IEEE TRANSACTIONS ON COMPUTERS, VOL.68, NO.2, FEBRUARY 2019

Microcontroller TRNGs Using Perturbed
States of NOR Flash Memory Cells

Prawar Poudel ', Biswajit Ray*“, Member, IEEE,
and Aleksandar Milenkovic"”, Senior Member, IEEE

Abstract—This paper introduces a new technique that perturbs split-gate NOR
Flash memory cells and extracts randomness of read noise to generate true
random numbers. Flash memory cells exhibit threshold voltage fluctuations during
read operations caused by thermal noise and random telegraph noise effects.
Recent proposals demonstrate how these inherent properties of Flash memory
cells can be used to create true random numbers in modern NAND Flash
memories. However, they cannot be directly applied to NOR Flash memories in
microcontrollers that have different architecture, improved data retention, high
endurance, and are not as susceptible to noise as high-density NAND Flash
memories. The proposed technique is experimentally demonstrated and evaluated
using a family of commercial microcontrollers. The evaluation shows that it enables
extraction of high-throughput random sequences that pass the NIST statistical
tests. Advantages of the proposed technique are as follows: (a) it does not require
any special hardware and/or interface modifications, (b) it is robust, cost-effective,
and high-throughput, (c) it is entirely implemented in software, and (d) it is flexible
and can be tailored to work in low-end microcontrollers that are often resource- or
cost-constrained.

Index Terms—Real-time and embedded systems, measurement techniques

<+

1 INTRODUCTION

RANDOM number generators (RNGs) are used in computer systems
to generate random cryptographic keys, in devices for electronic
gambling, and in many other applications where randomization
and fairness are required, e.g., in statistical sampling, computer sim-
ulation, and video games. Two main approaches to generate ran-
dom numbers are Pseudo-Random Number Generators (PRNG)
and True Random Number Generators (TRNGs). PRNGs rely on
deterministic algorithms that produce numbers that are in practice
indistinguishable from truly random numbers, provided an attac-
ker cannot guess their starting state or seed. They are very efficient,
easy to implement in software, and have high throughput. How-
ever, PRNGs rely on a truly random seed and may be thus vulnera-
ble to cryptanalytic attacks [1]. For example, a highly sophisticated
attack on slot machines in casinos was recently uncovered and
reported in news [2]. This attack that resulted in significant losses in
gambling industry exploits deterministic nature of PRNGs and an
attacker’s ability to guess the seed. TRNGs are typically hardware
modules that generate truly random numbers from stochastic phys-
ical processes, such as, radioactive decay, photoelectric effect, single
photon optical processes, Brownian motion, clock jitters, or elec-
tronic noise. Unlike PRNGs that use deterministic algorithms,
TRNGs produce random numbers that cannot be predicted, but typ-
ically suffer from lower throughput and require special hardware
resources to tap into random physical processes. The importance of
TRNGs has been recognized by the industry, and many recent high-

o The authors are with the Electrical and Computer Engineering Department, University
of Alabama in Huntsville, Huntsville, AL 35899.
E-mail: {pp0030, biswajit.ray, milenka@uah.edu.

Manuscript received 20 Mar. 2018; revised 10 Aug. 2018; accepted 17 Aug. 2018. Date of
publication 20 Aug. 2018; date of current version 22 Jan. 2019.

(Corresponding author: Aleksandar Milenkovic.)

Recommended for acceptance by P. Faraboschi.

For information on obtaining reprints of this article, please send e-mail to: reprints@ieee.
org, and reference the Digital Object Identifier below.

Digital Object Identifier no. 10.1109/TC.2018.2866459

307

end processors include dedicated hardware resources for generat-
ing true random numbers [3].

