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Abstract—Software testing and debugging of modern 

embedded computer systems become increasingly a challenging 

task due to growing hardware and software complexity, 

increased integration and miniaturization, and ever tightening 

time-to-market. To find software bugs faster, developers often 

rely on on-chip trace and debug resources. However, these 

resources offer limited visibility of the system, increase the 

system cost, and do not scale well with a growing number of 

processor cores. This paper introduces a new hardware/software 

mechanism for capturing and filtering load data value traces in 

multicores that enables a complete reconstruction of a parallel 

program execution. The proposed mechanism exploits data 

caches and cache coherence protocol states to minimize the 

number of trace events that are necessary to stream out of the 

target platform to the software debugger. The mechanism relies 

on a single trace bit per data cache block, thus minimizing the 

cost of hardware implementation. Our experimental evaluation 

explores the effectiveness of the proposed technique by 

measuring the trace port bandwidth as a function of the cache 

size and the number of processor cores. The results show that the 

proposed mechanism significantly reduces the required trace 

port bandwidth when compared to the Nexus-like load data value 

tracing. Depending on data cache size, the improvements range 

from 9.9 to 23.5 times for single cores and from 18.6 to 37.3 times 

for octa cores. 

Keywords—Debugging aids, Tracing, Real-time embedded 

systems, Compression 

I. INTRODUCTION  

Increasing complexity and a shift to multicore architectures 
in modern embedded system make software development and 
testing critical aspects of system development. Faster and 
cheaper processors in smaller form factors enabled new 
applications that in turn increased users’ expectations and their 
reliance on embedded systems. As a result, the complexity of 
the software stack in embedded systems keeps growing. A 
recent report from the International Technology Roadmap for 
Semiconductors found that the software engineering and tool 
costs account for 80% or more of the total development cost of 
modern high-end embedded systems [1]. Alas, the increasing 
software complexity has been accompanied by with tightening 
time-to-market. Software complexity and time-to-market 
pressures together lead to poorly tested software, lost revenue, 
or even project failures if time-to-market goals are not met. 

It is important to give software developers tools to quickly 
locate and correct all software bugs with minimum effort. 
When debugging, software developers often need perfect 

visibility of the system state. However, achieving this visibility 
is not feasible due to high system complexity, limited available 
bandwidth for debugging data, and high operating frequencies. 
Traditional debugging techniques rely on single stepping, 
setting breakpoints, and examining the content of registers and 
memory locations while the processor is halted. This approach 
is effort- and time-consuming for software developers. In 
addition, it perturbs the sequence of events on target platforms 
and thus is not practical in real-time cyber-physical systems. 
Finally, it does not scale well to multicores. 

To address these challenges, modern embedded processors 
increasingly rely on on-chip trace and debug infrastructure [2], 
[3], [4], [5]. Fig. 1 shows a block diagram of a system-on-a-
chip (SoC) with N processor cores, a DSP, and a DMA core, 
all connected through a system interconnect. Each component 
includes its own tracing and debugging resources, called trace 
modules (see Fig. 1, excluding blue blocks). They are 
responsible for capturing and possibly filtering program 
execution traces and sending them to on-chip trace buffers 
through a debug interconnect. The program traces, temporarily 
stored in on-chip trace buffers, are streamed out of the chip 
through a dedicated trace port, typically to an external trace 
probe that interfaces a software debugger on a host 
workstation. These traces are then used by the software 
debugger to enable faithful program replay off-line. The IEEE 
Nexus 5001 standard [6] specifies four classes of debugging 
operations, including simple run-control debugging (Class 1), 
control-flow tracing (Class 2), data tracing (Class 3), and 
emulating memory and I/O through a trace port (Class 4). Each 
level progressively requires more on-chip resources and wider 
trace ports, thus increasing the system cost. The existing trace 
modules can capture full program execution traces for 
relatively small program segments only, due to limited capacity 
of on-chip trace buffers. Unfortunately, these traces are often 
insufficient to locate software bugs. With the growing 
complexity of the software running on embedded systems, the 
distance between the source of a bug and its manifestation may 
be in billions of instructions. 

