

Saving Time and Energy Using Partial Flash Memory Operations in
Low-Power Microcontrollers

Prawar Poudel and Aleksandar Milenković

The University of Alabama in Huntsville, Huntsville, AL USA.
E-mail: {pp0030, milenka}@uah.edu

Abstract
This paper introduces a technique that reduces time and
energy consumed by critical flash memory operations in
ultra-low-power microcontrollers. The proposed technique
utilizes partial or aborted flash memory erase and program
operations that proved to have no negative impacts on
accuracy and longevity of information stored in the flash
memory. Our experimental evaluation performed on a family
of microcontrollers shows that the proposed technique can
save 98% of the energy consumed for flash erase operations
and up to 75% for flash program operations.

Keywords
Flash memory, Low-power electronics, and Energy

measurements.

1. Introduction
Energy efficiency is a key design requirement for many

resource-constrained embedded systems commonly used in
wireless sensor networks, wearable or implanted electronics,
and IoTs. Increased energy efficiency enables the design of
systems that have a smaller form factor, longer operating
times, and reduced operating costs by eliminating the need for
costly battery changes. For example, battery changes in
implanted devices may require surgical procedures. Modern
ultra-low-power microcontrollers are typically used in these
systems to perform sensing, processing, communication, and
actuation tasks.

Ultra-low-power microcontrollers typically integrate a
processor core, flash memory, RAM memory, hardware
accelerators, and a range of input/output peripheral interfaces
(e.g., ADC, DAC, ports, timers, communication) on a single
chip. The embedded flash memory serves as a non-volatile
storage that contains system firmware and constants and
behaves as a read-only memory during normal operation.
However, to meet demands for frequent firmware updates or
to prevent loss of critical application data in case of a power
loss (e.g., in wearable health monitors), modern
microcontrollers often include flash memory controllers that
enable in-system flash erase and program operations. These
operations can be initiated from within the system, rather than
through external JTAG interfaces. Unfortunately, these
operations are power hungry as they rely on internal charge
pumps to generate high voltages needed to move charges
to/from floating gates within flash memories. Thus, finding a
way to minimize energy consumed by these operations is very
beneficial for systems that are frequently updated or use
internal flash memory for storing application critical data.

To address high energy demands of flash memory
operations in ultra-low-power microcontrollers, Salajegheh et
al. [1], [2] proposed an energy-saving technique. It utilizes

reduced operating voltages that are at the level where the
processor core will work, but standard flash operations may
not work reliably. To remedy possible loss of information,
they employ one of the following: (a) repeated in-place write
operations, (b) multiple place write operation, or (c) RS-
Berger coding of data. They report energy savings for in-
place write operations of up to 34%. Similarly, a study by
Tseng et al. [3] shows that up to 45% of energy consumed
could be saved using dynamic voltage scaling controlled
based on the flash operation being performed. Papirla et al.
[5] find that energy required by flash write operations heavily
depends on data patterns. Thus, they propose an encoding
scheme that minimizes the frequency of power hungry bit
patterns in codewords (‘10’ and ‘01’), reducing the total
energy of flash write operations for up to 34%. Nath proposes
a lazy amnesic compression based technique for storing data
in flash memories [6]. The required energy for flash write
operations is reduced by using a lossy compression; the
compression ratio is adjusted based on age of data, i.e.,
fidelity of “old” data is lower than the fidelity of new data.
Mathur et al. introduce Capsule [7], a log-structured object
storage system for flash memories that supports fine-grain
allocation of space for storage objects such as streams, files,
arrays, queues. Though these techniques demonstrate
significant potential in reducing the total energy consumed,
they introduce extra overhead in time, compute resources,
and/or memory space.

In this paper we propose an alternative technique for
reducing both time and energy consumed by in-system flash
operations at nominal voltage that does not require any
additional memory overhead. First, we motivate the proposed
technique by characterizing the behavior of an embedded
NOR flash memory when subjected to partial erase and
program operations. Here, the ongoing operations are
prematurely aborted before their completion and the state of
the erased/programmed segments is observed. We find that
“there is a plenty room at the bottom” and that flash memory
operations can be safely aborted prematurely without
sacrificing accuracy of information in the flash memory.