There have been a number of academic proposals for TRNGs and
many of them are amiable for implementation in electronic devices.
One group of proposed TRNGs targeting ASICs and FPGAs exploits
clock jitter. For example, Maiti et al. [4] proposed using jitter from
multiple ring oscillators to generate random numbers in ASICs.
Random frequency jitter is also used in an ASIC TRNG proposed by
Tang et al. [5]. This approach was extended by Johnson et al. [6] in
their tunable TRNG that extracts jitter from beat frequency detectors
in Xilinx FPGAs. Another group of proposed TRNGs exploits meta-
stability of bi-stable circuit elements, such as flip-flops. For example
Majzoobi et al. [7] introduced an FPGA-based TRNG that exploits
metastability of logic states with adaptive feedback control. Wiec-
zorek et al. [8] introduced dual metastability TRNG that harnesses
the time taken by a bi-stable circuit to resolve its state as a source of
randomness. Another group of proposals focuses on extracting ran-
domness from memory structures. For example, Holcomb et al. [9]
used the state of SRAM cells on power-up to produce device finger-
prints; these fingerprints contain sufficient entropy to generate
128-bit true random numbers as well. Tehranipoor et al. [10] pro-
posed a TRNG that utilizes DRAM remanence effect. Other pro-
posals exploit noise in Flash memory chips [11], [12]. Several other
recent TRNG proposals exploit switching instability in emerging
memory technologies such as resistive random access (RRAM) [13]
and spin transfer-torque magnetic memory (MRAM) [14].

All these proposals represent a great advancement in the field of
TRNGs and meet the required application specific needs. However,
several important obstacles to most of these proposals remain. First,
some of them are applicable only to newly designed ASICs and do
not address the need for TRNGs in many existing chips. Next, many
of these proposals rely on dedicated on-chip circuitry to extract ran-
domness, which increases on-chip area, and thus chip cost. Some of
the proposals have a relatively low throughput or may require cost-
prohibitive or inconvenient operations, such as power-up or reset
cycles. Emerging Internet-of-Things applications often rely on low-
end resource- and cost-constrained microcontrollers that do not
include built-in support for true random number generation. Yet,
these devices may produce “high value” information that need to
be communicated securely. Hence, designing TRNGs that can work
in low-end devices is very important.

This paper introduces a new technique for generating true ran-
dom numbers by exploiting read noise of perturbed NOR Flash
memory cells. NOR Flash memories are random access non-vola-
tile memories used in modern microcontrollers to store programs
and data. Common read operations from Flash memory involve
sensing of Flash cells threshold voltage, which is in either erased
state (logic ‘1") or programmed state (logic ‘0"). The actual thresh-
old voltage fluctuates due to random telegraph noise and thermal
noise effects. A typical Flash memory design ensures sufficient
noise margins to guarantee correct read operations. In the pro-
posed method, we use partial programming of Flash memory
words to induce perturbed states of Flash memory cells. In this
state, the threshold voltage is very close to the reference read volt-
age. This way, the state of the Flash cell is uncertain during read
operations—it can be either logic “1” or logic ‘0’, depending on
read noise. We characterize split-gate NOR flash memory found in
a family of commercial microcontrollers and describe algorithms
for inducing perturbed states and identifying strongly perturbed
Flash memory cells (Section 3). These cells are then used in the
proposed algorithm for generating random numbers (Section 4).
The proposed algorithm is demonstrated and evaluated on a fam-
ily of commercial microcontrollers from Texas Instruments,
MSP430F5438 (Section 5).

0018-9340 © 2018 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-4113-8458
https://orcid.org/0000-0002-4113-8458
https://orcid.org/0000-0002-4113-8458
https://orcid.org/0000-0002-4113-8458
https://orcid.org/0000-0002-4113-8458
https://orcid.org/0000-0002-5890-1368
https://orcid.org/0000-0002-5890-1368
https://orcid.org/0000-0002-5890-1368
https://orcid.org/0000-0002-5890-1368
https://orcid.org/0000-0002-5890-1368
https://orcid.org/0000-0002-9359-4594
https://orcid.org/0000-0002-9359-4594
https://orcid.org/0000-0002-9359-4594
https://orcid.org/0000-0002-9359-4594
https://orcid.org/0000-0002-9359-4594
mailto:

308

(a) Split-gate Flash memory cell cross section (c) I-V Characteristics

wyr “gr

“Erase”

VS'_l Floating Gate (FG ,—‘ Vo
7
Source (S, / Drain (D)
p ”
rogram Vrve Vger Ve Veas
P-substrate
l (d) Distribution of Vry
VSUB ~
6 P I
v VY
(b) Floating-gate G 4”
Flash memory cell symbol ‘k—a
S lps Vrne Veer Viue V1y

Vees

Fig. 1. (a) Cross-section of split-gate Flash memory cell. (b) Floating-gate transis-
tor symbol. (c) Current-voltage characteristics of a split-gate Flash memory cell
(Vrug—threshold voltage for the erased state, Vryp—threshold voltage for the
programmed state, Vrpr—reference threshold voltage); (d) Probability density
function of the threshold voltage for erased, programmed, and perturbed cells.

