
Exploiting Cache Coherence for Effective

On-the-Fly Data Tracing in Multicores

Mounika Ponugoti and Aleksandar Milenković
Department of Electrical and Computer Engineering

The University of Alabama Huntsville

Huntsville, AL, U.S.A

{mp0046, milenka}@uah.edu

Abstract—Software testing and debugging of modern

embedded computer systems become increasingly a challenging

task due to growing hardware and software complexity,

increased integration and miniaturization, and ever tightening

time-to-market. To find software bugs faster, developers often

rely on on-chip trace and debug resources. However, these

resources offer limited visibility of the system, increase the

system cost, and do not scale well with a growing number of

processor cores. This paper introduces a new hardware/software

mechanism for capturing and filtering load data value traces in

multicores that enables a complete reconstruction of a parallel

program execution. The proposed mechanism exploits data

caches and cache coherence protocol states to minimize the

number of trace events that are necessary to stream out of the

target platform to the software debugger. The mechanism relies

on a single trace bit per data cache block, thus minimizing the

cost of hardware implementation. Our experimental evaluation

explores the effectiveness of the proposed technique by

measuring the trace port bandwidth as a function of the cache

size and the number of processor cores. The results show that the

proposed mechanism significantly reduces the required trace

port bandwidth when compared to the Nexus-like load data value

tracing. Depending on data cache size, the improvements range

from 9.9 to 23.5 times for single cores and from 18.6 to 37.3 times

for octa cores.

Keywords—Debugging aids, Tracing, Real-time embedded

systems, Compression

I. INTRODUCTION

Increasing complexity and a shift to multicore architectures
in modern embedded system make software development and
testing critical aspects of system development. Faster and
cheaper processors in smaller form factors enabled new
applications that in turn increased users’ expectations and their
reliance on embedded systems. As a result, the complexity of
the software stack in embedded systems keeps growing. A
recent report from the International Technology Roadmap for
Semiconductors found that the software engineering and tool
costs account for 80% or more of the total development cost of
modern high-end embedded systems [1]. Alas, the increasing
software complexity has been accompanied by with tightening
time-to-market. Software complexity and time-to-market
pressures together lead to poorly tested software, lost revenue,
or even project failures if time-to-market goals are not met.

It is important to give software developers tools to quickly
locate and correct all software bugs with minimum effort.
When debugging, software developers often need perfect

visibility of the system state. However, achieving this visibility
is not feasible due to high system complexity, limited available
bandwidth for debugging data, and high operating frequencies.
Traditional debugging techniques rely on single stepping,
setting breakpoints, and examining the content of registers and
memory locations while the processor is halted. This approach
is effort- and time-consuming for software developers. In
addition, it perturbs the sequence of events on target platforms
and thus is not practical in real-time cyber-physical systems.
Finally, it does not scale well to multicores.

To address these challenges, modern embedded processors
increasingly rely on on-chip trace and debug infrastructure [2],
[3], [4], [5]. Fig. 1 shows a block diagram of a system-on-a-
chip (SoC) with N processor cores, a DSP, and a DMA core,
all connected through a system interconnect. Each component
includes its own tracing and debugging resources, called trace
modules (see Fig. 1, excluding blue blocks). They are
responsible for capturing and possibly filtering program
execution traces and sending them to on-chip trace buffers
through a debug interconnect. The program traces, temporarily
stored in on-chip trace buffers, are streamed out of the chip
through a dedicated trace port, typically to an external trace
probe that interfaces a software debugger on a host
workstation. These traces are then used by the software
debugger to enable faithful program replay off-line. The IEEE
Nexus 5001 standard [6] specifies four classes of debugging
operations, including simple run-control debugging (Class 1),
control-flow tracing (Class 2), data tracing (Class 3), and
emulating memory and I/O through a trace port (Class 4). Each
level progressively requires more on-chip resources and wider
trace ports, thus increasing the system cost. The existing trace
modules can capture full program execution traces for
relatively small program segments only, due to limited capacity
of on-chip trace buffers. Unfortunately, these traces are often
insufficient to locate software bugs. With the growing
complexity of the software running on embedded systems, the
distance between the source of a bug and its manifestation may
be in billions of instructions.

This paper focuses on data traces (Class 3 in Nexus 5001).
They are critical in reconstructing program execution in
multicores and uncovering bugs caused by data race
conditions. In order to faithfully reconstruct a program
execution in the software debugger, we need to capture data
values of memory and I/O reads on the target platform and
stream them out. In addition, we need to capture and report
exceptions in the program flow. However, data value traces

tend to be very large, in the order of 8-16 bits per instruction
executed per processor core [4]. Capturing data value traces in
multicores is even more challenging because trace messages
coming from different cores need to be ordered or time
stamped before they are streamed out through a shared trace
port. In addition, they need to include information about the
origin of the trace message (core identification). Whereas a
number of recent papers focuses on capturing, compressing,
and filtering control-flow traces [7], [8], [9], [10], [11]
relatively few studies look at on-the-fly data tracing [12].
Unfortunately, these studies exclusively focus on single-core
embedded platforms where problem of ordering or time-
stamping trace messages is not present. To the best of our
knowledge there have been no academic studies focusing on
hardware-supported data tracing in multicores.