The experimental evaluation is performed on a family of
TI MSP430 microcontrollers. It involves comparing the time
and energy consumed by reference or nominal flash memory
operations and by the proposed partial flash operations that
maintain accuracy requirements, while varying data patterns.
The energy profiling is conducted using a setup for automated
measurement of energy consumed by embedded computing
systems [8]. The results of the experimental evaluation show
that more than 98% of energy can be saved for costly flash
erase operations, whereas up to 75% of energy can be saved
for flash program operations.

978-1-7281-4207-4/20/$31.00 ©2020 IEEE 183 21st Int'l Symposium on Quality Electronic Design

The main contributions of this paper are as follows:
• It characterizes the flash memory behavior when

subjected to partial erase and partial program operations
and determines the partial erase (TPE) and partial program
times (TPP) that offer error free flash operations;

• It evaluates the effectiveness of the partial erase and
program operations in saving time and energy as a
function of data written and aging induced changes in
flash memory characteristics.

The rest of the paper is organized as follows. Section 2
gives a brief background discussing principles of NOR flash
memory organization and operation. Section 3 discusses a
flash memory characterization and how it motivates this
work. Section 4 describes the experimental environment,
including the platform, experiments, and measuring setup.
Section 5 describes the results of the experimental evaluation
and Section 6 concludes the paper.

2. Background
Flash Cell. Flash memory is composed of an array of flash

memory cells. Each memory cell consists of a MOSFET
(Metal Oxide Semiconductor Field Effect) transistor with an
additional floating gate (FG). The floating gate is sandwiched
between the conductive channel formed in the substrate and
the control gate (CG) and is isolated from the transistor
terminals by oxide layers. Figure 1(a) shows a cross section
of a split-gate memory cells that is used as a building block
in flash memories of interest for this study. Here a portion of
the control gate lies directly on top of the substrate and the
remaining part lies on top of the floating gate. A flash
memory cell stores one bit of information in the form of
charges placed on the floating gate. The presence of negative
charges increases the transistor’s threshold voltage (VTHP),
which is equivalent to logic 0 (or programmed state), whereas
their absence is equivalent to logic 1 (erased state), as shown
in Figure 1(c).

Flash Organization and Operation. NOR flash
memories are typically used in microcontrollers due to their
low standby power, fast reads, high reliability, and random
access through full address and data buses [9]. However, they
have lower storage capacity, lower density, and longer erase
and program times than NAND flash memories that are

designed for high-capacity and low-cost storage solutions, but
do not provide random access. Figure 1(d) shows
organization of a NOR flash memory block organized in 64
addressable words, each 16-bit wide. A word line (WL)
connects control gates of all flash cells in a row, whereas bit
lines (BLs) connect all drain terminals in a column. The
source terminals of all the cells in a block are connected
together. Multiple flash blocks form a segment (4 in our case
shown in Figure 1(e)), and multiple segments create a flash
memory bank [9]. Thus, a segment in our example contains
256 words or 4096 bits.

NOR flash memories support three basic operations, read,
program, and erase. Read and program operations are
performed on a byte or a word level granularity, whereas flash
erase operation takes place on a complete flash memory
segment. To reprogram (write) new data into a word that
requires a programmed bit be changed into erased bit
(changing logic 0 to a logic 1), its corresponding segment
needs to be erased.

Program and erase operations involve transport of
electrons through the tunnel and blocking oxide layers as
shown in Figure 1(a). They require high voltages and use
channel hot electron injection for programming and Fowler-
Nordheim tunneling for erasing. To program a flash cell, a
high voltage is applied to its source terminal (VS ~ 10V, VCG
~ 2V, VD ~ 0.5V) inducing hot carrier injection that places
electrons on the floating gate (“Program” arrow). To erase a
flash cell, a large positive voltage is applied on the control
gate (VCG ~ 12V, VS = VD = 0V) to remove electrons from the
floating gate [9], [10].

A flash read operation involves bringing a read voltage on
the selected word line and a sense voltage on the bit lines. The
flash cells that are in the erased state will conduct the current
and the cells in the programmed state will not (Figure 1(c)).