The proposed technique offers several advantages compared to
the existing TRNGs. First, utilizing Flash memory in microcontrollers
makes this proposal widely applicable and affordable. Second, the
proposed random number extraction technique does not require
any hardware change, specific circuits, or system-prohibited (or priv-
ileged) operations, such as hardware reset or power on cycle. Hence,
it can be implemented in software as a library function. Third,
the proposed algorithm produces high-quality random bits that pass
the NIST statistical tests and achieves a very good throughput.
Fourth, the proposed algorithm is parameterized and can be tuned to
work in resource-constrained microcontrollers with minimal mem-
OTy Or processing power.

The Flash memory based TRNG introduced in this paper is not
the first one of its kind. Wang et al. [11] proposed a TRNG that
exploits random telegraph noise in disturbed NAND Flash mem-
ory cells. Their algorithm relies on sophisticated pre-conditioning
steps that include repeated partial programming and periodical
refresh operation of Flash memory pages. Ray and Milenkovic [12]
used repeated program operation on the same page to bring
NAND Flash memory cells into disturbed state and their algorithm
exploits read noise. However, both of these proposals focus on
high-density NAND Flash memories that are designed to achieve
high capacity. These proposals cannot be directly applied to NOR
Flash memories that are routinely used in modern microcontrol-
lers. NOR Flash memories in microcontrollers typically have
improved data retention, high endurance, and are not as suscepti-
ble to noise as high-density NAND Flash memories. To the best of
our knowledge, this is the first work to demonstrate practical
TRNGs that can be easily implemented in software in low-end
microcontrollers.

The key contributions of this paper are as follows: (a) it introdu-
ces a mechanism for perturbing NOR Flash memory cells and
explores design trade-offs; (b) it introduces an algorithm for
extracting random bits from read noise in perturbed NOR Flash
cells; (c) it implements the proposed algorithm on a family of
microcontrollers and explores its sensitivity to algorithm parame-
ters; and (d) it evaluates the proposed TRNG for quality of random
bits and effectiveness of implementation.

2 BACKGROUND

2.1 Flash Memory Cell Structure

Fig. 1a shows a cross-section of a split-gate Flash memory cell
that keeps one bit of information. Fig. 1b shows a transistor sym-
bol for a floating-gate Flash memory cell. Each cell contains two
gates, the floating gate (FG) and the control gate (CG), arranged
to lie above the transistor channel. This arrangement differs
from a traditional stacked Flash memory cell, where the control

IEEE TRANSACTIONS ON COMPUTERS, VOL.68, NO.2, FEBRUARY 2019

(a) NOR Flash Memory Block (b) Flash Blocks, Segments, Banks

——
BL1 BL14 e BL
WLO 5 o Block 0 ‘ Segment 0 ‘
| ! ! Block 1 T
Flash
Lﬂ{ LH LH ‘ Block 3 Segment 127 ‘
WL 63
Lo Lo Lo

Common

Source
Fig. 2. (a) NOR Flash memory block architecture. (b) Flash memory organization:
blocks, segments, and banks.

gate is placed directly above the floating gate that in turn sits
right above the transistor channel. In a split-gate Flash memory
cell, the floating gate occupies a portion of the area between the
drain and source and is completely electrically isolated. The con-
trol gate has a unique shape that covers a portion of the area
between the drain and source as well as a portion of space above
the floating gate [15], [16].