Fig. 1. Multicore debugging and tracing infrastructure

In this paper, we first analyze requirements for on-the-fly
data tracing in multicores as a function of the number of cores
by running a set of parallel programs (Section II). Next, we
introduce mc2RT (multicore cache-coherent read trace), a
hardware/software mechanism for capturing and filtering load
data values in multicores. With mc2RT, each data cache block
is associated with its trace bit that keeps track of whether the
block has been traced out or not. mc2RT also relies on cache
coherence protocols to ensure that actively shared cache blocks
are traced out to the software debugger only once, the first time
they are fetched from memory by a processor core (Section
III). The mechanism relies on a sophisticated software
debugger that maintains software copies of data caches and
simulates their behavior during program replay. Our
experimental evaluation (Section IV) explores the effectiveness
of mc2RT as a function of the number of cores and data cache
configurations. The results (Section V) indicate that mc2RT
offers significant reduction in the required trace port bandwidth
relative to the existing Nexus-like load data value tracing. Its
effectiveness varies with the number of processor cores and the
size of data cache. mc2RT reduces the trace port bandwidth
from 9.9 times for N=1 to 18.6 times for N=8 when using 16
KB data caches, and from 23.5 times for N=1 to 37.3 times for
N=8 when using 32 KB private data caches.

The main contributions of this work are as follows:

• We characterize trace port bandwidth requirements in
multicores for Nexus-like time stamped and untimed
memory read data value traces as a function of the number
of cores. We consider both bits per instruction and bits per
clock cycle as measures of the required trace port
bandwidth.

• We develop a trace filtering technique called mc2RT for
multicore cache-coherent read trace to reduce the trace port
bandwidth requirements.

• We perform a detailed experimental evaluation of the trace
port bandwidth, while varying the number of cores and
cache sizes. In addition to analyzing the average trace port
bandwidth per benchmark, we also consider variations of
the trace port bandwidth during benchmarks’ execution.

II. DATA TRACING IN MULTICORES

To faithfully replay a parallel program, a software debugger
relies on the following artifacts: (a) an instruction set simulator
for the target platform; (b) the binary of the parallel program;
(c) the initial state of the target’s general- and special-purpose
registers; (d) exception traces; and (e) memory and input
device read data value traces. The last two, the exception traces
and the read data value traces, need to be captured on the target
platform during the program execution and streamed out
through the target’s trace port. In multicores, both traces need
to carry information about the inter- and intra-core ordering of
trace events that are reported. Whereas intra-core ordering of
trace events can be implemented using private trace buffers for
each core, the inter-core ordering requires time-stamping trace
events with a global time stamp. The time-stamped trace
messages coming from different processor cores can be
ordered in the global trace buffer and streamed out without
time-stamps (referred to as untimed traces) or they are
streamed unordered but with time stamps (referred to as timed
traces). In this paper we consider both alternatives.

To illustrate the tracing challenges in multicores, we
analyze the trace port bandwidth required by the read data
value traces when running a suite of parallel programs on a
multicore. The trace port bandwidth is reported in the average
number of bits per instruction executed (bpi) and the average
number of bits per processor clock cycle (bpc). The bandwidth
in bpi is calculated as the total read data value trace size in bits
divided by the number of instructions executed in a given
benchmark. The bandwidth in bpc is calculated as the total read
data value trace size in bits divided by the benchmark
execution time measured in clock cycles. The trace port
bandwidth depends on the number of instructions executed, the
frequency of instructions that read data from memory, and data
types. The bandwidth in bpc also depends on the multicore
model (pipeline, out-of-order execution, caches, and other
parameters), which can be characterized by the number of
instructions committed in a clock cycle.

Fig. 2 shows SPLASH-2 benchmarks’ characteristics of
interest for data tracing [13][14]. The benchmarks are compiled
for the Intel IA32 ISA and run on a cycle-accurate Multi2Sim
simulator that models processors with N=1, 2, 4, and 8 cores.
Fig. 2 graphs show (a) the number of instructions executed in

System Interconnect

Trace
PortMulticore

SoC

Trace & Debug Interconnect

On-chip
Trace Buffer

Trace Port
Interface

Inter-
connect

Trace
Module DSP

Core

Trace
Module

DMA
Core

Trace
Module

Debug & Trace
Control

Software Debugger

Binaries

Multicore Instruction Set Simulator

GUI

.

Core 0
mc2RT SW

Model

.Nexus
Trace

Software
Debugger(s) in

Host
Workstation

Trace
Probe

Host
Interface
Buffers
(~GB)
Target

Interface

Trace Decoder and Control Software Module

CPU
Core i

Trace
Module

mc2RT

CPU
Core 0

Trace
Module

mc2RT

CPU
Core N-1

Trace
Module

mc2RT

Core i
mc2RT SW

Model

Core N-1
mc2RT SW

Model

billions (IC), (b) the frequency of memory reads and (c) the
number of instructions committed in each clock cycle (IPC).
The number of instructions executed remains constant or
slightly increases with an increase in the number of cores, with
an exception of cholesky where the number of instructions
increases significantly. The frequency of instructions reading
data from memory increases slightly with an increase in the
number of cores and varies from 13% for fmm to 35% for
radix. The column Total shows the overall frequency for all
benchmarks and is calculated as the sum of all memory reads
divided by the sum of all instructions. The average IPC
depends on the type of benchmarks, the target multicore model,
and the number of cores. Thus, when N=1, the IPC ranges from
0.19 for cholesky to 0.66 for water-sp. The total IPC for the
entire benchmark suite is calculated as the sum of all
instructions executed by all benchmarks divided by the sum of
all execution times in clock cycles. It ranges from 0.4 for N=1
to 1.95 for N=8. The IPC as a function of the number of cores
indicates how well performance scales. Thus, radix scales
poorly because its 8-core speedup is S(8)=IPC(8)/IPC(1)=2.8,
but water-ns scales well because its 8-core speedup is
S(8)=6.4.