Flash Memory Controller. A flash memory embedded in
an MCU typically contains code and constants and its default
operating mode is read only. To utilize in-system flash
program and erase operations, microcontrollers interact with
the flash memory through its controller. Figure 1(f) shows a
block diagram of a typical flash memory controller. In
addition to the flash memory banks, it includes a voltage
generator to generate voltages needed for program and erase

Figure 1. (a) Cross section of a split gate flash memory cell. (b) Floating gate transistor symbol. (c) I-V characteristic for a flash
memory cell. (d) A NOR flash memory block organization. (e) Flash memory organized in blocks, segments and banks. (f) Block
diagram of a flash memory controller.

P-substrate

Source (S) Drain (D)
“Program”

Floating Gate (FG)VS

VSUB

VCG

Control
Gate (CG)

“Erase”
VD

(a) Split-gate Flash memory cell cross section

IDS

(b) Floating-gate
Flash memory cell symbol (c) I-V Characteristics

VCGSVTHE VTHP

“1” “0”

erase program

VREF

D

S

CG

FG

VCGS
IDS

Flash
Bank

WL 0
BL 15 BL 14 BL 0. . .

WL 1

WL 63

.

.

.

Common
Source

(d) NOR Flash Memory Block

Block 0

Block 1

Block 2

Block 3

Segment 0

(e) Flash Blocks, Segments, Banks

Segment 127

. . .
Address/Data Latches

Control Registers

Flash Memory
Array

Timing
Generator

Voltage
Generator

Address Bus Data Bus

(f) Flash Memory Controller

operations, timers to control their duration of flash operations,
as well as address and data latches.

Programmers write into flash controller registers to
initiate flash program and erase operations. During these
operations the processor is halted because the flash memory
is locked. Alternatively, the processor may continue program
execution from the RAM memory, providing it does not
access the currently locked flash memory bank. A typical
program or erase cycle includes the time to generate required
voltages, the time to perform the operation, and the time to
remove required voltages. For the microcontroller used in this
study the nominal word programming time is TPROG=64-85 µs
and the nominal segment erase time is TERASE=23-35 ms [9].
The flash operations can be aborted by setting an emergency
exit bit (EMEX) in the control register by a program running
from the RAM memory or a different flash memory bank.

3. Flash Memory Characterization
To extract physical characteristics of the embedded flash

memory of interest, we design a set of experiments that utilize
the emergency exit feature.

Code 1 describes steps carried out to characterize partial
flash erase operations. A flash memory segment at the address
segaddr is first erased and then fully programmed so that all
bits are set to logic 0. Next, an erase operation is initiated, but
it is prematurely aborted after a period of time called partial
erase time or tPE. The flash memory segment is then
characterized as follows. It is repeatedly read N times and the
state of individual flash cells is recorded. Flash cells that read
as logic 0 N times are called stable programmed cells
(stable0s), cells that read as logic 1 N times are called stable
erased cells (stable1s), and cells that sometimes read as logic
0 and sometimes as logic 1 are called unstable cells (4,096 –
stable1s – stable0s). The experiment is repeated by varying
the partial erase time tPE from 0 to the nominal erase time
(TERASE) with resolution of a single clock cycle.

Code 1. Algorithm for partial erase characterization
Partial_Erase_Characterization (Segaddr, TERASE)
1. for tPE from 0 to TERASE:
2. Erase the entire segment (read as all 1s)
3. Program all words in the segment (read as all 0s)
4. Initiate the segment erase operation
5. Wait for tPE
6. Abort the erase operation
7. Call Characterize(segaddr, N, stable1s, stable0s)
8. end for
Characterize(Segaddr, N, stable1s, stable0s)
1. stable1s = 0
2. stable0s = 0
3. for each word in the segment:
4. Read the word N times
5. Characterize each bit as always1, always0
6. for each bit in the word:
7. if (always1): stable1s += 1
8. else (always0): stable0s+=1
9. end for
10. end for

A similar experiment is designed to characterize partial

program operations (write a word). However, to initiate a

partial flash program operation, the flash segment is first fully
erased. The program operation is aborted after a period of
time called partial program time or tPP. The experiment is
repeated by varying tPP from 0 to the nominal program time
(TPROG) with resolution of a single clock cycle.

Figure 2(a) and Figure 2(b) show the results of the partial
erase characterization and the partial program
characterization, respectively. The x-axes show the partial
erase and program times (tPE and tPP). The red lines represent
the number of stable erased cells (stable1s), the blue lines
represent the number of stable programmed cells (stable0s),
and the green lines represent the number of unstable cells.

