al Technology Roadmap for Semiconductors found that the software engineering and

tool costs account for 80% or more of the total development cost of modern high-end

embedded systems [1].

It is important to give software developers tools to quickly locate and correct

all software bugs with minimum effort. When debugging, software developers often

need perfect visibility of the system under test. However, achieving this visibility is

not feasible due to high system complexity, limited available bandwidth for debug-

ging data, and high operating frequencies. Traditional debugging techniques rely on

single stepping, setting breakpoints, and examining the content of registers and

memory locations while the processor is halted. This approach is effort- and time-

consuming for software developers. In addition, it perturbs the sequence of events on

2

target platforms and thus is not practical in real-time cyber-physical systems. Final-

ly, it does not scale well to multicores.

To address these challenges, modern embedded processors include on-chip re-

sources dedicated for tracing and debugging. The trace module on the target plat-

form collects the traces for the program of interest. With certain conditions, collected

traces can be used to replay the program offline. State-of-the-art trace modules

require 1 to 4 bits per executed instruction per core for control-flow traces and 8 to16

bits per executed instruction per core for data flow traces. Thus, a 1 KB on-chip

trace buffer per processor core may capture control flow traces for program segments

on the order of 2000 – 8000 instructions and load data value traces for program

segments on the order of 500 – 1000 instructions. It should be noted that limited

program traces are not sufficient in locating software bugs in modern processors be-

cause there could be millions of instructions between the origin of the bug and its

manifestation. To capture traces, especially Nexus-like load data value traces for the

entire program, we require deep trace buffers and wide trace ports. However, hard-

ware vendors have little incentive to spend a lot of on-chip resources, thus increas-

ing the system cost, just to help software developers find more bugs faster.

1.2 Scope of this Thesis

Capturing load data value traces on-the-fly is important in debugging multi-

core embedded systems. Load data value traces are created by recording values read

from memory and I/O devices. These traces captured on the target platform and

streamed out to a software debugger are necessary under certain conditions to de-

terministically replay programs offline.

3

In this thesis, trace port bandwidth requirements for Nexus-like load data

value traces are analyzed to illustrate challenges in capturing data traces in multi-

cores when running a set of parallel programs and using commercial state-of-the-art

tracing techniques. The trace port bandwidth is measured in bits per instruction ex-

ecuted (bpi) and bits per processor clock cycle (bpc). The total average trace port

bandwidth (bpi) for the entire Splash2 benchmark suite ranges from 12.34 when

N=1 to 13.17 when N=8 where N is the number of cores. For a given multicore model

the trace port bandwidth (bpc) ranges from 4.92 when N=1 to 25.64 when N=8. Sev-

eral benchmarks require an average trace port bandwidth of over 40 bits per clock

cycle. These results illustrate the challenges of capturing and streaming out load da-

ta value trace. Having trace ports with over 40 pins that work at processor clock

speed or megabytes of on-chip trace buffers is not practical.

To address data tracing challenges, we introduce three new techniques for

unobtrusive capturing and filtering of load data value traces in real-time in multi-

core platforms. These techniques are named (i) mlvCFiat – multicore load value

cache first access tracking, (ii) mc2RT – multicore cache-coherent read tracking, and

(iii) mc2RFiat – multicore cache-coherent read with first access tracking. They rely

on on-chip tracking of memory reads in data caches on the target platform and

equivalent changes in the software debugger. The software debugger simulates the

behavior of data caches and trace modules on the target platform during program

replay, thus reducing the number of trace messages that need to be emitted by the

target platform. This way we reduce the trace port bandwidth requirements and re-

quirements for on-chip trace buffers. The three techniques differ in the number of

tracking bits per data cache block and the level of support for cache coherence proto-

4

col. Using an execution-driven cycle-accurate simulator and the Splash2 parallel

programs, we evaluate the effectiveness of the proposed techniques as a function of

system parameters, such as data cache size, the number of cores (N), and encoding

mechanism.

The total average trace port bandwidth using the mlvCFiat technique with

CS64 configuration ranges from 0.21 bpi when N=1 to 0.53 bpi when N=8. mlvCFiat

reduces the total average trace port bandwidth relative to Nexus-like load data val-

ue traces by 16.1 to 59.6 times when N=1 and 15.0 to 24.8 times when N=8. The to-

tal average trace port bandwidth using the mc2RT technique with CS64 configura-

tion ranges from 0.26 bpi when N=1 to 0.21 bpi when N=8. mc2RT reduces the total

average trace port bandwidth relative to Nexus-like load data value traces from 10.1

to 47.3 times when N=1 and from 18.9 to 62.5 times when N=8. The total average

trace port bandwidth using the mc2RFiat technique with CS64 configuration ranges

from 0.21 bpi when N=1 to 0.18 bpi when N=8. mc2RFiat reduces the total average

trace port bandwidth relative to Nexus-like load data value traces by 16.1 to 59.6

times when N=1 and 27.6 to 73.8 times when N=8.

1.3 Contributions

The main contributions of this work are as follows.

 Characterization of trace port bandwidth requirements in multicores

for Nexus-like time stamped load data value traces as a function of the

number of cores. Both bits per instruction and bits per clock cycle as

measures of the required trace port bandwidth are considered.

5

 Introduction of hardware/software techniques mlvCFiat, mc2RT, and

mc2RFiat that capture and compress load data value traces in multi-

cores.

 A detailed experimental evaluation of the trace port bandwidth re-

quired by the proposed techniques, while varying the number of cores,

cache sizes, and encoding approaches.

 An analysis of dynamic trace port bandwidth during benchmarks’ exe-

cution.

1.4 Outline

The rest of the thesis is organized as follows. CHAPTER 2 discusses the

background, focusing on tracing and debugging in state-of-the-art embedded systems

and especially on load data value traces. CHAPTER 3 describes the proposed tech-

niques for capturing and compression of load data value traces in multicores. We in-

troduce three techniques namely, mlvCFiat, mc2RT, and mc2RFiat that differ in

their effectiveness and the level of hardware support. CHAPTER 4 describes the ex-

perimental evaluation of the proposed techniques and experimental environment

used to create Nexus-like load data value traces and filtered traces. CHAPTER 5

discusses the results of the experimental evaluation. Finally, CHAPTER 6 gives con-

cluding remarks.

6

CHAPTER 2

BACKGROUND AND MOTIVATION

This chapter gives a more detailed view of debugging with tracing in embed-

ded systems (Section 2.1). It also describes four classes of operations as defined in

the Nexus 5001 standard. Section 2.2 describes load data value traces in multicores.

Section 2.3 gives an overview of related work for this research.

2.1 Tracing in Embedded Multicores

Embedded processor and systems-on-a-chip often include on-chip trace mod-

ules that include resources to support tracing and debugging operations. The IEEE

Nexus 5001 standard [2] defines functions and a general-purpose interface for soft-

ware development and debugging of embedded processors. Nexus 5001 specifies 4

classes of debugging operations (Class 1 – Class 4). Higher classes support more

complex debug operations but require more on-chip resources and wider trace ports,

thus increasing the system cost.

Class 1 supports basic run control debugging, including setting breakpoints,

single stepping, and changing the content of the memory or registers while the pro-

cessor is halted. It is typically supported through the JTAG interface [3]. Class 2

adds support for capturing control-flow traces and streaming them out in near real

time. Class 3 adds support for capturing and streaming out data flow traces

(memory reads, memory writes, I/O reads, and I/O writes) in near real time. Finally,

Class 4 adds support for emulating memory and I/O through the trace port.

7

Class 1 operations are routinely used to debug programs and widely support-

ed in modern embedded platforms but are unsatisfying in many respects. First, it is

more time-consuming and puts the burden on the software developer. Second, set-

ting a breakpoint in real-time embedded systems and cyber-physical systems is not

practical. Third, when the processor is halted for debugging, the actual order of

events executed by the processor may change relative to the normal operation, which

in turn may result in disappearing bugs. Finally, Class 1 operations do not scale well

with multicores where setting breakpoints in one core may have an adverse impact

on other processor cores.

To address these challenges, modern embedded processors rely on on-chip re-

sources dedicated for tracing and debugging. Figure 2.1 shows a multicore system-

on-a-chip (SoC) with trace and debug infrastructure. The multicore has N processor

cores, a DSP core and a DMA core, all connected through a system interconnect.

Each core has its own trace module which is responsible for capturing traces of in-

terest. All the trace modules are connected to a debug and trace control unit through

a trace and debug interconnect. Traces collected by the trace modules are temporari-

ly stored in on-chip trace buffers before they are streamed out through a dedicated

trace port to an external trace probe. The external trace probe connected to the host

workstation may include Gigabytes of memory to store collected traces. These traces

are then read by the software debugger running on a development workstation dur-

ing a program replay, thus enabling a complete reconstruction of events that oc-

curred on the target platform.

Control-flow traces enable the reconstruction of the program’s flow only; for

certain classes of hardware and software bugs control flow traces are sufficient, but

8

for some classes of bugs such as data race conditions, control-flow traces are not suf-

ficient. Data-flow traces enable a complete replay of the executed program under

certain conditions. To replay the program offline, the software debugger on the host

workstation (Figure 2.1) relies on an instruction set simulator of the target platform,

the program binary, initial conditions of the target platform and exception traces in

addition to the data-flow traces. Replaying a program offline gives valuable infor-

mation about shared memory access patterns, possible data race conditions, and bet-

ter insights into the behavior of the target system.

Many chip vendors are including trace modules, examples include ARM’s

CoreSight [4], MIPS’s PDTrace [5], Infineon’s MCDS [6], and Freescale’s MPC5500

[7]. State-of-the-art trace modules require trace port bandwidth in the range of 1 to 4

bits per executed instruction per core for control flow traces [4] and 8 to 12 bits per

executed instruction per core for data flow traces [4]. Thus, a 1 KB on-chip trace

buffer per processor core may capture control flow traces for program segments on

the order of 2000 – 8000 instructions and data flow traces for program segments on

the order of 500 – 1000 instructions. These limited traces are not enough to find the

bugs because the origin of the bug and its manifestation are often millions of in-

structions apart. To capture traces, especially data-flow traces, for the entire pro-

gram, deep trace buffers and wide trace ports are needed, significantly increasing

the system complexity and cost. Hence, hardware vendors rarely support the higher

classes of the Nexus 5001 standard. This problem is even worse in multicores where

the number of I/O pins dedicated to the trace port cannot keep pace with the expo-

nential growth in the number of cores on a single chip.

9

Figure 2.1 Debugging and tracing in multicores: a detailed view

2.2 Memory Data Traces

Data traces contain information about executed memory read and memory

write instructions in the order in which they occurred during program execution. A

typical data trace message may have relevant information, such as instruction ad-

dress, type of memory operation (read or write), operand address, operand size, and

operand value. In multicores, in addition to these fields, a trace message holds in-

formation about core/thread id and a global time stamp if the trace messages are not

emitted in the order they occurred. The format of the trace messages may change

depending on the context in which they are used and sometimes traces are needed

only memory read or memory write.

System Interconnect

Trace
PortMulticore

SoC

Trace & Debug Interconnect

On-chip
Trace Buffer

Trace Port
Interface

Inter-
connect

Trace
Module DSP

Core

Trace
Module

DMA
Core

Trace
Module

Debug & Trace
Control

Software Debugger

Multicore Instruction Set Simulator

Binaries

.

Software
Debugger(s) in

Host
Workstation

Trace
Probe

Host
Interface
Buffers
(~GB)
Target

Interface

CPU
Core i

Trace
Module

CPU
Core 0

Trace
Module

CPU
Core N-1

Trace
Module

Trace
Decoder

10

Figure 2.2 shows an example of trace messages for memory reads of an

OpenMP C program. The program scales each element of the input array and writes

the result to the same location. The input array holds 20 single byte elements. All

the operations executed by each thread are independent, thus each thread processes

5 elements. Figure 2.2b shows the assembly code of the parallel loop executed by

each thread. Figure 2.2c shows trace messages capturing memory reads during pro-

gram execution. Each message includes a global time stamp, thread id, operand ad-

dress, operand size, and operand value.

11

Figure 2.2. Memory read trace: an example a) C program b) equivalent x86 assembly

c) memory read flow traces

2.3 Related Work

Modern embedded processors increasingly include on on-chip trace and debug

infrastructure [4]–[9]. However, commercially available trace modules typically im-

plement only rudimentary forms of hardware filtering with a relatively small com-

1 #include <stdio.h>

2 #include <stdint.h>

3 #include <omp.h>

4

5 int main()

6 {

7 uint8_t a[20] = {1,2,3,4,5,6,7,8,9,10,

11,12,13,14,15,16,17,18,19,20};

8 const int k = 5;

9

10 #pragma omp parallel for num_threads(4)

11 for (int i = 0; i < 20; i++)

12 a[i] = k*a[i];

13

14 return 1;

15 }

C Program

 80483d1: mov DWORD PTR [ebp-0xc],eax

 80483d4: mov eax,DWORD PTR [ebp+0x8]

 80483d7: mov ecx,DWORD PTR [eax]

 80483d9: mov eax,DWORD PTR [ebp-0xc]

 80483dc: lea eax,[ecx+eax]

 80483df: movzx eax,BYTE PTR [eax]

 80483e2: mov ecx,DWORD PTR [ebp-0x10]

 80483e5: imul eax,ecx

 80483e8: mov ecx,DWORD PTR [ebp+0x8]

 80483eb: mov ebx,DWORD PTR [ecx]

 80483ed: mov ecx,DWORD PTR [ebp-0xc]

 80483f0: lea ecx,[ebx+ecx]

 80483f3: mov BYTE PTR [ecx],al

 80483f5: add DWORD PTR [ebp-0xc],0x1

 80483f9: cmp DWORD PTR [ebp-0xc],edx

 80483fc: jl 80483d4

 80483fe: add esp,0x14

 8048401: pop ebx

 8048402: pop ebp

 8048403: ret

Legend:
CC Clock Cycle
TID Thread / Core ID
OA Operand Address
OS Operand Size
OV Operand Value

(105103, 0, bffeff50, 1, 1)

Timed Trace (CC, TID, OA, OS, OV)

(105222, 0, bffeff51, 1, 2)

(105255, 0, bffeff52 ,1, 3)

(105273, 0, bffeff53 ,1, 4)

Memory read flow trace

(105280, 0, bffeff54 ,1, 5)

(105261, 1, bffeff55, 1, 6)

(105431, 1, bffeff56, 1, 7)

(105749, 1, bffeff57 ,1, 8)

(105757, 1, bffeff58 ,1, 9)

(105879, 1, bffeff59 ,1, a)

(105292, 2, bffeff5a, 1, b)

(105391, 2, bffeff5b, 1, c)

(105437, 2, bffeff5c ,1, d)

(105575, 2, bffeff5d ,1, e)

(105783, 2, bffeff5e ,1, f)

(105492, 3, bffeff5f, 1, 10)

(105530, 3, bffeff60, 1, 11)

(105730, 3, bffeff61, 1, 12)

(105843, 3, bffeff62, 1, 13)

(105830, 0, bffeff63, 1, 14)

a) b)

c)

12

pression ratio. Irrgang and Spallek analyzed the Nexus and trace port configura-

tions and their impact on achievable compression for instruction traces and found

that 8-bit trace ports are sufficient [10].

Several recent research efforts in academia propose trace-specific compres-

sion techniques that achieve higher compression ratios. A class of these techniques

is applicable only to software traces as they combine trace-specific and general-

purpose compression algorithms and, in general, are not applicable to hardware

tracing [11]–[19].

Another group of proposed techniques is applicable to hardware tracing. Sev-

eral techniques rely on hardware implementations of general-purpose compressors

[20], [21]. For example, Kao et al. [22] introduce an LZ-based compressor specifically

tailored to control-flow traces. The compressor encompasses three stages: filtering of

branch and target addresses, difference-based encoding, and hardware-based LZ

compression. A novel approach, the stream based compression algorithm [15], ex-

ploits inherent characteristics of program execution traces for compression. A dou-

ble-move-to-front compressor introduced by Uzelac and Milenkovic [20] encompasses

two stages, each featuring a history table performing the move-to-front transfor-

mation. Although these techniques significantly reduce the size of the control-flow

trace that needs to be streamed out, they have a relatively high complexity (50,000

gates and 24,600 gates, respectively).

A set of recently developed techniques relies on architectural on-chip struc-

tures such as stream caches [23]–[25] and branch predictors [14], [26], [27] with

their software counterparts in software debuggers, as well as effective trace encod-

ing to significantly reduce the size of traces that needs to be streamed out. Uzelac et

13

al. [26] introduced TRaptor for control-flow traces that requires only 0.029 bits per

instruction on the trace port (~34-fold improvement over the commercial state-of-

the-art) per processor core at the hardware cost of approximately 5,000 gates. Tewar

et. al. introduced mcfTRaptor that extends TRaptor to multicore platforms [28].

Whereas a number of studies in academia focus on capturing and compress-

ing control-flow traces, relatively few studies look at on-the-fly data tracing. One in-

teresting solution for debugging multicore SoCs called hidICE was proposed by

Hochberger and Weiss [29]. It relies on a hardware emulator that replicates all mas-

ter cores and memories from the target platform. The target platform reports only

exceptions and data reads from peripherals that cannot be inferred by the emulator.

However, hidICE is cost-prohibitive because it requires not only changes on the tar-

get platform to include a synchronization core and a new trace port, but also re-

quires a sophisticated hardware emulator that replicates all the master modules and

the RAM memory from the target platform. In addition, there has been no quantita-

tive evaluation of hidICE.

This research relies on the prior work of Uzelac and Milenkovic. For load val-

ue traces, Uzelac and Milenkovic [30], [31] introduced cache first-access tracking

mechanism (c-fiat) that reduces the trace size between 5.8 to 56 times, depending on

the cache size. However, this technique has been demonstrated on uniprocessors on-

ly. In addition, prior studies were based on functional simulation and did not ad-

dress the challenges of producing ordered or time-stamped trace messages coming

from multiple cores. To the best of our knowledge, there have been no academic

studies focusing on the quantitative evaluation of data tracing requirements and de-

velopment of cost-effective trace filtering techniques scalable to multicores.

14

The problem of tracing requirements in multicores running parallel programs

requires additional study and answering the following questions. What is the re-

quired trace port bandwidth? How does trace port bandwidth scale up with multiple

processor cores? How the existing techniques may be applied to multicores? These

are some of the questions that are fully addressed in this thesis [32]–[34]. In this

thesis, we want to explore requirements for real-time load data value tracing in mul-

ticores and introduce cost-effective solutions that scale well with a number of pro-

cessor cores.

15

CHAPTER 3

NEW TECHNIQUES FOR DATA TRACING IN MULTICORES

This chapter discusses novel techniques for capturing and compressing load

data value traces in multicores; mlvCFiat, which stands for multicore load value

cache first-access tracking (Section 3.1), mc2RT, which stands for multicore cache

coherent read tracking (Section 3.2) and mc2RFiat, which stands for multicore cache

coherent read with first-access tracking (Section 3.3). All three techniques are de-

signed to reduce the pressure on the trace port and require relatively modest hard-

ware support on the target platform and the software debugger capable of mirroring

hardware events during program replay.

3.1 mlvCFiat

mlvCFiat is a hardware-based mechanism for a multicore processor that re-

duces the number of load data value traces by collecting a minimal set of trace mes-

sages with the help of a cache first access tracking mechanism [33]. mlvCFiat is an

extension of the existing CFiat mechanism for capturing and filtering load data val-

ue traces in single-core processors [35].

Figure 3.1 shows the block diagram of a multicore system-on-chip (SoC) with

the trace and debug infrastructure; light blue boxes represent additional mlvCFiat

hardware and software modules. mlvCFiat requires hardware changes to the L1 da-

ta caches to capture and compress load data value traces. It also requires the soft-

ware debugger to maintain exact models of the data caches with the same organiza-

16

tion and updating policies as in the target platform. The data cache models in the

software debugger are updated while replaying the program offline in the same way

the data cache are updated on the target platform. mlvCFiat ensures that the hard-

ware platform only emits trace messages with load data values that cannot be in-

ferred by the software debugger from the software of the data cache. This approach

significantly reduces the number of trace messages that need to be emitted by the

target platform, thus reducing the pressure on the trace port, which in turn reduces

the on-chip resources and system cost.

Figure 3.1 A system view of mlvCFiat

System Interconnect

Trace
PortMulticore

SoC

Trace & Debug Interconnect

On-chip
Trace Buffer

Trace Port
Interface

Inter-
connect

Trace
Module DSP

Core

Trace
Module

DMA
Core

Trace
Module

Debug & Trace
Control

Software Debugger System View

Binaries

Multicore Instruction Set Simulator

GUI

.

Core 0
mlvCFiat
Model

.Nexus
Trace

Software
Debugger(s) in

Host
Workstation

Trace
Probe

Host
Interface
Buffers
(~GB)
Target

Interface

Trace Decoder and Control Software Module

CPU
Core i

Trace
Module

mlvCFiat

CPU
Core 0

Trace
Module

mlvCFiat

CPU
Core N-1

Trace
Module

mlvCFiat

Core i
mlvCFiat
Model

Core N-1
mlvCFiat
Model

17

Figure 3.2 gives a detailed description of the hardware changes for a single

core on the target platform (core i) required to support mlvCFiat. Each cache block is

augmented with first-access (FA) tracking bits. These bits keep track of sub-blocks

that need to be reported to the software debugger. For example, if a single first-

access tracking bit can protect a sub-block of 4 bytes, then a 32-byte cache block

would requires 8 first-access tracking bits. However, the size of sub-block protected

by a first-access bit is a design parameter. When a sub-block is read for the first

time, the sub-block is traced out and the corresponding FA flag is set. The previously

reported sub-blocks do not have to be reported again as they can be inferred by the

software debugger. This way we exploit temporal and spatial locality of data access-

es to significantly reduce the number of trace messages that need to be reported.

Each trace module includes a local first access hit counter (Pi.fahCnt) that counts

the number of successive first-access hits on processor core i. The value of this

counter is reported in a trace message on a first-access miss. The Pi.PCC register

records the time stamp of a previously reported first-access miss. This register is

used to a determine differentially encoded time stamp for the current trace miss

event that occurs at clock cycle Pi.CC (Pi.dCC=Pi.CC – Pi.PCC).

18

Figure 3.2. mlvCFiat structures for core i

Figure 3.3 describes mlvCFiat operation on the target platform carried out

for memory reads, memory writes, and external invalidate requests. Each memory

read results in an L1 data cache lookup; if the requested data item is found in the L1

data cache (cache hit event) and the corresponding FA bit(s) is set, we call this an FA

hit event. In this case, we do not need to emit a trace message because the software

debugger can retrieve the data from its software copy of the data cache. To synchro-

nize mlvCFiat on the target platform with the software debugger, the first-access hit

counter (Pi.fahCnt) is incremented (step 6 in Figure 3.3a). If the corresponding FA

bit(s) is not set (FA miss event) then a trace message is emitted. The trace message

includes a differentially encoded time stamp for that core (Pi.dCC), core id (Pi), the

current value of the first-access hit counter (Pi.fahCnt), and the corresponding data

cache sub-block that includes the load value (Pi.LV). Once the trace message is emit-

ted, the corresponding FA bit(s) is set, and the Pi.fahCnt is cleared (step 4 in Figure

 ...

Set/Reset
FA flags

Trace M
essage B

u
ffer

Data Cache

DC Hit

Data
Address

FA Hit

Tag FA Flags

0

1

 q-1

index

Pi.fahCnt

way 0

way k-1

Load
Value

Pi.PCC

Current Clock

-

Pi.dCC

Pi.LV

 ...

19

3.3a). For a cache read miss event, a new cache block is fetched from the memory and

loaded into the data cache, the corresponding FA are cleared, and then the same

steps as in FA miss event are carried out (steps 3 and 4 in Figure 3.3a). The FA bits

are also updated for memory writes and external invalidations. For each memory

write operation, if we have a cache hit and if the data is shared then the current

processor acquires the ownership by invalidating the cache block in the other pro-

cessor caches. If the current write operation writes an entire sub-block protected by

an FA bit, then the corresponding FA bit is set (step 4 in Figure 3.3b). In case of a

write miss, the corresponding FA bits are cleared for a newly fetched cache bock, and

the same steps are carried out as in the case of a cache hit (steps 3 and 4 in Figure

3.3b). For external invalidations, the FA bits for the invalidated cache block are

cleared. By capturing trace events at the L1 data cache level, cache coherence proto-

cols are transparent to mlvCFiat. Thus, a write request to a shared block is treated

as a miss in mlvCFiat.

20

Figure 3.3 mlvCFiat operations on the target core i for a) memory reads, b) memory

writes, and c) external invalidations

Figure 3.4 describes steps carried out by the software debugger in response to

memory reads, memory writes, and external invalidations in a steady state. To re-

play the program offline, the software debugger relies on an instruction set simula-

tor (ISS) of the target platform that uses the software models of data caches, first-

access hit counters (Pi.fahCnt), the program binary, the exception traces, and the

mlvCFiat trace messages received from the target platform. The software debugger

reads and decodes trace messages while replaying the program. The formats of trace

messages and lengths of the fields are known to the software debugger. The software

copies of data caches and Pi.fahCnt are updated during the program replay using

the same updating policies employed on the target platform. The debugger replays

the instructions for each core using the corresponding ISS. For each memory read

Pi: Cache Lookup

Pi: Memory Read

Hit?

Replace Cache Block
Clear FA Bits

Y

Pi.fahCnt++

END

N

Corresponding
FA Bits Set?

Y

N

Emit Trace Msg.
 [Pi.dCC, Pi, Pi.fahCnt, Pi.LV]
Set Corresponding FA Bits

Pi.fahCnt = 0

Pi: Cache Lookup

Pi: Memory Write

Hit?