This paper focuses on data traces (Class 3 in Nexus 5001). 
They are critical in reconstructing program execution in 
multicores and uncovering bugs caused by data race 
conditions. In order to faithfully reconstruct a program 
execution in the software debugger, we need to capture data 
values of memory and I/O reads on the target platform and 
stream them out. In addition, we need to capture and report 
exceptions in the program flow. However, data value traces 



tend to be very large, in the order of 8-16 bits per instruction 
executed per processor core [4]. Capturing data value traces in 
multicores is even more challenging because trace messages 
coming from different cores need to be ordered or time 
stamped before they are streamed out through a shared trace 
port. In addition, they need to include information about the 
origin of the trace message (core identification). Whereas a 
number of recent papers focuses on capturing, compressing, 
and filtering control-flow traces [7], [8], [9], [10], [11] 
relatively few studies look at on-the-fly data tracing [12]. 
Unfortunately, these studies exclusively focus on single-core 
embedded platforms where problem of ordering or time-
stamping trace messages is not present. To the best of our 
knowledge there have been no academic studies focusing on 
hardware-supported data tracing in multicores.  

 
Fig. 1. Multicore debugging and tracing infrastructure 

In this paper, we first analyze requirements for on-the-fly 
data tracing in multicores as a function of the number of cores 
by running a set of parallel programs (Section II). Next, we 
introduce mc2RT (multicore cache-coherent read trace), a 
hardware/software mechanism for capturing and filtering load 
data values in multicores. With mc2RT, each data cache block 
is associated with its trace bit that keeps track of whether the 
block has been traced out or not. mc2RT also relies on cache 
coherence protocols to ensure that actively shared cache blocks 
are traced out to the software debugger only once, the first time 
they are fetched from memory by a processor core (Section 
III). The mechanism relies on a sophisticated software 
debugger that maintains software copies of data caches and 
simulates their behavior during program replay. Our 
experimental evaluation (Section IV) explores the effectiveness 
of mc2RT as a function of the number of cores and data cache 
configurations. The results (Section V) indicate that mc2RT 
offers significant reduction in the required trace port bandwidth 
relative to the existing Nexus-like load data value tracing. Its 
effectiveness varies with the number of processor cores and the 
size of data cache. mc2RT reduces the trace port bandwidth 
from 9.9 times for N=1 to 18.6 times for N=8 when using 16 
KB data caches, and from 23.5 times for N=1 to 37.3 times for 
N=8 when using 32 KB private data caches.  

The main contributions of this work are as follows: 

• We characterize trace port bandwidth requirements in 
multicores for Nexus-like time stamped and untimed 
memory read data value traces as a function of the number 
of cores. We consider both bits per instruction and bits per 
clock cycle as measures of the required trace port 
bandwidth. 

• We develop a trace filtering technique called mc2RT for 
multicore cache-coherent read trace to reduce the trace port 
bandwidth requirements. 

• We perform a detailed experimental evaluation of the trace 
port bandwidth, while varying the number of cores and 
cache sizes. In addition to analyzing the average trace port 
bandwidth per benchmark, we also consider variations of 
the trace port bandwidth during benchmarks’ execution.  

II. DATA TRACING IN MULTICORES 

To faithfully replay a parallel program, a software debugger 
relies on the following artifacts: (a) an instruction set simulator 
for the target platform; (b) the binary of the parallel program; 
(c) the initial state of the target’s general- and special-purpose 
registers; (d) exception traces; and (e) memory and input 
device read data value traces. The last two, the exception traces 
and the read data value traces, need to be captured on the target 
platform during the program execution and streamed out 
through the target’s trace port. In multicores, both traces need 
to carry information about the inter- and intra-core ordering of 
trace events that are reported. Whereas intra-core ordering of 
trace events can be implemented using private trace buffers for 
each core, the inter-core ordering requires time-stamping trace 
events with a global time stamp. The time-stamped trace 
messages coming from different processor cores can be 
ordered in the global trace buffer and streamed out without 
time-stamps (referred to as untimed traces) or they are 
streamed unordered but with time stamps (referred to as timed 
traces). In this paper we consider both alternatives. 

To illustrate the tracing challenges in multicores, we 
analyze the trace port bandwidth required by the read data 
value traces when running a suite of parallel programs on a 
multicore. The trace port bandwidth is reported in the average 
number of bits per instruction executed (bpi) and the average 
number of bits per processor clock cycle (bpc). The bandwidth 
in bpi is calculated as the total read data value trace size in bits 
divided by the number of instructions executed in a given 
benchmark. The bandwidth in bpc is calculated as the total read 
data value trace size in bits divided by the benchmark 
execution time measured in clock cycles. The trace port 
bandwidth depends on the number of instructions executed, the 
frequency of instructions that read data from memory, and data 
types. The bandwidth in bpc also depends on the multicore 
model (pipeline, out-of-order execution, caches, and other 
parameters), which can be characterized by the number of 
instructions committed in a clock cycle.  