Let us first analyze the results shown in Figure 2(a). For
small partial erase times (tPE ~ 0 μs) the erase operation is
aborted promptly and expectedly all 4,096 cells in the
segment are characterized as stable 0s. As we increase the
partial erase time, the number of stable 0s starts decreasing
and the number of stable 1s starts increasing. The plot shows
that majority of cells change their state in a very narrow time
window. Although the nominal erase time per specification
ranges between 23-32 ms, we find that almost all flash cells
are in the erased state after just 50 µs. Thus, the partial erase
time of tPE=50 µs appears to be sufficient to completely erase
the flash segment.

One may argue that though flash cells appear to be erased,
their threshold voltage may not quite correspond to the
nominal VTHE as shown in Figure 1(c), that is, they may be in
a weak erased state. Fortunately, the flash controller supports

Figure 2. State of the flash segment cells as a function of the
partial erase time (a) and the partial program time (b).

so-called marginal read operations that allows us to identify
whether erased cells are in the weak or strong erased or
programmed states. In spite of tPE being significantly shorter
than the nominal erase time, the marginal reads do not report
weakly erased states (in this case when tPE≥50 µs).

Similarly, Figure 2(b) shows that for small partial program
times (tPP ~ 0 μs) all segment bits remain in the erased state
(the red lines is at 4,096). As we increase the partial program
time, the number of erased cells starts decreasing and the
number of programmed cells starts increasing. For the partial
program time tPP≥27 µs all cells are in the programmed state,
though the nominal programming time ranges between 64 and
85 µs. To verify that transition of flash cells is complete
marginal reads are used to identify potentially weakly
programmed cells.

Based on these observations we propose to use partial
erase and partial program flash operations instead of
nominal erase and program flash operations, respectively.
Using this approach, we can reduce the execution time of
programs that require frequent in-system flash operations as
well as reduce the energy consumed by these tasks. For this
approach to be successful, we need to find partial erase times
and partial program times that can be applied across different
flash memory segments and different chips from the same
family of microcontroller, without loss of accuracy of
information stored.

4. Experimental Evaluation

4.1. Experimental Setup
 Our experiments are based on the Texas Instruments’

MSP430F5438 and MSP430F5529 family of ultra-low-
power microcontrollers. They integrate a 16-bit processor
core (20 bit with extended architecture), RAM memory, flash
memory, a direct memory access controller, highly
configurable clock subsystem, and a range of analog and
digital peripherals. The in-system programmable embedded
flash memory consists of multiple 64 KB banks and flash
operations can be initiated from within a flash bank or from a
RAM memory. Flash memory operations can be aborted by
setting an emergency exit bit if the program is run from the
RAM memory. Marginal read modes can help identify
weekly programmed or erased flash memory cells [11].

To start a flash erase operation, an ERASE control bit in
the control register is set. Any dummy write operation to an
address space of the segment to be erased triggers the erase
operation. The BUSY bit indicates that the flash memory is
currently in use and it is lowered when the operation is
finished. To start a program (write) operation, a control bit
WRT is set in a flash controller register. A byte, word, or
double word write at the desired address triggers a flash
program operation. The BUSY bit is asserted and remain
active until the flash program operation is finished.

4.2. Test Programs
To evaluate effectiveness of the proposed partial erase and

program operations we develop test programs that are used
for time and energy profiling as shown in Code 2 and Code 3.

Code 2 shows pseudo-code for the proposed segment
partial erase procedure. The nominal segment erase includes

steps 1, 2, 3, and 6. In the partial erase operation, instead of
waiting for operation to be completed in step 6, we rather wait
for the TPE < TERASE period and then set the EMEX bit in the
flash control register to abort the current operation. This
parameter TPE is determined by the characterization
procedure described in the previous section.

Code 3 shows pseudo-code for the proposed segment
partial program procedure. Each word in the segment is
partially programmed using steps 4-8. Again, unlike the
nominal program procedure that waits for the operation to be
completed, here we wait for the partial program time TPP <
TPROG before setting the EMEX bit to abort the current
operation. Before proceeding to program the next word, we
wait for the flash controller to come to the default state and
update the current address.