N

Y

END

Replace Cache Block
Clear FA Bits

Acquire Ownership
Update Cache

Set Corresponding FA Bits

Invalidate Cache block
Clear FA Bits

External
Invalidation

END

b) c)

1

2

3

4

5

6

1

2

3

4

1

a)

21

operation, Pi.fahCnt is decremented by 1. If Pi.fahCnt>0 and the corresponding FA

bits are set, the debugger retrieves the data values from the software copy of the da-

ta cache and moves to replay the next instruction. If the corresponding FA bits are

not set it implies that there is an error in tracing (step 7 in Figure 3.4a). If

Pi.fahCnt=0, we have a first read miss event: the load data value is retrieved from

the current trace message, the software copy of the data cache is updated, and the

corresponding FA bits are set. Then, a new trace message from the trace buffer is

read for that core and Pi.fahCnt is updated with the new value extracted from the

trace message (step 3 in Figure 3.4a). For each memory write operation, if the data

is found in the software data cache and the cache block is shared, the current pro-

cessor acquires ownership by invalidating copies of the cache block in other caches.

Once the software copy of the cache block is updated, if the current write operation

writes the entire sub-block protected by an FA, bit then the corresponding FA bit is

set (step 4 in Figure 3.4b). In the case of external invalidations, the FA bits for the

invalidated cache block are cleared.

22

Figure 3.4 mlvCFiat operations in the software debugger on core i for a) memory

reads, b) memory writes, and c) external invalidations

3.2 mc2RT

mc2RT is a hardware-based mechanism that reduces load data value traces

by collecting a minimal set of trace messages by exploiting the MOESI [36] cache

coherence protocol with a single tracking bit per data cache block [34].

Figure 3.5 shows the block diagram of a multicore system-on-chip (SoC) with

the trace and debug infrastructure; light blue boxes represent additional mc2RT

hardware and software modules. mc2RT requires hardware changes on the L1 data

caches to capture and compress load data value traces. It also requires a software

debugger to maintain an exact model of the data caches with the same organization

and updating policies as the target platform. The data cache models in the software

Pi.fahCnt--

Pi: Memory Read

Pi.fahCnt > 0?

Read n Bytes From Trace Msg.
Update SW Cache

Set Corresponding FA Bits
 Get New Trace Msg.

[Pi.dCC, Pi, Pi.fahCnt, Pi.LV]
Load Pi.fahCnt

Lookup SW Cache

END

Y

N

Pi: Cache Lookup

Pi: Memory Write

Hit?

N

Y

END

Clear FA Bits

Acquire Ownership
Update SW Cache

Set Corresponding FA Bits

Invalidate Cache Block
Clear FA Bits

END

External
Invalidation

b) c)

1

2

3

5

1

2

3

4

1

a)

Get Data From SW Cache

Corresponding
FA Bits Set ?

ERROR In Tracing

N

Y

4

6

7

23

debugger are updated while replaying the program offline in the same way the data

caches are updated on the target platform. mc2RT ensures that the hardware plat-

form only emits trace messages with load data values that cannot be inferred by the

software debugger from the software copy of the data caches. This approach signifi-

cantly reduces the number of trace messages that need to be emitted by the target

platform, thus reducing the pressure on the trace port, which in turn reduces the on-

chip resources and the system cost.

Figure 3.5 A system view of mc2RT

Figure 3.6 gives a detailed description of hardware changes for a single core

on the target platform (core i) required to support mc2RT. Each cache block is aug-

System Interconnect

Trace
PortMulticore

SoC

Trace & Debug Interconnect

On-chip
Trace Buffer

Trace Port
Interface

Inter-
connect

Trace
Module DSP

Core

Trace
Module

DMA
Core

Trace
Module

Debug & Trace
Control

Software Debugger System View

Binaries

Multicore Instruction Set Simulator

GUI

.

.Nexus
Trace

Software
Debugger(s) in

Host
Workstation

Trace
Probe

Host
Interface
Buffers
(~GB)
Target

Interface
Trace Decoder and Control Software Module

CPU
Core i

Trace
Module

mc2RT

CPU
Core 0

Trace
Module

mc2RT

CPU
Core N-1

Trace
Module

mc2RT

Core N-1

mc2RT SW
Model

Core i

mc2RT SW
Model

Core 0

mc2RT SW
Model

24

mented with a trace tracking bit (TR). The trace bit keeps track of whether the asso-

ciated cache block is reported or not to the software debugger. The cache block

fetched from the memory for the first time by a processor having a read miss will be

emitted through the trace port. Once the cache block is emitted, the trace bit is set.

Previously reported cache blocks do not have to be reported again as they can be in-

ferred by the software debugger. This way we exploit the temporal and spatial locali-

ty of data accesses to significantly reduce the number of trace messages that need to

be reported. Each trace module includes a local trace hit counter (Pi.THCnt) that

counts the number of successive trace hits on processor core i. The current value of

this counter is reported together in a trace message on a trace miss. The Pi.PCC reg-

ister records the time stamp of a previously reported trace message. The register is

used to determine a differentially encoded time stamp for the current trace miss

event that occurs at a clock cycle Pi.CC (Pi.dCC = Pi.CC – Pi.PCC).

25

Figure 3.6 mc2RT structures for core i

Figure 3.7 and Figure 3.8 describe mc2RT operation on the target platform

for memory reads by core i. Each memory read results in an L1 data cache lookup. If

the requested data item is found in the L1 data cache (cache hit event) and the trace

bit is set, we have a trace hit event. In this case, we do not need to emit a trace mes-

sage because the software debugger can retrieve the data from its software copy of

the data cache. To synchronize trace hit events in mc2RT on the target platform with

the software debugger, the trace hit counter (Pi.THCnt) is incremented (step 7). If

the corresponding trace bit is not set (trace miss event), a trace message is emitted.

The trace message includes a differentially encoded time stamp for that core

(Pi.dCC), core id (Pi), the current value of the trace hit counter (Pi.THCnt) and the

corresponding cache-block that includes the load data value (Pi.CBj) (step 4). Once

the trace message is emitted the corresponding trace bit is set, and Pi.THCnt is

Set/Reset
TR bit

Trace M
essage B

u
ffer

Data Cache

DC Hit

Data
Address

TR Hit

Tag

 ...

TR bit

0

1

 q-1

index

Pi.THCnt

way 0

way k-1

Cache
Block (CB)

Pi.PCC

-

Pi.dCC

Pi.CB

Pi.CC

26

cleared (step 5). For a cache read miss event, a Coherent Read Transaction is issued

(step 6). The requested cache block is supplied to the processor core i (Pi) by another

processor cache (Px) or by main memory. In a Coherent Read Transaction, a snoop

lookup is performed by all the caches, as follows and shown in Figure 3.8.

 If the snoop lookup finds the requested cache block in the Modified

(M) state, it is transferred to Pi along with its trace bit. The state of

the cache block in Px transitions to Owned (O) and the new state of

the Pi cache block is Shared (S) (step 13). If this cache block is not

previously reported (Px.CBj.TR=0) by processor Px, then it is reported

by processor Pi. Since the cache block is going to be reported by the

processor Pi, the trace bit for Px is set to 1 (step 15).

 If the snoop lookup finds the requested cache block in the Exclusive

(E) state, it is transferred to Pi along with its trace bit. Since this

cache block is already reported first time when it is read from

memory, trace bit for Pi and Px is 1. The states of the cache block in Pi

and Px are updated to Shared state (step 17).

 If the snoop lookup finds the requested cache block in the Owned

state, the requested cache block is transferred to Pi along with its

trace bit and the new state of Pi is updated to Shared. The trace bit

for Pi and Px is 1 because the only way to transition to Owned state is

from the Modified state by having coherent read request from another

processor to that cache block (step 19).

 If the snoop lookup finds the requested cache block in the Shared

state, it is transferred to Pi along with its trace bit only if the current

27

processor is responsible to transfer. By design a cache block can be in

the Shared state only after Coherent Read Transaction therefore, the

cache block is already reported by another processor and the trace bit

for Pi and Px is 1. The state of the cache block in Pi is updated to

Shared state (step 21).

 If the requested cache block is not found in any processor cache, then

it is retrieved from main memory and corresponding trace bit is

cleared. The new state of the cache block is set to Exclusive.

After Coherent Read Transaction, the same steps as in the CPU READ opera-

tion are carried out.

Figure 3.7 mc2RT operation on the target core i for memory reads

Pi: Cache Lookup

Pi: CPU READ

Hit?

Pi.CBj.TR == 1?

Y

Y

Emit Trace Msg.
[Pi.dCC, Pi, Pi.THCnt, Pi.CBj]

Pi.CBj.TR = 1
Pi.THCnt = 0

N

N

END

Pi: Coherent Read
Transaction

Pi.THCnt++

1

2

3

4

5

7

66

28

Figure 3.8 Coherent Read Transaction in mc2RT on the target core i

Figure 3.9, Figure 3.10, and Figure 3.11 describes the operation of mc2RT on

the target platform for memory writes by core i. The data cache is looked up for the

requested cache block. In the case of a cache hit in the Exclusive state, the state of

the cache block is upgraded to the Modified state (step 6). If the requested cache

block is in the Owned or Shared state, a Coherent Invalidate transaction is initiated.

A snoop lookup is performed by all other caches. If the snoop lookup finds the cache

block in the Shared state or Owned state, then the cache block is invalidated and the

trace bit is cleared. The state of the cache block in Pi is updated to Modified (step 28

and step 30). If the requested cache block is not found in the processor Pi, then a

Pi: Coherent Read
Transaction

Px: Snoop Hit?

N

Read From Memory

Pi.CBj.TR=0
Pi.CBj.State=E

Y
Px.CBj.State==M?

Pi.CBj = Px.CBj
Px.CBj.State=O

Pi.CBj.TR=Px.CBj.TR
Pi.CBj.State=S

N

Pi: CPU READ

Px.CBj.State==E?

Pi.CBj = Px.CBj
Px.CBj.State=S

Pi.CBj.TR=Px.CBj.TR=1
(by design)

Pi.CBj.State=S

Y
Y

Px.CBj.State==O?
N

Pi.CBj = Px.CBj
Px.CBj.State=O

Pi.CBj.TR=Px.CBj.TR=1
(by design)

Pi.CBj.State=S

Px.CBj.State==S?
N

Pi.CBj = Px.CBj
Pi.CBj.TR=Px.CBj.TR=1

(by design)
Pi.CBj.State=S

Impossible
N

Y Y

Snoop Lookup

8

9

10

11

12

13

16

17

18

19

20

21

Y

Px.CBj.TR==1?

Px.CBj.TR=1

Y

N

Pi: CPU READ

14

15 Pi: CPU READ Pi: CPU READ

Pi: CPU READ

Responsible To
Send CBj?

Px.CBj.State = S

22

23

29

Coherent Read and Invalidate transaction is initiated. The sequence of events per-

formed by other caches in response to a Coherent Read and Invalidate transaction is

described as follows:

 If the snoop lookup finds the requested cache block in the Modified

state, it is transferred to Pi along with its trace bit. The new state of

the Pi cache block is Modified and the state of the cache block in Px is

updated to Invalid. The trace bit for the invalidated cache block is

cleared (step 16).

 If the snoop lookup finds the requested cache block in the Exclusive

state, it is transferred to Pi along with its trace bit. By design, the

trace bit for a cache block in Pi and Px is 1, because this cache block is

already reported first time when it is read from memory. The new

state of the Pi cache block is Modified and the state of the cache block

in Px is updated to Invalid. The trace bit for the invalidated cache

block is cleared (step 18).

 If the snoop lookup finds the requested cache block in the Owned

state, it is transferred to Pi along with its trace bit. The new state for

cache block in Pi cache is Modified and the state of the cache block in

Px is updated to Invalid. The trace bit for Pi and Px is 1 because the

only way to transition to Owned state is from the Modified state by

having a coherent read request from another processor to that cache

block. The trace bit for the invalidated cache block is cleared (step 20).

 If the snoop lookup finds the requested cache block in the Shared

state, it is transferred to Pi along with its trace bit if the current pro-

30

cessor is responsible to transfer. By design, a cache block can be in the

Shared state only after a Coherent Read Transaction, therefore the

cache block is already reported by another processor, the trace bit for a

cache block in Pi and Px is 1. The cache block of the processor Px is in-

validated and the corresponding trace bit is cleared (step 23 and step

24).

 If the requested cache block is not found in any processor cache, then

it is retrieved from main memory and corresponding trace bit is

cleared. The new state of the cache block is set to Modified (step 13

and step 14).

Figure 3.9 mc2RT operation on the target core i for memory writes

Cache Lookup

Pi: CPU WRITE

Hit? Pi.CBj.State==M?
Y

Y

Pi.CBj.State=M

N

N

Pi: Coherent Read &
Invalidate

END

Pi.CBj.State==E?

Y

Pi: Coherent Invalidate

N
Pi.CBj.State==O?

Y

Pi.CBj.State==S?

Y

Impossible
NN

1

2

3

4 5 7

6 8

9

Pi: Coherent Invalidate

10

END

END END END

31

Figure 3.10 Coherent Read and Invalidate in mc2RT on target core i

Figure 3.11 Coherent Invalidate in mc2RT on target core i

Pi: Coherent Read &
Invalidate

N

Read From Memory

Pi.CBj.TR=0
Pi.CBj.State=M

Y
Px.CBj.State==M?

Pi.CBj = Px.CBj
Px.CBj.State=I
Pi.CBj.State=M

Pi.CBj.TR=Px.CBj.TR
Px.CBj.TR=0

N
Px.CBj.State==E?

Pi.CBj = Px.CBj
Px.CBj.State=I
Pi.CBj.State=M

Pi.CBj.TR=Px.CBj.TR=1
(by design)

Px.CBj.TR= 0

YY

Px.CBj.State==O?
N

Pi.CBj = Px.CBj
Px.CBj.State=I
Pi.CBj.State=M

Pi.CBj.TR=Px.CBj.TR=1
(by design)

Px.CBj.TR= 0

Px.CBj.State==S?
N

Px.CBj.State=I
Px.CBj.TR= 0

ImpossiblePx: Snoop Hit?

Snoop Lookup

11

12

13

14

15

Y Y16

17

18

19

20

21

22

END END END END

END

Pi.CBj = Px.CBj
Pi.CBj.State=M

Pi.CBj.TR=Px.CBj.TR=1
(by design)

Responsible To
Send CBj?

23

24

N

Pi: Coherent
Invalidate

N

Y
Px.CBj.State==S?

Px.CBj.State=I
Pi.CBj.State=M

Px.CBj.TR=0
Pi.CBj.TR is unchanged

N
Px.CBj.State==O?

YY

Px.CBj.State==M?
N

Impossible

Px.CBj.State==E?
N

ImpossiblePx: Snoop Hit?

Snoop Lookup

Y Y

N

25

26 27 29 32

28

31

ImpossiblePx.CBj.State=I
Pi.CBj.State=M

Px.CBj.TR=0
Pi.CBj.TR is unchanged

30

END

END END

32

Figure 3.12 describes the steps carried out by the software debugger in re-

sponse to memory reads and memory writes in a steady state. To replay the program

offline, the software debugger relies on an instruction set simulator (ISS) of the tar-

get platform that uses the software models of data caches, trace hit counters

(Pi.THCnt), the program binary, exception traces, and the mc2RT trace messages

received from the target platform. The software debugger reads and decodes trace

messages while replaying the program. The formats of the trace messages and

lengths of the fields are known to the software debugger. The software copies of data

caches and Pi.THCnt are updated during the program replay using the same updat-

ing policies employed on the target platform. The debugger replays the instructions

for each core using the corresponding ISS. For each memory read operation,

Pi.THCnt is decremented by 1. If Pi.THCnt>0 and if the data is found in the soft-

ware copy of the data cache of processor Pi with the corresponding trace bit set, the

debugger retrieves the data values from the software copy of the data cache and

moves to replay the next instruction. If the corresponding trace bit is not set, it im-

plies that there is an error in tracing (step 7 in Figure 3.12a). If Pi.THCnt>0 and da-

ta is not found in the software copy of the data cache of processor Pi, then the soft-

ware debugger gets data from another processors data cache. If Pi.THCnt=0, we

have a trace miss event: the load data value is retrieved from the current trace mes-

sage, the software copy of the data cache is updated and the corresponding trace bit

is set. Then, a new trace message from the trace buffer is read for that core and

Pi.THCnt is updated with a new value extracted from the trace message (step 3 in

Figure 3.12a). For each memory write operation, if the data is found in the software

cache and the cache block is shared, the current processor acquires the ownership by

33

invalidating copies of the cache block in other caches. If the data is a hit in other

caches then, the trace bit is inherited.

Figure 3.12 mc2RT operation in the software debugger on core i for a) memory reads

b) memory writes

3.3 mc2RFiat

mc2RFiat is a hardware-based mechanism that reduces load data value trac-

es by collecting a minimal set of trace messages by exploiting the MOESI cache

coherence protocol. This technique is a combination of mlvCFiat and mc2RT; it re-

quires additional support to copy first-access tracking bits from another cache. This

can be implemented by either having additional data lines on the bus to carry FA

bits or an extra bus transaction.

Pi.fahCnt--

Pi: Memory Read

Pi.fahCnt > 0?

Read n bytes From Trace Msg.
Update SW Cache

Set Corresponding FA Bits
 Get New Trace Msg.

[Ti.dCC, Ti, Ti.fahCnt, Ti.LV]
Load Ti.fahCnt

END

Y

N

Pi: Cache Lookup

Pi: Memory Write

Hit?

N

Y

END

Clear FA Bits

Acquire Ownership
Update SW Cache

Set Corresponding FA bits

1

2

3

1

2

3
7

Get Data From SW Cache

5

Lookup SW Cache

HIT?

Corresponding
FA Bits Set?

Y

Y

N

ERROR in tracing

Get Data From
Other SW Cache

Copy FA Bits

N

6

7 8

9

4

Hit in Other
Caches?

Copy Cache
Block & FA Bits

4 6

Set Corresponding
FA Bits

5

34

Figure 3.13 shows the block diagram of a multicore system-on-chip (SoC)

with trace and debug infrastructure; light blue boxes represents additional mc2RT 2

hardware and software modules. mc2RFiat requires hardware changes on the L1 da-

ta caches to capture and compress load data value traces. It also requires the soft-

ware debugger to maintain exact models of the data caches with the same organiza-

tion and updating policies as in the target platform. The data cache models in the

software debugger are updated while replaying the program offline in the same way

the data caches are updated on the target platform. mc2RFiat ensures that the

hardware platform emits only trace messages with load data values that cannot be

inferred by the software debugger from the software copy of the data caches. This

approach significantly reduces the number of trace messages that need to be emitted

from the target platform, thus reducing the pressure on the trace port, which in turn

reduces on-chip resources and the system cost.

35

Figure 3.13 A system view of mc2RFiat

Figure 3.14 gives a detailed description of hardware changes for a single core

on the target platform (core i) required to support mc2RFiat. Each cache block is

augmented with first-access (FA) tracking bits. These bits keep track of sub-blocks

that need to be reported to the software debugger. For example, if a single first-

access tracking bit can protect a sub-block of 4 bytes, then a 32-byte cache block re-

quires 8 first-access tracking bits. However, the size of the sub-block protected by a

first-access bit is a design parameter. When a sub-block is read for the first time, the

sub-block is traced out and the corresponding FA bit(s) is set. The previously report-

ed sub-blocks do not have to be reported again as they can be inferred by the

software debugger. This way we exploit temporal and spatial locality of data access-

es to significantly reduce the number of trace messages that need to be reported.

System Interconnect

Trace
PortMulticore

SoC

Trace & Debug Interconnect

On-chip
Trace Buffer

Trace Port
Interface

Inter-
connect

Trace
Module DSP

Core

Trace
Module

DMA
Core

Trace
Module

Debug & Trace
Control

Software Debugger System View

Binaries

Multicore Instruction Set Simulator

GUI

.

Core 0
mc2RFiat

Model

.Nexus
Trace

Software
Debugger(s) in

Host
Workstation

Trace
Probe

Host
Interface
Buffers
(~GB)
Target

Interface

Trace Decoder and Control Software Module

CPU
Core i

Trace
Module

mc2RFiat

CPU
Core 0

Trace
Module

mc2RFiat

CPU
Core N-1

Trace
Module

mc2RFiat

Core i

mc2RFiat
Model

Core N-1

mc2RFiat
Model

36

Each module includes a local first access hit counter (Pi.fahCnt) that counts the

number of successive first-access hits on processor core i. The value of this counter is

reported together in a trace message on a first-access miss. The Pi.PCC register rec-

ords the time stamp of a previously reported first-access miss. This register is used

to determine differentially encoded time stamp for the current trace miss event that

occurs at clock cycle Pi.CC (Pi.dCC = Pi.CC – Pi.PCC).

Figure 3.14 mc2RFiat structures for core i

Figure 3.15 and Figure 3.16 describes the operation of mc2RFiat on the target

platform for memory reads by core i. Each memory read results in an L1 data cache

lookup. If the requested data item is found in an L1 data cache (cache hit event) and

the corresponding first-access bit(s) is set, we have an FA hit event. In this case, we

do not need to emit a trace message because the software debugger can retrieve data

from its software copy of the data cache. To synchronize mc2RFiat on the target plat-

 ...

Set/Reset
FA flags

Trace M
essage B

u
ffer

Data Cache

DC Hit

Data
Address

FA Hit

Tag FA Flags

0

1

 q-1

index

Pi.fahCnt

way 0

way k-1

Load
Value

Pi.PCC

Current Clock

-

Pi.dCC

Pi.LV

 ...

37

form with the software debugger, the first-access hit counter (Pi.fahCnt) is incre-

mented (step 7). If the corresponding FA bit(s) is not set (FA miss event), a trace

message is emitted. The trace message includes a differentially encoded time stamp

for that core (Pi.dCC), core id (Pi), the current value of first-access hit counter

(Pi.fahCnt) and the corresponding data cache sub-block that include the load value

(Pi.LV) (step 4). Once the trace message is emitted, the corresponding FA bit(s) is

set, and the Pi.fahCnt counter is cleared (step 5). For a cache read miss event, a Co-

herent Read Transaction is issued (step 6). The requested cache block is supplied to

the core i (Pi) by another processor cache (Px) or by main memory. In Coherent Read

Transaction, a snoop lookup is performed by all the caches, as follows:

 If the snoop lookup finds the requested cache block in the Modified

(M) state, it is transferred to Pi along with its FA bits. The state of the

cache block in Px transitions to Owned (O) and the new state of the Pi

cache block is Shared (S) (step 13).

 If the snoop lookup finds the requested cache block in the Exclusive

(E) state, it is transferred to Pi along with its FA bits. The states of

the cache block in Pi and Px are updated to Shared state (step 15).

 If the snoop lookup finds the requested cache block in the Owned

state, it is transferred to Pi along with its FA bits. The new state of Pi

cache block is updated to Shared (step 19) and the Px state is un-

changed (step 17).

 If the snoop lookup finds the requested cache block in the Shared

state, it is transferred along with its FA bits to Pi only if the current

processor is responsible to transfer. The new state of the Pi cache

38

block is updated to Shared and the Px state is unchanged (steps 20

and 21).

 If the requested cache block is not found in any processor cache, then

it is retrieved from main memory and the corresponding FA bits are

cleared. The new state of the cache block is Exclusive (step 11).

Figure 3.15 mc2RFiat operation on the target core i for memory reads

Pi: Cache Lookup

Pi: CPU READ

Hit?

Corresponding
FA Bits Set?

Y

Y

Emit Trace Msg.
[Pi.dCC, Pi, Pi.fahCnt, Pi.LV]

Set Corresponding FA Bits
Pi.fahCnt = 0

N

N

END

Pi: Coherent Read
Transaction

Pi.fahCnt++

1

2

3

4

5

7

6

39

Figure 3.16 Coherent Read Transaction in mc2RFiat on the target core i

Figure 3.17, Figure 3.18, and Figure 3.19 describes the operation of mc2RFiat

for memory writes on the target platform by core i. A data cache lookup performed

for the requested cache block. In case of a cache hit in the Exclusive state, the state

of the cache block is upgraded to the Modified state (step 7). If the requested cache

block is in the Owned or Shared state, a Coherent Invalidate transaction (Figure

3.19) is initiated. A snoop lookup is performed by all other caches. If the cache block

is hit in the Shared or Owned state, then the cache block is invalidated and the FA

bits are cleared. The state of the cache block in Pi is updated to Modified (state 29

and step 31). If the requested cache block is not found in processor Pi, then a Coher-

ent Read and Invalidate transaction (Figure 3.18) is initiated. The sequence of

Pi: Coherent Read
Transaction

Px: Snoop Hit?

N

Read From Memory

Clear All FA Bits Of Pi.CBj
Pi.CBj.State=E

Y
Px.CBj.State==M?

Pi.CBj = Px.CBj
Pi.CBj.FA=Px.CBj.FA

Px.CBj.State=O
Pi.CBj.State=S

N

Pi: CPU READ

Px.CBj.State==E?

Pi.CBj = Px.CBj
Pi.CBj.FA=Px.CBj.FA

Px.CBj.State=S
Pi.CBj.State=S

YY

Px.CBj.State==O?
N

Pi.CBj = Px.CBj
Pi.CBj.FA=Px.CBj.FA

Px.CBj.State=O
Pi.CBj.State=S

Px.CBj.State==S?
N

Pi.CBj = Px.CBj
Pi.CBj.FA=Px.CBj.FA

Pi.CBj.State=S

Impossible

Responsible To
Send CBj?

N

Y Y

Y

Px.CBj.State=S

Pi: CPU READ

Pi: CPU READ

Pi: CPU READ Pi: CPU READ

9

10

Snoop Lookup

8

11

12

13

14

15

16 18

17

19

20

21

40

events performed by other caches in response to a Coherent Read and Invalidate

transaction is described as follows:

 If the snoop request finds the requested block in the Modified state, it

is transferred to Pi along with its FA bits. The new state for the Pi

cache block is Modified and the state of the cache block in Px is updat-

ed to Invalid. The FA bits for the invalidated cache block are cleared

(step 17).

 If the snoop request finds the requested block in the Exclusive state, it

is transferred to Pi along with its FA bits. The new state for the Pi

cache block is Modified and the state of the cache block in Px is updat-

ed to Invalid. The FA bits for the invalidated cache block are cleared

(step 19).