Fig. 2 shows SPLASH-2 benchmarks’ characteristics of 
interest for data tracing [13][14]. The benchmarks are compiled 
for the Intel IA32 ISA and run on a cycle-accurate Multi2Sim 
simulator that models processors with N=1, 2, 4, and 8 cores. 
Fig. 2 graphs show (a) the number of instructions executed in 
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billions (IC), (b) the frequency of memory reads and (c) the 
number of instructions committed in each clock cycle (IPC). 
The number of instructions executed remains constant or 
slightly increases with an increase in the number of cores, with 
an exception of cholesky where the number of instructions 
increases significantly. The frequency of instructions reading 
data from memory increases slightly with an increase in the 
number of cores and varies from 13% for fmm to 35% for 
radix. The column Total shows the overall frequency for all 
benchmarks and is calculated as the sum of all memory reads 
divided by the sum of all instructions. The average IPC 
depends on the type of benchmarks, the target multicore model, 
and the number of cores. Thus, when N=1, the IPC ranges from 
0.19 for cholesky to 0.66 for water-sp. The total IPC for the 
entire benchmark suite is calculated as the sum of all 
instructions executed by all benchmarks divided by the sum of 
all execution times in clock cycles. It ranges from 0.4 for N=1 
to 1.95 for N=8. The IPC as a function of the number of cores 
indicates how well performance scales. Thus, radix scales 
poorly because its 8-core speedup is S(8)=IPC(8)/IPC(1)=2.8, 
but water-ns scales well because its 8-core speedup is 
S(8)=6.4.  

 
Fig. 2. Splash2 benchmark characterization 

The Multi2Sim [15] simulator captures data values read 
from memory for committed instructions only. For untimed 
tracing, we assume that trace messages coming from individual 
cores contain time stamps. These time stamps are used by the 
global trace buffer control logic to order trace messages 
coming from different cores. The ordered trace messages are 
streamed out untimed, i.e., with no time stamp field. Each trace 
message includes a (Pi, LV) pair, where Pi represents the core 
index (equivalent to the thread index in our case) and LV 
represents the data value read from memory. We assume the 
software debugger can infer all other parameters (memory 
address, size of data) from the binary and the context 
maintained by the instruction set simulator(s). For time 
stamped trace messages, each trace message includes a (dCC, 

Pi, LV) triplet, where dCC represents the time in clock cycles 
measured from the beginning of the program execution or from 
the previous trace message at the given processor core.  

 

Fig. 3. Trace port bandwidth for Nexus-like load data value trace  

Fig. 3a shows the trace port bandwidth (TPB) in bpi broken 
down into individual fields of trace messages. The TPB is 
highly correlated with the frequency of memory reads and the 
size of typical operands read from memory. For untimed traces 
the TPB ranges from 7.6 bpi for fmm to 12.8 bpi for cholesky, 
when N=1. It increases slightly with an increase in the number 
of cores due to (a) an increased overhead in reporting Pi and 
(b) an increase in the frequency of memory reads. When N=8, 
the TPB ranges from 8.1 bpi for fmm to 13.4 bpi for raytrace. 
The total trace port bandwidth for the entire benchmark suite is 
calculated as the sum of all trace messages in all benchmarks 
divided by the sum of all instructions executed in all 
benchmarks. It ranges from 10.3 bpi for N=1 to 11.0 bpi for 
N=8. Time-stamped trace messages include a differentially 
encoded time field, dCC (Fig. 8a). Consequently, the TPB 
increases relatively to untimed traces. The TPB ranges from 
8.8 bpi for fmm to 15.4 bpi for cholesky when N=1, and from 
9.3 bpi for fmm to 16 bpi for raytrace when N=8. The total 
trace port bandwidth for the time-stamped traces ranges from 
12.3 bpi for N=1 to 13.2 bpi when N=8.  

To further illustrate tracing challenges in multicores, we 
consider the trace port bandwidth in bpc (Fig. 3b). The 
required TPB for untimed read data value traces ranges from 
2.3 for fft to 6.5 bpc for water-sp when N=1, and from 7.3 for 
radix to 37.7 bpc for water-ns when N=8. Benchmarks with a 
high frequency of memory reads that scale well with the 
number of cores (e.g., raytrace) place a lot of pressure on the 
trace port. The total trace port bandwidth for the entire 
benchmark suite ranges from 4.1 for N=1 to 21.5 bpc for N=8. 
In case of time-stamped read data value traces, the total TPB 
increases even further to 4.9 bpc when N=1 and to 25.6 bpc 
when N=8. For several benchmarks, such as raytrace and 
water-ns, the required TPB exceeds 42 bpc. It should be noted 
that the results in Fig. 3a and Fig. 3b indicate the average trace 

0

1

2

3

4

5

barnes cholesky fft fmm lu radiosity radix raytrace water-ns water-sp

(a) Instruction Count (IC) [10 9]