4.3. Energy Profiling Setup
To profile energy consumed, the development board with

the MSP430 microcontroller is connected to a setup for
runtime energy profiling that consists an NI PXIe-4154
battery simulator, an NI PXIe-6361 data acquisition card, and
a workstation [8]. The battery simulator supplies the power to
the development board and samples the current drawn (IS)
with a sampling frequency of FS = 100,000 Hz. The test
program execution on the development board is synchronized
with the collection of current samples at the workstation. The
energy consumed as calculated as shown in Eq. (1), where M
is the number of current samples collected during execution
of the test procedures, V is power supply, and ∆1 = ݐ/FS. ܧ =෍ ܸ ∙ ௌܫ ∙ெ௜ୀ଴ (1) ݐ∆

Code 2. Segment partial erase procedure
Segment_Partial_Erase(Segaddr, TPE)
1. Wait while BUSY
2. Set ERASE bit
3. Dummy write into the segment
4. Wait for TPE time
5. Set EMEX
6. Wait while BUSY

Code 3. Segment partial program procedure.
Segment_Partial_Program(Segaddr, Data, TPP)
1. Erase segment at Segaddr
2. Caddr=Segaddr
3. for each word in the segment:
4. Set WRT bit
5. Write Data at Caddr;
6. Wait for TPP
7. Set EMEX
8. Wait while BUSY
9. Caddr = Caddr + 2
10. end for

5. Results
This section describes the results of the experimental

evaluation aimed at finding suitable partial erase and partial
program times that will work across multiple chips and
segments (5.1), quantifying energy savings due to proposed
flash operations (5.2), and evaluating impact of flash memory
aging on the proposed technique (5.3).

5.1. Partial Operations Characterization
The process described in Section 3 is used to characterize

flash memory behavior in presence of partial erase and
program operations. Table 1 shows the results of such
characterization performed on four MSP430F5438 chips
(Chip 0 – Chip 3) and five segments within each chip (Seg 0
– Seg 4). Each segment in each chip is profiled to determine
its parameter tPP that corresponds to the minimum partial
program time when all bits within a word that need to be
programmed are indeed programmed. Similarly, the column
tPE records the minimum partial erase time when all bits are
indeed erased.

Table 1. Results of flash memory segment characterization.

We find that the partial program times (tPP) are fairly

uniform across different segments and chips, ranging between
26 μs and 27 μs, which is significantly lower than the nominal
program time that is 64-85 μs per specification and ~65 μs
measured in our experiments. Thus, we find that roughly 1/3rd
of the nominal time is sufficient to complete programming
operation. However, we take a conservative approach and use
28 µs as optimal partial program time (TPP) in further
experiments.

The results in Table 1 show the partial erase times (tPE)
vary across different segments within a chip and across
different chips. For example, they range from 34-46 µs in
Chip 3 and from 57 to 115 µs in Chip 2. Still, these times that
mark the earliest time when all bits within a segment are
indeed erased are significantly lower than the nominal time
that is 23-32 ms per specification and ~27 ms measured in our
experiments. We choose an optimal partial erase time TPE to
be 115 µs in further experiments.

Similar characterization experiments are performed on a
different microcontroller from the MSP430 family of
microcontrollers. Using TI’s MSP430F5529 microcontroller
we find that the optimal partial programming time for a word,
TPP, is 16 µs (the nominal programming time TPROG is 65-85
µs), whereas the optimal partial erase time for a segment, TPE,
is 73 µs (the nominal time is 23-32 ms). These results confirm
that using partial program and erase operations can be used to
replace the nominal flash operations.

5.2. Energy Profiling
Figure 3 shows the current profile for the nominal (blue

lines) and partial flash operations (orange lines). The
microcontroller draws ~1 mA when idle. The start of a flash
erase operation is marked by a steep increase in the current
that reaches a level slightly below 4 mA. The current remains

high for the duration of the flash erase operation – in this
experiment the measured nominal erase time TERASE ~ 27 ms.
The red line shows the current profile for the equivalent
partial erase time with TPE=115 µs. The amplitude of the
current reaches the level observed in the nominal operation.
The total energy consumed by the nominal flash segment
erase operation is on average ~258.6 µJ, whereas the total
energy consumed for the partial erase operation is 3.3 µJ.
Thus, the partial erase operation saves over 98% the energy
consumed for the nominal erase operation.