 If the snoop request finds the requested block in the Owned state, it is

transferred to Pi along with its FA bits. The new state for a cache

block in Pi cache is Modified and the state of the cache block in Px is

updated to Invalid. The FA bits for the invalidated cache block are

cleared (step 21).

 If the snoop request finds the requested block in the Shared state, it is

transferred to Pi along with its FA bits. The new state for the cache

block in Pi cache is Modified and the state of the cache block in Px is

updated to Invalid. The FA bits for the invalidated cache block are

cleared (steps 24 and 25).

41

 If the requested cache block is not found in any processor cache, then

it is retrieved from main memory and the corresponding FA bits are

cleared. The new state of the cache block is set to Modified (step 16).

If the current memory write operation writes the entire sub-block protected

by FA corresponding FA bits are set.

Figure 3.17 mc2RFiat operation on the target core i for memory writes

Cache Lookup

Pi: CPU WRITE

Hit? Pi.CBj.State==M?
Y

Y

Pi.CBj.State=M
*Set Corresponding FA

bits of Pi.CBj

N

N

Pi: Coherent Read &
Invalidate

*Set Corresponding
FA bits of Pi.CBj

END

Pi.CBj.State==E?

Y

Pi: Coherent Invalidate
*Set Corresponding FA

bits of Pi.CBj

N
Pi.CBj.State==O?

Y

Pi: Coherent Invalidate
*Set Corresponding FA

bits of Pi.CBj

Pi.CBj.State==S?

Y

Impossible
N N

1

2

3

4 6

7 9

8 10

11

END END END END

*Set Corresponding FA
bits of Pi.CBj

5

42

Figure 3.18 Coherent Read and Invalidate in mc2RFiat on the target core i

Figure 3.19 Coherent Invalidate in mc2RFiat on the target core i

Pi: Coherent Read &
Invalidate

Px: Snoop Hit?

N

Read From Memory

Pi.CBj.State=M
Clear All FA Bits Of Pi.CBj

Y
Px.CBj.State==M

Pi.CBj = Px.CBj
Pi.CBj.State=M

Pi.CBj.FA=Px.CBj.FA
Clear All FA Bits Of Px.CBj

Px.CBj.State=I

N

END

END

Px.CBj.State==E

Pi.CBj = Px.CBj
Pi.CBj.State=M

Pi.CBj.FA=Px.CBj.FA
Clear All FA Bits Of Px.CBj

Px.CBj.State=I

Y

END

Y

Px.CBj.State==O
N

Pi.CBj = Px.CBj
Pi.CBj.State=M

Pi.CBj.FA=Px.CBj.FA
Clear All FA Bits Of Px.CBj

Px.CBj.State=I

END

Px.CBj.State==S
N

Pi.CBj.State=M
Pi.CBj.FA=Px.CBj.FA
Clear All Px.CBj.FA

END

Impossible

Y

Snoop Lookup

Responsible To
Send CBj?

Px.CBj.State=I

N

Y

Y

N

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Pi: Coherent
Invalidate

Px: Snoop Hit?

N

Y
Px.CBj.State==S?

Px.CBj.State=I
Pi.CBj.State=M

Clear All FA Bits Of Px.CBj

N

END

Px.CBj.State==O?

Px.CBj.State=I
Pi.CBj.State=M

Clear All FA Bits Of Px.CBj

YY

Px.CBj.State==M?
N

Impossible

Px.CBj.State==E?
N

Impossible

Impossible

Snoop Lookup

26

27
28 30 32 33

3129

N

Y Y

END END

43

Figure 3.20 describes steps carried out by the software debugger in response

to memory reads and memory writes in a steady state. To replay the program offline,

the software debugger relies on an instruction set simulator (ISS) of the target plat-

form that uses software models of data caches, first access hit counters (Pi.fahCnt),

the program binary, the exception traces, and the mc2RFiat trace messages received

from the target platform. The software debugger reads and decodes trace messages

while replaying the program. The formats of the trace messages and the lengths of

the fields are known to the software debugger. The software copies of data caches

and Pi.fahCnt are updated during the program replay using the same updating poli-

cies employed on the target platform. The debugger replays the instructions for each

core using the corresponding ISS. For each memory read operation, Pi.fahCnt value

is decremented by 1. If Pi.fahCnt>0 and if the data is found in the software copy of

the data cache of the processor Pi with the corresponding FA bit(s) set, the debugger

retrieves the data values from the software copy of the data cache for that processor

and moves to replay the next instruction. If the corresponding FA bits are not set, it

implies that there is an error in tracing (step 8 in Figure 3.20a). If Pi.fahCnt>0 but

data is not found in the software copy of the data cache of processor Pi, then the

software debugger gets data from another processors data cache. If Pi.fahCnt=0, we

have a first read miss event: the load data value is retrieved from the current trace

message, the software copy of the data cache is updated and the corresponding FA

bits are set. Then, a new trace message from the trace buffer is read for that core

and Pi.fahCnt is updated with a new value extracted from the trace message (step 3

in Figure 3.20a). For each memory write operation, if the data is found in the soft-

ware copy of the data cache and the cache block is shared, the current cache acquires

44

the ownership by invalidating copies of the cache block in other caches and then

software copy of cache block is updated. If the data is a hit in another cache, the FA

bits are also copied along with the cache block. In the case of a cache miss event, FA

bits for the corresponding block are cleared. If the current memory write operation

writes the entire sub-block protected by a single FA bit, corresponding FA bits are

set (step 5 in Figure 3.20b).

Figure 3.20 mc2RFiat operation in the software debugger on core i for a) memory

reads, and b) memory writes

Pi.fahCnt--

Pi: Memory Read

Pi.fahCnt > 0?

Read n bytes From Trace Msg.
Update SW Cache

Set Corresponding FA Bits
 Get New Trace Msg.

[Ti.dCC, Ti, Ti.fahCnt, Ti.LV]
Load Ti.fahCnt

END

Y

N

Pi: Cache Lookup

Pi: Memory Write

Hit?

N

Y

END

Clear FA Bits

Acquire Ownership
Update SW Cache

a) b)

1

2

3

1

2

3
7

Get Data From SW Cache

5

Lookup SW Cache

HIT?

Corresponding
FA Bits Set?

Y

Y

N

ERROR in tracing

Get Data From
Other SW Cache

Copy FA Bits

N

6

7 8

9

4

Hit in Other
Caches?

Copy Cache
Block & FA Bits

4 6

Set Corresponding
FA Bits

5

45

CHAPTER 4

EXPERIMENTAL EVALUATION

This chapter discusses the experimental setup used for the evaluation of the

proposed techniques. Figure 4.1 describes the experimental flow used to create

hardware traces and to analyze the trace port bandwidth requirements. The

experimental flow include three major components (i) software timed trace genera-

tor, (ii) mlvCFiat, mc2RT, and mc2RFiat simulators to filter the load data value trac-

es, and (iii) software to hardware trace converters and encoders. Section 4.1 discuss-

es the TmTrace tool used to create timed software traces and their output format.

Section 4.2 discusses the implementation and verification details of the mlvCFiat

simulator. Section 4.3 discusses the implementation and verification details of the

mc2RT simulator. Section 4.4 discusses the implementation and verification details

of the mc2RFiat simulator. Section 4.5 discusses the conversion of software traces to

hardware traces. Finally, Section 4.6 discusses the workload used for the trace port

bandwidth evaluation and experimental analysis to select a good granularity size

and variable encoding parameters.

46

Figure 4.1 Experiment flow to create hardware traces

4.1 Software Timed Trace Generator

 TmTrace [28] (Timed Multithreaded Trace) is a software module developed

as an extension of the Multi2Sim simulator [37] that was used to create timed soft-

ware traces. This tool provides different options for collecting traces of interest. For

example, we can collect control flow traces for all committed instructions, data traces

for memory reads and/or memory writes. In this case, we use this tool to collect trac-

es for all memory read and memory write operations. We refer to these traces as

tmlsTraces. The format of these traces is shown in Figure 4.2. Each trace message

includes the following fields:

 CC: Clock cycle in which the memory instruction is committed;

 Pi: Thread id or processor core id;

TmTrace: Software Timed Trace Generator

32 bit Target
Application

Application
Input

Number Of
Threads

Application
Output

Multi2Sim
configuration

files

TmTrace
Flags

Performance
Statistics

tmlsTrace

mlvCFiat

mc2RT

mlvCFiat
Trace

mc2RT
Trace

NX_b

Hardware
traces

CF_b

CF_e

RT_b

RT_e

SW2HW
Trace Conversion

 Multi2Sim TmTrace

mlvCFiat
Configuration

mc2RT
Configuration

mc2RFiat
mc2RFiat

Trace RF_b

RF_emc2RFiat
Configuration

Trace
Filetring

Trace
Filetring

Trace
Filetring

Trace
Filetring

Fixed
Encoding

Fixed
Encoding

Variable
Encoding

Fixed
Encoding

Variable
Encoding

Fixed
Encoding

Variable
Encoding

47

 L/S: Memory read (L=0) or write (S=1) instruction;

 PC: Value of the program counter or address of the instruction;

 OA: Address of the operand;

 OS: Size of the operand;

 LV: Value of the operand read from memory. This field is empty for a memory

write operation.

Figure 4.2 Trace messages generated for memory reads and writes

4.2 mlvCFiat Simulator

mlvCFiat simulator takes tmlsTraces as an input, implements the mlvCFiat

trace filtering as described in Section 3.1, and outputs the compressed load data val-

ue traces. The mlvCFiat simulator maintains the mlvCFiat structures (Figure 3.6)

private to each processor core. Section 4.2.1 discusses the main implementation de-

tails of the mlvCFiat simulator, and Section 4.2.2 describes the test cases used to

confirm its correctness.

Table 4.1 describes the parameters that can be used to control the behavior of

the mlvCFiat simulator. With the help of these parameters, we can control output

file size, size of the data caches, the size of the sub-block protected by a single first-

CC L/S PCPi OA OS

Legend:
CC Clock Cycle
Pi Thread / Core ID
L/S Load / Store
PC Program Counter
OA Operand Address
OS Operand Size
LV Load Value

Timed memory read and write trace messages

LV

48

access bit, and output file name. Figure 4.3 shows the output format of the mlvCFiat

trace message. It includes a time stamp (CC), the thread id (Pi), the first access hit

counter (fahCnt), the operand size (OS), the corresponding data cache sub-block(s)

that includes the load value (LV), and the length of the LV field (LLV). Note: the

length of the LV filed depends on the granularity size and it can be greater than or

equal to the length of the actual operand. For example, if the granularity size is 4-

bytes and the operand size is 1-byte, the minimum length of the LV field is 4-bytes.

The mlvCFiat simulator also outputs the program statistics. An example of a statis-

tics file is given in Figure 4.4. It includes information about the number of memory

read and memory write operations, cache hits, cache misses, and first-access hits

etc.

49

Table 4.1 mlvCFiat flags

Parameter Description

--help Generates help messages

--f [size] Output file size in MB. If file exceeds the specified size the

tracing stops. Default 50,000 MB.

--cs [kilobytes] Cache size in kilobytes. Default is 32 KB.

--cls [line size] Cache line size in bytes. Default is 32 B.

--ca [associativity] Sets the associativity of the cache. Default is 4.

--cfg [granularity] First access flag granularity, with each flag protecting a sub-

block of size granularity in a cache line. Default is 4 words (8

bytes).

--o [filename] Specifies output trace file name. Default is

tmlvCFiat_out_yr_mon_day_hr_min_sec

Note: *.txt = descriptors, *.Statistics = Statistics of tmlvCFiat

Figure 4.3 mlvCFiat trace descriptor format

CC fahCnt OSPi LV LLV

Legend:
CC Clock Cycle
Pi Thread/Core ID
fahCnt First Access Hit Counter
OS Operand Size
LV Load Value
LLV Load Value field Length

mlvCFiat Trace

50

; mlvCFiat: Instrumentation Time 180.608 ms

; timed memory read stats

Recorded 2197 memory read instructions.

 211 (%9.60) Byte Operands

 11 (%0.50) Word Operands

 1971 (%89.71) Doubleword Operands

 2 (%0.09) Quadword Operands

 2 (%0.09) Extended Precision Operands

 0 (%0.00) Octaword Operands

 0 (%0.00) Others Operands

; timed memory write stats

Recorded 2213 memory write instructions.

 108 (%4.88) Byte Operands

 166 (%7.50) Word Operands

 1937 (%87.53) Doubleword Operands

 1 (%0.05) Quadword Operands

 1 (%0.05) Extended Precision Operands

 0 (%0.00) Octaword Operands

 0 (%0.00) Others Operands

; timed memory read flow with CFiat stats

Cache Size (KB): 16

Cache Associativity: 4

Cache Line Size (B): 32

First Access Flag Granularity (B): 4

-- Cache Read References Hits:Misses (Hit Rate)

 Total 2080:117(94%)

 Byte Operands 177:34(83%)

 Word Operands 9:2(81%)

 Doubleword Operands 1891:80(95%)

 Quadword Operands 1:1(50%)

 Extended Precision Operands 2:0(100%)

 Octaword Operands 0:0(0%)

 Hexaword Operands 0:0(0%)

 Other Sized Operands 0:0(0%)

-- Cache References Hits:Misses (Hit Rate)

 Total 4172:238(94%)

 Byte Operands 282:37(88%)

 Word Operands 175:2(98%)

 Doubleword Operands 3710:198(94%)

 Quadword Operands 2:1(66%)

 Extended Precision Operands 3:0(100%)

 Octaword Operands 0:0(0%)

 Hexaword Operands 0:0(0%)

 Other Sized Operands 0:0(0%)

-- First Access Flag References Hits:Misses (Hit Rate)

 Total 1829:368(83%)

 Byte Operands 143:68(67%)

 Word Operands 8:3(72%)

 Doubleword Operands 1676:295(85%)

 Quadword Operands 1:1(50%)

 Extended Precision Operands 1:1(50%)

 Octaword Operands 0:0(0%)

 Hexaword Operands 0:0(0%)

 Other Sized Operands 0:0(0%)

; File size in Binaries

; Type, TotalSizeofTime, TotalSizeofLine, TotalSize

Input Load, 17576, 35152, 52728

Input Store, 17704, 35408, 53112

Input, 35280, 70560, 105840

Output, 2944, 3312, 6256

Figure 4.4 mlvCFiat simulator statistics example

51

4.2.1 Implementation Details

Figure 4.5 shows the functional flow of the mlvCFiat simulator. It starts by

reading the trace messages from the input file and by extracting the individual fields

of the trace message. If the trace message is from a new thread, it creates a new pri-

vate mlvCFiat structure as in Figure 3.2 for the corresponding thread. By using the

operand address and the operand size, it decides whether the operand spans single

cache block or multiple cache blocks. Depending on the operation and the number of

cache blocks occupied by the operand, the following functions are invoked: memory

read operation with single cache block invokes the SingleCacheBlockLoadAnalysis()

function, memory write operation with single cache block invokes the SingleCache-

BlockStoreAnalysis() function, memory read operation with multiple cache blocks

invokes the MultiCacheBlockLoadAnalysis() function, and memory write operation

with multiple cache blocks invokes the MultiCacheBlockStoreAnalysis() function.

SingleCacheBlockLoadAnalysis() checks whether the requested data is found

in the cache (cache hit event) or not (cache miss event). For a cache hit event, if all the

corresponding FA bits are set, fahCnt is incremented. Even if a single FA bit is not

set, it is treated as an FA miss event. For a cache miss event or FA miss event, a trace

message for that thread is written to the output file, fahCnt is cleared and the corre-

sponding FA bits are set (Figure 3.3a). To avoid duplication of sub-blocks protected

by the FA bit reported by the target platform, mlvCFiat emits the trace message

with the missing sub-blocks instead of all the sub-blocks corresponding to the re-

quested data.

SingleCacheBlockStoreAnalysis()checks whether the requested data is found

in the cache (cache hit event) or not (cache miss event). For a cache miss event, a new

52

cache block is fetched and the FA bits for newly fetched cache block are cleared. For

a cache hit event, the current processor acquires ownership by invalidating data in

other processor caches. If the current write operation writes the entire sub-block

protected by an FA bit, the corresponding FA bit is set (Figure 3.3b).

If the operand spans multiple cache blocks, each cache block is treated as an

independent single cache block and operations are carried out as in SingleCache-

BlockStoreAnalysis() and SingleCacheBlockLoadAnalysis(). If the data is found par-

tially in the cache (some cache blocks are hit and some cache blocks are miss), it is

treated as a cache miss event. Statistics related to caches (cache hit or cache miss,

first access bits are hit or miss etc.), instructions (number of memory reads and

memory writes), and operands (byte, word, double word etc.) are incremented. These

steps are repeated until the output file exceeds the allocated size or the input file

reaches its end.

53

Figure 4.5 mlvCFiat simulator functional flow

START

Store
Operation?

MultiCacheBlock
StoreAnalysis()

Y

N

Read tmlsTrace Message
From Input File

1

Output TracesProgram Statistics

Create Private
mlvCFiat Structure

Operand
Occupies Single

Cache Line?

Store
Operation?

Y

SingleCacheBlock
StoreAnalysis()

SingleCacheBlock
LoadAnalysis()

End Of File?

END

MultiCacheBlock
LoadAnalysis()

Output File
Size Exceeded?

Y

END

Extract Individual Fields
Of Trace Message

New Thread
Encountered?

Y

Y

Increment Statistics

N

N

N

2

3

4

5

6

11

7

8

9

tmlsTrace File Configuration Parameters

12
13

10

14

N

Y

mlvCFiat Simulator

N

54

4.2.2 Verification Details

To verify the correctness of the mlvCFiat simulator, we use test cases that

cover functional flows of the simulator in the presence of memory reads, memory

writes, and invalidations. Because the Intel32 ISA supports variable size operands

in memory, our tests consider memory operations on operands residing in a single

cache block as well as on operands that span multiple cache blocks. The tests also

cover situations such as emitting only missed sub-blocks instead of all relevant sub-

blocks, and setting an FA bit if the current write operation writes the whole sub-

block. The output of the mlvCFiat simulator shown in this section includes addition-

al details such as cache hit or miss, FA hit or miss, the location of the operand in the

data cache, and possibly a trace message emitted for better understanding.

To ensure controlled conditions during verification, the input trace is not cap-

tured from a program, but rather it is manually crafted. The data cache configura-

tion used for testing is as follows: 16KB data cache, 32-byte cache block, 4-way set

associativity, first-access granularity size of 4-bytes, and LRU replacement policy.

Thus, 5 LSB bits (0 to 4) of the operand address are used to identify the index of the

operand in the corresponding cache block, 7 bits (5 to 11) are used to get the location

of the cache block (set number) and the rest of the bits are used as a tag to differen-

tiate blocks that map to the same set in the data cache. The mlvCFiat simulator

does not model the data storage portion of the data cache. Thus, the mlvCFiat trace

messages report the load value read from the tmlsTraces, rather than from the sub-

blocks corresponding to the load value in the data cache.

55

Figure 4.6 shows a test input trace with reads and writes on operands occu-

pying a single cache block. Each line of the input and expected output is described

below:

 Line 1: The data requested by a memory read operation is not found in

the cache (cache read miss event). Thus, the corresponding trace mes-

sage is emitted as shown in line 17. As expected due to the granularity

of the FA bits, the length of the LV field is 4-bytes instead of 1-byte.

 Lines 2 to 6: The data requested by memory read operations are not

found in the cache (cache read miss events). The corresponding trace

messages are emitted. The data blocks requested in these lines map to

the same set of the data cache. Lines 2 to 5 fill all the ways of the set

in the data cache. In line 6, a cache miss event from processor 0 is ob-

served; the data block read from memory replaces the least recently

used data block (the cache block fetched in line 2) in this set.

 Line 7: This is a cache miss event because the cache block correspond-

ing to the requested data is evicted from the cache in line 6. Thus, a

trace message corresponding to the load value in line 7 should be

emitted (line 47).

 Line 8: The data requested by a memory read operation is found in the

data cache (cache read hit event) and the corresponding FA bit is also

set (FA hit event). Thus, no trace message is emitted.

 Line 9: The cache block requested by a memory write operation is not

found in the cache (cache write miss event). Processor 1 replaces the

cache block and invalidates the shared data in the processor 0 data

56

cache to acquire ownership. The current write operation writes the

whole sub-block protected by the corresponding FA bit.

 Line 10: This is a cache read miss event because of the invalidation of

the shared data in line 9. The corresponding trace message is emitted.

 Line 11: The data requested by a memory read operation is found in

the data cache (cache read hit event) and the corresponding FA bit is

also set in line 9 (FA hit event). Thus, no trace message is emitted.

 Line 12: The data requested by a memory write operation is not found

in the data cache (cache write miss event). Processor 0 reads the data

block from memory and replaces the cache block. The current write

operation writes to 3 sub-blocks. In these only 2 sub-blocks are written

completely, thus the corresponding two FA bits are set.

 Line 13: This is a cache hit event. The data written in line 12 is read

here. This is an FA miss event since all FA bits are not set. Thus, a

trace message (line 69) corresponding to one sub-block is emitted.

a) Input to mlvCFiat simulator

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

1. 244, 0, 0,  8ba8123, b03ae0b2, 1, 9 

2. 250, 0, 0,  8ba8132, b7fa00b8, 4, 97 

3. 252, 0, 0,  8ba8134, a7fc00a4, 4, a3 

4. 259, 0, 0,  8ba8135, b7fd00a4, 4, b90 

5. 260, 0, 0,  8ba8136, 80ad0b4, 4, b60fa008 

6. 270, 0, 0,  8ba8138, b0fd00a4, 4, ba 

7. 279, 0, 0,  8ba8139, b7fa00b8, 4, 97 

8. 299, 0, 0,  8ba813a,  80ad0b4, 4, b60fa008 

9. 300, 1, 1,  8ba813b, b7fa00bc, 4 

10. 310, 0, 0,  8ba813c, b7fa00bc, 4, 6013 

11. 311, 1, 0,  8ba8140, b7fa00bc, 4, 6013 

12. 319, 0, 1,  8ba8146, b06ad0aa, 10 

13. 336, 0, 0,  8ba8147, b06ad0aa, 10, b7 

 

b) Output of mlvCFiat simulator 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

14. Tag: b03ae SetIndex: 5 LineIndex: 12

15. CacheHit: 0 New wayIndex: 3

16. Emit ? 1

17. Emitted trace message: 244, 0, 0, 1, 9, 4

57

18.

19. Tag: b7fa0 SetIndex: 5 LineIndex: 18

20. CacheHit: 0 New wayIndex: 2

21. Emit ? 1

22. Emitted trace message: 250, 0, 0, 4, 97, 4

23.

24. Tag: a7fc0 SetIndex: 5 LineIndex: 4

25. CacheHit: 0 New wayIndex: 1

26. Emit ? 1

27. Emitted trace message: 252, 0, 0, 4, a3, 4

28.

29. Tag: b7fd0 SetIndex: 5 LineIndex: 4

30. CacheHit: 0 New wayIndex: 0

31. Emit ? 1

32. Emitted trace message: 259, 0, 0, 4, b90, 4

33.

34. Tag: 80ad SetIndex: 5 LineIndex: 14

35. CacheHit: 0 New wayIndex: 3

36. Emit ? 1

37. Emitted trace message: 260, 0, 0, 4, b60fa008, 4

38.

39. Tag: b0fd0 SetIndex: 5 LineIndex: 4

40. CacheHit: 0 New wayIndex: 2

41. Emit ? 1

42. Emitted trace message: 270, 0, 0, 4, ba, 4

43.

44. Tag: b7fa0 SetIndex: 5 LineIndex: 18

45. CacheHit: 0 New wayIndex: 1

46. Emit ? 1

47. Emitted trace message: 279, 0, 0, 4, 97, 4

48.

49. Tag: 80ad SetIndex: 5 LineIndex: 14

50. CacheHit: 1 Found in wayIndex: 3 FAHit: 1

51. Emit ? 0

52.

53. Tag: b7fa0 SetIndex: 5 LineIndex: 1c

54. CacheHit: 0 New wayIndex: 3

55. Evicted cache block from processor 0 cache

56.

57. Tag: b7fa0 SetIndex: 5 LineIndex 1c

58. CacheHit: 0 New wayIndex: 1

59. Emit ? 1

60. Emitted trace message: 310, 0, 1, 4, 6013, 4

61.

62. Tag: b7fa0 SetIndex: 5 LineIndex: 1c

63. CacheHit: 1 Found in wayIndex: 3 FAHit: 1

64. Emit ? 0

65.

66. Tag: b06ad SetIndex: 5 LineIndex: a

67. CacheHit: 0 New wayIndex: 0

68.

69. Tag: b06ad SetIndex: 5 LineIndex: a

70. CacheHit: 1 Found in wayIndex: 0 FAHit: 0

71. Emit ? 1

72. Emitted trace message: 336, 0, 0, 10, b7, 4

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Figure 4.6 Testing mlvCFiat: single cache block access 

 



58 

Figure 4.7 shows the test input used to verify operation of the mlvCFiat sim-

ulator and its output when memory operands span multiple cache blocks. Each line 

of the input and expected outputs is described below: 

 Line 1: The data requested by a memory read operation is not found 

in the cache (cache read miss event). Thus, the trace message corre-

sponding to load value in line 1 is emitted as shown in line 18. As the 

operand spans two sub-blocks in two cache blocks, the length of the 

LV field in the trace message is 8-bytes instead of 4-bytes.  

 Line 2: The data requested by a memory write operation is found in 

the cache (cache write hit event). Since the current write operation 

writes the whole sub-block, the corresponding FA bit is set. 

 Line 3: The data requested by a memory read operation spans two 

cache blocks and it is partially hit, i.e. the cache block-1 is hit and the 

cache block-2 is miss. This event is treated as a cache read miss event. 

Therefore, a trace message for a sub-block in the cache block-2 is 

emitted, as shown in line 30. 

 Lines 4 and 5: The data requested by memory read operations are not 

found in the cache (cache read miss events). Thus, trace messages cor-

responding to the reads are emitted, as shown in lines 39 and 48, re-

spectively. 