N=1 N=2 N=4 N=8

0

1

2

3

4

barnes cholesky fft fmm lu radiosity radix raytrace water-ns water-sp Total

(c) Instruction per Cycle (IPC)

N=1 N=2 N=4 N=8

0

10

20

30

40

barnes cholesky fft fmm lu radiosity radix raytrace water-ns water-sp Total

(b) Frequency of Instructions Reading Data from Memory [%]

N=1 N=2 N=4 N=8

0

4

8

12

16

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

barnes cholesky fft fmm lu radiosity radix raytrace water-ns water-sp Total

(a) Trace Port Bandwidth [bpi, bits per instruction]LV Pi dCC

0

10

20

30

40

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

barnes cholesky fft fmm lu radiosity radix raytrace water-ns water-sp Total

(b) Trace Port Bandwidth [bpc, bits per clock cycle]LV Pi dCC



port bandwidth for each benchmark. However, even higher 
peak rates at the trace port may occur during a benchmark 
execution. All these observations underscore a need for 
reducing the volume of trace data that needs to be streamed out 
of the chip. 

III. MC2RT: MULTICORE CACHE-COHERENT READ TRACE 

mc2RT is a hardware-based mechanism that filters the 
memory read data value traces by utilizing cache coherence 
protocols. Fig. 1 shows a block diagram of system debugging 
with dashed-line boxes representing additional mc2RT 
hardware and software modules. With mc2RT, each L1 data 
cache block in each processor core on the target platform is 
augmented with a trace tracking bit (Fig. 4). The trace bit keeps 
track of whether the associated cache block has been already 
traced out (T=1) or not (T=0). A cache block fetched from 
memory for the first time by a processor having a read miss 
will be traced out through the trace port. We refer to this event 
as a trace miss. Once a cache block is traced out, its 
corresponding trace bit is set (T=1). Previously traced cache 
blocks do not have to be traced out again as they can be 
inferred by the software debugger. We refer to cache read hits 
with the trace bit set as trace hits. This way, we can exploit the 
temporal and spatial locality of data accesses and cache 
coherence protocols to significantly reduce the number of trace 
messages. Each processor core also keeps a local trace-hit 
counter, THCnt, which counts the number of consecutive trace 
hits. In addition, a register keeps the time-stamp from the most 
recent trace event which is used to determine differentially 
encoded time-stamp for the next trace event.  

 
Fig. 4. mc2RT hardware structures for processor core i 

Fig. 5 describes a sequence of events on a memory read by 
core i. The data cache lookup results in a cache hit or miss. In 
case of a cache hit and trace hit, the corresponding load data 
value does not need to be reported and the local THCnt counter 
is incremented (step 7). In case of a trace miss, a new trace 
message is emitted that includes a differentially encoded time-
stamp (dCC=CC–PCC), processor core identifier (Pi), the 
current value of the trace counter (THCnt), and the content of 
the entire cache block (step 4). The trace hit counter is then 
cleared and the corresponding trace bit is set (step 5). In case of 
a cache miss, a coherent read transaction is issued (step 6). 
Without loss of generality we assume that the MOESI cache 

coherence protocol is used. The requested cache block is 
supplied to Pi either from another processor cache (Px) or from 
memory. If it is retrieved from another processor cache (Px), 
we assume that the trace bit is inherited by the processor Pi and 
a new state is Shared (step 11). If the block is retrieved from 
main memory, the corresponding T bit is cleared and a new 
cache block state is set to Exclusive (steps 12 and 13).  

Fig. 6 describes a sequence of events on a memory write by 
core i. The data cache is looked up for the requested block. In 
case of a write hit in the Exclusive state (step 3), the state is 
upgraded to Modified (step 5). If the cache block is in the 
Shared or Owned state, a coherent invalidate transaction is 
initiated (step 4) to upgrade the cache block state to Modified. 
In case of a write miss, a Coherent Read and Invalidate 
transaction is initiated (step 6). The steps 7-12 describe 
important actions during this transaction. If the requested block 
is supplied by another processor cache, e.g. Px, the requesting 
processor T bit is inherited (step 10). If the cache block is 
retrieved from memory, the corresponding T bit is cleared (step 
13).  