A Flash memory cell can be in one of two states, erased which is
equivalent to logic ‘1" and programmed which is equivalent to logic
‘0". Two major operations are performed to change the state of Flash
memory cells: program that charges the floating gate with electrons
and erase that discharges the floating gate. These operations require
high voltages and are carried out through the oxide as shown in
Fig. 1a. To program a split-gate Flash memory cell, a large voltage is
applied to the source terminal (Vg ~ 10V, Vg ~ 2V, Vp ~ 0.5V)
inducing source-side hot carrier injection (SSI) that results in elec-
tron injection on the floating gate (“Program” arrow). The electrons
on the floating gate reduce the voltage between the control gate and
source, thus increasing the threshold voltage (Vg = Vrup) as
shown in Fig. 1c. To erase Flash memory cells, a large positive volt-
age is applied on the control gate (V, ~ 12V, Vg = Vp = 0V) to
remove electrons from the floating gate via Fowler-Nordheim
tunneling (“Erase” arrow). The removal of electrons decreases the
threshold voltage (V;; = Vrur) as shown in Fig. 1c.

A read operation from Flash memory involves applying a read
voltage on the control gate, Vog = Vreap ~ 3V, and a sense volt-
age on the drain, Vp = Vgpnse ~ 2V, and sensing the threshold
voltage. An erased cell will conduct the current and that is sensed
as logic ‘1" and a programmed cell will not conduct the current and
that is sensed as logic ‘0’.

2.2 NOR Flash Memory Organization

NOR Flash memories are designed to allow random access through
full address and data buses, fast reads, and low standby power.
However, they have lower storage capacity, lower density, and
longer erase and program times than NAND Flash memories.
NAND Flash memories are designed for high-capacity and low-
cost storage solutions, but they do not provide a random access
address bus.

Flash memory cells are organized in multiple two-dimensional
arrays known as Flash memory blocks. Fig. 2a shows a typical
NOR Flash memory block [17]. The control gates of cells in each
row are electrically connected through a line called Word Line
(WL). The drains of all cells in a single column are electrically con-
nected through a single line called Bit Line (BL). The source termi-
nals of all cells are also electrically connected to a common source
terminal. The number of cells in each row defines a word size and
in our case we assume 16-bit words. Thus, a Flash memory block
illustrated in Fig. 2a has capacity of 64 16-bit words or 128 bytes.
Blocks are further organized into segments. In our example shown
in Fig. 2b, a segment includes 4 blocks for a total of 256 words.

IEEE TRANSACTIONS ON COMPUTERS, VOL.68, NO.2, FEBRUARY 2019

(b) Byte, Word program timing cycle
Address Bus Data Bus

S | —

Generate
Prog. Voltage

Emergency Exit
Programming Operation Active

Remove
Prog. Voltage

Address/Data Latches
Control Registers

L LY

Timing
Generator

Program Cycle Time (Tproc)

(c) Segment erase timing cycle

Erase Operation Active

Remove
Erase Voltage

Generate
Erase Voltage

i Flash Memory Erase Cycle Time (Terase)

Array

Voltage
Generator

Fig. 3. (a) Block diagram of a Flash memory module (b) Program cycle time;
(c) Erase cycle time.

Segments are further organized into Flash memory banks, e.g., a
64 KB Flash memory bank includes 128 segments.

2.3 Programmers View of Flash Memory

Modern microcontrollers rely on the NOR Flash memories as one
of the most popular nonvolatile memories to store code and con-
stant data values. The default mode of operation is read, where
Flash memory behaves as a ROM. However, Flash memories are
often in-system programmable through a Flash memory controller.
The Flash memory can be programmed at a byte or a word level
through the controller, whereas the smallest unit that can be erased
is an entire segment. Some Flash memory controllers support mass
erase of an entire Flash memory bank. Each Flash bit can be pro-
grammed from logic 1’ to logic ‘0" individually, but to reprogram
a bit from logic ‘0’ to logic ‘1’ requires an erase cycle.

Fig. 3a shows a block diagram of a Flash memory module in a
microcontroller that includes a Flash memory array with one or
more banks and a Flash controller. The controller includes voltage
generators that supply voltage levels needed for program and
erase operations as well as timing generators that control duration
of operations that span multiple clock cycles. A Flash memory pro-
gram (write) operation can be initiated by a microcontroller code
that is running from within the Flash memory itself (albeit from a
different region) or from RAM. When initiating a write operation
from within the Flash memory, the processor is typically halted
until the program operation completes. When initiating a program
operation from RAM, the processor can continue executing the
code from RAM, provided it does not interact with the Flash mem-
ory bank that contains a location currently being programmed.
Fig. 3b shows a typical program cycle that encompasses times to
bring up voltage generators, perform the program operation, and
remove programming voltages to allow Flash memory to resume
operation in its default mode. The total programming time in a
microcontroller used in our study is Tproc ~ 64-85 is. An erase
cycle is initiated by a dummy write to an address belonging to a
segment to be erased. Similar to program operations, erase opera-
tions can be initiated from within the Flash memory halting the
processor, or from within the RAM when the processor can con-
tinue execution. Fig. 3c shows a typical erase cycle that encom-
passes times to bring up voltage generators, perform segment
erase operation, and remove programming voltages to allow
Flash memory to resume operations in its default mode. The total
segment erase time in a microcontroller used in this study is
TERASE ~ 23-35ms.