 Line 6: The data requested by a memory write operation is found in 

the cache (a cache write hit event). Processor 2 acquires the ownership 

by invalidating the cache blocks in processor 0 and processor 1. The 



59 

current memory write operation writes 2-bytes in cache block-1 and 6-

bytes in cache block-2. Thus, it sets one FA bit in cache block-2.  

 Line 7: Because of the invalidation in line 6, this is a cache read miss 

event. Thus, a trace message is emitted, as shown in line 68.  

 Line 8: This is a cache hit event, but all corresponding FA bits are not 

set (FA miss event). The write operation in line 6 sets only a few of the 

FA bits, hence a trace message for the corresponding sub-blocks 

whose FA bit is not set is emitted. 

 Line 9: The data requested by a memory write operation is not found 

in the cache (a cache write miss event). The current write operation 

writes to 3 sub-blocks, but only one sub-block is written completely. 

Hence, the FA bit corresponding to that sub-block is set.  

 Line 10: This is a cache read hit event. A memory read operation 

reads three sub-blocks. Two sub-blocks have their FA bits set by the 

operation in line 9, thus a trace message for one sub-block is emitted. 

 

a) Input to mlvCFiat simulator  
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

1. 296, 0, 0, 8048132, bfff001e, 4, 4

2. 299, 0, 1, 8048133, bfff003c, 4

3. 307, 0, 0, 8048134, bfff003c, 8, 100

4. 308, 1, 0, 8048137, bfff003c, 8, 100

5. 319, 2, 0, 8048140, bfff003c, 8, 100

6. 328, 2, 1, 8048142, bfff003e, 8

7. 329, 1, 0, 8048143, bfff003d, 4, 5

8. 331, 2, 0, 8048145, bfff003e, 8, 5

9. 338, 0, 1, 8048159, b23f003a, 8

10. 340, 0, 0, 8048170, b23f003a, 10, c902

b) Output of mlvCFiat simulator

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

11. Cache block: 1 

12. Tag: bfff0  SetIndex: 0  LineIndex: 1e 

13. LocalCacheHit: 0  New wayIndex: 3 

14. Cache block: 2 

15. Tag: bfff0  SetIndex: 1  LineIndex: 0 

16. LocalCacheHit: 0  New wayIndex: 3 

17. Emit ? 1 



60 

18. Emitted trace message: 296, 0, 0, 4, 4, 8 

19.  

20. Tag: bfff0  SetIndex: 1  LineIndex: 1c 

21. CacheHit: 1 Found in wayIndex: 3 

22.  

23. Cache block: 1 

24. Tag: bfff0  SetIndex: 1  LineIndex: 1c 

25. LocalCacheHit: 1 Found in  wayIndex: 3 LocalFAHit: 1 

26. Cache block: 2 

27. Tag: bfff0  SetIndex: 2  LineIndex: 0 

28. LocalCacheHit: 0  New wayIndex: 3 

29. Emit ? 1 

30. Emitted trace message: 307, 0, 0, 8, 100, 4 

31.  

32. Cache block: 1 

33. Tag: bfff0  SetIndex: 1  LineIndex: 1c 

34. LocalCacheHit: 0  New wayIndex: 3 

35. Cache block: 2 

36. Tag: bfff0  SetIndex: 2  LineIndex: 0 

37. LocalCacheHit: 0  New wayIndex: 3 

38. Emit ? 1 

39. Emitted trace message: 308, 1, 0, 8, 100, 8 

40.  

41. Cache block: 1 

42. Tag: bfff0  SetIndex: 1  LineIndex: 1c 

43. LocalCacheHit: 0  New wayIndex: 3 

44. Cache block: 2 

45. Tag: bfff0  SetIndex: 2  LineIndex: 0 

46. LocalCacheHit: 0  New wayIndex: 3 

47. Emit ? 1 

48. Emitted trace message: 319, 2, 0, 8, 100, 8 

49.  

50. Cache block: 1 

51. Tag: bfff0  SetIndex: 1  LineIndex: 1e 

52. LocalCacheHit: 1 Found in  wayIndex: 3 

53. Cache block: 2 

54. Tag: bfff0  SetIndex: 2  LineIndex: 0 

55. LocalCacheHit: 1 Found in  wayIndex: 3 

56. Cache block: 1 evicted from processor 0 cache 

57. Cache block: 2 evicted from processor 0 cache 

58. Cache block: 1 evicted from processor 1 cache 

59. Cache block: 2 evicted from processor 1 cache 

60.  

61. Cache block: 1 

62. Tag: bfff0  SetIndex: 1  LineIndex: 1d 

63. LocalCacheHit: 0  New wayIndex: 3 

64. Cache block: 2 

65. Tag: bfff0  SetIndex: 2  LineIndex: 0 

66. LocalCacheHit: 0  New wayIndex: 3 

67. Emit ? 1 

68. Emitted trace message: 329, 1, 0, 4, 5, 8 

69.  

70. Cache block: 1 

71. Tag: bfff0  SetIndex: 1  LineIndex: 1e 

72. LocalCacheHit: 1 Found in  wayIndex: 3 LocalFAHit: 1 

73. Cache block: 2 

74. Tag: bfff0  SetIndex: 2  LineIndex: 0 

75. LocalCacheHit: 1 Found in  wayIndex: 3 LocalFAHit: 0 

76. Emit ? 1 

77. Emitted trace message: 331, 2, 0, 8, 5, 4 

78.  

79. Cache block: 1 

80. Tag: b23f0  SetIndex: 1  LineIndex: 1a 

81. LocalCacheHit: 0 New wayIndex: 3 

82. Cache block: 2 

83. Tag: b23f0  SetIndex: 2  LineIndex: 0 

84. LocalCacheHit: 0 New wayIndex: 3 

85.  

86. Cache block: 1 

87. Tag: b23f0  SetIndex: 1  LineIndex: 1a 



61 

88. LocalCacheHit: 1 Found in  wayIndex: 3 LocalFAHit: 0 

89. Cache block: 2 

90. Tag: b23f0  SetIndex: 2  LineIndex: 0 

91. LocalCacheHit: 1 Found in  wayIndex: 3 LocalFAHit: 0 

92. Emit ? 1 

93. Emitted trace message: 340, 0, 0, 10, c902, 8 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Figure 4.7 Testing mlvCFiat: multi cache block access

4.3 mc2RT Simulator

The mc2RT simulator takes tmlsTraces as an input, implements the mc2RT

trace filtering as described in Section 3.2, and outputs the compressed load data val-

ue traces. Section 4.3.1 discusses the main implementation details of the mc2RT

simulator, and Section 4.3.2 describes the test cases used to confirm its correctness.

Table 4.1 (excluding --cfg flag) describes the parameters that are used to con-

trol the behavior of mc2RT simulator. With the help of these parameters, we can

control the output file size, the size of the data caches, and the output file name.

Figure 4.8 shows the output format of the mc2RT trace messages. A message, in-

cludes the time stamp (CC), the thread id (Pi), the trace hit counter (THCnt), the op-

erand size (OS), the content of the corresponding data cache blocks that includes the

load value (CB), and length of the CB field (LCB). Note: The length of the cache

block field (CB) can be greater than the actual cache block size for example, for a 32-

byte cache block, if the operand spans two cache blocks and misses in both of the

cache blocks, then the length of CB will be 64-bytes. The mc2RT simulator also out-

puts program statistics as shown in Figure 4.9, including information about the

number of memory read and memory write operations, cache hits, cache misses,

trace bit hits, read hits in other caches, and invalidations etc.

62

Figure 4.8 mc2RT trace descriptor format

; mc2RT: Instrumentation Time 840.872 ms

; timed memory read stats

Recorded 7902 memory read instructions.

 2279 (%28.84) Byte Operands

 23 (%0.29) Word Operands

 5600 (%70.87) Doubleword Operands

 0 (%0.00) Quadword Operands

 0 (%0.00) Extended Precision Operands

 0 (%0.00) Octaword Operands

 0 (%0.00) Others Operands

; timed memory write stats

Recorded 30691 memory write instructions.

 125 (%0.41) Byte Operands

 681 (%2.22) Word Operands

 29885 (%97.37) Doubleword Operands

 0 (%0.00) Quadword Operands

 0 (%0.00) Extended Precision Operands

 0 (%0.00) Octaword Operands

 0 (%0.00) Others Operands

; timed memory read flow with mc2RT stats

Cache Size (KB): 16

Cache Associativity: 4

Cache Line Size (B): 32

-- Cache Read References Hits:Misses (Hit Rate)

 Total 7698:204(97%)

 Byte Operands 2259:20(99%)

 Word Operands 22:1(95%)

 Doubleword Operands 5417:183(96%)

 Quadword Operands 0:0(0%)

 Extended Precision Operands 0:0(0%)

 Octaword Operands 0:0(0%)

 Hexaword Operands 0:0(0%)

 Other Sized Operands 0:0(0%)

-- Cache References Hits:Misses (Hit Rate)

 Total 15039:23554(38%)

 Byte Operands 2375:29(98%)

 Word Operands 673:31(95%)

 Doubleword Operands 11991:23494(33%)

 Quadword Operands 0:0(0%)

 Extended Precision Operands 0:0(0%)

 Octaword Operands 0:0(0%)

 Hexaword Operands 0:0(0%)

 Other Sized Operands 0:0(0%)

-- Trace bit References Hits:Misses (Hit Rate)

 Total 7588:314(96%)

 Byte Operands 2215:64(97%)

 Word Operands 22:1(95%)

 Doubleword Operands 5351:249(95%)

 Quadword Operands 0:0(0%)

CC THCnt OSPi CB LCB

mc2RT Trace

Legend:
CC Clock Cycle
Pi Thread/Core ID
THCnt Trace Hit Counter
OS Operand Size
CB Content Of Cache Block
LCB Length of CB

63

 Extended Precision Operands 0:0(0%)

 Octaword Operands 0:0(0%)

 Hexaword Operands 0:0(0%)

 Other Sized Operands 0:0(0%)

-- Invalidation References : Invalidations

 Total : 37

 Byte Operands : 0

 Word Operands : 0

 Doubleword Operands : 37

 Quadword Operands : 0

 Extended Precision Operands : 0

 Octaword Operands : 0

 Hexaword Operands : 0

 Other Sized Operands : 0

-- Read Hit in other Caches : Hit

 Total : 83

 Byte Operands : 3

 Word Operands : 0

 Doubleword Operands : 80

 Quadword Operands : 0

 Extended Precision Operands : 0

 Octaword Operands : 0

 Hexaword Operands : 0

 Other Sized Operands : 0

-- Hit in other Caches : Hit (read & write)

 Total : 23137

 Byte Operands : 3

 Word Operands : 0

 Doubleword Operands : 23134

 Quadword Operands : 0

 Extended Precision Operands : 0

 Octaword Operands : 0

 Hexaword Operands : 0

 Other Sized Operands : 0

; File size in Binaries

; Type, TotalSizeofTime, TotalSizeofLine, TotalSize

Input Load, 63216, 126432, 189648

Input Store, 245528, 491056, 736584

Input, 308744, 617488, 926232

Output, 2512, 2826, 5338

Figure 4.9 mc2RT simulator statistics example

4.3.1 Implementation Details

The mc2RT simulator has the same functional flow as the mlvCFiat simulator

(Figure 4.5). It starts by reading the trace messages from the input file and by ex-

tracting the individual fields of the trace message. If the trace message is from a

new thread, it creates a new private mc2RT structure as in Figure 3.6 for the corre-

sponding thread. By using the operand address and size, it decides whether the op-

erand spans single or multiple cache blocks. Depending on the operation and the

64

number of cache blocks occupied by the operand, the following functions are invoked:

memory read operation with single cache block invokes the SingleCache-

BlockLoadAnalysis() function, memory write operation with single cache block in-

vokes the SingleCacheBlockStoreAnalysis() function, memory read operation with

multiple cache blocks invokes the MultiCacheBlockLoadAnalysis() function, and

memory write operation with multiple cache blocks invokes the MultiCacheBlock-

StoreAnalysis() function.

SingleCacheBlockLoadAnalysis() checks whether the requested data is found

in the cache (cache hit event) or not (cache miss event). For a cache miss event, the

coherent read transaction is issued, if the cache block hits in other caches the trace

bit is also transferred along with the cache block. If a trace bit is not set for the new

cache block or if the cache block is retrieved from main memory, a trace message for

that thread is written to the output file, the trace bit is set and THCnt is cleared.

For a cache hit event, if the trace bit is set THCnt is incremented (Figure 3.8).

SingleCacheBlockStoreAnalysis() checks whether the requested data is found

in the cache (cache hit event) or not (cache miss event). For a cache miss event, a new

cache block is fetched either from another processors cache or from main memory. If

the cache block is fetched from another cache, the corresponding trace bit is also in-

herited; if the cache is retrieved from main memory, the trace bit for the newly

fetched cache block is cleared. For a cache hit event, the current processor acquires

the ownership by invalidating the cache block in the other processor’s cache (Figure

3.11).

If the operand spans multiple cache blocks, each cache block is treated as an

independent single cache block and operations are performed as in SingleCache-

65

BlockStoreAnalysis() and SingleCacheBlockLoadAnalysis(). If the data is found par-

tially in the cache (some cache blocks are hit and some cache blocks are miss), it is

treated as a cache miss event. Statistics related to caches (cache hit or cache miss,

trace bit hit or trace bit miss etc.), instructions (number of memory reads and

memory writes), and operands (byte, word, double word etc.) are incremented. These

steps are repeated until the output file exceeds the allocated size or the input file

reaches its end.

4.3.2 Verification Details

To verify the correctness of the mc2RT simulator, we use two test cases that

cover functional flows of the simulator in the presence of memory reads, memory

writes, and state transitions. The tests employ memory accesses that use different

data types, span single or multiple cache blocks, and exercise different state transi-

tions in the cache-coherence protocol. The output of the mc2RT simulator shown in

this section includes additional details along with trace messages such as cache hit

or miss, trace bit hit or miss, the location of the operand in the data cache, data is

hit in other caches or not, and trace message status and content. In the mc2RT out-

put, snoop signal X indicates the coherent read and invalidate (CRI), snoop signal R

indicates the coherent read (CR), snoop signal I indicates coherent invalidate (CI),

and snoop signal N indicates no action.

To ensure controlled conditions during verification, the input trace is not cap-

tured from a program, but rather it is manually crafted. The data cache configura-

tions used in these tests match those used in the mlvCFiat simulator verification.

The mc2RT simulator does not model the data storage portion of the data cache.

66

Thus, the mc2RT trace messages report the load value read from the tmlsTraces, ra-

ther than entire cache blocks corresponding to the load value in the data cache.

Figure 4.10 shows the test input used to verify the operation of the mc2RT

simulator and its output when the operand occupies a single cache block. Each line

of the input and expected output is described below.

 Line 1: The data requested by a memory write operation is not found

in the data cache (cache write miss event). Processor 1 generates snoop

signal X to get the data. Since data does not hit in any other processor,

the cache block corresponding to the requested data is loaded from

memory and the state of the cache block is set to Modified.

 Line 2: The data requested by a memory write operation is not found

in the data cache (cache write miss event). Processor 2 generates snoop

signal X to get the data. The data hits in the processor 1 cache, thus it

transfers the requested cache block and corresponding TR bit attached

to the cache block to processor 2. The cache block corresponding to the

load value is not reported before, thus trace message is emitted as

shown in line 20 and the trace bit in both the caches is set.

 Line 3: This operation results a cache write miss event. Processor 3

generates the snoop signal X to get the data. The requested data hits

in processors1 and 2. Since processor 1 is in Owned state, it is

responsible for sending the requested data along with the trace bit to

processor 3.

 Line 4 and 5: The memory read operation in these lines results in a

cache read miss event, but the cache block can be found in processor 3.

67

The TR bit of the corresponding load values is set (trace hit event).

Hence, a trace message corresponding to this cache block in processor

0 and processor 2 is not emitted.

 Line 6: This line illustrates cache read hit and trace hit events. Thus,

a trace message is not emitted corresponding to this cache block.

 Line 7: This is a cache write hit event. Since this is a shared block, pro-

cessor 2 generates snoop signal I to invalidate the cache block in other

caches to acquire the ownership.

 Line 8: The data requested by a memory write operation is not found

in the data cache because this cache block is invalidated by processor

2 in line 7. Processor 3 generates snoop signal X to get the data. The

data can be found in processor 2, thus it transfers the cache block and

its TR bit to processor 1. Since the TR bit is already set, a trace mes-

sage corresponding to this cache block is not emitted.

 Line 9: The data requested by a memory read operation is not found in

the data cache (cache read miss event). Processor 0 generates snoop

signal R to get the data. Since this data is not found in any other pro-

cessor, it is fetched from memory and the state of the cache block is set

as Exclusive. The trace message corresponding to this cache block is

emitted as shown in line 54.

 Line 10: The data requested by a memory read operation is not found

in the data cache (cache read miss event). Processor 2 generates snoop

signal R to get the data. The data can found in processor 0, it sends

the requested cache block along with its TR bit. Processor 0 already

68

emitted a trace message corresponding to this cache block in line 9,

thus it is not emitted. The states of the two processors are updated to

Shared.

 Line 11: The data hits in processors 0 and 2 in the Shared state. Even

though the data hits in two processors only, one processor is responsi-

ble for sending the requested data to processor 3. In this design, the

lower numbered processor is responsible to send the requested data.

a) Input to mc2RT simulator

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

1. 296, 1, 1,  8048132, bfff0000, 4 

2. 297, 2, 0,  8048134, bfff0000, 8, 1b 

3. 299, 3, 1,  8048135, bfff0000, 4 

4. 315, 0, 0,  8048138, bfff0000, 2, 1f9 

5. 319, 2, 0,  804813a, bfff0000, 4, 1f9 

6. 321, 3, 0,  804813b, bfff0000, 4, 1f9 

7. 351, 2, 1,  8048142, bfff0000, 1 

8. 352, 1, 0,  8048145, bfff0000, 4, 98c 

9. 358, 0, 0,  8048144, a0d0ac00, 4, 7f 

10. 377, 2, 0,  8048149, a0d0ac00, 4, 7f 

11. 383, 3, 0,  8048150, a0d0ac00, 4, 7f 

 

b) Output of mc2RT simulator 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

12. Tag: bfff0 SetIndex: 0 LineIndex: 0

13. CacheHit: 0 Snoop Signal: X

14. Found in other cache: 0

15.

16. Tag: bfff0 SetIndex: 0 LineIndex: 0

17. CacheHit: 0 Snoop Signal: R

18. Found in other cache: 1 TRHit in other cache: 0

19. Emit: 1

20. Emitted trace message: 297, 2, 0, 8, 1b, 32

21.

22. Tag: bfff0 SetIndex: 0 LineIndex: 0

23. CacheHit: 0 Snoop Signal: X

24. Found in other cache: 1

25.

26. Tag: bfff0 SetIndex: 0 LineIndex: 0

27. CacheHit: 0 Snoop Signal: R

28. Found in other cache: 1 TRHit in other cache: 1

29. Emit: 0

30.

31. Tag: bfff0 SetIndex: 0 LineIndex: 0

32. CacheHit: 0 Snoop Signal: R

33. Found in other cache: 1 TRHit in other cache: 1

34. Emit: 0

35.

36. Tag: bfff0 SetIndex: 0 LineIndex: 0

37. CacheHit: 1 Found in wayIndex: 3

38. State: o TRHit: 1

39. Emit: 0

40.

41. Tag: bfff0 SetIndex: 0 LineIndex: 0

69

42. CacheHit: 1 Found in wayIndex: 3

43. State: s Snoop Signal: I

44.

45. Tag: bfff0 SetIndex: 0 LineIndex: 0

46. CacheHit: 0 Snoop Signal: R

47. Found in other cache: 1 TRHit in other cache: 1

48. Emit: 0

49.

50. Tag: a0d0a SetIndex: 60 LineIndex: 0

51. CacheHit: 0 Snoop Signal: R

52. Found in other cache: 0

53. Emit: 1

54. Emitted trace message: 358, 0, 1, 4, 7f, 32

55.

56. Tag: a0d0a SetIndex: 60 LineIndex: 0

57. CacheHit: 0 Snoop Signal: R

58. Found in other cache: 1 TRHit in other cache: 1

59. Emit: 0

60.

61. Tag: a0d0a SetIndex: 60 LineIndex: 0

62. CacheHit: 0 Snoop Signal: R

63. Found in other cache: 1 TRHit in other cache: 1

64. Emit: 0

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Figure 4.10 Testing mc2RT: single cache block access  

 

Figure 4.11 shows the test input used to verify operation of the mc2RT simu-

lator and filtered output traces when memory operands span multiple cache blocks. 

Each line of the input and expected outputs is described below: 

 Line 1: The data requested by a memory read operation is not found in 

the data cache (cache read miss event). Processor 0 generates a snoop 

signal R to get the data. None of the processors has the requested da-

ta, thus it is read from memory and the new state of the cache block is 

set as Exclusive. This cache block is not reported by any other proces-

sor, thus a corresponding trace message is emitted. 

  Line 2: The data requested by a memory write operation is not found 

in the data cache (cache write miss event). Processor 0 generates a 

snoop signal X for two cache blocks separately. Since the cache block 



70 

does not hit in any other processor, it is read from memory and the 

state of the cache block is updated to Modified for two cache blocks.  

 Line 3: This is a cache read hit event, processor 0 reads the same cache 

blocks accessed in line 2. The TR bit for two cache blocks is not hit 

(trace miss event), thus the trace message corresponding to these cache 

blocks is emitted with the size of CB field as 64 bytes as shown in line 

34. 

  Line 4: The data requested by a memory read operation is not found 

in the data cache (cache read miss event). Processor 1 generates a 

snoop signal R separately for two cache blocks. This data hits in pro-

cessor 0, thus it transfers the data along with its trace bit. The TR bit 

is hit for two cache lines (reported in line 3), thus no trace message is 

emitted.  

 Line 5: The data requested by a memory write operation is found in 

the data cache (cache write miss event). Processor 0 acquires owner-

ship by invalidating the cache block in other caches. It generates the 

snoop signal I for two cache blocks separately to invalidate the shared 

data.  

 Line 6: The cache block is invalidated by processor 0 in line 5; thus it 

is a cache read miss event. Processor 1 generates a snoop signal R for 

two cache blocks separately. Processor 0 transfers the requested data 

along with its trace bit to processor 1. The TR bit for both the cache 

blocks is set (trace hit event), hence a trace message is not emitted. 



71 

 Line 7: The data requested by a memory read operation is partially 

found in the data cache (cache read miss event). Cache block-1 is hit 

and the corresponding TR bit is also set and cache block-2 is miss. 

Processor 0 generates a snoop signal R corresponding to cache block-2 

to get the data. The data does not hit in any other processor; hence it 

is read from memory and a trace message with the content of the 

cache block-2 is emitted. Thus, the length of the CB field is 32-bytes 

instead of 64-bytes (line 80).  

 Lines 8: This is a cache write miss event. Processor 2 generates a snoop 

signal X for two cache blocks separately to get the data. Cache block-1 

can be found in processor 0 but cache block-2 is not found in any other 

processor. 

 

a) Input to mc2RT simulator 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

1. 209, 0, 0, 8048192, 818a0d4, 4, b7ef0088

2. 242, 0, 1, 8048195, b7ef00b8, 10

3. 249, 0, 0, 8048199, b7ef00b8, 10, 1

4. 256, 1, 0, 8048232, b7ef00ba, 8, 1

5. 263, 0, 1, 8048239, b7ef00ba, 8

6. 270, 1, 0, 8048240, b7ef00ba, 8, b7e3008

7. 271, 0, 0, 8048242, b7ef00de, 8, b7e3008

8. 272, 2, 1, 8048242, b7ef00fe, 8

b) Output of mc2RT simulator

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

9. Tag: 818a  SetIndex: 6  LineIndex: 14 

10. CacheHit: 0 Snoop Signal: R 

11. Found in other cache: 0 

12. Emit: 1 

13. Emitted trace message: 209, 0, 0, 4, b7ef0088, 32 

14.  

15. Cache Block: 1 

16. Tag: b7ef0  SetIndex: 5  LineIndex: 18 

17. LocalCacheHit: 0 Snoop Signal: X 

18. Found in other cache: 0 

19. Cache Block: 2 

20. Tag: b7ef0  SetIndex: 6  LineIndex: 0 

21. LocalCacheHit: 0 Snoop Signal: X 

22. Found in other cache: 0 

23.  

24. Cache Block: 1 

25. Tag: b7ef0  SetIndex: 5  LineIndex: 18 

26. LocalCacheHit: 1 Found in wayIndex: 3 



72 

27. State: m LocalTRHit: 0 

28. Cache Block: 2 

29. Tag: b7ef0  SetIndex: 6  LineIndex: 0 

30. LocalCacheHit: 1 Found in wayIndex: 2 

31. State: m LocalTRHit: 0 

32. Emit: 1 

33. Emitted trace message: 249, 0, 0, 10, 1, 64 

34.  

35. Cache Block: 1 

36. Tag: b7ef0  SetIndex: 5  LineIndex: 1a 

37. LocalCacheHit: 0 

38. Cache Block: 2 

39. Tag: b7ef0  SetIndex: 6  LineIndex: 0 

40. LocalCacheHit: 0 

41. Cache Block: 1 Snoop Signal: R 

42. Found in other cache: 1 TRHit in other cache: 1 

43. Cache Block: 2 Snoop Signal: R 

44. Found in other cache: 1 TRHit in other cache: 1 

45. Emit: 0 

46.  

47. Cache Block: 1 

48. Tag: b7ef0  SetIndex: 5  LineIndex: 1a 

49. LocalCacheHit: 1 Found in wayIndex: 3 

50. State: o Snoop Signal: I 

51. Cache Block: 2 

52. Tag: b7ef0  SetIndex: 6  LineIndex: 0 

53. LocalCacheHit: 1 Found in wayIndex: 2 

54. State: o Snoop Signal: I 

55.  