 

Fig. 5. mc2RT operation on the target processor core i for memory reads 

 

Fig. 6. mc2RT operation on the target processor core i for memory writes 
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The software debugger has access to the program binary, 
instruction set simulator, and trace messages streamed out from 
the target platform. The software debugger maintains software 
copies of data caches and trace hit counters. They are updated 
during the program replay using the same policies that are used 
on the target platform. The debugger replays the instructions 
for each processor core using instruction set simulator(s). For 
each memory read instruction (Fig. 7), the corresponding 
Pi.THCnt is decremented (the initial value in the software 
debugger is set to 1). If Pi.THCnt>0, the debugger retrieves the 
operand from the software copy of the data cache (either from 
the private or a remote) and moves to replay the next 
instruction. If Pi.THCnt=0, we have a trace miss event. The 
cache block portion of the trace message is extracted and used 
to update the corresponding cache block in the software data 
cache for processor Pi. Then, the next trace message is 
retrieved from the trace buffer and decoded. The software copy 
of the Pi.THCnt is loaded with a value extracted from the trace 
message. For each memory write operation, the software copy 
of the data cache is updated following the same steps as on the 
target platform (Fig. 7). 

mc2RT requires relatively minor hardware extensions to 
support data tracing. The majority of hardware overhead is due 
to the trace bits. If we assume processor cores with a 32 KB 
data cache and 32 B cache blocks, the overhead is 1,024 bits or 
128 B of additional storage in the cache. It should be noted that 
mc2RT on a trace miss emits the entire cache block, not just 
requested load data value. One can argue that in cases of poor 
spatial locality certain portions of the cache block will not be 
needed, yet their streaming out will consume trace port 
bandwidth. An alternative approach is to use multiple trace bits 
per cache as described in [12]. However, that approach will 
prevent or make challenging to utilize cache coherence 
protocols in reducing the number of trace messages emitted.  

1. // For each memory read on processor core i, Pi  

1. Pi.THCnt--; 
2. if (Pi.THCnt > 0) { 
3.  Perform lookup in the SW data cache; 

4.  Retrieve data value from SW data cache; 

5. } 
6. else { // T miss event 
7.  Read cache block from the trace record; 

8.  Update SW cache; 

9.  Get next trace message (Pi.dCC, Pi, Pi.THCnt, Pi.CB); 

10. } 
 

11. // For each memory write on Pi 
12. Update SW cache; 

Fig. 7. mc2RT operations in the software debugger on processor core i 

A. Encoding of trace messages 

Trace messages streamed out through the trace port should 
be encoded in such a way to minimize the number of bits. Fig. 
8 shows formats of trace messages for the Nexus-like load 
value trace (NX) and for mc2RT. With NX, each load data 
value (LV) is streamed out through the trace port together with 
core index on which the read operation is carried out (Pi) and 
differentially encoded time stamp (dCC). The length of the Pi 
field is fixed and is a function of the number of cores (0 bits for 
N=1, 1 bit for N=2, 2 bits for N=4). In NX, the length of the 
LV field depends on the size of the operand read from memory 
(for IA32 ISA it ranges from 1 to 120 bytes) and is thus 

8sizeof(type) bits. The time field, dCC, carries information 

about the clock cycle in which the current trace-generating 
instruction has retired. Rather than recording the absolute clock 
cycle from the beginning of the program, it contains the 
number of clock cycles expired from the previous trace event 
on the core i, dCC = CC–PCC. Note: the first trace message 
contains the time from the beginning of the program. For 
simplicity, we assume all cores share a global clock. The 
number of bits needed to encode dCC varies among programs 
and during program execution. With NX and mc2RT we use at 
least 8 bits to encode dCC. The connect bit (C) determines 
whether more 8-bit chunks are needed to fully encode dCC 
value (C=1) or not (C=0).  

mc2RT trace messages consist of the following fields: dCC, 
Pi, THCnt, and CB. The dCC and Pi fields are encoded in the 
same way as in NX. The THCnt field contains the value of the 
THCnt counter. The number of bits needed to encode THCnt 
varies as a function of trace miss rate. We use at least 8 bits to 
encode this field. The connect bit (C) determines whether more 
8-bit chunks are needed to fully encode THCnt value (C=1) or 
not (C=0). The length of the CB field corresponds to the cache 
block size. For example, if the cache block size is 32 bytes, the 
size of the CB field is 256 bits. 

 

Fig. 8. Formats of trace messages 

IV. EXPERIMENTAL ENVIRONMENT 

The goal of the experimental evaluation is to determine the 
effectiveness of the proposed mc2RT as a function of the 
number of cores and cache configuration. As a measure of 
effectiveness, we use the average trace port bandwidth 
requirements expressed in bpi and bpc. Whereas the average 
TPB allows us to quantify the effectiveness of the proposed 
technique, it does not fully capture the peak rates that occur in 
individual benchmarks during their execution. Consequently, 
we also analyze the TPB as a function of time during 
benchmark execution. 