2.4 Perturbed Flash Memory Bits

In normal operation, a Flash memory cell is stable in either pro-
grammed or erased state. A read operation determines the state of
a memory cell. Read is performed at a byte or a word granularity

309

1. uint 16 *pFlashAdr = SEGMENT_ ADR;
2. void PerturbFlashSegment () {
3. EraseFlashSegment (pFlashAdr) ;
4. CopyFunct2Ram (PartialProgramWord, RamCodeAdr) ;
5. for (int i=0; i<SEGWORDS; i++) {
6. asm (“CALLA #RAMCodeAdr”);
7. pFlashAdr++;
8. }
9. 1}

(a) Perturb a Flash Segment
1. void PartialProgramWord() {
2. FCTL3 = FWPW; // Clear LOCK bit
3. FCTL1 = FWPW+WRT; // Enable write
4. *pFlashAdr = 0; // Write O
5. _NOP () ; // delay 1 cc
6. _NOP () ; // delay 1 cc
7. e
8. _NOP(); // delay 1 cc
9. FCTL3=FWPW+EMEX; // Emergency Exit
10. FCTL1l = FWPW; // Clear WRT bit
11. FCTL3 = FWPW+LOCK;// Set LOCK
12. while (FCTL3&BUSY) ;
13. }

(b) Partial Program a Word

Fig. 4. Perturbing Flash memory bits: (a) C subroutine for perturbing a Flash seg-
ment. (b) C subroutine for partial programming a Flash word.

as all the bits in a word share the same WL. The sensing process
involves application of a sense voltage Vsense ~ 2V on the bit lines
and a read voltage Vg ~ 3V on the selected word line (the com-
mon source is grounded, Vg = 0V). All other unselected WLs are
biased at low voltage so that all the unselected memory cells are
turned off. With this biasing arrangement, current will flow from
the bit line to the ground through the bits whose threshold voltage
is less than the read voltage. The read reference voltage (Vypr) is
set in between the erased state and programmed state distribu-
tions, so that there is enough of noise margin to correctly identify
the bit states as shown in Fig. 1d.

During sensing operation a cell current may fluctuate due to
thermal noise or random telegraph noise (RTN), which in extreme
cases may cause false identification of the erased cell as the pro-
grammed cell or vice versa. In this paper, we refer to a combination
of thermal noise and RTN as “read noise” since both of them coex-
ist in Flash memories. Thermal noise is white noise generated by
the thermal agitation of the charge carriers and it exists in all elec-
tronic devices. RTN is usually caused by the random trapping and
de-trapping of charge carriers at semiconductor-oxide interfaces.
The amplitude of noise fluctuation in current/voltage due to RTN
is inversely proportional to the gate area.

To bring a Flash memory cell into a perturbed state (neither pro-
grammed nor erased), we need to ensure that its threshold voltage
is close to the reference voltage (Fig. 1d). In this state, the read noise
will be a determining factor for reading logic ‘0" or logic ‘1". In this
paper, we use partial programming to intentionally bring a cell
into a perturbed state. A method proposed by Ray and Milenkovic
[12] to use the program disturb phenomena—repeated programing
of the checkerboard pattern into the Flash memory pages—works
well in high-density NAND flash memories, but does not appear
to work on NOR Flash memories we have analyzed. In addition,
exploiting the program disturb phenomena requires repeated pro-
gram cycles which takes time and wears-down selected region of
the Flash memory.