56. Cache Block: 1 

57. Tag: b7ef0  SetIndex: 5  LineIndex: 1a 

58. LocalCacheHit: 0 

59. Cache Block: 2 

60. Tag: b7ef0  SetIndex: 6  LineIndex: 0 

61. LocalCacheHit: 0 

62. Cache Block: 1 Snoop Signal: R 

63. Found in other cache: 1 TRHit in other cache: 1 

64. Cache Block: 2 Snoop Signal: R 

65. Found in other cache: 1 TRHit in other cache: 1 

66. Emit: 0 

67.  

68. Cache Block: 1 

69. Tag: b7ef0  SetIndex: 6  LineIndex: 1c 

70. LocalCacheHit: 1 Found in wayIndex: 2 

71. State: o LocalTRHit: 1 

72. Cache Block: 2 

73. Tag: b7ef0  SetIndex: 7  LineIndex: 0 

74. LocalCacheHit: 0 

75. Cache Block: 1 Snoop Signal: N 

76. Found in other cache: 1 TRHit in other cache: 1 

77. Cache Block: 2 Snoop Signal: R 

78. Found in other cache: 0 

79. Emit: 1 

80. Emitted trace message: 271, 0, 0, 8, b7e3008, 32 

81.  

82. Cache Block: 1 

83. Tag: b7ef0  SetIndex: 7  LineIndex: 1c 

84. LocalCacheHit: 0 Snoop Signal: X 

85. Found in other cache: 1 

86. Cache Block: 2 

87. Tag: b7ef0  SetIndex: 8  LineIndex: 0 

88. LocalCacheHit: 0 Snoop Signal: X 

89. Found in other cache: 0  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Figure 4.11 Testing mc2RT: multi cache block access

73

4.4 mc2RFiat Simulator

The mc2RFiat simulator takes tmlsTraces as input, implements the mc2RFiat

trace filtering as described in Section 3.3, and outputs the compressed load data val-

ue traces. Section 4.4.1 discusses some main implementation details of the mc2RFiat

simulator and Section 4.4.2 describes the test cases used to confirm the correctness

of the mc2RFiat simulator.

Table 4.1 describes the parameters that can be used to control the behavior of

the mc2RFiat simulator. With the help of these parameters, we can control output

file size, the size of the data caches, and the output file name. The output format of

the mc2RFiat trace message is the same as the mlvCFiat trace message (Figure 4.3)

and the format of the output statistics file is the same as the mc2RT statistics file

(Figure 4.9).

4.4.1 Implementation Details

The mc2RFiat simulator has the same functional flow as the mlvCFiat simu-

lator (Figure 4.5). It starts by reading the trace messages from the input file and by

extracting the individual fields of the trace message. If the trace message is from a

new thread, it creates a new private mc2RFiat structure as in Figure 3.14 for the

corresponding thread. By using the operand address and the operand size, it decides

whether the operand spans single or multiple cache blocks. Depending on the opera-

tion and the number of cache blocks occupied by the operand, the following functions

are invoked: memory read operation with single cache block invokes the Sin-

gleCacheBlockLoadAnalysis() function, memory write operation with single cache

block invokes the SingleCacheBlockStoreAnalysis() function, memory read operation

with multiple cache blocks invokes the MultiCacheBlockLoadAnalysis() function,

74

and memory write operation with multiple cache blocks invokes the MultiCache-

BlockStoreAnalysis() function.

SingleCacheBlockLoadAnalysis() checks whether the requested data is found

in the cache (cache hit event) or not (cache miss event). For a cache hit event, if all the

corresponding FA bit(s) is set, fahCnt is incremented. Even if a single FA bit is not

set, it is treated as an FA miss event. For an FA miss event, a trace message for that

thread is written to the output file, fahCnt is cleared and the corresponding FA bit(s)

is set. For a cache miss event, the coherent read transaction is issued; if the cache

block hits in other caches, the FA bits for the corresponding cache block are also

transferred along with the cache block. If the corresponding FA bit(s) is not set or if

the cache block is retrieved from main memory, a trace message for that thread is

written to the output file, the corresponding FA bit(s) is set and fahCnt is cleared. To

avoid duplication of sub-blocks protected by the FA bit reported by the target plat-

form, mlvCFiat emits the trace message with the missing sub-blocks instead of all

the sub-blocks corresponding to the requested data (Figure 3.16).

SingleCacheBlockStoreAnalysis() checks whether the requested data is found

in the cache (cache hit event) or not (cache miss event). For a cache miss event, a new

cache block is fetched from either another processor's cache or from main memory. If

the cache block is fetched from another cache, the corresponding FA bits are also in-

herited; if the cache is retrieved from main memory, the FA bits for the newly

fetched cache block are cleared. For a cache hit event, the current processor acquires

ownership by invalidating the cache block in the other caches. If the current write

operation writes the entire sub-block protected by a cache’s FA bit, the correspond-

ing FA bit(s) is set (Figure 3.19).

75

If the operand spans multiple cache blocks, each cache block is treated as an

independent single cache block and operations are performed as in SingleCache-

BlockStoreAnalysis() and SingleCacheBlockLoadAnalysis().If the data is found par-

tially in the cache (some cache blocks are hit and some cache blocks are miss), it is

treated as a cache miss event. Statistics related to caches (cache hit or cache miss,

invalidations, hits in other caches, first access bits are hit or miss etc.), instructions

(number of memory reads and memory writes), and operands (byte, word, double

word etc.) are incremented. These steps are repeated until the output file exceeds

the allocated size or the input file reaches its end.

4.4.2 Verification Details

To verify the correctness of the mc2RFiat simulator, we use test cases that

cover functional flows of the simulator in the presence of memory reads, memory

writes, and state transitions. The tests employ memory accesses that use different

data types, span single or multiple cache blocks, and exercise different state transi-

tions in cache-coherence protocol. The output of the mc2RFiat simulator shown in

this section includes additional details such as cache hit or miss, FA hit or miss, the

location of the operand in the cache, data hit or miss in other caches, and trace mes-

sage status and content. In the mc2RFiat output, snoop signal X indicates the coher-

ent read and invalidate (CRI), snoop signal R indicates the coherent read (CR) and

snoop signal I indicates coherent invalidate (CI), snoop signal N indicates no action.

To ensure controlled conditions during verification, the input trace is not cap-

tured from a program, but rather is manually crafted. The data cache configurations

used matches ones used in verification of the mlvCFiat simulator. The mlvCFiat

simulator does not model data storage portion of the data cache. Thus, the mc2RFiat

76

trace messages report the load value read from the tmlsTraces, rather than from the

sub-blocks corresponding to the load value in the data cache.

Figure 4.12 shows the test input used to verify operation of the mc2RFiat

simulator and its output when the memory operand occupies a single cache block.

Each line of the input and expected output is described below.

 Line 1: The data requested by a memory write operation is not found

in the data cache (cache write miss event). Processor 0 generates snoop

signal X to get the missing data. The data is not found in any proces-

sor, thus it is read from memory and the state of the cache block is

updated to Modified. The current memory write operation does not

write the whole sub-block protected by FA bit. Thus, no corresponding

FA bit is set.

 Line 2: This is a cache hit event but the FA bits for the corresponding

sub-blocks are not set (FA miss event). Thus, a corresponding trace

message is emitted as shown in line 9. The length of the LV field is 8-

bytes since the operand spans two sub-blocks. This illustrates the

point that the LV field length can be greater than the actual operand

size.

 Line 3: The data requested by a memory read operation is not found in

the data cache (cache read miss event). Processor 1 generates a snoop

signal R to get the missing data. The data hits in processor 0, hence it

sends the requested data and its FA bits. The load value in this

memory read operation spans three sub-blocks but two sub-blocks are

77

already reported by processor 0 hence a trace message with one sub-

block only is emitted as shown in line15.

 Line 4: The data requested by a memory read operation is not found

in the data cache (cache read miss event). Processor 2 generates a

snoop signal R to get the missing data. The data hits in processor 0 in

the Owned state and processor 1 in the Shared state. Thus, processor

0 is responsible for sending the requested cache block and its FA bits.

A trace message for one sub-block is emitted as shown in line 21.

 Line 5: The data requested by a memory read operation is not found in

the data cache (cache read miss event). Processor 0 generates a snoop

signal R to get the missing data. Since data does not hit in any other

processor, processor 0 reads data from memory and the state of the

cache block is updated to Exclusive. The corresponding FA bits load

value are not set (FA miss event), thus a trace message is emitted for

the corresponding sub-block (line 27).

 Line 6: This is a cache miss event. Processor 1 generates a snoop signal

R to get the missing data. The data hits in processor 0 in the Exclusive

state. Processor 0 sends the requested data and its FA bits. The cur-

rent operand spans two sub-blocks and one of the sub-block is already

reported in line 5, hence the trace message is emitted only for one sub-

block. The state of both processors is updated to Shared.

 Line 7: This is a cache miss event. Processor 2 generates a snoop signal

R to get the missing data. Data hits in processors 0 and 1 in Shared

state. The requested data can be transferred by processor 0 or proces-

78

sor 1, it is a design consideration. In this simulator, lower numbered

processor is responsible for sending the cache block i.e. processor 0

sends the requested data and its FA bits. The FA bit is set only for one

sub-block (FA miss event), thus a trace message is emitted for another

sub-block.

 Line 8: This is a cache hit event but the corresponding FA bit is not set

(FA miss event). A trace message corresponding to the load value as

shown in line 45 is emitted. The length of the LV field in trace mes-

sage is 4-bytes instead of 1-byte due to the granularity of the FA bits.

 Line 9: This is a cache hit event but only a few FA flags corresponding

to the load value are set (FA miss event). Thus, a trace message is

emitted only for sub-blocks that miss. The length of the LV field in the

emitted trace message (line 51) is less than the actual operand size

 Line 10: The data requested by a memory write operation is found in

the data cache (cache write hit event). Processor 3 generates a snoop

signal I to acquire ownership. The FA bit is set since the current

memory write operation writes the entire sub-block protected by the

FA bit.

 Line 11: This is a cache miss event because of the invalidation in line

10. The FA bit corresponding to the load value is set in line 10, thus a

trace message is not emitted.

79

a) Input to mc2RFiat simulator

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

1. 258, 0, 1,  80492ba, b7ed60e2, 4 

2. 317, 0, 0,  80492bc, b7ed60e2, 4, 3f8edcf 

3. 319, 1, 0,  80492bd, b7ed60e2, 8, 3f8edcf 

4. 320, 2, 0,  80492c4, b7ed60e2, 8, 3f8edcf 

5. 333, 0, 0,  80493ca, b0ed60f4, 4, 2 

6. 373, 1, 0,  80493cb, b0ed60f6, 4, 2 

7. 387, 2, 0,  80493cd, b0ed60f6, 4, 2 

8. 393, 0, 0,  80493e0, b7ed60ed, 1, 9 

9. 394, 0, 0,  80493e1, b7ed60e2, 10, 2 

10. 399, 3, 1,  80493e2, b7ed60fc, 4 

11. 400, 0, 0,  80493e4, b7ed60fc, 4, 2 

 

b) Output of mc2RFiat simulator 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

1. Tag: b7ed6 SetIndex: 7 LineIndex: 2

2. CacheHit: 0 Snoop Signal: X

3. Found in other cache: 0

4. Tag: b7ed6 SetIndex: 7 LineIndex: 2

5. CacheHit: 1 Found in wayIndex: 3

6. State: m FAHit: 0

7. Emit: 1

8. Emitted trace message: 317, 0, 0, 4, 3f8edcf, 8

9.

10. Tag: b7ed6 SetIndex: 7 LineIndex: 2

11. CacheHit: 0 Snoop Signal: R

12. Found in other cache: 1 FAHit in other cache: 0

13. Emit: 1

14. Emitted trace message: 319, 1, 0, 8, 3f8edcf, 4

15.

16. Tag: b7ed6 SetIndex: 7 LineIndex: 2

17. CacheHit: 0 Snoop Signal: R

18. Found in other cache: 1 FAHit in other cache: 0

19. Emit: 1

20. Emitted trace message: 320, 2, 0, 8, 3f8edcf, 4

21.

22. Tag: b0ed6 SetIndex: 7 LineIndex: 14

23. CacheHit: 0 Snoop Signal: R

24. Found in other cache: 0

25. Emit: 1

26. Emitted trace message: 333, 0, 0, 4, 2, 4

27.

28. Tag: b0ed6 SetIndex: 7 LineIndex: 16

29. CacheHit: 0 Snoop Signal: R

30. Found in other cache: 1 FAHit in other cache: 0

31. Emit: 1

32. Emitted trace message: 373, 1, 0, 4, 2, 4

33.

34. Tag: b0ed6 SetIndex: 7 LineIndex: 16

35. CacheHit: 0 Snoop Signal: R

36. Found in other cache: 1 FAHit in other cache: 0

37. Emit: 1

38. Emitted trace message: 387, 2, 0, 4, 2, 4

39.

40. Tag: b7ed6 SetIndex: 7 LineIndex: d

41. CacheHit: 1 Found in wayIndex: 3

42. State: o FAHit: 0

43. Emit: 1

44. Emitted trace message: 393, 0, 0, 1, 9, 4

45.

46. Tag: b7ed6 SetIndex: 7 LineIndex: 2

47. CacheHit: 1 Found in wayIndex: 3

48. State: o FAHit: 0

49. Emit: 1

50. Emitted trace message: 394, 0, 0, 10, 2, 4

51.

52. Tag: b7ed6 SetIndex: 7 LineIndex: 1c

53. CacheHit: 0 Snoop Signal: X

80

54. Found in other cache: 1

55.

56. Tag: b7ed6 SetIndex: 7 LineIndex: 1c

57. CacheHit: 0 Snoop Signal: R

58. Found in other cache: 1 FAHit in other cache: 1

59. Emit: 0

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Figure 4.12 Testing mc2RFiat: single cache block access  

 

Figure 4.13 shows the test input used to verify the operation of the mc2RFiat 

simulator and filtered output traces when memory operands span multiple cache 

blocks. The verification will be the same as that for single cache lines except for a 

few cases. Each line of the input and expected output is described below. 

 Line 1: The data requested by a memory read operation is not found in 

the data cache (cache read miss event). The load value spans two cache 

blocks, processor 0 generates a snoop signal R for each cache block 

separately to get the missing data. These cache blocks do not hit in 

any other processor, hence it reads from memory, thus the FA bits are 

also not set (FA miss event). A trace message corresponding to the load 

value which includes sub-blocks from two cache blocks is emitted. The 

state of the two cache blocks is updated to Exclusive. 

 Line 2: This is a cache read miss event. Processor 1 generates a snoop 

signal R to get the missing data for two cache blocks separately. The 

data hits in processor 0, thus it transfers the cache block and its FA 

bits. The FA bit for one of the sub-blocks in cache block-1 is not set, 

thus a trace message is emitted for the corresponding sub-block. The 

state of the two cache blocks in processors 0 and 1 are updated to 

Shared. 



81 

 Line 3: This is a cache read miss event. Processor 2 generates a snoop 

signal R to get the missing data for two cache blocks separately. The 

data hits in processors 0 and 1, but processor 0 sends the requested 

data and its FA bits to processor 2. The FA bit for one of the sub-block 

in cache block-1 is not set, thus a trace message is emitted for the 

corresponding sub-block.  

 Line 4: The data requested by a memory write operation is not found 

in the data cache (cache write miss event). Processor 3 generates a 

snoop signal X for each cache block separately. Cache block-1 hits in 

processor 0 in Shared state, thus processor 0 transfers cache block-1 

and its FA bits. Cache block 2 does not hit in any processor, thus it is 

read from memory. The state of the both cache blocks is updated to 

Modified.  

 Line 5: This is a cache read miss event. Processor 0 generates snoop 

signal R for each cache block separately to get the data. The requested 

data and its FA bits are read from processor 3. All the FA bits corre-

sponding to the load value are not set (FA miss event), hence a trace 

message for the sub-blocks which are miss is emitted.  

 Line 6: This is a cache read miss event. Processor 1 generates a snoop 

signal R for each cache block separately to get the data. The requested 

data hits in processors 3 and 0. Since processor 3 is in Owned state, it 

is responsible for transfering the requested data and its FA bits to 

processor 1. All the FA bits corresponding to the load value are not set 

(FA miss event), hence a trace message is emitted. 



82 

 Line 7: This is a cache read hit and all the corresponding FA bits are 

set (FA hit event), thus no trace message emitted. 

 Line 8: The operand is partially hit i.e. cache block-1 is a miss and 

cache block-2 is a hit. This event is considered as a cache write miss 

event. Processor 3 generates a snoop signal X for cache block-1 and a 

snoop signal I to cache block-2. The FA bits for the few sub-blocks 

which are written completely are set. 

 Line 9: The operand is partially hit i.e. cache block-1 is a miss (invali-

dated by processor 3 in line 8) and cache block-2 is a hit. Processor 1 

generates a snoop signal R for cache block-1. The requested data hits 

in processor 3 in Modified state; hence it transfers the requested data 

along with its FA bit to processor 1. All the FA bits are set (FA hit 

event), thus a trace message is not emitted.  

 

a) Input to mc2RFiat simulator 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

1. 218, 0, 0, 80663bd, b7fb00bc, 8, 40

2. 219, 1, 0, 80663be, b7fb00b8, 10, 140

3. 220, 2, 0, 80663c0, b7fb00b8, 10, 140

4. 239, 3, 1, 80663c2, b7fb00d2, 20

5. 254, 1, 0, 80663c5, b7fb00d4, 20, 755

6. 255, 0, 0, 80663c6, b7fb00cc, 20, 30

7. 258, 1, 0, 80663c9, b7fb00d4, 20, 755

8. 260, 3, 1, 80663cc, b7fb00bd, 8

9. 262, 1, 0, 80663d0, b7fb00d4, 20, 755

b) Output of mc2RFiat simulator

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

1. Cache Block: 1 

2. Tag: b7fb0  SetIndex: 5  LineIndex: 1c 

3. LocalCacheHit: 0 

4. Cache Block: 2 

5. Tag: b7fb0  SetIndex: 6  LineIndex: 0 

6. LocalCacheHit: 0 

7. Cache Block: 1 Snoop Signal: R 

8. Found in other cache: 0 

9. Cache Block: 2 Snoop Signal: R 

10. Found in other cache: 0 

11. Emit: 1 

12. Emitted trace message: 218, 0, 0, 8, 40, 8 

13.  

14. Cache Block: 1 



83 

15. Tag: b7fb0  SetIndex: 5  LineIndex: 18 

16. LocalCacheHit: 0 

17. Cache Block: 2 

18. Tag: b7fb0  SetIndex: 6  LineIndex: 0 

19. LocalCacheHit: 0 

20. Cache Block: 1 Snoop Signal: R 

21. Found in other cache: 1 FAHit in other cache: 0 

22. Cache Block: 2 Snoop Signal: R 

23. Found in other cache: 1 FAHit in other cache: 1 

24. Emit: 1 

25. Emitted trace message: 219, 1, 0, 10, 140, 4 

26.  

27. Cache Block: 1 

28. Tag: b7fb0  SetIndex: 5  LineIndex: 18 

29. LocalCacheHit: 0 

30. Cache Block: 2 

31. Tag: b7fb0  SetIndex: 6  LineIndex: 0 

32. LocalCacheHit: 0 

33. Cache Block: 1 Snoop Signal: R 

34. Found in other cache: 1 FAHit in other cache: 0 

35. Cache Block: 2 Snoop Signal: R 

36. Found in other cache: 1 FAHit in other cache: 1 

37. Emit: 1 

38. Emitted trace message: 220, 2, 0, 10, 140, 4 

39.  

40. Cache Block: 1 

41. Tag: b7fb0  SetIndex: 6  LineIndex: 12 

42. LocalCacheHit: 0 Snoop Signal: X 

43. Found in other cache: 1 

44. Cache Block: 2 

45. Tag: b7fb0  SetIndex: 7  LineIndex: 0 

46. LocalCacheHit: 0 Snoop Signal: X 

47. Found in other cache: 0 

48.  

49. Cache Block: 1 

50. Tag: b7fb0  SetIndex: 6  LineIndex: 14 

51. LocalCacheHit: 0 

52. Cache Block: 2 

53. Tag: b7fb0  SetIndex: 7  LineIndex: 0 

54. LocalCacheHit: 0 

55. Cache Block: 1 Snoop Signal: R 

56. Found in other cache: 1 FAHit in other cache: 1 

57. Cache Block: 2 Snoop Signal: R 

58. Found in other cache: 1 FAHit in other cache: 0 

59. Emit: 1 

60. Emitted trace message: 254, 1, 0, 20, 755, 4 

61.  

62. Tag: b7fb0  SetIndex: 6  LineIndex: c 

63. CacheHit: 0 Snoop Signal: R 

64. Found in other cache: 1 FAHit in other cache: 0 

65. Emit: 1 

66. Emitted trace message: 255, 0, 0, 20, 30, 8 

67.  

68. Cache Block: 1 

69. Tag: b7fb0  SetIndex: 6  LineIndex: 14 

70. LocalCacheHit: 1 Found in wayIndex: 3 

71. State: s LocalFAHit: 1 

72. Cache Block: 2 

73. Tag: b7fb0  SetIndex: 7  LineIndex: 0 

74. LocalCacheHit: 1 Found in wayIndex: 3 

75. State: s LocalFAHit: 1 

76. Emit: 0 

77.  

78. Cache Block: 1 

79. Tag: b7fb0  SetIndex: 5  LineIndex: 1d 

80. LocalCacheHit: 0 Snoop Signal: X 

81. Found in other cache: 1 

82. Cache Block: 2 

83. Tag: b7fb0  SetIndex: 6  LineIndex: 0 

84. LocalCacheHit: 1 Found in wayIndex: 3 



84 

85. State: o Snoop Signal: I 

86.  

87. Cache Block: 1 

88. Tag: b7fb0  SetIndex: 6  LineIndex: 14 

89. LocalCacheHit: 0 

90. Cache Block: 2 

91. Tag: b7fb0  SetIndex: 7  LineIndex: 0 

92. LocalCacheHit: 1 Found in wayIndex: 3 

93. State: s LocalFAHit: 1 

94. Cache Block: 1 Snoop Signal: R 

95. Found in other cache: 1 FAHit in other cache: 1 

96. Cache Block: 2 Snoop Signal: N 

97. Found in other cache: 1 FAHit in other cache: 0 

98. Emit: 0 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Figure 4.13 Testing mc2RFiat: multi-cache block access

4.5 Software to Hardware Trace Translation

We developed custom tools that can translate software traces to hardware

traces and evaluate the trace port bandwidth in bits per executed instruction and

bits per clock cycle. The software debugger does not require all the fields of tml-

sTrace, mlvCFiat, mc2RT, and mc2RFiat trace messages. Some of the fields can be

inferred by the software debugger from the program binary with the help of an in-

struction set simulator. Thus, the software traces generated by the simulator are

translated to hardware traces by eliminating redundant trace messages and redun-

dant fields of the trace messages that can be inferred by the software debugger. Fig-

ure 4.1 shows the experimental environment used to create software traces and

translation of software traces to hardware traces.

Every memory read results in a trace message in Nexus-like load data value

traces. Thus, the custom tool filters tmlsTraces and eliminates the trace messages

for memory writes and some of the redundant fields of tmlsTraces such as OA, PC,

and OS as they can be inferred by the instruction set simulator from the program

85

binary. This custom tool also encodes the filter traces and writes to a binary file to

analyze the trace port bandwidth. We refer to these traces as the Nexus-like load

data value traces (NX_b).

mlvCFiat and mc2RFiat share the same format for output trace messages as

shown in Figure 4.3. The mc2RT trace message format is shown in Figure 4.8. A cus-

tom tool filters the output of these simulators to discard the fields OS and LLV/LCB

as they can be inferred by the software debugger and encodes the trace messages

using fixed chunk sizes and variable chunk sizes. Encoded trace messages are writ-

ten to a binary file for the trace port bandwidth analysis.

mlvCFiat traces are encoded using fixed chunk sizes (referred to as CF_b)

and using variable chunk sizes (referred to as CF_e). mc2RT traces are encoded us-

ing fixed chunk sizes (referred to as RT_b) and using variable chunk sizes (referred

to as RT_e). mc2RFiat traces are encoded using fixed chunk sizes (referred to as

RF_b) and variable chunk sizes (referred to as RF_e).

 Figure 4.14 shows the format of the trace messages for NX_b, CF_b, CF_e,

RT_b, RT_e, RF_b, and RF_e. The time field (Pi.dCC), carries the information about

the clock cycle in which the current trace generating instruction is retired. It reports

a number of clock cycles expired since the last trace message is reported on core i

instead of an absolute clock cycle from the beginning of the program, i.e. Pi.dCC =

Pi.CC – Pi.PCC, Pi.PCC = Pi.CC. The length of the load value field in NX_b depends

on the size of the operand read from memory. For the IA32 instruction set architec-

ture it may vary from 1 to 120 bytes. The length of the LV field in CF_b, CF_e, RF_b,

and RF_e depends on the first-access granularity size. For example, if the first-

86

access granularity size is 4-bytes and the operand size is 1 byte, the length of the LV

field will be at least 4-bytes instead of 1 byte.

The number of bits needed to represent values of the dCC, fahCnt, and

THCnt fields in Figure 4.14 is a function of benchmarks behavior and it may vary

from benchmark to benchmark and within a single benchmark as we move to the

different phases of the program execution. In base encoding, these fields are divided

into 8-bit chunks and a connect bit (C). If the value of dCC or fahCnt or THCnt can

fit in 8-bits then we will have one 8-bit chunk and a connect bit of zero (C=0) to indi-

cate the end of that field. To reduce the redundant bits when using 8-bit chunks, we

employ variable encoding of these three fields where the size of individual chunks

may vary. Finding good chunk sizes for variable encoding is a part of our experi-

mental evaluation. With our experimental evaluation, we found that the chunk sizes

listed in Table 4.5 work well for all the benchmarks.