Fig. 2. Splash2 benchmark characterization

The Multi2Sim [15] simulator captures data values read
from memory for committed instructions only. For untimed
tracing, we assume that trace messages coming from individual
cores contain time stamps. These time stamps are used by the
global trace buffer control logic to order trace messages
coming from different cores. The ordered trace messages are
streamed out untimed, i.e., with no time stamp field. Each trace
message includes a (Pi, LV) pair, where Pi represents the core
index (equivalent to the thread index in our case) and LV
represents the data value read from memory. We assume the
software debugger can infer all other parameters (memory
address, size of data) from the binary and the context
maintained by the instruction set simulator(s). For time
stamped trace messages, each trace message includes a (dCC,

Pi, LV) triplet, where dCC represents the time in clock cycles
measured from the beginning of the program execution or from
the previous trace message at the given processor core.

Fig. 3. Trace port bandwidth for Nexus-like load data value trace

Fig. 3a shows the trace port bandwidth (TPB) in bpi broken
down into individual fields of trace messages. The TPB is
highly correlated with the frequency of memory reads and the
size of typical operands read from memory. For untimed traces
the TPB ranges from 7.6 bpi for fmm to 12.8 bpi for cholesky,
when N=1. It increases slightly with an increase in the number
of cores due to (a) an increased overhead in reporting Pi and
(b) an increase in the frequency of memory reads. When N=8,
the TPB ranges from 8.1 bpi for fmm to 13.4 bpi for raytrace.
The total trace port bandwidth for the entire benchmark suite is
calculated as the sum of all trace messages in all benchmarks
divided by the sum of all instructions executed in all
benchmarks. It ranges from 10.3 bpi for N=1 to 11.0 bpi for
N=8. Time-stamped trace messages include a differentially
encoded time field, dCC (Fig. 8a). Consequently, the TPB
increases relatively to untimed traces. The TPB ranges from
8.8 bpi for fmm to 15.4 bpi for cholesky when N=1, and from
9.3 bpi for fmm to 16 bpi for raytrace when N=8. The total
trace port bandwidth for the time-stamped traces ranges from
12.3 bpi for N=1 to 13.2 bpi when N=8.

To further illustrate tracing challenges in multicores, we
consider the trace port bandwidth in bpc (Fig. 3b). The
required TPB for untimed read data value traces ranges from
2.3 for fft to 6.5 bpc for water-sp when N=1, and from 7.3 for
radix to 37.7 bpc for water-ns when N=8. Benchmarks with a
high frequency of memory reads that scale well with the
number of cores (e.g., raytrace) place a lot of pressure on the
trace port. The total trace port bandwidth for the entire
benchmark suite ranges from 4.1 for N=1 to 21.5 bpc for N=8.
In case of time-stamped read data value traces, the total TPB
increases even further to 4.9 bpc when N=1 and to 25.6 bpc
when N=8. For several benchmarks, such as raytrace and
water-ns, the required TPB exceeds 42 bpc. It should be noted
that the results in Fig. 3a and Fig. 3b indicate the average trace

0

1

2

3

4

5

barnes cholesky fft fmm lu radiosity radix raytrace water-ns water-sp

(a) Instruction Count (IC) [10 9]

N=1 N=2 N=4 N=8

0

1

2

3

4

barnes cholesky fft fmm lu radiosity radix raytrace water-ns water-sp Total

(c) Instruction per Cycle (IPC)

N=1 N=2 N=4 N=8

0

10

20

30

40

barnes cholesky fft fmm lu radiosity radix raytrace water-ns water-sp Total

(b) Frequency of Instructions Reading Data from Memory [%]

N=1 N=2 N=4 N=8

0

4

8

12

16

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

barnes cholesky fft fmm lu radiosity radix raytrace water-ns water-sp Total

(a) Trace Port Bandwidth [bpi, bits per instruction]LV Pi dCC

0

10

20

30

40

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

barnes cholesky fft fmm lu radiosity radix raytrace water-ns water-sp Total

(b) Trace Port Bandwidth [bpc, bits per clock cycle]LV Pi dCC

port bandwidth for each benchmark. However, even higher
peak rates at the trace port may occur during a benchmark
execution. All these observations underscore a need for
reducing the volume of trace data that needs to be streamed out
of the chip.

III. MC2RT: MULTICORE CACHE-COHERENT READ TRACE

mc2RT is a hardware-based mechanism that filters the
memory read data value traces by utilizing cache coherence
protocols. Fig. 1 shows a block diagram of system debugging
with dashed-line boxes representing additional mc2RT
hardware and software modules. With mc2RT, each L1 data
cache block in each processor core on the target platform is
augmented with a trace tracking bit (Fig. 4). The trace bit keeps
track of whether the associated cache block has been already
traced out (T=1) or not (T=0). A cache block fetched from
memory for the first time by a processor having a read miss
will be traced out through the trace port. We refer to this event
as a trace miss. Once a cache block is traced out, its
corresponding trace bit is set (T=1). Previously traced cache
blocks do not have to be traced out again as they can be
inferred by the software debugger. We refer to cache read hits
with the trace bit set as trace hits. This way, we can exploit the
temporal and spatial locality of data accesses and cache
coherence protocols to significantly reduce the number of trace
messages. Each processor core also keeps a local trace-hit
counter, THCnt, which counts the number of consecutive trace
hits. In addition, a register keeps the time-stamp from the most
recent trace event which is used to determine differentially
encoded time-stamp for the next trace event.