3 PERTURBING FLASH MEMORY BITS

To bring a Flash memory segment into a perturbed state we use a
method outlined in Fig. 4a. First, a selected Flash segment is
erased—all bits are set to logic ‘1’ (line 3). To bring each word up
into a perturbed state, it is partially programmed. However, partial
Flash programming is not possible when the code is running from
within the Flash memory because the processor is stalled during

310

(a) State of a Strongly Perturbed Flash Cell (b) State of a Weakly Perturbed Flash Cell

Read State
Read State

IEEE TRANSACTIONS ON COMPUTERS, VOL.68, NO.2, FEBRUARY 2019

(a) Perturbing a flash segment (b) Generate random bits

(C_PERTURB A FLASH SEGMENT) € GET P RANDOM BITS)

| Erase a Flash memory segment | | M.Index =0; B=0 |

160 0 20 a0 60 80 100 120 140 160
Read Number

0 20 40 60 80 100 120 140
Read Number

(a) (b)

Fig. 5. State of perturbed Flash memory bits during consecutive reads; (a) strongly
perturbed bit; (b) weakly perturbed bit.

the entire programming cycle. Consequently, we first copy a func-
tion that performs partial programming into RAM (line 4). To par-
tially program a Flash segment, we invoke the Partial ProgramWord
() function from RAM for each word in a segment (line 6).

The partial programming function shown in Fig. 4b configures
Flash controller registers for a program operation (lines 2-3) and
then writes 0x0000 to the selected word (line 4). A certain number
of NOP instructions (lines 5-8) follows this instruction before an
emergency exit command is issued to the Flash controller (line 9).
Note: to reduce a memory footprint NOP instruction can be
replaced by a loop with controllable software delay. In the micro-
controller used in our study any program or erase operation can be
stopped before its normal completion by setting the emergency
exit bit EMEX in a Flash controller register. Setting this bit stops
the active operation and resets the Flash memory controller. All
operations cease and the Flash memory returns to read mode. The
busy bit is used to determine the end of the emergency exit cycle
(line 12), when it is safe to return to the caller running from within
the Flash memory. The state of the partially programmed word is
unpredictable. Note: the exact mechanism to partially program a
Flash segment may differ among different microcontrollers. Often,
duration of program and erase operations can be controlled by a
hardware timer that can then trigger premature end of these
operations.

Fig. 5 shows states of two representative perturbed bits as a
function of consecutive reads. A word in Flash memory is partially
programmed and then it is read a number of times. Fig. 5a shows a
state of a strongly perturbed Flash cell with a threshold voltage
very close to the reference read voltage. The state of the cell
appears to be fluctuating randomly over time. Fig. 5b shows a state
of a weakly perturbed Flash cell. This cell’s threshold voltage is
shifted toward the programmed state side of distribution, but once
in the observed period it is read as erased. Our goal is thus to bring
Flash cells into a strongly perturbed state, identify such Flash cells,
and use them for generating random numbers.

Ideally, we would like to have as many Flash memory cells in a
perturbed state as possible, with their threshold voltage as close to
the read reference voltage as possible. This way, algorithms for
extracting true random numbers will achieve higher throughput
and require fewer memory locations. To achieve this goal we need
to determine appropriate moment to issue an emergency exit oper-
ation. The programming cycle starts when the write operation is
performed (Fig. 4b, line 4). Each NOP instruction requires exactly
one clock cycle allowing us to fine tune software delay in search
for an optimal moment to execute emergency exit. The software
delay expressed in processor clock cycles is a function of the num-
ber of NOP instructions and the time to execute emergency exit.
Another tunable parameter is the processor clock frequency. The
microcontroller used in our study enables full software control
over processor clock frequency. When the processor runs at a
higher clock frequency, we need to spend more clock cycles wait-
ing before aborting the Flash programing cycle, but we can do it
with a finer time resolution. Note: an exact implementation of the
Flash memory controller and its clock-generating portion is not dis-
closed, so we cannot know the exact relationship between the pro-
cessor clock frequency and the logic inside the Flash controller

~
Partially program the erased | N.Index = 0 |
Flash memory segment
V.RNG[K-1:0] = 0 |

Identify strongly perturbed flash | T
bits (SPFB) ‘*
[Flash Address, Bit Index]
Assume M such bits per segment
M.Index € [0, ... M-1]