87

Figure 4.14 Formats of trace messages for NX_b, CF_b, CF_e, RT_b, RT_e, RF_b and

RF_e

(a) Nexus-like encoding (NX_b) Legend:
C Connect Bit
dCC Clock Cycle (differential enc.)
Pi Thread/Core ID - élog2Nù bits
LV Load Value
CB Cache Block
fahCnt First Access Hit Counter
THCnt Trace Hit Counter
h0, h1 Chunk Sizes for CC
i0, i1 Chunk Sizes for fahCnt

(b) mlvCFiat base encoding (CF_b) (c) mlvCFiat variable encoding (CF_e)

LVPidCC

dCC[0:7]
8 b

dCC[8:15]
8 b

C
1 b

C
1 b

...

fahCnt[0:7]
8 b

fahCnt[8:15]
 8 b

...
C

1 b
C

1 b

dCC fahCnt LVPi

dCC[0:7]
8 b

dCC[8:15]
8 b

C
1 b

C
1 b

...

fahCnt LVPidCC

fahCnt[0:i0-1]
 i0 b

fahCnt[i0:i0+i1-1]
i1 b

C
1 b

...
C

1 b

dCC[0:h0-1]
 h0 b

C
1 b

dCC[h0:h0+h1-1]
h1 b

C
1 b

...

(f) mc2RFiat base encoding (RF_b) (g) mc2RFiat variable encoding (RF_e)

fahCnt[0:7]
8 b

fahCnt[8:15]
 8 b

...
C

1 b
C

1 b

dCC fahCnt LVPi

dCC[0:7]
8 b

dCC[8:15]
8 b

C
1 b

C
1 b

...

fahCnt LVPidCC

fahCnt[0:i0-1]
 i0 b

fahCnt[i0:i0+i1-1]
i1 b

C
1 b

...
C

1 b

dCC[0:h0-1]
 h0 b

C
1 b

dCC[h0:h0+h1-1]
h1 b

C
1 b

...

(d) mc2RT base encoding (RT_b) (e) mc2RT variable encoding (RT_e)

THCnt[0:7]
8 b

THCnt[8:15]
 8 b

...
C

1 b
C

1 b

dCC THCnt CBPi

dCC[0:7]
8 b

dCC[8:15]
8 b

C
1 b

C
1 b

...

THCnt CBPidCC

THCnt[0:i0-1]
 i0 b

THCnt[i0:i0+i1-1]
i1 b

C
1 b

...
C

1 b

dCC[0:h0-1]
 h0 b

C
1 b

dCC[h0:h0+h1-1]
h1 b

C
1 b

...

88

4.6 Experimental Environment

The main goal of the experimental evaluation is to determine the effective-

ness of the newly proposed techniques mlvCFiat, mc2RT, and mc2RFiat for filtering

load data value traces relative to the baseline Nexus-like load data value traces

(NX_b) as a function of a number of cores. In addition, the goal is to quantitatively

assess the impact of configuration parameters (cache sizes, granularity sizes) and

encoding parameters (baseline and variable) on its performance. As a measure of ef-

fectiveness, we use average trace port bandwidth measured in bits per instruction

and bits per clock cycle. As a workload, we use 10 benchmarks from the Splash2 [38]

benchmark suite. More details about the benchmarks are given in Section 4.6.2. As a

part of the experimental evaluation, we also determine good granularity size (Sec-

tion 4.6.4) and encoding parameters (Section 4.6.5) that work well across all bench-

marks.

4.6.1 Experimental Setup

The Multi2Sim [37] simulator supports building a cycle-accurate model for a

multicore processor including processor and memory hierarchy. The multicore model

we used is shown in Figure 4.15 with up to 8 single-threaded x86 processor cores.

Each core has private level 1 instruction (L1I) and data caches (L1D). To evaluate

the effectiveness of our proposed techniques as a function of cache size, we consider

three cache configurations: CS16 with 16KB L1D, CS32 with 32KB L1D, and CS64

with 64KB L1D. L1I cache sizes match the L1D cache size. The hit latency for a level

1 cache is 4 clock cycles. The unified level 2 (L2) cache is shared by all cores and has

a hit latency of 12 clock cycles. The size of the L2 cache depends on the number of

cores, N, and it is set to N•64KB for the CS16 configuration, N•128KB for the CS32

89

configuration, and N•256KB for the CS64 configuration. The cache block size is set

to 32 bytes for all cache configurations and for all cache levels. The L1D and L1I

caches are 4-way set associative and the L2 cache is 16-way set associative with the

least-recently-used (LRU) replacement policy. The latency of main memory is 100

clock cycles. The interconnection networks between the L1 and L2 caches and the L2

and main memory are identical in buffer size and bandwidth. The experiments are

conducted on a Dell PowerEdge T620 server. It has two sockets, each with octa-core

Intel Xeon CPU E5-2650 v2 processors having a total of 64GB physical memory and

capable of running two threads.

Figure 4.15 Multicore model in Mult2Sim

L1I L1D

 ...

L2 Cache

Main Memory

Network L1-L2

Network L2-MM

CS16:
L1D/L1I cache size: 16 KB
L2 cache size: N*64 KB

CS32:
L1D/L1I cache size: 32 KB
L2 cache size: N*128 KB

L1D/L1I hit time: 4 cc
L1D/L1I associativity: 4-way
L2 hit time: 12 cc
L2 associativity: 16-way
Cache block size: 32 B
First-access granularity: 4 B
Memory latency: 100 cc

Core 0

L1I L1D

Core 1

L1I L1D

Core N-1

CS64:
L1D/L1I cache size: 64 KB
L2 cache size: N*256 KB

90

4.6.2 Benchmarks

To measure the effectiveness of the proposed techniques we use 10 bench-

marks from the Splash2 benchmark suite [38] [39]. The benchmarks are precompiled

for the IA32 instruction set architecture and run on a cycle-accurate Multi2Sim

simulator that models multicores with N=1, 2, 4, and 8 cores.

This suite provides six different sets of input files to run a given benchmark

namely native, simdev, simlarge, simmedium, simsmall and test. The test and

simdev inputs are very small input sets and cannot be used for performance meas-

urements. The native input is a very large input set intended for large-scale experi-

ments on real machines. Since we are using a cycle accurate simulator for architec-

tural simulations, the simsmall input set is used.

Table 4.2 shows the number of instructions executed by a benchmark (IC) in

billions, instructions per clock cycle (IPC), and frequency of memory reads. The in-

struction count remains the same or slightly increases as the number of cores in-

creases. The average number of instructions executed per clock cycle depends on the

type of benchmarks, multicore models, and the number of cores. Thus, when N=1,

the IPC ranges from 0.19 for cholesky to 0.66 for water-sp. The total IPC for the en-

tire benchmark suite is calculated by dividing the sum of all instructions executed

by all benchmarks with the sum of all execution times measured in clock cycles for

all benchmarks. It ranges from 0.4 for N=1 to 1.95 for N=8. IPC as a function of the

number of cores indicates how well performance scales. The frequency of instruc-

tions reading data from memory varies from 13.02% for fmm to 35.09% for radix

when N=1 and from 13.48% for fmm to 35.09% for radix when N=8. The average fre-

quency of instructions reading data from memory for the entire benchmark suite is

91

calculated by dividing the sum of all instructions reading data from memory for all

benchmarks with the sum of all executed instructions from all benchmarks. It rang-

es from 22.77% when N=1 to 23.67% when N=8. It increases slightly with an in-

crease in the number of cores because of the increased memory reads due to syn-

chronization in multicores.

Table 4.2 Splash2 benchmark suite characterization

Benchmarks Instruction Count [x109] Instructions Per Cycle [IPC] % Loads

No. of Cores N=1 N=2 N=4 N=8 N=1 N=2 N=4 N=8 N=1 N=2 N=4 N=8

barnes 2.13 2.13 2.13 2.14 0.37 0.54 0.96 1.69 28.78 28.78 28.78 28.79

cholesky 1.27 1.43 1.95 3.07 0.19 0.41 0.92 2.12 27.78 29.54 30.32 31.30

fft 0.92 0.92 0.92 0.92 0.26 0.44 0.72 1.04 19.20 19.20 19.20 19.21

fmm 2.79 2.80 2.82 2.86 0.41 0.80 1.52 2.70 13.02 13.06 13.27 13.49

lu 0.45 0.45 0.45 0.45 0.39 0.74 1.27 1.95 20.20 20.22 20.25 20.31

radiosity 2.23 2.33 2.29 2.32 0.48 0.87 1.65 2.99 27.51 27.45 27.38 26.79

radix 1.59 1.59 1.59 1.60 0.23 0.36 0.54 0.65 35.09 35.09 35.09 35.09

raytrace 2.47 2.46 2.47 2.47 0.50 0.93 1.68 2.67 28.49 28.48 28.48 28.47

water-ns 0.74 0.74 0.74 0.75 0.61 1.17 2.22 3.90 16.31 16.33 16.36 16.42

water-sp 5.03 5.03 5.03 5.03 0.66 1.07 1.73 2.73 17.38 17.38 17.38 17.38

Total 19.61 19.87 20.39 21.60 0.40 0.69 1.21 1.95 22.77 22.96 23.21 23.67

The average trace port bandwidth depends on the frequency of memory reads

and also on the size of the operand accessed from memory. Table 4.3 shows a fre-

quency of memory reads for different sizes of the operand. Very few benchmarks

(radix, fft) read operands less than 4-bytes. For barnes, 60% of the memory reads are

4-bytes, ~37% are 8-bytes long, and the frequency of memory read instructions are

also high. Thus, the average trace port bandwidth is also high.

92

Table 4.3 Characterization of memory reads in Splash2

Bench-
marks

Total Memory
reads

% Byte
operand

% Word
operand

% Double-
word

operand

% Quard-
word

operand

% Extended
precision
operand

% Octa-
word

operand

%
Others

barnes 613093875 0 3.26 60.1 36.65 0 0 0

cholesky 352542470 1.33 0 54.09 44.59 0 0 0

fft 176252532 0.01 9.52 41.16 49.31 0 0 0

fmm 362804834 0 0.15 16.3 83.55 0 0 0

lu 90032066 0 2.04 41.77 56.19 0 0 0

radiosity 613309897 0 0 90.61 9.39 0 0 0

radix 558023567 4.51 29.31 57.16 9.02 0 0 0

raytrace 702412760 0.8 0.96 58.93 39.3 0 0 0

water-ns 120913006 0.6 0.01 23.2 76.19 0 0 0

water-sp 874383440 0.55 0.02 22.63 76.8 0 0 0

Total 4463768447 0.92 4.70 50.25 44.14 0 0 0

4.6.3 Experiments

Table 4.4 list the experiments conducted using different techniques with dif-

ferent cache configurations. The effectiveness of mlvCFiat, mc2RT, mc2RFiat is

measured relative to Nexus-like load data value traces (NX_b) while varying the

number of cores N=1, 2, 4 and 8. To analyze the effectiveness of mlvCFiat, mc2RT,

and mc2RFiat, we considered following the cache configurations:

 CS16: 16KB data cache size

 CS32: 32KB data cache size

 CS64: 64KB data cache size

All cache configurations are 4-way set associative, use least recently used

(LRU) replacement policy to update cache blocks and use 32 byte cache blocks.

93

Table 4.4 Experiments conducted

Technique Method CS16 CS32 CS64

Nexus-like (N = 1,2,4 & 8) NX_b 

mlvCFiat (N = 1,2,4 & 8)
CF_b   

CF_e   

mc2RT (N = 1,2,4 & 8)
RT_b   

RT_e   

mc2RFiat (N = 1,2,4 & 8)
RF_b   

RF_e   

4.6.4 Granularity Study

The effectiveness of mlvCFiat and mc2RFiat depends on the first-access

granularity size. Figure 4.16 shows the total average trace port bandwidth normal-

ized to GS(4) as a function of the number of cores and first-access granularity for the

CS64 configuration for mlvCFiat. We consider granularity sizes of 1-byte GS(1), 4-

bytes GS(4), 8-bytes GS(8), 16-bytes GS(16), and 32-bytes GS(32) for our evaluation.

GS(1) slightly reduces (1 to 2%) the total average trace port relative to GS(4) for

mlvCFiat. However, GS(1) quadruples the number of fist-access bits relative to

GS(4): GS(1) requires 32 bits, whereas GS(4) requires 8 bits. As the granularity size

increases, the trace port bandwidth increases, but the hardware overhead due to

fist-access bits decreases. A similar analysis with all cache configurations (CS16,

CS32, and CS64) shows that a granularity of size 4-bytes works well for all cache

configurations. When we analyze the benchmarks individually, some benchmarks

benefit from lower granularity and some benchmarks benefit from higher granulari-

94

ty. However, our main goal is to find the granularity size that works well for all

benchmarks.

Figure 4.16 Normalized trace port bandwidth as a function of first-access granulari-

ty for mlvCFiat

Figure 4.17 shows the total average trace port bandwidth normalized with

GS(4) as a function of the number of cores and first-access granularity for the CS64

configuration for mc2RFiat. Our analysis shows that a granularity of size 4-bytes

works well for all cache configurations.

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

N=1 N=2 N=4 N=8
Number of Cores

Normalized Trace Port Bandwidth [GS(4)=1]
GS(1) GS(8) GS(16) GS(32)

95

Figure 4.17 Normalized trace port bandwidth as a function of first-access granulari-

ty for mc2RFiat

4.6.5 Variable Encoding

To evaluate the significance of encoding mechanisms, we analyze the trace

port bandwidth for both base and variable encoding mechanisms. To select the best

encoding parameters, we profiled the Splash2 benchmarks to determine the mini-

mum required bit lengths for the dCC and fahCnt fields. Figure 4.18 shows the cu-

mulative distribution function of the fahCnt when N=1 for the CS16 configuration

for mlvCFiat. Most of the benchmarks require less than 3 bits for encoding the

fahCnt field 60% of the time and require less than 7 bits more than 90% of the time.

Figure 4.19 shows the cumulative distribution function of dCC length when N=1 for

the CS16 configuration for the mlvCFiat technique. As the graph shows, most of the

benchmarks require less than 6 bits for encoding dCC field 60% of the time and re-

0.90

0.95

1.00

1.05

1.10

1.15

1.20

N=1 N=2 N=4 N=8
Number of Cores

Normalized Trace Port Bandwidth [GS(4)=1]

GS(1) GS(8) GS(16) GS(32)

96

quire less than 10 bits more than 90% of the time. The profiles of CDF functions in-

dicate that variable encoding could be beneficial in further reducing the size of trace

fields.

Figure 4.18 CDF of the minimum length for fahCnt for mlvCFiat

Figure 4.19 CDF of the minimum length for dCC for mlvCFiat

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

length (fahCnt) [bits]

N:1, CDF for fahCnt

Barnes cholesky fft fmm lu radiosity radix raytrace water-ns water-sp

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

length (fahCnt) [bits]

N:1, CDF for dCC

Barnes cholesky fft fmm lu radiosity radix raytrace water-ns water-sp

97

We could consider finding good chunk sizes for each benchmark separately,

but here we seek chunk sizes that work well across all benchmarks. We limit the

search space by setting i1=i2=....=ik, and h1=h2=....=hk. Figure 4.20 shows the aver-

age fahCnt and dCC field sizes as a function of chunk sizes (h0, h1) and (i0, i1) =

{(2,1),(2,2)... (6,6)} when all the benchmarks are considered together for mlvCFiat

with CS16 configuration. The results show that chunk sizes (i0, i1)=(2, 2) and (h0,

h1)=(4,2) perform well for the fahCnt and dCC fields, respectively. We perform simi-

lar analysis for different techniques with different cache configurations. The chunk

sizes as listed in Table 4.5 work well for the dCC and fahCnt fields across all

benchmarks for a given cache configuration.

Figure 4.20 Average fahCnt and dCC fields as a function of chunk sizes for mlvCFiat

4

5

6

7

8

9

10

11

N=1 N=2 N=4 N=8 N=1 N=2 N=4 N=8

fahCnt(CS16) dCC(CS16)

Average bit length of fahCnt and dCC fields

(2,1) (2,2) (2,3) (2,4) (3,1) (3,2) (3,3) (3,4) (3,5) (4,1)

(4,2) (4,3) (4,4) (4,5) (4,6) (4,7) (5,4) (5,5) (5,6) (6,6)

98

Table 4.5 Summary of variable encoding parameters for different fields

Variable Encoding Parameters

Mechanism fields CS16 CS32 CS64

mlvCFiat (N= 1, 2, 4, 8)
dCC 4_2 4_2 5_4

fahCnt 2_2 3_2 3_2

mc2RT (N= 1, 2, 4, 8)
dCC 5_4 4_2 5_5

fahCnt 3_2 4_2 3_3

mc2RFiat (N= 1, 2, 4, 8)
dCC 4_2 4_2 5_4

fahCnt 2_2 2_2 3_2

99

CHAPTER 5

TRACE PORT BANDWIDTH ANALYSIS

This chapter discusses the main results from an experimental evaluation of

the proposed techniques for data tracing in multicores. We measure the average

trace port bandwidth as a function of the number of processor cores in a multicore,

an encoding mechanism, and different data cache configurations. To quantify the

pressure on the trace port, the average trace port bandwidth is measured in bits per

instruction [bpi] and bits per clock cycle [bpc]. The average trace port bandwidth in

bits per clock cycle for a given benchmark is calculated by dividing the total trace

size in bits with the total number of instructions executed by the benchmark. The

average trace port bandwidth in bits per clock cycle is calculated by dividing the to-

tal trace size in bits with the execution time measured in clock cycles. Section 5.1

discusses the average trace port bandwidth requirements for the Nexus-like load da-

ta value traces (NX_b), the mlvCFiat technique with fixed (CF_b) and variable en-

coding mechanisms (CF_e), the mc2RT technique with fixed (RT_b) and variable en-

coding mechanisms (RT_e), the mc2RFiat technique with fixed (RF_b) and variable

encoding mechanisms (RF_e).

5.1 Trace Port Bandwidth for Load Data Value Traces

5.1.1 NX_b

Table 5.1 shows the trace port bandwidth in bpi and bpc for the Nexus-like

load data value traces as a function of a number of cores/threads (N=1, 2, 4 and 8)

100

for all benchmarks from the Splash-2 benchmark suite. The last row in the table

named Total is the total average trace port bandwidth when all the benchmarks are

considered together. The total average trace port bandwidth in bits per instruction is

calculated by dividing the sum of trace sizes in bits for all the benchmarks with the

sum of executed instructions from all the benchmarks. Similarly, the total average

trace port bandwidth in bits per clock cycle is calculated by dividing the sum of trace

sizes in bits from all the benchmarks with the sum of execution times measured in

clock cycles for all the benchmarks.

For a single core (N=1), the total average trace port bandwidth is 12.34 bpi

and it ranges from 8.82 bpi for fmm to 15.35 bpi for cholesky. The trace port band-

width requirement is highly correlated with the frequency of memory reads and the

size of typical operands read from memory. For example, the frequency of memory

reads in cholesky is higher than in fmm (Table 4.2); in addition, ~45% of the time

memory reads in cholesky are 8 bytes long (Table 4.3). Thus, cholesky requires a

higher trace port bandwidth than fmm. The trace port bandwidth slightly increases

with an increase in the number of cores because of a higher overhead in reporting

core ID (Pi) and a higher frequency of memory reads due to synchronization in mul-

ticores. Thus, the average trace port bandwidth for octa core (N=8), ranges from 9.33

bpi for fmm to 16.01 bpi for raytrace. The average trace port bandwidth for the octa-

core (N=8) is 13.17 bpi.

The average trace port bandwidth in bits per instruction does not fully cap-

ture the pressure on the trace port in multicores. To further illustrate the bandwidth

requirement challenges in multicores we consider the trace port bandwidth meas-

ured in bits per clock cycle. The trace port bandwidth in bpc depends not only on fre-

101

quency and typical operand sizes but also on the multicore processor model (pipe-

line, out-of-order execution, caches, and other), which can be characterized by the

number of instructions committed per clock cycle (IPC). For the processor model de-

scribed in Section 4.6.1, the average trace port bandwidth ranges from 2.79 bpc for

fft to 12.68 bpc for water-ns in the single core system (N=1). Raytrace and water-ns

require more than 42 bpc for an octa-core system (N=8).

Table 5.1 Trace port bandwidth for NX_b for Splash2 benchmarks

Benchmarks Trace Port Bandwidth [bpi] Trace Port Bandwidth [bpc]

No. of Cores N=1 N=2 N=4 N=8 N=1 N=2 N=4 N=8

barnes 15.03 15.31 15.59 15.86 5.50 8.24 14.96 26.79

cholesky 15.35 16.21 15.87 15.59 2.93 6.58 14.67 32.99

fft 10.65 10.84 11.02 11.19 2.79 4.78 7.93 11.59

fmm 8.82 8.96 9.14 9.33 3.59 7.17 13.92 25.16

lu 11.88 12.07 12.27 12.47 4.67 8.97 15.56 24.38

radiosity 12.11 12.36 12.59 12.58 5.87 10.79 20.81 37.60

radix 13.41 13.75 14.09 14.54 3.14 5.01 7.67 9.41

raytrace 15.17 15.45 15.73 16.01 7.53 14.35 26.40 42.70

water-ns 10.64 10.81 10.98 11.15 6.49 12.68 24.34 43.51

water-sp 11.38 11.55 11.73 11.90 7.50 12.40 20.29 32.48

Total 12.34 12.63 12.89 13.17 4.92 8.76 15.61 25.64

Figure 5.1 shows the average trace port bandwidth for the Nexus-like load

value trace, broken down into different fields of the trace messages: LV, Pi, dCC.

The majority of the bandwidth is consumed tracing out the load data values (LV).

The LV portion ranges from 83% for N=1 to 78% for N=8. The timestamp field (dCC)

requires16-17% of the total trace port bandwidth. Thus, even if we order trace mes-

sages in the trace buffer and stream them out without the time field we can only

102

save 16-17% of the total trace port bandwidth. Further, this approach requires addi-

tional hardware resources for buffering and sorting the trace messages.

Figure 5.1 Breakdown of trace port bandwidth for NX_b for Splash2 benchmarks

We compress the NX_b traces in software in order to estimate how much we

can reduce the average trace port bandwidth if the software compressor is imple-

0

4

8

12

16

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

barnes cholesky fft fmm lu radiosity radix raytrace water-ns water-sp Total

b
p

i

Benchmark

(a) Trace Port Bandwidth [bpi]LV Pi dCC

0

10

20

30

40

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

barnes cholesky fft fmm lu radiosity radix raytrace water-ns water-sp Total

b
p

c

Benchmark

(b) Trace Port Bandwidth [bpc]LV Pi dCC

103

mented in hardware. We should note that implementing a software compressor in

hardware would require a significant amount of hardware resources. Table 5.2

shows compression ratios for the NX_b traces compressed using the gzip utility with

level 1 compression. Two types of NX_b data traces are considered: when the NX_b

traces are fed into the compressor as is (Unified) and when the trace messages are

split into the header and load data value fields and then fed into separate compres-

sors (Split). The compression ratio for the Unified method is calculated by dividing

the total NX_b trace size with the total trace size after compression. With this meth-

od, we are able to achieve a compression ratio of 1.3 to1.4 times. To exploit redun-

dancy present in different fields of trace messages, we divide trace message into two

streams (a) LV (b) dCC, Pi. These two streams are compressed separately using gzip

with compression level 1 (Split field in Table 5.2). The compression ratio for the

Split method is calculated by dividing the sum of raw NX_b traces with the sum of

separately compressed files for two streams. Whereas the compression ratio for com-

pressed Split NX_b traces exceeds the compression ratio for Unified trace (2.18-3.33

times), the compression ratios remain relatively modest. It should be noted that im-

plementing a gzip -1 compressor entirely in hardware would be cost prohibitive.

104

Table 5.2 Compression ratios achieved by gzip

Cores N=1 N=2 N=4 N=8

Config Split Unified Split Unified Split Unified Split Unified

barnes 2.10 1.38 1.78 1.30 1.66 1.24 1.58 1.27

cholesky 6.73 1.74 3.85 1.67 3.53 1.85 4.13 2.50

fft 1.93 1.39 1.79 1.36 1.68 1.30 1.66 1.37

fmm 4.95 1.95 3.73 1.85 3.06 1.58 2.75 1.59

lu 5.93 1.56 3.58 1.54 3.14 1.42 3.06 1.77

radiosity 3.86 1.63 2.50 1.54 2.10 1.37 1.95 1.48

radix 4.23 2.02 3.05 1.81 2.08 1.46 1.96 1.42

raytrace 3.88 1.51 2.61 1.47 2.26 1.32 2.08 1.38

water-ns 2.69 1.41 2.08 1.38 1.94 1.27 1.87 1.35

water-sp 3.03 1.37 2.40 1.36 2.11 1.26 2.02 1.39

Total 3.33 1.54 2.52 1.49 2.21 1.38 2.18 1.52

All these results indicate that capturing load data value traces requires

deeper trace buffers and much wider trace ports. To solve this problem, we devel-

oped hardware techniques that reduce the size of the trace data that need to be

emitted. These techniques are shown in the following sections.

5.1.2 mlvCFiat

The effectiveness of mlvCFiat directly depends on (a) benchmark characteris-

tics such as the type, frequency, and distribution of memory read operations, (b) da-

ta cache miss rates and first-access flag miss rates, and (c) encoding parameters.

The first-access flag miss rate is a good indicator of mlvCFiat effectiveness – the

lower it is, the fewer trace messages need to be streamed out through the trace port.

Figure 5.2 shows the total first-access miss rate for the entire benchmark suite as a

function of the number of cores and the data cache configurations (CS16, CS32, and

CS64). The total first-access miss rate is calculated by dividing the total number of

105

first-access misses with the total number of data reads when all the benchmarks are

considered together.

 The total first-access miss rate ranges from 5.39% for N=1 to 5.68% for N=8

for the CS16 configuration, 2.49% for N=1 to 4.06% for N=8 for the CS32 configura-

tion and 1.47% for N=1 to 3.44% for N=8 for the CS64 configuration. As the cache

size increases, the first-access miss rate decreases because larger caches result in a

smaller number of read misses and consequently a smaller number of first-access

miss events. Figure 5.2 also shows the minimum and the maximum first-access miss

rates. The first-access miss rate reaches as high as 17.96% for fft when N=2 with

CS16 configuration and as low as 0.17% for water-ns when N=1 with CS64 configu-

ration.