Fig. 4. mc2RT hardware structures for processor core i

Fig. 5 describes a sequence of events on a memory read by
core i. The data cache lookup results in a cache hit or miss. In
case of a cache hit and trace hit, the corresponding load data
value does not need to be reported and the local THCnt counter
is incremented (step 7). In case of a trace miss, a new trace
message is emitted that includes a differentially encoded time-
stamp (dCC=CC–PCC), processor core identifier (Pi), the
current value of the trace counter (THCnt), and the content of
the entire cache block (step 4). The trace hit counter is then
cleared and the corresponding trace bit is set (step 5). In case of
a cache miss, a coherent read transaction is issued (step 6).
Without loss of generality we assume that the MOESI cache

coherence protocol is used. The requested cache block is
supplied to Pi either from another processor cache (Px) or from
memory. If it is retrieved from another processor cache (Px),
we assume that the trace bit is inherited by the processor Pi and
a new state is Shared (step 11). If the block is retrieved from
main memory, the corresponding T bit is cleared and a new
cache block state is set to Exclusive (steps 12 and 13).

Fig. 6 describes a sequence of events on a memory write by
core i. The data cache is looked up for the requested block. In
case of a write hit in the Exclusive state (step 3), the state is
upgraded to Modified (step 5). If the cache block is in the
Shared or Owned state, a coherent invalidate transaction is
initiated (step 4) to upgrade the cache block state to Modified.
In case of a write miss, a Coherent Read and Invalidate
transaction is initiated (step 6). The steps 7-12 describe
important actions during this transaction. If the requested block
is supplied by another processor cache, e.g. Px, the requesting
processor T bit is inherited (step 10). If the cache block is
retrieved from memory, the corresponding T bit is cleared (step
13).

Fig. 5. mc2RT operation on the target processor core i for memory reads

Fig. 6. mc2RT operation on the target processor core i for memory writes

Set/Reset
T bit

Trace M
essage B

u
ffer

Data Cache

DC Hit

Data
Address

T Hit

Tag

 ...

T bit

0

1

 q-1

index

Pi.THCnt

way 0

way k-1

Cache
Block (CB)

Pi.PCC

-

Pi.dCC

Pi.CB

Pi.CC

Pi: Cache Lookup

Pi: CPU READ

HIT

Pi.CBj.T == 1?

Y

Y

Emit Trace [Pi.dCC, Pi,
 Pi.THCnt, Pi.CBj]

Pi.CBj.T = 1
Pi.THCnt = 0

N

N

END

Pi: Coherent
Read Trans.

Pi.THCnt++

Snoop Lookup

Pi: Coherent Read
Transaction

Px: Snoop
Hit?

Y

Update State in Px
Supply Cache Block to Pi

Pi.CBj.T = Px.CBj.T
Pi.CBj.State = S

N

Read block
from memory

Pi.CBj.State = E
Pi.CBj.T = 0

Pi: CPU READ

1

2

3

4

5

7

8

9

10

11

12

13

6

Pi: Cache Lookup

Pi: CPU WRITE

HIT

Pi.CBj.State
== E or M?

Y

Y

N

N

END

Pi: Coherent Read &
Invalidate Trans.

Snoop Lookup

Pi: Coherent Read &
Invalidate Trans.

Px: Snoop
Hit?

Y

Px Supplies CBj to Pi
Pi.CBj.T = Px.CBj.T
Pi.CBj.State = M

Px.CBj.T = 0
Px.CBj.State = I

N

Read block
from memory

Pi.CBj.State = M
Pi.CBj.T = 0

Pi: CPU WRITE

Coherent Cache
Invalidate Pi

Pi.CBj.State = M

1

2

3

4

5

7

8

9

10

12

13

6

Px Supplies
Block?

Y

11

N

The software debugger has access to the program binary,
instruction set simulator, and trace messages streamed out from
the target platform. The software debugger maintains software
copies of data caches and trace hit counters. They are updated
during the program replay using the same policies that are used
on the target platform. The debugger replays the instructions
for each processor core using instruction set simulator(s). For
each memory read instruction (Fig. 7), the corresponding
Pi.THCnt is decremented (the initial value in the software
debugger is set to 1). If Pi.THCnt>0, the debugger retrieves the
operand from the software copy of the data cache (either from
the private or a remote) and moves to replay the next
instruction. If Pi.THCnt=0, we have a trace miss event. The
cache block portion of the trace message is extracted and used
to update the corresponding cache block in the software data
cache for processor Pi. Then, the next trace message is
retrieved from the trace buffer and decoded. The software copy
of the Pi.THCnt is loaded with a value extracted from the trace
message. For each memory write operation, the software copy
of the data cache is updated following the same steps as on the
target platform (Fig. 7).

mc2RT requires relatively minor hardware extensions to
support data tracing. The majority of hardware overhead is due
to the trace bits. If we assume processor cores with a 32 KB
data cache and 32 B cache blocks, the overhead is 1,024 bits or
128 B of additional storage in the cache. It should be noted that
mc2RT on a trace miss emits the entire cache block, not just
requested load data value. One can argue that in cases of poor
spatial locality certain portions of the cache block will not be
needed, yet their streaming out will consume trace port
bandwidth. An alternative approach is to use multiple trace bits
per cache as described in [12]. However, that approach will
prevent or make challenging to utilize cache coherence
protocols in reducing the number of trace messages emitted.