Figure 3, bottom, shows the current drawn during nominal
and partial program operation of a 16-bit word with three
different data patterns: 0xFFFF means that no bit will actually
get programmed to logic 0; 0x5555 means that a half bits in
the word will get programmed, and 0x0000 means that all bits
within a word will be programmed. The current profiles are
data dependent, more so for the nominal word programming
operations. Table 2 shows the energy consumed in µJ and
percentage of energy savings achieved by using the partial
program operations. The table shows the results for a single-
word programming operation and when an entire segment is
programmed. It should be noted that the nominal segment
programming utilizes an optimized block-wide programming
operation. In this mode the flash memory controller voltage
generators remain active and data words are streamed one
after the other. This mode cannot be used when utilizing
emergency exit operation. However, in spite of that, the
proposed partial program operations still result in energy
savings that range from 24% when writing 0xFFFF to 64%
when writing 0x0000.

Chip Seg Chip Seg
0 0 27 2 0 113
0 1 27 2 1 57
0 2 26 2 2 57
0 3 27 2 3 80
0 4 27 2 4 57
1 0 26 3 0 46
1 1 26 3 1 34
1 2 26 3 2 34
1 3 26 3 3 35
1 4 26 3 4 35

MSP430F5438 tPP

(µs)

28 µs

Optimal
(TPP)

Nominal
Time

23-32 ms

Nomial
Time

64-85 µs

MSP430F5438 tPE

(µs)

Optimal
(TPE)

115 µs

Figure 3. Current drawn by MSP430F5438 during nominal and
partial erase and program operations.

Table 2. Energy consumed for word write and segment
write with different data.

5.3. Stress Analysis
We showed above that the flash cells transition into erased

and programmed states much earlier than it is nominally
expected. However, our experiments are conducted at room
temperature and under nominal power supply of VS=3.3 V.
The flash memory segments used in characterization were
relatively fresh, i.e. not exposed to wear-out.

One important concern is related to the robustness of the
proposed technique in presence of segment aging. NOR flash
memories can typically sustain up to 100,000 program-erase
cycles (PE) before they may permanently fail. Will the
optimal partial erase and program times found in our
characterization study work on aged flash memory segments?

To explore robustness of the parameters found through
characterization, we stress selected flash memory segments
by performing repeated program-erase (PE) operations. We
perform 10,000 PE cycles and then the characterization is
conducted to determine the optimal partial program and
partial erase times. The process is then repeated until the
maximum endurance of the flash memory segment is reached.

Figure 4 (a, b) show the optimal partial erase time as a
function of the segment stress levels (0 – 100 K PE cycles)
for two different MSP430F5438 chips and multiple segments
within each chip (each line plots TPE for a particular segment).
The results indicate that this parameter is indeed affected by
the number of PE cycles and it increases with an increase in
the segment stress level. Thus, on average the optimal partial
erase time ranges from below 100 µs for unstressed flash

memory segments to below 925 µs for flash segments
exposed to 100K stress cycles. However, even this worst-case
partial erase time is a way smaller than the nominal segment
erase time. Based on this analysis, the partial erase segment
may take the segment age into account to adjust the partial
erase time.

Figure 4 (c, d) show the optimal partial program time as a
function of the segment stress levels for two different
MSP430F5438 chips and multiple segments within each chip
(each line plots TPP for a particular segment). The plots here
indicate that the optimal partial program time is not
significantly affected by the stress level and it shows a slight
decline as we increase the stress level. Using the optimal
partial program time of 28 µs will work regardless of the
segments’ stress level.

This analysis is repeated for two MSP430F5529 chips.
Figure 5 shows the plots for the optimal partial erase times
(top) and the optimal partial program times (bottom). It shows
similar trends – the worst-case partial erase time is ~850 µs
and the worst-case partial program time is 16 µs.

6. Conclusions
Energy-efficiency have become a first-class design

parameter in many emerging applications ranging from
wearable electronics, mobile computing, to wireless sensor
networks. In this paper we analyze an ultra-low-power
microcontroller with an in-system programmable NOR flash
memory that contains program and data. We characterized
flash program and erase operations and found that these
operations require less time than nominally required.