Fig. 9 shows the experimental flow used to create hardware 
traces and evaluate the trace port bandwidth. The timed traces 
are collected using the Multi2Sim [15] simulator executing 
IA32 ISA binaries. The simulator is extended with a custom 
TmTrace module that captures time-stamped memory read and 
write traces (tmlsTrace). The time stamp contains the global 
clock cycle in which the trace-generating instruction is 
committed. The tmlsTraces are read, filtered, and encoded to 
generate the Nexus-like trace, NX. The tmlsTraces are also 
read by the mc2RT simulator that generates filtered memory 
read data value traces. The output traces are then processed by 
encoding tools that determine trace port bandwidth and 
generate minimal hardware traces, namely mc2RT. As the 
workload we use Splash2 benchmarks run with N=1, 2, 4, and 
8 cores.  
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The Multi2Sim simulator supports building a cycle-
accurate model for a multicore processor including processor 
and memory hierarchy. We use a multicore with up to 8 single-
threaded x86 processor cores as shown in Fig. 10. Each core 
has its private level 1 instruction (L1I) and data (L1D) caches 
with hit latency of 4 clock cycles. To evaluate effectiveness of 
mc2RT as a function of the cache size, we consider two 
configurations of caches: CS16 with 16 KB L1D, and CS32 
with 32 KB L1D. The L1 data caches are 4-way set-associative 
with LRU replacement policy, and 32 byte cache blocks. The 
unified L2 cache memory is shared by all cores and has a hit 
latency of 12 clock cycles. The L2 cache size varies with the 

number of cores, N, and it is set to N64KB for the CS16 

configuration and N128KB for the CS32 configuration. The 
main memory latency is set to 100 clock cycles.  

 

Fig. 9. Experimental environment 

 

Fig. 10. Multicore model 

V. RESULTS 

The effectiveness of mc2RT directly depends on (a) 
benchmark characteristics – namely, the type, frequency, and 
distribution of memory read operations, (b) data cache miss 
rates and trace-bit miss rates, and (c) encoding parameters. The 
trace miss rate is a good indicator of mc2RT effectiveness – the 

lower it is, the fewer trace messages need to be streamed out 
through the trace port. The trace miss rate is very close to the 
cache read miss rate though not identical, because cache blocks 
can be brought to the cache by write misses too. In addition, 
with an increase in the number of processor cores, the portion 
of truly shared data is growing, and thanks to our mechanism 
to inherit tracing bits during cache coherent transactions, we 
will avoid tracing cache blocks that have been previously 
reported by other processors. Fig. 11 shows the total read L1 
data cache miss rate and the total trace miss rate for the entire 
benchmark suite as a function of the number of cores and the 
data cache configurations (CS16 and CS32). It also shows the 
minimum and the maximum miss rates. The total L1 data 
cache read miss rate is calculated as the total number of read 
misses divided by the total number of read requests when all 
benchmarks are considered together. The total trace miss rate is 
calculated as the total number of trace misses divided by the 
total number of data reads when all benchmarks are considered 
together. For the CS16 configuration, the read L1 data cache 
miss rate is below 1.7% regardless of the number of cores, with 
maximum rate below 4.7%. For the CS32 configuration, the 
read L1 data cache miss rate is below 0.7% with the maximum 
~2.7%. The trace miss rate decreases with an increase in the 
number of cores, from 1.9% when N=1 to 1.0% when N=8 for 
the CS16 configuration and from 0.8% when N=1 to 0.5% 
when N=8 for the CS32 configuration. The maximum trace 
miss rate reaches as high as 4.7% with the CS16 configuration 
and 2.7% for the CS32 configuration (fft benchmark). Overall, 
the results confirm our expectations that mc2RT can indeed 
significantly reduce the number of trace messages that needs to 
be streamed out through the trace port. 

 
Fig. 11 Data cache read miss rate & trace miss rate 

A. Trace port bandwidth in bpi  

Fig. 12 shows the total average trace port bandwidth with 
the min-max ranges in bpi for the timed Nexus-like data value 
traces (NX) and the timed mc2RT traces as a function of the 
number of cores and cache configurations. NX requires from 
12.3 bpi when N=1 (ranging from 8.8 bpi for fmm to 15.3 bpi 
for cholesky) to 13.2 bpi when N=8 (ranging from 9.3 bpi for 
fmm to 16 bpi for raytrace). mc2RT dramatically reduces the 
total trace port bandwidth requirements relative to NX in CS16 
configuration. It requires from 1.24 bpi when N=1 (ranging 
from 0.12 for water-sp to 4.03 for barnes) to 0.71 bpi when 
N=8 (from 0.12 for water-sp to 2.49 for fft). Compared to NX, 
mc2RT thus reduces the bandwidth 9.9 times for N=1 and 18.6 
times for N=8 (see Table 1). Expectedly, increasing the data 
caches leads to even lower trace port bandwidths. Thus, mc2RT 
with CS32 requires only 0.52 bpi regardless of the number of 
cores (ranging from 0.1 for water-sp to 1.45 bpi for fft). 
Compared to NX, mc2RT(CS32) reduces the trace port 
bandwidth 23.5 times when N=1 and 37.3 times when N=8.  
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Fig. 12 Trace port bandwidth in bpi 