1. // For each memory read on processor core i, Pi

1. Pi.THCnt--;
2. if (Pi.THCnt > 0) {
3. Perform lookup in the SW data cache;

4. Retrieve data value from SW data cache;

5. }
6. else { // T miss event
7. Read cache block from the trace record;

8. Update SW cache;

9. Get next trace message (Pi.dCC, Pi, Pi.THCnt, Pi.CB);

10. }

11. // For each memory write on Pi
12. Update SW cache;

Fig. 7. mc2RT operations in the software debugger on processor core i

A. Encoding of trace messages

Trace messages streamed out through the trace port should
be encoded in such a way to minimize the number of bits. Fig.
8 shows formats of trace messages for the Nexus-like load
value trace (NX) and for mc2RT. With NX, each load data
value (LV) is streamed out through the trace port together with
core index on which the read operation is carried out (Pi) and
differentially encoded time stamp (dCC). The length of the Pi
field is fixed and is a function of the number of cores (0 bits for
N=1, 1 bit for N=2, 2 bits for N=4). In NX, the length of the
LV field depends on the size of the operand read from memory
(for IA32 ISA it ranges from 1 to 120 bytes) and is thus

8sizeof(type) bits. The time field, dCC, carries information

about the clock cycle in which the current trace-generating
instruction has retired. Rather than recording the absolute clock
cycle from the beginning of the program, it contains the
number of clock cycles expired from the previous trace event
on the core i, dCC = CC–PCC. Note: the first trace message
contains the time from the beginning of the program. For
simplicity, we assume all cores share a global clock. The
number of bits needed to encode dCC varies among programs
and during program execution. With NX and mc2RT we use at
least 8 bits to encode dCC. The connect bit (C) determines
whether more 8-bit chunks are needed to fully encode dCC
value (C=1) or not (C=0).

mc2RT trace messages consist of the following fields: dCC,
Pi, THCnt, and CB. The dCC and Pi fields are encoded in the
same way as in NX. The THCnt field contains the value of the
THCnt counter. The number of bits needed to encode THCnt
varies as a function of trace miss rate. We use at least 8 bits to
encode this field. The connect bit (C) determines whether more
8-bit chunks are needed to fully encode THCnt value (C=1) or
not (C=0). The length of the CB field corresponds to the cache
block size. For example, if the cache block size is 32 bytes, the
size of the CB field is 256 bits.

Fig. 8. Formats of trace messages

IV. EXPERIMENTAL ENVIRONMENT

The goal of the experimental evaluation is to determine the
effectiveness of the proposed mc2RT as a function of the
number of cores and cache configuration. As a measure of
effectiveness, we use the average trace port bandwidth
requirements expressed in bpi and bpc. Whereas the average
TPB allows us to quantify the effectiveness of the proposed
technique, it does not fully capture the peak rates that occur in
individual benchmarks during their execution. Consequently,
we also analyze the TPB as a function of time during
benchmark execution.

Fig. 9 shows the experimental flow used to create hardware
traces and evaluate the trace port bandwidth. The timed traces
are collected using the Multi2Sim [15] simulator executing
IA32 ISA binaries. The simulator is extended with a custom
TmTrace module that captures time-stamped memory read and
write traces (tmlsTrace). The time stamp contains the global
clock cycle in which the trace-generating instruction is
committed. The tmlsTraces are read, filtered, and encoded to
generate the Nexus-like trace, NX. The tmlsTraces are also
read by the mc2RT simulator that generates filtered memory
read data value traces. The output traces are then processed by
encoding tools that determine trace port bandwidth and
generate minimal hardware traces, namely mc2RT. As the
workload we use Splash2 benchmarks run with N=1, 2, 4, and
8 cores.

dCC Clock Cycle (diff. enc.)
Pi Processor Core ID - élog2Nù bits
LV Load Value – size of operand
CB Cache Block – size of cache block
THCnt Trace Hit Counter (diff. enc.)

LVPidCC

dCC[0:7]
8 b

dCC[8:15]
8 b

C
1 b

C
1 b

...

THCnt[0:7]
8 b

THCnt[8:15]
 8 b

...
C

1 b
C

1 b

dCC THCnt CBPi

dCC[0:7]
8 b

dCC[8:15]
8 b

C
1 b

C
1 b

...

The Multi2Sim simulator supports building a cycle-
accurate model for a multicore processor including processor
and memory hierarchy. We use a multicore with up to 8 single-
threaded x86 processor cores as shown in Fig. 10. Each core
has its private level 1 instruction (L1I) and data (L1D) caches
with hit latency of 4 clock cycles. To evaluate effectiveness of
mc2RT as a function of the cache size, we consider two
configurations of caches: CS16 with 16 KB L1D, and CS32
with 32 KB L1D. The L1 data caches are 4-way set-associative
with LRU replacement policy, and 32 byte cache blocks. The
unified L2 cache memory is shared by all cores and has a hit
latency of 12 clock cycles. The L2 cache size varies with the

number of cores, N, and it is set to N64KB for the CS16

configuration and N128KB for the CS32 configuration. The
main memory latency is set to 100 clock cycles.