We introduce partial erase and program flash operations
that abort them at an opportune time that guarantees no loss
of information. The proposed flash operations are
implemented and evaluated on a commercial microcontroller.
We demonstrate that they can provide significant saving in
energy of over 98% for segment erase operations and from
24-64% for segment program operations. We show how flash
stress level impacts the parameters of interest for the proposed

Word
Programmed

Nominal
Program

Partial
Program

Segment
Programmed

Nominal
Program

Partial
Program

0x0000 9 3 66.7 0x0000 127 45.5 64.2
0x5555 8 2 75 0x5555 92.3 43.6 52.8
0xffff 5 2 60 0xffff 53.9 40.8 24.3

Energy Consumed
(µJ) Savings

(%)

Energy Consumed
(µJ) Savings

(%)

Figure 4. Partial erase (a, b) and partial program times (c, d)
as a function of the stress level for MSP430F5438.

Figure 5. Partial erase (a, b) and partial program times (c, d)
as a function of the stress level for MSP430F5529.

technique. This technique does not require any hardware
changes and can be solely implemented in firmware.

Future work will focus on further analysis on how power
supply and environmental conditions may impact the optimal
partial erase and program times and how the proposed
technique can be implemented in other types of flash
memories.

7. References
[1] M. Salajegheh, Y. Wang, K. Fu, A. Jiang, and E.

Learned-Miller, “Exploiting Half-wits: Smarter Storage
for Low-power Devices,” in Proceedings of the 9th
USENIX Conference on File and Stroage Technologies,
Berkeley, CA, USA, 2011, pp. 55–68.

[2] M. Salajegheh, Y. Wang, A. (Andrew) Jiang, E.
Learned-Miller, and K. Fu, “Half-Wits: Software
Techniques for Low-Voltage Probabilistic Storage on
Microcontrollers with NOR Flash Memory,” ACM
Transactions on Embedded Computing Systems, vol.
12, no. 2s, pp. 1–25, May 2013, doi:
10.1145/2465787.2465793.

[3] H.-W. Tseng, L. M. Grupp, and S. Swanson,
“Underpowering NAND flash: Profits and perils,” in
2013 50th ACM/EDAC/IEEE Design Automation
Conference (DAC), 2013, pp. 1–6.

[4] H.-W. Tseng, L. M. Grupp, and S. Swanson,
“Underpowering NAND flash: profits and perils,” in
Proceedings of the 50th Annual Design Automation
Conference on - DAC ’13, Austin, Texas, 2013, pp. 1–
6, doi: 10.1145/2463209.2488935.

[5] V. Papirla and C. Chakrabarti, “Energy-aware error
control coding for Flash memories,” in 2009 46th

ACM/IEEE Design Automation Conference, 2009, pp.
658–663, doi: 10.1145/1629911.1630085.

[6] S. Nath, “Energy efficient sensor data logging with
amnesic flash storage,” in 2009 International
Conference on Information Processing in Sensor
Networks, 2009, pp. 157–168.

[7] G. Mathur, P. Desnoyers, D. Ganesan, and P. Shenoy,
“Capsule: an energy-optimized object storage system
for memory-constrained sensor devices,” in
Proceedings of the 4th international conference on
Embedded networked sensor systems - SenSys ’06,
Boulder, Colorado, USA, 2006, p. 195, doi:
10.1145/1182807.1182827.

[8] A. Dzhagaryan, A. Milenković, M. Milosevic, and E.
Jovanov, “An environment for automated measurement
of energy consumed by mobile and embedded
computing devices,” Measurement, vol. 94, pp. 103–
118, Dec. 2016, doi:
10.1016/j.measurement.2016.07.073.

[9] P. Poudel, B. Ray, and A. Milenkovic, “Microcontroller
TRNGs Using Perturbed States of NOR Flash Memory
Cells,” IEEE Transactions on Computers, pp. 1–1,
2018, doi: 10.1109/TC.2018.2866459.

[10] A. R. Duncan, M. J. Gadlage, A. H. Roach, and M. J.
Kay, “Characterizing Radiation and Stress-Induced
Degradation in an Embedded Split-Gate NOR Flash
Memory,” IEEE Transactions on Nuclear Science, vol.
63, no. 2, pp. 1276–1283, Apr. 2016, doi:
10.1109/TNS.2016.2540803.

[11] “MSP430x5xx and MSP430x6xx Family User’s
Guide.” Texas Instruments Incorporated, Jun-2008.