 

Fig. 13 Trace port bandwidth of indivudal trace fields in bpi 

TABLE I. SPEEDUPS ACHIEVED BY GZIP AND MC2RT 

# Cores N=1 N=2 N=4 N=8  

Config NX.gz CS16 CS32 NX.gz CS16 CS32 NX.gz CS16 CS32 NX.gz CS16 CS32 

barnes 1.4 3.7 10.7 1.3 5.1 14.6 1.2 7.2 19.6 1.3 9.9 23.7 

cholesky 1.7 8.7 22.1 1.5 13.2 22.4 1.2 18.4 29.8 1.0 29.9 43.8 

fft 1.4 4.3 7.3 1.4 4.3 7.5 1.3 4.4 7.6 1.4 4.5 7.7 

fmm 1.9 16.2 23.9 1.8 18.0 25.1 1.6 19.1 26.0 1.6 19.9 27.4 

lu 1.6 23.8 24.1 1.5 24.2 26.2 1.4 43.5 49.2 1.8 46.8 73.5 

radiosity 1.6 22.2 62.2 1.5 40.0 88.9 1.3 43.2 101.0 1.4 59.7 124.5 

radix 2.0 9.4 19.7 1.8 9.6 20.0 1.5 9.8 20.3 1.4 10.0 20.6 

raytrace 1.5 7.7 24.7 1.5 9.8 33.4 1.3 11.1 38.2 1.4 12.9 45.4 

water-ns 1.4 12.9 28.4 1.4 13.1 28.6 1.3 17.3 185.1 1.3 74.7 200.2 

water-sp 1.4 91.5 114.2 1.4 95.5 119.0 1.3 99.8 128.4 1.4 103.1 138.7 

Total 1.5 9.9 23.5 1.5 12.5 27.5 1.3 14.9 32.5 1.4 18.6 37.3 

To underscore effectiveness of mc2RT, we compare its 
trace port bandwidth to the trace port bandwidth we can 
achieve by using a general-purpose compressor. The NX trace 
is used as an input to the software gzip utility with compression 
level 1. Table 1 shows the compression ratio achieved by the 
gzip utility (columns marked as NX.gz). The results show a 
limited total compression ratio of 1.5 for N=1 (ranging from 
1.4 to 2) and 1.4 for N=8 (ranging from 1 to 1.8). The results 
confirm that redundancy of input load values is fairly limited 
and that general-purpose compressors would not be effective in 
reducing load data value traces. In addition, implementing 
them in hardware would impose significant complexity 
because of buffering and computation modules.  

Fig. 13 shows the total trace port bandwidth in bpi broken 
down into individual fields of trace records: Pi, THCnt, dCC, 
and data values (LV/CB). Expectedly, the majority of trace port 
bandwidth is consumed by streaming out data values. In NX, 
the LV portion ranges from 83% for N=1 to 78% for N=8. The 
time field is responsible for ~16% of the bandwidth regardless 
of the number of processors. Thus, if we order trace records 
from different cores in the trace buffer and stream them out 

without a time field, the trace port bandwidth requirements will 
be lower. In mc2RT, the data field (CB in the trace message) 
accounts for the majority of the trace port bandwidth. 

B. Trace port bandwidth in bpc  

Fig. 14 shows the total trace port bandwidth with the min-
max ranges in bpc for the timed NX and mc2RT traces. The 
total trace port bandwidth for NX scales linearly with the 
number of cores, from 4.9 bpc for N=1 (from 2.8 to 7.5 bpc) to 
25.6 bpc for N=8 (from 9.4 to 43.5 bpc). mc2RT provides 
significant reductions in the trace port bandwidth. Thus, 
mc2RT(CS16) requires from 0.5 bpc for N=1 (from 0.08 to 
1.47 bpc) to 1.38 bpc for N=8 (from 0.32 to 3.3 bpc). 
mc2RT(CS32) requires from 0.23 bpc (from 0.07 to 0.58) for 
N=1 to 0.70 bpc (from 0.22 to 1.54) for N=8. 