Fig. 9. Experimental environment

Fig. 10. Multicore model

V. RESULTS

The effectiveness of mc2RT directly depends on (a)
benchmark characteristics – namely, the type, frequency, and
distribution of memory read operations, (b) data cache miss
rates and trace-bit miss rates, and (c) encoding parameters. The
trace miss rate is a good indicator of mc2RT effectiveness – the

lower it is, the fewer trace messages need to be streamed out
through the trace port. The trace miss rate is very close to the
cache read miss rate though not identical, because cache blocks
can be brought to the cache by write misses too. In addition,
with an increase in the number of processor cores, the portion
of truly shared data is growing, and thanks to our mechanism
to inherit tracing bits during cache coherent transactions, we
will avoid tracing cache blocks that have been previously
reported by other processors. Fig. 11 shows the total read L1
data cache miss rate and the total trace miss rate for the entire
benchmark suite as a function of the number of cores and the
data cache configurations (CS16 and CS32). It also shows the
minimum and the maximum miss rates. The total L1 data
cache read miss rate is calculated as the total number of read
misses divided by the total number of read requests when all
benchmarks are considered together. The total trace miss rate is
calculated as the total number of trace misses divided by the
total number of data reads when all benchmarks are considered
together. For the CS16 configuration, the read L1 data cache
miss rate is below 1.7% regardless of the number of cores, with
maximum rate below 4.7%. For the CS32 configuration, the
read L1 data cache miss rate is below 0.7% with the maximum
~2.7%. The trace miss rate decreases with an increase in the
number of cores, from 1.9% when N=1 to 1.0% when N=8 for
the CS16 configuration and from 0.8% when N=1 to 0.5%
when N=8 for the CS32 configuration. The maximum trace
miss rate reaches as high as 4.7% with the CS16 configuration
and 2.7% for the CS32 configuration (fft benchmark). Overall,
the results confirm our expectations that mc2RT can indeed
significantly reduce the number of trace messages that needs to
be streamed out through the trace port.

Fig. 11 Data cache read miss rate & trace miss rate

A. Trace port bandwidth in bpi

Fig. 12 shows the total average trace port bandwidth with
the min-max ranges in bpi for the timed Nexus-like data value
traces (NX) and the timed mc2RT traces as a function of the
number of cores and cache configurations. NX requires from
12.3 bpi when N=1 (ranging from 8.8 bpi for fmm to 15.3 bpi
for cholesky) to 13.2 bpi when N=8 (ranging from 9.3 bpi for
fmm to 16 bpi for raytrace). mc2RT dramatically reduces the
total trace port bandwidth requirements relative to NX in CS16
configuration. It requires from 1.24 bpi when N=1 (ranging
from 0.12 for water-sp to 4.03 for barnes) to 0.71 bpi when
N=8 (from 0.12 for water-sp to 2.49 for fft). Compared to NX,
mc2RT thus reduces the bandwidth 9.9 times for N=1 and 18.6
times for N=8 (see Table 1). Expectedly, increasing the data
caches leads to even lower trace port bandwidths. Thus, mc2RT
with CS32 requires only 0.52 bpi regardless of the number of
cores (ranging from 0.1 for water-sp to 1.45 bpi for fft).
Compared to NX, mc2RT(CS32) reduces the trace port
bandwidth 23.5 times when N=1 and 37.3 times when N=8.

TmTrace: Software Timed Trace Generator

32 bit
Target

Application

Application
Input

Number
Of

Threads

Application
Output

Multi2Sim
Configuration

Files

TmTrace
Flags

Performance
Statistics

tmls
Trace

mc2RT
Configuration

Raw
mc2RT
Trace

Hardware
traces

NX
Trace

mc2RT
Trace

SW2HW
Trace Conversion

Multi2Sim TmTrace

mc2RT
Simulator

Trace
Filtering

Fixed
Encoding

Fixed
Encoding

L1I L1D

 ...

L2 Cache

Main Memory

Network L1-L2

Network L2-MM

CS16:
L1D/L1I cache size: 16 KB
L2 cache size: N*64 KB

CS32:
L1D/L1I cache size: 32 KB
L2 cache size: N*128 KB

L1D/L1I hit time: 4 cc
L1D/L1I associativity: 4-way
L2 hit time: 12 cc
L2 associativity: 16-way
Cache block size: 32 B
First-access granularity: 4 B
Memory latency: 100 cc

Core 0

L1I L1D

Core 1

L1I L1D

Core N-1

0

1

2

3

4

5

N=1 N=2 N=4 N=8

Total Trace Miss Rate [%]
CS16 CS32

0

1

2

3

4

5

N=1 N=2 N=4 N=8

Total Cache Read Miss Rate [%]
CS16 CS32

Fig. 12 Trace port bandwidth in bpi

Fig. 13 Trace port bandwidth of indivudal trace fields in bpi

TABLE I. SPEEDUPS ACHIEVED BY GZIP AND MC2RT

Cores N=1 N=2 N=4 N=8

Config NX.gz CS16 CS32 NX.gz CS16 CS32 NX.gz CS16 CS32 NX.gz CS16 CS32

barnes 1.4 3.7 10.7 1.3 5.1 14.6 1.2 7.2 19.6 1.3 9.9 23.7

cholesky 1.7 8.7 22.1 1.5 13.2 22.4 1.2 18.4 29.8 1.0 29.9 43.8

fft 1.4 4.3 7.3 1.4 4.3 7.5 1.3 4.4 7.6 1.4 4.5 7.7

fmm 1.9 16.2 23.9 1.8 18.0 25.1 1.6 19.1 26.0 1.6 19.9 27.4

lu 1.6 23.8 24.1 1.5 24.2 26.2 1.4 43.5 49.2 1.8 46.8 73.5

radiosity 1.6 22.2 62.2 1.5 40.0 88.9 1.3 43.2 101.0 1.4 59.7 124.5

radix 2.0 9.4 19.7 1.8 9.6 20.0 1.5 9.8 20.3 1.4 10.0 20.6

raytrace 1.5 7.7 24.7 1.5 9.8 33.4 1.3 11.1 38.2 1.4 12.9 45.4

water-ns 1.4 12.9 28.4 1.4 13.1 28.6 1.3 17.3 185.1 1.3 74.7 200.2

water-sp 1.4 91.5 114.2 1.4 95.5 119.0 1.3 99.8 128.4 1.4 103.1 138.7

Total 1.5 9.9 23.5 1.5 12.5 27.5 1.3 14.9 32.5 1.4 18.6 37.3

To underscore effectiveness of mc2RT, we compare its
trace port bandwidth to the trace port bandwidth we can
achieve by using a general-purpose compressor. The NX trace
is used as an input to the software gzip utility with compression
level 1. Table 1 shows the compression ratio achieved by the
gzip utility (columns marked as NX.gz). The results show a
limited total compression ratio of 1.5 for N=1 (ranging from
1.4 to 2) and 1.4 for N=8 (ranging from 1 to 1.8). The results
confirm that redundancy of input load values is fairly limited
and that general-purpose compressors would not be effective in
reducing load data value traces. In addition, implementing
them in hardware would impose significant complexity
because of buffering and computation modules.