The results confirm our expectations that mlvCFiat can indeed significantly

reduce the number of trace messages that need to be streamed out through the trace

port. We find that the total first-access miss rate does not increase significantly as

we increase the number of cores. With an increase in the number of cores, we may

decrease the number of conflict-induced misses, but we may also increase the num-

ber of misses caused by invalidations.

106

Figure 5.2 First Access Miss Rate for mlvCFiat for Splash2 benchmarks

Figure 5.3 shows the trace port bandwidth for mlvCFiat with base encoding

(CF_b), mlvCFiat with variable encoding (CF_e) as a function of a number of cores

(N=1, 2,4 and 8) and data cache configurations (CS16, CS32, and CS64).

0

5

10

15

20

N=1 N=2 N=4 N=8

M
is

s
R

at
e

 %

Number of Cores

Total First-access Miss Rate [%]

CS16 CS32 CS64

107

Figure 5.3 Total average trace port bandwidth in bpi for CF_b and CF_e

Table 5.3 and Table 5.4 shows the trace port bandwidth for base encoding

(CF_b) and variable encoding (CF_e) mechanisms for each benchmark separately.

The total average trace port bandwidth is less than 1 bit per instruction regardless

of the number of cores. mlvCFiat with base encoding (CF_b) reduces the trace port

bandwidth as follows:

 CS16 configuration: The average trace port bandwidth ranges from

0.07 bpi for water-sp to 2.84 bpi for fft when N=1 and 0.09 bpi for wa-

ter-sp to 2.93 bpi for fft when N=8. The total average trace port band-

width is 0.84 bpi for N=1 and 0.95 bpi when N=8.

 CS32 configuration: The average trace port bandwidth ranges from

0.05 bpi water-sp to 1.62 bpi for fft when N=1 and 0.08 bpi for water-sp

to 1.87 bpi for barnes when N=8. The total average trace port band-

width is 0.38 bpi for N=1 and 0.68 bpi when N=8.

0

1

2

3

CF_b(CS16) CF_b(CS32) CF_b(CS64) CF_e(CS16) CF_e(CS32) CF_e(CS64)

b
p

c

Configuration

Trace port bandwidth [bpi]

N=1 N=2 N=4 N=8

108

 CS64 configuration: The average trace port bandwidth ranges from

0.02 bpi for water-ns to 1.24 bpi for fft when N=1 and 0.06 bpi for wa-

ter-sp to 1.6 bpi for barnes when N=8. The total average trace port

bandwidth is 0.23 bpi for N=1 and 0.57 bpi when N=8.

Table 5.3 Trace port bandwidth bpi for CF_b

Cores N=1 N=2 N=4 N=8

Config CS16 CS32 CS64 CS16 CS32 CS64 CS16 CS32 CS64 CS16 CS32 CS64

barnes 2.34 0.82 0.20 2.43 1.23 0.72 2.52 1.55 1.12 2.57 1.87 1.60

cholesky 1.94 0.74 0.68 1.32 0.79 0.71 0.96 0.62 0.56 0.61 0.44 0.39

fft 2.84 1.62 1.24 2.89 1.64 1.26 2.91 1.65 1.26 2.93 1.67 1.28

fmm 0.36 0.23 0.15 0.37 0.23 0.15 0.37 0.24 0.16 0.37 0.24 0.16

lu 0.54 0.53 0.49 0.57 0.53 0.31 0.58 0.54 0.33 0.62 0.42 0.18

radiosity 0.25 0.10 0.05 0.58 0.48 0.44 0.58 0.48 0.45 0.67 0.58 0.56

radix 0.85 0.60 0.49 1.76 1.52 1.42 1.86 1.61 1.50 1.90 1.65 1.53

raytrace 1.04 0.35 0.12 1.23 0.59 0.37 1.31 0.69 0.48 1.49 0.89 0.68

water-ns 0.49 0.23 0.02 0.52 0.26 0.05 0.56 0.40 0.33 0.57 0.43 0.41

water-sp 0.07 0.05 0.03 0.07 0.06 0.04 0.08 0.07 0.05 0.09 0.08 0.06

Total 0.84 0.38 0.23 0.95 0.58 0.44 0.96 0.63 0.51 0.95 0.68 0.57

The variable encoding mechanism (CF_e) further reduces the average trace

port bandwidth compared to base encoding (CF_b).

 CS16 configuration: The total average trace port bandwidth is 0.77 bpi

for N=1 to 0.88 bpi when N=8. CF_e reduces the trace port bandwidth

relative to CF_b by 1.10 times when N=1 and 1.09 times when N=8.

 CS32 configuration: The total average trace port bandwidth is 0.35 bpi

for N=1 to 0.63 bpi when N=8. CF_e reduces the trace port bandwidth

relative to CF_b by 1.09 times when N=1 and 1.08 times when N=8.

109

 CS64 configuration: The total average trace port bandwidth is 0.21 bpi

for N=1 to 0.53 bpi when N=8. CF_e reduces the trace port bandwidth

relative to CF_b by 1.09 times when N=1 and 1.08 times when N=8.

Table 5.4 Trace port bandwidth bpi for CF_e

Cores N=1 N=2 N=4 N=8

Config CS16 CS32 CS64 CS16 CS32 CS64 CS16 CS32 CS64 CS16 CS32 CS64

barnes 2.17 0.77 0.19 2.26 1.15 0.67 2.35 1.45 1.04 2.40 1.75 1.50

cholesky 1.76 0.67 0.62 1.21 0.71 0.65 0.88 0.56 0.51 0.56 0.40 0.36

fft 2.57 1.49 1.15 2.62 1.51 1.17 2.65 1.53 1.18 2.67 1.55 1.19

fmm 0.33 0.21 0.14 0.34 0.22 0.14 0.34 0.22 0.15 0.35 0.23 0.15

lu 0.54 0.52 0.47 0.57 0.52 0.30 0.58 0.53 0.32 0.61 0.40 0.16

radiosity 0.22 0.08 0.04 0.51 0.43 0.39 0.51 0.42 0.40 0.59 0.52 0.50

radix 0.75 0.53 0.43 1.64 1.41 1.29 1.73 1.48 1.36 1.78 1.53 1.42

raytrace 0.93 0.32 0.11 1.10 0.53 0.34 1.18 0.62 0.44 1.34 0.81 0.62

water-ns 0.47 0.22 0.02 0.50 0.25 0.05 0.54 0.39 0.31 0.54 0.41 0.39

water-sp 0.07 0.05 0.03 0.07 0.06 0.04 0.08 0.07 0.05 0.08 0.07 0.05

Total 0.77 0.35 0.21 0.88 0.54 0.40 0.88 0.59 0.47 0.88 0.63 0.53

Table 5.5 shows the compression ratio or speedups achieved by mlvCFiat rel-

ative to NX_b for all benchmarks. The compression ratio for a given benchmark is

calculated by dividing the trace port bandwidth required for Nexus-like load data

value traces with the trace port bandwidth required for CF_e. Compression ratios

range from as low as 4.2 for fft to 521.5 for water-ns when N=1 and 4.2 for fft to

218.3 for water-sp when N=8. The total compression ratio when all the benchmarks

are considered together ranges from 16.1 when N=1 to 15.0 when N=8 with CS16

configuration, from 35.0 when N=1 to 21.0 when N=8 with CS32 configuration and

from 59.6 when N=1 to 24.8 when N=8 with CS64 configuration. The effectiveness of

110

mlvCFiat decreases as we increase the number of cores. This can be explained by an

increase in the cache coherent traffic which results in the number of trace messages

because mlvCFiat does not support coherent traffic.

Table 5.5 Compression ratio of CF_e relative to NX_b

Cores N=1 N=2 N=4 N=8

Config CS16 CS32 CS64 CS16 CS32 CS64 CS16 CS32 CS64 CS16 CS32 CS64

barnes 6.9 19.5 79.5 6.8 13.4 22.9 6.6 10.7 15.0 6.6 9.1 10.6

cholesky 8.7 22.9 24.7 13.4 22.8 25.1 18.0 28.1 31.1 27.8 38.7 43.9

fft 4.2 7.1 9.2 4.1 7.1 9.3 4.2 7.2 9.3 4.2 7.2 9.4

fmm 26.4 42.2 64.8 26.3 41.6 63.0 26.5 41.4 61.8 26.8 41.3 60.7

lu 22.0 22.8 25.0 21.3 23.4 39.8 21.3 23.3 38.0 20.6 30.9 75.6

radiosity 55.5 144.5 288.3 24.1 29.1 31.6 24.5 29.9 31.4 21.3 24.4 25.3

radix 17.9 25.3 30.9 8.4 9.8 10.7 8.2 9.5 10.4 8.2 9.5 10.3

raytrace 16.3 48.0 140.5 14.0 29.1 45.6 13.3 25.2 36.0 12.0 19.8 25.6

water-ns 22.5 47.9 521.5 21.6 43.4 232.9 20.4 28.3 35.2 20.5 27.2 28.8

water-sp 173.7 216.7 354.4 162.7 194.1 295.4 150.9 175.3 244.8 140.3 160.4 218.3

Total 16.1 35.0 59.6 14.4 23.5 31.5 14.6 22.0 27.7 15.0 21.0 24.8

Figure 5.4 shows the total average trace port bandwidth with minimum-

maximum ranges in bits per clock cycle for mlvCFiat with base and variable encod-

ing mechanisms. mlvCFiat provides significant reductions in the trace port band-

width. Thus, mlvCFiat (CS16) with variable encoding requires 0.31 bpc when N=1

and 1.71 bpc when N=8. CS64 configuration with variable encoding requires 0.09

bpc when N=1 and 1.05 bpc when N=8. The benchmarks raytrace and water-ns

which require more than 42 bpc when N=8 now requires only ~2 bpc withCS64 con-

figuration.

111

Figure 5.4 Total average trace port bandwidth in bpc for CF_b and CF_e

5.1.3 mc2RT

The effectiveness of mc2RT directly depends on (a) benchmark characteristics

such as the type, frequency, and distribution of memory read operations, (b) data

cache miss rates and first-access flag miss rates, and (c) encoding parameters. Trace

miss rate is a good indicator of mc2RT effectiveness – the lower it is, the fewer trace

messages need to be streamed out through the trace port.

Figure 5.5 shows the total trace miss rate for the entire benchmark suite as

a function of the number of cores and the data cache configurations (CS16, CS32,

and CS64). The total trace miss rate is calculated by dividing the total number of

trace misses with the total number of data reads when all the benchmarks consid-

ered together. The total trace miss rate ranges from 1.91% for N=1 to 1.05% for N=8

with CS16 configuration, 0.81% for N=1 to 0.52% for N=8 with CS32 configuration

0

1

2

3

4

5

CF_b(CS16) CF_b(CS32) CF_b(CS64) CF_e(CS16) CF_e(CS32) CF_e(CS64)

b
p

c

Configuration

Trace port bandwidth [bpc]

N=1 N=2 N=4 N=8

112

and 0.41% for N=1 to 0.32% for N=8 with CS64 configuration. As the cache size in-

creases, the trace miss rate decreases because larger caches result in a smaller

number of read misses and consequently a smaller number of trace miss events.

Figure 5.5 also shows the minimum and the maximum trace miss rates. The trace

miss rate reaches as high as 4.70% for barnes when N=1 with CS16 configuration

and as low as 0.05% for water-ns when N=4 with CS64 configuration.

The results confirm our expectations that mc2RT can indeed significantly re-

duce the number of trace messages that needs to be streamed out through the trace

port. With an increase in the number of processor cores, the portion of truly shared

data is growing. Since our mechanism inherits tracing bits during cache coherent

transactions, we will avoid tracing cache blocks that have been previously reported

by other processors.

Figure 5.5 Trace Miss Rate for mc2RT for Splash2 benchmarks

0

1

2

3

4

5

N=1 N=2 N=4 N=8

M
is

s
R

at
e

 %

Number of Cores

Total Trace Miss Rate [%]
CS16 CS32 CS64

113

Figure 5.6 shows the trace port bandwidth for mc2RT with base encoding

(RT_b), mc2RT with variable encoding (RT_e) as a function of a number of cores

(N=1, 2, 4 and 8) and data cache configurations (CS16, CS32, and CS64).

Figure 5.6 Total average trace port bandwidth in bpi for RT_b and RT_e

Table 5.6 and Table 5.7 shows the trace port bandwidth for base encoding

(RT_b) and variable encoding (RT_e) mechanisms for each benchmark separately.

The total average trace port bandwidth is less than 1.5 bit per instruction regardless

of the number of cores. mc2RT with base encoding (RT_b) reduces the trace port

bandwidth as follows:

 CS16 configuration: The average trace port bandwidth ranges from

0.12 bpi for water-sp to 2.47 bpi for fft when N=1 and 0.12 bpi for wa-

0

1

2

3

4

5

RT_b(CS16) RT_b(CS32) RT_b(CS64) RT_e(CS16) RT_e(CS32) RT_e(CS64)

b
p

i

Configuration

Trace port bandwidth [bpi]

N=1 N=2 N=4 N=8

114

ter-sp to 2.49 bpi for fft when N=8. The total average trace port band-

width is 1.24 bpi for N=1 and 0.71 bpi when N=8.

 CS32 configuration: The average trace port bandwidth ranges from

0.10 bpi water-sp to 1.45 bpi for fft when N=1 and 0.09 bpi for water-sp

to 1.46 bpi for fft when N=8. The total average trace port bandwidth is

0.52 bpi for N=1 and 0.35 bpi when N=8.

 CS64 configuration: The average trace port bandwidth ranges from

0.03 bpi for water-ns to 1.13 bpi for fft when N=1 and 0.04 bpi for wa-

ter-sp to 1.14 bpi for fft when N=8. The total average trace port band-

width is 0.27 bpi for N=1 and 0.21 bpi when N=8.

Table 5.6 Trace port bandwidth bpi for RT_b

Cores N=1 N=2 N=4 N=8

Config CS16 CS32 CS64 CS16 CS32 CS64 CS16 CS32 CS64 CS16 CS32 CS64

barnes 4.03 1.41 0.37 2.99 1.05 0.31 2.16 0.80 0.29 1.60 0.67 0.33

cholesky 1.76 0.70 0.63 1.23 0.72 0.64 0.86 0.53 0.46 0.52 0.36 0.29

fft 2.47 1.45 1.13 2.50 1.45 1.13 2.50 1.46 1.13 2.49 1.46 1.14

fmm 0.54 0.37 0.27 0.50 0.36 0.26 0.48 0.35 0.26 0.47 0.34 0.25

lu 0.50 0.49 0.45 0.50 0.46 0.28 0.28 0.25 0.15 0.27 0.17 0.07

radiosity 0.55 0.19 0.09 0.31 0.14 0.07 0.29 0.12 0.08 0.21 0.10 0.06

radix 1.42 0.68 0.38 1.43 0.69 0.38 1.44 0.69 0.39 1.46 0.70 0.40

raytrace 1.97 0.61 0.20 1.58 0.46 0.15 1.42 0.41 0.13 1.24 0.35 0.10

water-ns 0.82 0.37 0.03 0.83 0.38 0.03 0.64 0.06 0.03 0.15 0.06 0.03

water-sp 0.12 0.10 0.06 0.12 0.10 0.06 0.12 0.09 0.05 0.12 0.09 0.04

Total 1.24 0.52 0.27 1.01 0.46 0.25 0.86 0.40 0.23 0.71 0.35 0.21

The variable encoding mechanism (RT_e) further reduces the average trace

port bandwidth compared to base encoding (RT_b).

115

 CS16 configuration: The total average trace port bandwidth is 1.23 bpi

for N=1 to 0.70 bpi when N=8. RT_e reduces the trace port bandwidth

relative to RT_b by 1.02 times.

 CS32 configuration: The total average trace port bandwidth is 0.52 bpi

for N=1 to 0.35 bpi when N=8. RT_e reduces the trace port bandwidth

relative to RT_b by 1.02 times.

 CS64 configuration: The total average trace port bandwidth is 0.26 bpi

for N=1 to 0.21 bpi when N=8. RT_e reduces the trace port bandwidth

relative to RT_b by 1.02 times.

Table 5.7 Trace port bandwidth bpi for RT_e

Cores N=1 N=2 N=4 N=8

Config CS16 CS32 CS64 CS16 CS32 CS64 CS16 CS32 CS64 CS16 CS32 CS64

barnes 3.97 1.39 0.37 2.95 1.04 0.31 2.13 0.79 0.28 1.58 0.66 0.32

cholesky 1.73 0.68 0.62 1.21 0.71 0.63 0.85 0.52 0.45 0.51 0.35 0.29

fft 2.42 1.41 1.09 2.46 1.42 1.10 2.46 1.42 1.10 2.46 1.43 1.11

fmm 0.53 0.36 0.26 0.49 0.35 0.26 0.47 0.35 0.25 0.46 0.33 0.24

lu 0.49 0.48 0.45 0.49 0.45 0.27 0.28 0.25 0.15 0.26 0.17 0.07

radiosity 0.54 0.19 0.09 0.31 0.14 0.07 0.29 0.12 0.08 0.21 0.10 0.06

radix 1.39 0.67 0.38 1.40 0.67 0.38 1.41 0.68 0.38 1.42 0.69 0.39

raytrace 1.95 0.61 0.19 1.56 0.46 0.15 1.40 0.41 0.12 1.22 0.35 0.10

water-ns 0.82 0.37 0.03 0.82 0.37 0.03 0.63 0.06 0.03 0.15 0.05 0.03

water-sp 0.12 0.10 0.06 0.12 0.10 0.06 0.12 0.09 0.05 0.11 0.08 0.04

Total 1.23 0.52 0.26 1.00 0.45 0.24 0.85 0.39 0.23 0.70 0.35 0.21

Table 5.8 shows the compression ratio or speedups achieved by mc2RT rela-

tive to NX_b for all benchmarks. The compression ratio for a given benchmark is cal-

culated by dividing the trace port bandwidth required for Nexus-like load data value

116

traces with the trace port bandwidth required for RT_e. Compression ratios range

from as low as 4.4 for fft to 337.7 for water-ns when N=1 and 4.6 for fft to 372.9 for

water-ns when N=8. The total compression ratio when all the benchmarks are con-

sidered together ranges from 10.1 when N=1 to 18.9 when N=8 with CS16 configura-

tion, from 23.9.0 when N=1 to 38.0 when N=8 with CS32 configuration and from

47.3 when N=1 to 62.5 when N=8 with CS64 configuration.

Table 5.8 Compression ratio of RT_e relative to NX_b

Cores N=1 N=2 N=4 N=8

Config CS16 CS32 CS64 CS16 CS32 CS64 CS16 CS32 CS64 CS16 CS32 CS64

barnes 3.8 10.8 40.8 5.2 14.8 50.0 7.3 19.8 54.9 10.1 24.0 49.0

cholesky 8.9 22.5 24.6 13.4 22.9 25.9 18.7 30.2 35.0 30.4 44.6 54.1

fft 4.4 7.5 9.7 4.4 7.6 9.8 4.5 7.7 10.0 4.6 7.8 10.1

fmm 16.5 24.2 33.7 18.3 25.5 34.7 19.5 26.5 36.2 20.4 27.9 38.5

lu 24.4 24.5 26.6 24.8 26.6 44.0 44.5 49.9 81.0 47.7 74.2 174.9

radiosity 22.4 63.0 130.3 40.5 90.0 170.2 43.8 102.5 167.7 60.6 126.6 202.1

radix 9.7 20.1 35.7 9.8 20.4 36.3 10.0 20.8 36.7 10.2 21.1 37.1

raytrace 7.8 25.0 78.4 9.9 33.8 104.0 11.2 38.6 126.7 13.1 45.9 158.0

water-ns 13.0 28.7 337.7 13.1 28.9 371.4 17.3 187.3 437.2 75.3 203.1 372.9

water-sp 92.5 115.7 187.1 96.4 120.5 207.8 100.8 130.0 242.8 104.1 140.5 302.0

Total 10.1 23.9 47.3 12.7 28.0 52.0 15.2 33.1 56.8 18.9 38.0 62.5

Figure 5.7 shows the total average trace port bandwidth with minimum-

maximum ranges in bits per clock cycle for mc2RT with base and variable encoding

mechanisms. mc2RT provides significant reductions in the trace port bandwidth.

Thus, mc2RT (CS16) with variable encoding requires 0.49 bpc when N=1 and 1.36

bpc when N=8. CS64 configuration with variable encoding requires 0.12 bpc when

117

N=1 and 0.42 bpc when N=8. The benchmarks raytrace and water-ns which required

more than 42 bpc when N=8 now require only ~0.3 bpc withCS64 configuration.

Figure 5.7 Total average trace port bandwidth in bpc for RT_b and RT_e

5.1.4 mc2RFiat

The effectiveness of mc2RFiat directly depends on (a) benchmark characteris-

tics such as the type, frequency, and distribution of memory read operations, (b) da-

ta cache miss rates and first-access flag miss rates, and (c) encoding parameters.

The first-access flag miss rate is a good indicator of the mc2RFiat effectiveness – the

lower it is, the fewer trace messages need to be streamed out through the trace port.

Figure 5.8 shows the total first-access miss rate for the entire benchmark

suite as a function of a number of cores and the three data cache configurations

(CS16, CS32, and CS64). The total first-access miss rate is calculated by dividing

0

1

2

3

4

RT_b(CS16) RT_b(CS32) RT_b(CS64) RT_e(CS16) RT_e(CS32) RT_e(CS64)

b
p

c

Configuration

Trace port bandwidth [bpc]

N=1 N=2 N=4 N=8

118

the total number of first-access misses with the total number of data reads when all

the benchmarks are considered together. The total first-access miss rate ranges from

5.39% for N=1 to 3.10% for N=8 with CS16 configuration, 2.49% for N=1 to 1.71% for

N=8 with CS32 configuration and 1.47% for N=1 to 1.16% for N=8 with CS64 config-

uration. As the cache size increases, the first-access miss rate decreases because

larger caches result in lower number of read misses and thus smaller number of

first-access miss events. Figure 5.8 also shows the minimum and the maximum first-

access miss rates. The first-access miss rate reaches as high as 17.96% for fft when

N=2 with CS16 configuration and as low as 0.11% for water-ns when N=4 with CS64

configuration.

The results confirm our expectations that mc2RFiat can indeed significantly

reduce the number of trace messages that needs to be streamed out through the

trace port. With an increase in the number of processor cores, the portion of truly

shared data is growing. Since our mechanism inherits tracing bits during cache co-

herent transactions, we will avoid tracing cache blocks that have been previously

reported by other processors.

119

Figure 5.8 First Access Miss Rate for mc2RT for Splash2 benchmarks

Figure 5.9 shows the trace port bandwidth for mc2RFiat with base encoding

(RF_b), mc2RFiat with variable encoding (RF_e) as a function of a number of cores

(N=1, 2, 4 and 8) and data cache configurations (CS16, CS32, and CS64).

0

5

10

15

20

N=1 N=2 N=4 N=8

M
is

s
R

at
e

 %

Number of Cores

Total First-access Miss Rate [%]

CS16 CS32 CS64

120

Figure 5.9 Total average trace port bandwidth in bpi for RF_b and RF_e

Table 5.10 and Table 5.9 shows the trace port bandwidth for base encoding

(RF_b) and variable encoding (RF_e) mechanisms for each benchmark separately.

The total average trace port bandwidth is less than 1 bit per instruction regardless

of the number of cores. mc2RFiat with base encoding (RF_b) reduces the trace port

bandwidth significantly as follows:

 CS16 configuration: The average trace port bandwidth ranges from

0.07 bpi for water-sp to 2.84 bpi for fft when N=1 and 0.07 bpi for wa-

ter-sp to 2.93 bpi for fft when N=8. The total average trace port band-

width is 0.84 bpi for N=1 and 0.52 bpi when N=8.

 CS32 configuration: The average trace port bandwidth ranges from

0.05 bpi water-sp to 1.62 bpi for fft when N=1 and 0.03 bpi for water-ns

to 1.67 bpi for fft when N=8. The total average trace port bandwidth is

0.38 bpi for N=1 and 0.29 bpi when N=8.

0

1

2

3

RF_b(CS16) RF_b(CS32) RF_b(CS64) RF_e(CS16) RF_e(CS32) RF_e(CS64)

b
p

i

Configuration

Trace port bandwidth [bpi]
N=1 N=2 N=4 N=8

121

 CS64 configuration: The average trace port bandwidth ranges from

0.02 bpi for water-ns to 1.24 bpi for fft when N=1 and 0.06 bpi for wa-

ter-sp to 1.24 bpi for barnes when N=8. The total average trace port

bandwidth is 0.23 bpi for N=1 and 0.19 bpi when N=8.

Table 5.9 Trace port bandwidth bpi for RF_b

Cores N=1 N=2 N=4 N=8

Config CS16 CS32 CS64 CS16 CS32 CS64 CS16 CS32 CS64 CS16 CS32 CS64

barnes 2.34 0.82 0.20 1.75 0.61 0.17 1.28 0.47 0.17 0.95 0.41 0.20

cholesky 1.94 0.74 0.68 1.31 0.77 0.69 0.91 0.57 0.49 0.54 0.38 0.31

fft 2.84 1.62 1.24 2.89 1.64 1.26 2.91 1.65 1.26 2.93 1.67 1.28

fmm 0.36 0.23 0.15 0.32 0.22 0.15 0.30 0.21 0.14 0.30 0.21 0.14

lu 0.54 0.53 0.49 0.54 0.50 0.28 0.45 0.37 0.19 0.43 0.23 0.05

radiosity 0.25 0.10 0.05 0.14 0.07 0.04 0.13 0.06 0.04 0.10 0.05 0.04

radix 0.85 0.60 0.49 0.86 0.61 0.51 0.88 0.63 0.52 0.91 0.65 0.54

raytrace 1.04 0.35 0.12 0.87 0.28 0.10 0.80 0.25 0.08 0.71 0.22 0.07

water-ns 0.49 0.23 0.02 0.49 0.23 0.02 0.38 0.03 0.01 0.08 0.03 0.01

water-sp 0.07 0.05 0.03 0.07 0.05 0.03 0.07 0.05 0.03 0.07 0.05 0.02

Total 0.84 0.38 0.23 0.70 0.35 0.22 0.61 0.32 0.21 0.52 0.29 0.19

The variable encoding mechanism (RF_e) further reduces the average trace

port bandwidth compared to base encoding (RF_b).