 

Fig. 14 Trace port bandwidth in bpc 

C. Dynamic Trace Port Bandwidth Analysis  

Whereas the average trace port bandwidth allows us to 
quantify the effectiveness of mc2RT, it does not fully capture 
the peak rates that occur in individual benchmarks during their 
execution. Depending on frequency and distribution of 
memory reads and trace misses, the trace port bandwidth at a 
given moment in a program execution may exceed the average 
bandwidth discussed above.  

Fig. 15 and Fig. 16 show the trace port bandwidth during 
execution of two benchmarks, raytrace and water-ns, 
respectively. The number of cores is set to N=8. We analyze 
the bandwidth required for time-stamped NX and mc2RT traces 
with both configurations, CS16 and CS32. The benchmarks 
raytrace and water-ns are selected because they require the 
highest average total bandwidth for time-stamped load data 
value traces. The trace port bandwidth in bpc is logged every 1 
million clock cycles. 

Let us first analyze the bandwidth as a function of time for 
raytrace. The average trace port bandwidth is 42.7 bpc for 
NX(CS16) and 45.8 bpc for NX(CS32). However, the peak 
bandwidth reaches ~61 bpc, further underscoring the 
challenges in program tracing. mc2RT(CS16) requires the 
average bandwidth of 3.3 bpc with peak values of 6.6 bpc, an 
order of magnitude smaller bandwidth than for NX. 
mc2RT(CS32) requires the average bandwidth of 1.0 bpc with 
the peak value of 5.4 bpc. These results indicate that the 
mc2RT not only reduces the average trace port bandwidth, but 
also reduces the requirements for on-chip trace buffers. Similar 
observations stand for water-ns. The average trace port 
bandwidth is 43.5 bpi for NX(CS16) and 43.3 for NX(CS32) 
with the peak bandwidth of 56.4 bpc. mc2RT(CS16) requires 

0

1

2

3

4

5

mc²RT(CS16) mc²RT(CS32)

Trace port bandwidth (bpi)

N=1 N=2 N=4 N=8

0

4

8

12

16

NX

Trace port bandwidth (bpi)

N=1 N=2 N=4 N=8

0

4

8

12

N=1 N=2 N=4 N=8

NX

Trace port bandwith [bpi]

LV Pi dCC

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

N=1 N=2 N=4 N=8 N=1 N=2 N=4 N=8

mc²RT(CS16) mc²RT(CS32)

Trace port bandwidth [bpi]

CB THCnt Pi dCC

0

1

2

3

4

mc²RT(CS16) mc²RT(CS32)

Trace port bandwidth (bpc)

N=1 N=2 N=4 N=8

0

5

10

15

20

25

30

35

40

45

NX

Trace port bandwidth (bpc)

N=1 N=2 N=4 N=8



~0.6 bpc with the peak of 2.8 bpc. mc2RT(CS32) requires ~0.2 
bpc with the peak of 2.4 bpc. 

 

Fig. 15 Dynamic trace port bandwidth in bpc during execution of raytrace for 
N=8 

 

Fig. 16 Dynamic trace port bandwidth in bpc during execution of water-ns for 

N=8 

VI. CONCLUSIONS 

Growing complexity of hardware and software stacks, a 
recent shift toward multicores, and ever-tightening time-to-
market make software testing and debugging one of the most 
critical aspects of embedded system development. Improved 
on-chip debugging and tracing infrastructure, coupled with 
sophisticated software debuggers, promises to reduce time and 
effort in finding difficult and intermittent bugs, thus resulting 
in higher quality software and increased productivity.  

This paper introduces mc2RT, a technique for on-the-fly 
capturing and filtering load data value traces in multicore 
systems. mc2RT requires minimal extensions of data caches to 
include trace tracking bits, as well as software copies of data 
caches maintained by the software debugger. The trace 
tracking bits, updated by memory read and write operations, 
determine which memory read operations need to be streamed 
out to the software debugger. By exploiting cache coherence 
protocol states, mc2RT minimizes chances that a single cache 
block is reported multiple times.  

Our simulation-based experimental evaluation explores the 
effectiveness of mc2RT as a function of data cache sizes (16 
and 32 KB) and the number of processor cores (N=1, 2, 4, and 
8). As a measure of the effectiveness, we use the trace port 
bandwidth expressed in the number of bits streamed on the 
trace port per instruction executed and the number of bits per 
processor clock cycle. mc2RT compression ratio relative to the 

Nexus-like load data value traces ranges: from 9.9 (N=1) to 
18.6 (N=8) times for the configuration with 16 KB data caches; 
and from 23.5 (N=1) to 37.3 (N=8) times for the configuration 
with 32 KB data caches. 
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