C END) |

Read location containing M.Index SPFB K times;
Create a vector of read states, V.SPFB[K-1:0]

M.Index = (M.Index + 1) mod M]

Legend:
SPFB — Strongly Perturbed Flash Bit

| SC = Number of state changes in V.SPFB[K-1:0] |
M — Number of SPFBs in a Flash segment
M.Index — SPFB index, M.Index € [0, ... M-1]

N
P —Requested number of random bits

B — Current number of generated random bits Y

K—Number of consecutive reads from a SFPB
V.SFPB — K-bit vector with read states of a SPFB |
V.RNG — K-bit vector with random bits

N — Number of SFPBs combined to create RNG
N.Index — Index, N.Index € [0, ... N-1]

SC — Number of state changes in V.SPFB
SPB_TH — Threshold for SPFBs

K* — Number of bits in V.RNG after de-biasing

V.RNG = V.RNG XOR V.SPFB |

[N.Index++]

{ (optional) De-biasing of V.RNG i

| Output V.RNG[K*-1:0]; B = B + K* |

(END D

Fig. 6. Algorithms for (a) perturbing a Flash memory segment and (b) generating
random bits from a perturbed Flash segment.

responsible to abort the ongoing programming operation when the
EMEX command is issued. The results of this analysis will be pre-
sented later.

4 ALGORITHM FOR TRNG

In order to extract read noise characteristics through a digital inter-
face, our first step is to bring a Flash memory segment into a per-
turbed state. Fig. 6a shows a sequence of preconditioning steps to
bring a segment into such a state. The selected Flash memory seg-
ment is first erased and then partially programmed word-by-word
as described in Section 3. The partial programming is carried out in
such a way to maximize the number and quality of perturbed bits.
To speed up random number generation, an initial profiling is per-
formed during preconditioning to identify strongly perturbed flash
bits. We have observed that strongly perturbed Flash bits (SPFBs)
do not lose their properties over a very long period and are a good
source of randomness. The profiling is done by repeated reading of
Flash memory words within a perturbed segment and recording
the number of state changes for each perturbed bit. If the number
of state changes of a perturbed bit exceeds a certain threshold, the
bit is marked as a strongly perturbed Flash bit. Here we will
assume that we have M such bits within a segment, each with its
own index, M.Index € [0 ... M —1].

Fig. 6b shows the proposed algorithm for extracting random
numbers from a perturbed Flash segment. The algorithm traverses
the segment words containing strongly perturbed Flash bits. Each
such a word is read repeatedly K times, and a K-bit vector, V.SPFB,
containing read values of a particular SPFB is created. Though
these bits are initially marked as the SPFB, we again count the
number of state changes and ensure that they maintain their

IEEE TRANSACTIONS ON COMPUTERS, VOL.68, NO.2, FEBRUARY 2019

TABLE 1
TI MSP430F5438 Flash Characterization

Clock rate Partial program Average number of
[Hz] time perturbed bits + stdev
#CPU Cycles [s] Strong Total
1,048,576 27 25.75 0£0.0 0+£0.0
28 26.70 10+5.3 24+75
29 27.66 0£0.0 0£0.0
4,194,304 95 22.65 0£0.0 0+£0.0
96 22.89 2+13 4+16
97 23.13 135 £19.1 301 £32.2
98 23.37 5+3.0 10+5.6
99 23.60 0£04 0+£05
100 23.84 0£0.0 0£0.0
8,388,608 195 23.25 0+04 1+08
196 23.37 5+2.0 11+1.7
197 23.48 38+9.1 88 +18.9
198 23.60 142 +£15.4 324 +39.2
199 23.72 63 +21.6 139 +£44.7
200 23.84 14+31 33+9.9
201 23.96 2+1.9 4+41

properties before they are used for random number generation.
The number of state changes in V.SPFB should exceed a certain
threshold, SPB_TH, usually expressed as a fraction of the number
of consecutive reads, K. The current vector V.SFPB is then XOR-ed
with the resulting K-bit vector V.RNG. This operation is repeated
N times, using first N distinct SPFB bits. The resulting random vec-
tor, V.RNG, is output.