 CS16 configuration: The total average trace port bandwidth is 0.77 bpi

for N=1 to 0.48 bpi when N=8. RF_e reduces the trace port bandwidth

relative to RF_b by 1.10 times when N=1 and 1.09 times when N=8.

 CS32 configuration: The total average trace port bandwidth is 0.35 bpi

for N=1 to 0.27 bpi when N=8. RF_e reduces the trace port bandwidth

relative to RF_b by 1.09 times.

122

 CS64 configuration: The total average trace port bandwidth is 0.21 bpi

for N=1 to 0.18 bpi when N=8. RF_e reduces the trace port bandwidth

relative to RF_b by 1.09 times.

Table 5.10 Trace port bandwidth bpi for RF_e

Cores N=1 N=2 N=4 N=8

Config CS16 CS32 CS64 CS16 CS32 CS64 CS16 CS32 CS64 CS16 CS32 CS64

barnes 2.17 0.77 0.19 1.63 0.57 0.16 1.19 0.44 0.16 0.89 0.38 0.18

cholesky 1.76 0.67 0.62 1.20 0.70 0.62 0.83 0.52 0.45 0.50 0.34 0.29

fft 2.57 1.48 1.15 2.62 1.50 1.17 2.65 1.52 1.18 2.67 1.53 1.19

fmm 0.33 0.21 0.14 0.30 0.20 0.14 0.28 0.20 0.13 0.28 0.19 0.13

lu 0.54 0.53 0.47 0.54 0.50 0.28 0.45 0.37 0.19 0.43 0.23 0.05

radiosity 0.22 0.08 0.04 0.12 0.06 0.03 0.12 0.05 0.04 0.09 0.05 0.03

radix 0.75 0.54 0.43 0.77 0.56 0.44 0.79 0.57 0.46 0.82 0.60 0.47

raytrace 0.93 0.31 0.11 0.78 0.25 0.09 0.72 0.23 0.07 0.64 0.20 0.06

water-ns 0.47 0.22 0.02 0.48 0.22 0.02 0.37 0.03 0.01 0.08 0.03 0.01

water-sp 0.07 0.05 0.03 0.06 0.05 0.03 0.06 0.05 0.03 0.06 0.05 0.02

Total 0.77 0.35 0.21 0.64 0.32 0.20 0.56 0.29 0.19 0.48 0.27 0.18

Table 5.8 shows the compression ratio or speedups achieved by mc2RFiat rel-

ative to NX_b for all benchmarks. The compression ratio for a given benchmark is

calculated by dividing the trace port bandwidth required for Nexus-like load data

value traces with the trace port bandwidth required for RF_e. Compression ratios

range from as low as 4.2 for fft to 521.5 for water-ns when N=1 and 4.2 for fft to

944.9 for water-ns when N=8. The total compression ratio when all the benchmarks

are considered together ranges from 16.1 when N=1 to 27.6 when N=8 with CS16

configuration, from 35.0 when N=1 to 49.6 when N=8 with CS32 configuration and

from 59.6 when N=1 to 73.8 when N=8 with CS64 configuration.

123

Table 5.11 Compression ratio of RF_e relative to NX_b

Cores N=1 N=2 N=4 N=8

Config CS16 CS32 CS64 CS16 CS32 CS64 CS16 CS32 CS64 CS16 CS32 CS64

barnes 6.9 19.6 79.5 9.4 26.9 94.6 13.1 35.4 98.7 17.9 41.9 86.0

cholesky 8.7 22.9 24.7 13.6 23.3 26.0 19.1 30.8 35.1 31.4 45.4 54.4

fft 4.2 7.2 9.2 4.1 7.2 9.3 4.2 7.3 9.3 4.2 7.3 9.4

fmm 26.4 42.2 64.8 30.4 44.9 66.3 32.5 46.4 68.7 33.8 48.6 72.9

lu 22.0 22.3 25.0 22.3 24.2 43.8 27.0 33.2 64.7 29.0 53.9 251.0

radiosity 55.5 146.2 288.3 100.8 209.8 355.1 109.2 237.0 343.6 147.2 271.1 369.9

radix 17.9 24.8 30.9 17.9 24.7 30.9 17.8 24.5 30.9 17.7 24.3 30.8

raytrace 16.3 48.3 140.5 19.9 61.7 178.4 21.9 69.0 212.0 25.2 80.0 255.7

water-ns 22.5 47.8 521.5 22.7 48.2 628.3 29.6 363.4 971.2 142.2 435.6 944.9

water-sp 173.7 216.7 354.4 178.0 222.1 391.6 184.1 237.8 449.2 188.0 252.1 543.3

Total 16.1 35.0 59.6 19.7 39.1 63.4 22.9 44.4 67.6 27.6 49.6 73.8

Figure 5.10 shows the total average trace port bandwidth with minimum-

maximum ranges in bits per clock cycle for mc2RFiat with base and variable encod-

ing mechanisms. mc2RFiat provides significant reductions in the trace port band-

width. Thus, mc2RFiat (CS16) with variable encoding requires 0.31 bpc when N=1

and 0.93 bpc when N=8. CS64 configuration with variable encoding requires 0.09

bpc when N=1 and 0.35 bpc when N=8. The benchmarks raytrace and water-ns

which required more than 42 bpc when N=8 now requires only ~0.2 bpc with CS64

configuration.

124

Figure 5.10 Total average trace port bandwidth in bpc for RF_b and RF_e

5.2 Dynamic Trace Port Bandwidth Analysis for Load Data Value Traces

The average trace port bandwidth allows us to quantify the effectiveness of

proposed techniques but it does not fully capture the peak bandwidth requirements

that occur in different phases of the program execution. Depending on the frequency

and distribution of memory reads and first-access misses/trace bit misses, the peak

trace port bandwidth may exceed the average trace port bandwidth. To analyze peak

trace port bandwidth requirements, we consider two benchmarks raytrace and wa-

ter-ns. These two benchmarks are critical because they require the trace port band-

width of more than 42 bpc when N=8. We analyze the bandwidth requirements for

NX_b, NX_b.gz, CF_e, RT_e, and RF_e traces.

Figure 5.11 shows the dynamic trace port bandwidth in bpc for raytrace for

CS64 configuration. The average trace port bandwidth for NX_b with CS64 configu-

0

1

2

3

4

RF_b(CS16) RF_b(CS32) RF_b(CS64) RF_e(CS16) RF_e(CS32) RF_e(CS64)

b
p

c

Configuration

Trace port bandwidth [bpc]

N=1 N=2 N=4 N=8

125

ration for raytrace is 46.47 bpc. However, the peak trace port bandwidth reaches

64.84 bpc, further underscoring the challenges in the load data value tracing. Soft-

ware compression of NX_b traces using the gzip utility with level 1 compression

(NX_b.gz) requires an average trace port bandwidth of 33.21 bpc with a peak rate of

45.89 bpc, CF_e requires an average trace port bandwidth of 1.81 bpc with a peak

rate of 5.89 bpc, RT_e requires an average trace port bandwidth of 0.29 bpc with a

peak rate of 5.89 bpc and RF_e requires an average trace port bandwidth of 0.18 bpc

with peak a rate of 5.89 bpc.

Figure 5.11 Dynamic trace port bandwidth in bpc during execution of raytrace for

N=8

Figure 5.12 shows the dynamic trace port bandwidth in bpc for water-ns for

CS64 configuration. The average trace port bandwidth for NX_b with CS64 configu-

ration for raytrace is 46.47 bpc. However, peak trace port bandwidth reaches 57.94

0.00001

0.00010

0.00100

0.01000

0.10000

1.00000

10.00000

100.00000

0 100 200 300 400 500 600 700 800

Clock cycle [x106]

raytrace: Trace port bandwidth in bpc as a function of time

NX_b(CS64) NX_b.gz(CS64) CF_e(CS64) RT_e(CS64) RF_e (CS64)

126

bpc; NX_b.gz requires an average trace port bandwidth of 32.5 bpc with a peak rate

of 44.9 bpc. CF_e requires an average trace port bandwidth of 1.51 bpc with a peak

rate of 2.63 bpc. RT_e requires an average trace port bandwidth of 0.12 bpc with a

peak rate of 2.34 bpc. RF_e requires an average trace port bandwidth of 0.05 bpc

with a peak rate of 1.41 bpc. These results clearly show that our techniques not only

reduce the average trace port but also reduce the peak trace port bandwidth re-

quirements.

Figure 5.12 Dynamic trace port bandwidth in bpc during execution of water-ns for

N=8

5.3 Putting It All Together

This section compares the improvements achieved with all proposed trace fil-

tering techniques and additional hardware resources required to support them on

the target platforms. Figure 5.13 shows the total average trace port bandwidth in

0.00001

0.0001

0.001

0.01

0.1

1

10

100

0 20 40 60 80 100 120 140 160 180 200

Clock cycle [x106]

water-ns: Trace port bandwidth in bpc as a function of time

NX_b(CS64) NX_b.gz(CS64) CF_e(CS64) RT_e(CS64) RF_e(CS64)

127

bpi for the trace filtering techniques for the CS64 configuration. NX_b requires total

average trace port bandwidth in the range from 12.34 bpi when N=1 to 13.17 bpi

when N=8. mlvCFiat with variable encoding mechanism (CF_e) requires a total av-

erage trace port bandwidth in the range from 0.21 bpi when N=1 to 0.53 bpi when

N=8. mc2RT with variable encoding mechanism (RT_e) requires a total average trace

port bandwidth in the range from 0.26 bpi when N=1 to 0.21 bpi when N=8.

mc2RFiat with variable encoding mechanism (RF_e) requires a total average trace

port bandwidth in the range from 0.21 bpi when N=1 to 0.18 bpi when N=8.

Figure 5.13 Trace port bandwidth in bpi for CS64 configuration

Figure 5.14 shows the total average trace port bandwidth in bpc for the trace

filtering techniques for the CS64 configuration. NX_b requires a total average trace

port bandwidth in the range from 5.65 bpc when N=1 to 26.14 bpc when N=8.

mlvCFiat with variable encoding mechanism (CF_e) requires a total average trace

port bandwidth in the range from 0.09 bpc when N=1 to 1.05 bpc when N=8. mc2RT

0.00

0.25

0.50

0.75

1.00

1.25

1.50

CF_e RT_e RF_e

b
p

i

Configuration

Trace port bandwidth [bpi]

N=1 N=2 N=4 N=8

0

4

8

12

16

NX_b

b
p

i

Configuration

Trace port bandwidth [bpi]
N=1 N=2 N=4 N=8

128

with variable encoding mechanism (RT_e) requires a total average trace port band-

width in the range from 0.12 bpc when N=1 to 0.42 bpc when N=8. mc2RFiat with

variable encoding mechanism (RF_e) requires a total average trace port bandwidth

in the range from 0.09 bpc when N=1 to 0.35 bpc when N=8.

Figure 5.14 Trace port bandwidth in bpc for CS64 configuration

To support mlvCFiat, first-access tracking bits need to be added to each cache

block of the L1 data cache. The complexity of mlvCFiat depends on the granularity

size. If the granularity size is higher, it requires fewer first-access bits but the trace

port bandwidth may increase. As we can observe from Figure 5.13 and Figure 5.14,

the effectiveness of mlvCFiat decreases as we increase the number of cores. This can

be explained by an increase in the cache coherence traffic which results in the num-

ber of trace messages because mlvCFiat does not support coherence traffic. To solve

this problem we introduced mc2RT.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

CF_e RT_e RF_e

b
p

c

Configuration

Trace port bandwidth [bpc]

N=1 N=2 N=4 N=8

0

5

10

15

20

25

30

35

40

45

50

NX_b

b
p

c

Configuration

Trace port bandwidth [bpc]
N=1 N=2 N=4 N=8

129

To support mc2RT, a single trace tracking bit is added to each cache block of

the L1 data cache. mc2RT also makes use of the MOESI cache coherence protocol

and relies on inheriting trace tracking bits from other caches to reduce the number

of trace messages. To support this feature requires hardware support for copying

trace bit from other caches. For a single core, the average trace port bandwidth is

higher than in mlvCFiat (Figure 5.13 and Figure 5.14) because a single trace mes-

sage includes the content of the entire cache block regardless of the size of the actual

operand. However, this feature may work well in the case of strong spatial locality in

data accesses.

mc2RFiat combines the strengths of both mlvCFiat and mc2RT. mc2RFiat us-

es first-access tracking bits added to each cache block of the L1 data cache. It also

uses the MOESI cache coherence protocol with support for inheriting first-access

tracking bits for selected cache-to-cache transfers. This technique requires addition-

al hardware support for copying first-access tracking bits from other caches. This

can be done either by extending the width of data lines which support cache to cache

transfer or initiating an extra bus transaction.

Depending on the requirements and hardware resources available, we can

use any one of the described techniques to capture load data value traces on the tar-

get platform in real-time in multicore systems.

130

CHAPTER 6

CONCLUSIONS

The growing complexity of hardware and software stacks, a recent shift to-

ward multicores, and ever-tightening time-to-market requirements make software

testing and debugging one of the most critical aspects of embedded system develop-

ment. Software developers need better debugging tools to reduce the time and effort

it takes to find bugs. A software debugger can replay programs offline under certain

conditions; it opens the doors for software developers to find bugs faster.

Load data value traces are essential in program replay but tracing entire

programs we require wider trace ports and deeper buffers, which in turn increases

the system cost. In this thesis, we introduce techniques, mlvCFiat, mc2RT, and

mc2RFiat that capture, filter, and emit the load data value traces unobtrusively in

real time. These techniques make use of L1 data caches with minimal hardware

changes to filter load data value traces. These techniques also require a software de-

bugger to maintain a software copy of the data caches with organization and updat-

ing policies that mirror those employed on the target platform.

To measure the effectiveness of the proposed techniques, we evaluate the

trace port bandwidth measured in bits per executed instruction and bits per clock

cycle while varying the number of cores N = 1, 2, 4, and 8 and with different cache

configurations (CS16, CS32, and CS64). To further reduce the average trace port

bandwidth, we also consider variable encoding mechanism. Variable encoding mech-

131

anism reduces the average trace port bandwidth by 8 to 10% relative to base encod-

ing.

mlvCFiat uses first-access tracking bits to minimize the number of load data

value traces emitted by the target platform. The complexity of mlvCFiat depends on

the granularity size. The total average trace port bandwidth for Nexus like load data

value traces ranges from 12.34 bpi (N=1) to 13.17 bpi (N=8). mlvCFiat with variable

encoding mechanism reduces the average trace port bandwidth by 14.7 to 54.7

times when N=1 and 13.8 to 23.0 times when N=8 relative to Nexus-like load data

value traces.

 mc2RT exploits cache coherence protocol along with a single tracking bit at-

tached to a cache block of L1 data cache to reduce the number of load data value

traces emitted by the target platform. Usage of cache coherence protocol and inherit-

ing tracking bits eliminate redundant trace messages reporting shared data by dif-

ferent processor cores. Thus, mc2RT with variable encoding mechanism reduces the

average trace port bandwidth by 9.9 to 46.4 times when N=1 and 18.6 to 61.4 times

when N=8 relative to Nexus-like load data value traces.

mc2RFiat is a hybrid technique that uses the best qualities from mlvCFiat

and mc2RT. Thus, it uses cache coherence protocol along with first-access tracking

bits to reduce the number of load data value traces emitted by the target platform.

This technique requires hardware support to inherit first-access tracking bits from

other caches. mc2RFiat with variable encoding mechanism reduces the average trace

port bandwidth by 14.7 to 54.7 times when N=1 and 25.3 to 67.7 times when N=8

relative to Nexus-like load data value traces.

132

The future work will focus on expanding the existing work in several direc-

tions. First, an analysis of hardware overhead for the proposed techniques can be

carried out through the development of detailed hardware models. Whereas, all

techniques require relatively small overhead due to tracking bits associated with

level 1 data caches, mc2RT and mc2RFiat require extra control lines on the cache-

coherent bus that carry tracking bits during cache-to-cache transfers. An additional

aspect of the hardware overhead is determining the maximum size of trace buffers

that keep trace messages before they are traced out.

Another promising venue for future work is to consider expanding the pro-

posed technique to high-end embedded processors with private second-level data

caches. This change may further improve effectiveness of the proposed techniques at

the cost of additional hardware complexity.

Third venue of future research may focus on analyzing the impact of various

processor models on the required trace port bandwidth in bits per clock cycle. Using

more aggressive superscalar processors with higher number of retired instructions

per clock cycle will increase the required trace port bandwidth, and thus make the

proposed techniques even more valuable.

133

REFERENCES

[1] “International Technology Roadmap for Semiconductors 2007 Edition.”

[Online]. Available: https://goo.gl/TdZY52. [Accessed: 08-Apr-2016].

[2] IEEE-ISTO, “The Nexus 5001 Forum Standard for a Global Embedded Proces-

sor Debug Interface,” 2003. [Online]. Available: http://nexus5001.org/nexus-

5001-forum-standard/. [Accessed: 28-Mar-2016].

[3] IEEE, “IEEE Std 1149.1-1990 IEEE Standard Test Access Port and Boundary-

Scan Architecture -Description,” 2001. [Online]. Available:

http://standards.ieee.org/reading/ieee/std_public/description/testtech/1149.1-

1990_desc.html.

[4] W. Orme, “Debug and Trace for Multicore SoCs,” 2008. [Online]. Available:

https://www.arm.com/files/pdf/CoresightWhitepaper.pdf. [Accessed: 28-Mar-

2016].

[5] MIPS, “MIPS PDtrace Specification,” 2009. [Online]. Available:

http://goo.gl/UwIYGv. [Accessed: 01-Apr-2016].

[6] Infineon, “MCDS - Multi-Core Debug Solution - Infineon Technologies,” 07-Dec-

2011. [Online]. Available: https://www.ip-extreme.com/IP/mcds.shtml. [Ac-

cessed: 01-Apr-2016].

[7] N. Stollon and R. Collins, “Nexus Based Multi-Core Debug,” in Proceedings of

the Design Conference International Engineering Consortium, Santa Clara, CA,

USA, 2006, vol. 1, pp. 805–822.

[8] B. Mihajlović, Ž. Žilić, and W. J. Gross, “Architecture-Aware Real-Time Com-

pression of Execution Traces,” ACM Trans. Embed. Comput. Syst., vol. 14, no.

4, p. 75:1–75:24, Sep. 2015.

134

[9] N. Stollon, On-Chip Instrumentation: design and debug for systems on chip.

New York: Springer, 2011.

[10] K.-U. Irrgang and R. G. Spallek, “Comparison of Trace-Port-Designs for On-

Chip-Instruction-Trace,” in IEEE Germany Student Conference, University of

Passau, 2012.

[11] E. A. Daoud and N. Nicolici, “Real-Time Lossless Compression for Silicon De-

bug,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, vol. 28, pp. 1387–1400, Sep. 2009.

[12] E. E. Johnson, “PDATS II: improved compression of address traces,” in Proceed-

ings of the IEEE International Performance, Computing and Communications

Conference, Phoenix, AR, 1999, pp. 72–78.

[13] J. R. Larus, “Whole Program Paths,” in Proceedings of the ACM SIGPLAN 1999

Conference on Programming Language Design and Implementation, New York,

NY, USA, 1999, pp. 259–269.

[14] A. Milenkovic, M. Milenkovic, and J. Kulick, “N-Tuple Compression: A Novel

Method for Compression of Branch Instruction Traces,” in Proceedings of the

16th International Conference on Parallel and Distributed Computing Systems

(PDCS-2003), Reno, NV, 2003, pp. 49–55.

[15] A. Milenkovic and M. Milenkovic, “An Efficient Single-Pass Trace Compression

Technique Utilizing Instruction Streams,” ACM Trans. Model. Comput. Simul.,

vol. 17, pp. 1–27, 2007.

[16] A. R. Myers, “A Binary Instrumentation Tool Suite for Capturing and Com-

pressing Traces for Multithreaded Software,” University of Alabama in Hunts-

ville, Huntsville, AL, USA, 2014.

135

[17] A. Milenkovic and M. Milenkovic, “Stream-Based Trace Compression,” IEEE

Computer Architecture Letter, vol. 2, pp. 9–12, 2003.

[18] A. Milenkovic and M. Milenkovic, “Exploiting Streams in Instruction and Data

Address Trace Compression,” in Proceedings of the IEEE International Work-

shop on Workload Characterization, 2003, Austin, TX, 2003, pp. 99–107.

[19] M. Burtscher, “VPC3: A Fast and Effective Trace-Compression Algorithm,”

SIGMETRICS Perform. Eval. Rev., vol. 32, pp. 167–176, 2004.

[20] V. Uzelac and A. Milenkovic, “A Real-Time Program Trace Compressor Utiliz-

ing Double Move-To-Front Method,” in Proceedings of the 46th Annual Design

Automation Conference (DAC’09), July 26-31, San Francisco, CA, USA, 2009,

pp. 738–743.

[21] B. Mihajlović and Ž. Žilić, “Real-time Address Trace Compression for Emulated

and Real System-on-chip Processor Core Debugging,” in Proceedings of the 21st

edition of the great lakes symposium on Great lakes symposium on VLSI, New

York, NY, USA, 2011, pp. 331–336.

[22] C.-F. Kao, S.-M. Huang, and I.-J. Huang, “A Hardware Approach to Real-Time

Program Trace Compression for Embedded Processors,” IEEE Transactions on

Circuits and Systems, vol. 54, pp. 530–543, 2007.

[23] M. Milenkovic, A. Milenkovic, and M. Burtscher, “Algorithms and Hardware

Structures for Unobtrusive Real-Time Compression of Instruction and Data

Address Traces,” Snowbird, UT, 2007, pp. 55–65.

[24] V. Uzelac, A. Milenkovic, M. Milenkovic, and M. Burtscher, “Real-time, unob-

trusive, and efficient program execution tracing with stream caches and last

136

stream predictors,” in Proceedings of IEEE International Conference on Com-

puter Design (ICCD’09), 2009, pp. 173–178.

[25] A. Milenković, V. Uzelac, M. Milenković, and B. Burtscher, “Caches and Predic-

tors for Real-Time, Unobtrusive, and Cost-Effective Program Tracing in Em-

bedded Systems,” IEEE Transactions on Computers, vol. 60, no. 7, pp. 992–

1005, Jul. 2011.

[26] V. Uzelac, A. Milenković, M. Milenković, and M. Burtscher, “Using Branch Pre-

dictors and Variable Encoding for On-the-Fly Program Tracing,” IEEE Transac-

tions on Computers, vol. 63, no. 4, pp. 1008–1020, Apr. 2014.

[27] V. Uzelac, A. Milenković, M. Burtscher, and M. Milenković, “Real-time Unob-

trusive Program Execution Trace Compression Using Branch Predictor

Events,” in Proceedings of the International conference on Compilers, Architec-

tures and Synthesis for Embedded Systems (CASES’10), Scottsdale, AZ, 2010,

pp. 97–106.

[28] A. K. Tewar, “Experimental Evaluation of Techniques for Capturing and Com-

pressing Hardware Traces in Multicores,” University of Alabama in Huntsville,

Huntsville, AL, USA, 2015.

[29] C. Hochberger and A. Weiss, “Acquiring an exhaustive, continuous and real-

time trace from SoCs,” in IEEE International Conference on Computer Design,

2008. ICCD 2008, Lake Tahoe, CA, 2008, pp. 356–362.

[30] V. Uzelac and A. Milenković, “Hardware-Based Load Value Trace Filtering for

On-the-Fly Debugging,” ACM Transactions on Embedded Computing Systems,

vol. 12, no. 2s, pp. 1–18, May 2013.

137

[31] V. Uzelac and A. Milenković, “Hardware-based data value and address trace

filtering techniques,” in Proceedings of the International Conference on Compil-

ers, Architectures and Synthesis for Embedded System (CASES’10), Scottsdale,

AZ, USA, 2010, pp. 117–126.

[32] A. B. T. Hopkins and K. D. McDonald-Maier, “Debug Support Strategy for Sys-

tems-on-Chips with Multiple Processor Cores,” IEEE Trans. Comput., vol. 55,

pp. 174–184, 2006.

[33] M. Ponugoti, A. K. Tewar, and A. Milenkovic, “On-the-fly load data value trac-

ing in multicores,” in Proceedings of the International conference on Compilers,

Architectures and Synthesis for Embedded Systems (CASES’16), Pittsburgh,

PA, 2016.

[34] M. Ponugoti and A. Milenkovic, “Exploiting Cache Coherence for Effective On-

the-Fly Data Tracing in Multicores,” in Proceedings of the IEEE International

Conference on Computer Design (ICCD’16), Phoenix, AZ, 2016.

[35] V. Uzelac and A. Milenkovic, “Hardware-Based Load Value Trace Filtering for

On-the-Fly Debugging,” ACM TECS, vol. 12, no. 2s, pp. 1–18, May 2013.

[36] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative Ap-

proach, 5th ed. Waltham MA: Morgan Kaufmann/Elsevier, 2012.

[37] R. Ubal, B. Jang, P. Mistry, D. Schaa, and D. Kaeli, “Multi2Sim: A Simulation

Framework for CPU-GPU Computing,” in Proceedings of the 21st International

Conference on Parallel Architectures and Compilation Techniques, New York,

NY, USA, 2012, pp. 335–344.

[38] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The SPLASH-2 Pro-

grams: Characterization and Methodological Considerations,” in Proceedings of

138

the 22nd Annual International Symposium on Computer Architecture, Santa

Margherita Ligure, Italy, 1995, pp. 24–36.

[39] “Multi2Sim/m2s-bench-splash2,” GitHub. [Online]. Available:

https://github.com/Multi2Sim/m2s-bench-splash2. [Accessed: 01-Apr-2016].