Fig. 13 shows the total trace port bandwidth in bpi broken
down into individual fields of trace records: Pi, THCnt, dCC,
and data values (LV/CB). Expectedly, the majority of trace port
bandwidth is consumed by streaming out data values. In NX,
the LV portion ranges from 83% for N=1 to 78% for N=8. The
time field is responsible for ~16% of the bandwidth regardless
of the number of processors. Thus, if we order trace records
from different cores in the trace buffer and stream them out

without a time field, the trace port bandwidth requirements will
be lower. In mc2RT, the data field (CB in the trace message)
accounts for the majority of the trace port bandwidth.

B. Trace port bandwidth in bpc

Fig. 14 shows the total trace port bandwidth with the min-
max ranges in bpc for the timed NX and mc2RT traces. The
total trace port bandwidth for NX scales linearly with the
number of cores, from 4.9 bpc for N=1 (from 2.8 to 7.5 bpc) to
25.6 bpc for N=8 (from 9.4 to 43.5 bpc). mc2RT provides
significant reductions in the trace port bandwidth. Thus,
mc2RT(CS16) requires from 0.5 bpc for N=1 (from 0.08 to
1.47 bpc) to 1.38 bpc for N=8 (from 0.32 to 3.3 bpc).
mc2RT(CS32) requires from 0.23 bpc (from 0.07 to 0.58) for
N=1 to 0.70 bpc (from 0.22 to 1.54) for N=8.

Fig. 14 Trace port bandwidth in bpc

C. Dynamic Trace Port Bandwidth Analysis

Whereas the average trace port bandwidth allows us to
quantify the effectiveness of mc2RT, it does not fully capture
the peak rates that occur in individual benchmarks during their
execution. Depending on frequency and distribution of
memory reads and trace misses, the trace port bandwidth at a
given moment in a program execution may exceed the average
bandwidth discussed above.

Fig. 15 and Fig. 16 show the trace port bandwidth during
execution of two benchmarks, raytrace and water-ns,
respectively. The number of cores is set to N=8. We analyze
the bandwidth required for time-stamped NX and mc2RT traces
with both configurations, CS16 and CS32. The benchmarks
raytrace and water-ns are selected because they require the
highest average total bandwidth for time-stamped load data
value traces. The trace port bandwidth in bpc is logged every 1
million clock cycles.

Let us first analyze the bandwidth as a function of time for
raytrace. The average trace port bandwidth is 42.7 bpc for
NX(CS16) and 45.8 bpc for NX(CS32). However, the peak
bandwidth reaches ~61 bpc, further underscoring the
challenges in program tracing. mc2RT(CS16) requires the
average bandwidth of 3.3 bpc with peak values of 6.6 bpc, an
order of magnitude smaller bandwidth than for NX.
mc2RT(CS32) requires the average bandwidth of 1.0 bpc with
the peak value of 5.4 bpc. These results indicate that the
mc2RT not only reduces the average trace port bandwidth, but
also reduces the requirements for on-chip trace buffers. Similar
observations stand for water-ns. The average trace port
bandwidth is 43.5 bpi for NX(CS16) and 43.3 for NX(CS32)
with the peak bandwidth of 56.4 bpc. mc2RT(CS16) requires

0

1

2

3

4

5

mc²RT(CS16) mc²RT(CS32)

Trace port bandwidth (bpi)

N=1 N=2 N=4 N=8

0

4

8

12

16

NX

Trace port bandwidth (bpi)

N=1 N=2 N=4 N=8

0

4

8

12

N=1 N=2 N=4 N=8

NX

Trace port bandwith [bpi]

LV Pi dCC

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

N=1 N=2 N=4 N=8 N=1 N=2 N=4 N=8

mc²RT(CS16) mc²RT(CS32)

Trace port bandwidth [bpi]

CB THCnt Pi dCC

0

1

2

3

4

mc²RT(CS16) mc²RT(CS32)

Trace port bandwidth (bpc)

N=1 N=2 N=4 N=8

0

5

10

15

20

25

30

35

40

45

NX

Trace port bandwidth (bpc)

N=1 N=2 N=4 N=8

~0.6 bpc with the peak of 2.8 bpc. mc2RT(CS32) requires ~0.2
bpc with the peak of 2.4 bpc.

Fig. 15 Dynamic trace port bandwidth in bpc during execution of raytrace for
N=8

Fig. 16 Dynamic trace port bandwidth in bpc during execution of water-ns for

N=8

VI. CONCLUSIONS

Growing complexity of hardware and software stacks, a
recent shift toward multicores, and ever-tightening time-to-
market make software testing and debugging one of the most
critical aspects of embedded system development. Improved
on-chip debugging and tracing infrastructure, coupled with
sophisticated software debuggers, promises to reduce time and
effort in finding difficult and intermittent bugs, thus resulting
in higher quality software and increased productivity.

This paper introduces mc2RT, a technique for on-the-fly
capturing and filtering load data value traces in multicore
systems. mc2RT requires minimal extensions of data caches to
include trace tracking bits, as well as software copies of data
caches maintained by the software debugger. The trace
tracking bits, updated by memory read and write operations,
determine which memory read operations need to be streamed
out to the software debugger. By exploiting cache coherence
protocol states, mc2RT minimizes chances that a single cache
block is reported multiple times.

Our simulation-based experimental evaluation explores the
effectiveness of mc2RT as a function of data cache sizes (16
and 32 KB) and the number of processor cores (N=1, 2, 4, and
8). As a measure of the effectiveness, we use the trace port
bandwidth expressed in the number of bits streamed on the
trace port per instruction executed and the number of bits per
processor clock cycle. mc2RT compression ratio relative to the

Nexus-like load data value traces ranges: from 9.9 (N=1) to
18.6 (N=8) times for the configuration with 16 KB data caches;
and from 23.5 (N=1) to 37.3 (N=8) times for the configuration
with 32 KB data caches.

ACKNOWLEDGMENT

This work was supported in part by US National Science
Foundation (NSF) grant CNS-1217470. Any opinions,
findings, and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily
reflect the views of the National Science Foundation.

REFERENCES

[1] “International Technology Roadmap for Semiconductors 2007

Edition.” [Online]. Available: https://goo.gl/TdZY52. [Accessed: 08-
Apr-2016].

[2] “MCDS - Infineon Multi-Core Debug Solution.” [Online]. Available:

https://www.ip-extreme.com/IP/mcds.shtml. [Accessed: 01-Apr-
2016].

[3] MIPS, “MIPS PDtrace Specification,” 2009. [Online]. Available:

http://goo.gl/UwIYGv.
[4] W. Orme, “Debug and Trace for Multicore SoCs,” 2008. [Online].

Available: http://goo.gl/Wrc7Hk. [Accessed: 28-Mar-2016].

[5] N. Stollon and R. Collins, “Nexus Based Multi-Core Debug,” in
Proceedings of the Design Conference International Engineering

Consortium, Santa Clara, CA, USA, 2006, vol. 1, pp. 805–822.

[6] IEEE-ISTO, “The Nexus 5001 Forum Standard for a Global
Embedded Processor Debug Interface,” 2003. [Online]. Available:

http://goo.gl/RZPYXU. [Accessed: 28-Mar-2016].

[7] C.-F. Kao, S.-M. Huang, and I.-J. Huang, “A Hardware Approach to
Real-Time Program Trace Compression for Embedded Processors,”

IEEE Trans. Circuits Syst., vol. 54, no. 3, pp. 530–543, Mar. 2007.
[8] B. Mihajlović and Ž. Žilić, “Real-time Address Trace Compression

for Emulated and Real System-on-chip Processor Core Debugging,”

in Proceedings of the 21st edition of the great lakes symposium on
Great lakes symposium on VLSI, New York, NY, USA, 2011, pp.

331–336.

[9] A. Milenković, V. Uzelac, M. Milenković, and B. Burtscher, “Caches
and Predictors for Real-Time, Unobtrusive, and Cost-Effective

Program Tracing in Embedded Systems,” IEEE Trans. Comput., vol.

60, no. 7, pp. 992–1005, Jul. 2011.
[10] V. Uzelac, A. Milenković, M. Milenković, and M. Burtscher, “Using

Branch Predictors and Variable Encoding for On-the-Fly Program

Tracing,” IEEE Trans. Comput., vol. 63, no. 4, pp. 1008–1020, Apr.
2014.

[11] V. Uzelac and A. Milenkovic, “A Real-Time Program Trace

Compressor Utilizing Double Move-to-Front Method,” in
Proceedings of the Design Automation Conference, San Francisco,

CA, 2009, pp. 738–743.

[12] V. Uzelac and A. Milenkovic, “Hardware-Based Load Value Trace
Filtering for On-the-Fly Debugging,” Trans. Embed. Comput. Syst.,

vol. 12, no. 2s, pp. 1–18, May 2013.

[13] “Multi2Sim/m2s-bench-splash2,” GitHub. [Online]. Available:
https://goo.gl/5kbE8r. [Accessed: 01-Apr-2016].

[14] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The

SPLASH-2 Programs: Characterization and Methodological

Considerations,” in Proceedings of the 22nd Annual International

Symposium on Computer Architecture, Santa Margherita Ligure, Italy,

1995, pp. 24–36.
[15] R. Ubal, B. Jang, P. Mistry, D. Schaa, and D. Kaeli, “Multi2Sim: a

simulation framework for CPU-GPU computing,” in Proceedings of

the 21st International Conference on Parallel Architectures and
Compilation Techniques, Minneapolis, MN, USA, 2012, pp. 335–344.

0.00001

0.0001

0.001

0.01

0.1

1

10

100

0 100 200 300 400 500 600 700 800

Clock cycle [x106]

raytrace: Trace port bandwidth in bpc as a function of time

NX(CS16) NX(CS32) NX(CS16).gz1 NX(CS32).gz1 mc²RT(CS16) mc²RT(CS32)

0.00001

0.0001

0.001

0.01

0.1

1

10

100

0 20 40 60 80 100 120 140 160 180 200

Clock cycle [x106]

water-ns: Trace port bandwidth in bpc as a function of time

NX(CS16) NX(CS16).gz1 NX(CS32) NX(CS32).gz1 mc²RT(CS16) mc²RT(CS32)