Optionally, the output vector can be de-biased using the Von
Neumann algorithm that takes two bits of the random sequence at a
time, discards both bits if they are identical, and takes the first bit if
they are different. If more random bits are required, the process con-
tinues traversing the remaining SPFB bits in the segment. Once all
SPFB bits in the segment are exhausted, we reset M.Index to point to
the first perturbed bit in the segment and repeat the process as
shown in Fig. 6b. If more bits are required (P > K), the process is
repeated until a sufficient number of random bits is generated.

The proposed algorithm can be fine-tuned by adjusting parame-
ters, such as K and N. These parameters impact the quality of ran-
dom bits, the throughput of the proposed algorithm defined as the
number of random bits generated in a time unit, as well as its com-
plexity measured in the number of processor clock cycles spent for
random number generation and the size of RAM memory needed
for storing temporary variables. By adjusting these parameters, the
algorithm can be tailored to run on microcontrollers with a limited
size of RAM memory. In our studies we used the following param-
eters: K = 1024, N = 10.

5 RESULTS

5.1 Experimental Setup

Our experimental setup is based on MSP430, a mixed-signal
microcontroller family from Texas Instruments. The MSP430 fam-
ily is built around a 16-bit processor. It integrates on a single chip
the processor, Flash memory, SRAM memory, clock oscillators,
and a wide range of 8-bit and 16-bit input/output peripherals,
including parallel ports, timers, comparators, analog-to-digital
and digital-to-analog converters, serial communication interfaces,
LCD controllers, and DMAs. The MSP430 family chips that belong
to different generations and models—generally higher numbered
models are larger and include more features—differ in processor
speed, size of memories, and the number and type of peripherals.
The clock subsystem is controllable from software and supports
several clock signals that can be changed or selectively turned on
and off to allow for a low power operation. The Flash memory is

311

in-system programmable and its architecture corresponds to the
one described in Section 2.

In this study we used MSP430F5438 that includes 256 KB of
Flash memory (4 banks each or 64 KB), 16 KB of SRAM memory,
timers, serial communication interfaces, parallel ports, and an
ADC controller. The experiments are conducted using the Experi-
menter Development Board, EXP430F5438. It features a 100-pin
drop-in socket for microcontrollers allowing for quick changes of
microcontroller chips.

5.2 Partial Programming Characterization

We conduct a series of experiments to explore the relationship
between the number of perturbed bits in a segment, the processor
clock frequency, and the duration of partial programming. To char-
acterize the MSP430F5438 Flash memory, we consider multiple
Flash segments that are pre-conditioned as described above. Each
word is sequentially read K times, and each bit is characterized
based on its state—perturbed or stable. For perturbed Flash mem-
ory bits, we record the number of state changes during K consecu-
tive reads. If a perturbed bit changes its state more than K/8 times,
we consider such a bit to be strongly perturbed; otherwise it is
weakly perturbed.

Table 1 shows the results of experimental evaluation of partial
programming of the MSP430F5438 Flash memory performed at
room temperature of ~23 °C. The algorithm for perturbing Flash
segments is run on eight 256-word Flash memory segments, while
varying the processor clock frequency and the duration of partial
programming. In the first series of experiments, the processor clock
frequency is set to the default Fcpy = 1,046, 576 Hz, and the duration
of partial programming is varied in the range between 20 and 30 pro-
cessor clock cycles. The reference manual indicates that program-
ming of a Flash memory word takes between 64 and 85 us. At this
processor clock frequency, we observe a very narrow time window
for perturbing Flash cells. If the duration of partial programming is
above 29 processor clock cycles (which translates into 27.66 ps), all
Flash memory cells in the segment are in the programmed state.
Similarly, if the duration of partial programming is below 28 cycles
(26.70 us), all cells are in the erased state, leaving the delay of 28 pro-
cessor clock cycles as the only delay that results in perturbed bits.
The total average number of perturbed bits per segment for a tested
chip is 24 (out of 4,096 bits in the segment) and 10 of these are
strongly perturbed bits. The total number of perturbed bits per seg-
ment varies among different segments, ranging from 16 to 40,
whereas the number of SPFBs ranges from 4 to 20.

The second series of experiments is carried out when the pro-
cessor clock frequency is set to Fepy = 4,194, 304 Hz. This allows a
finer time resolution when controlling the duration of partial pro-
gramming. The best results are achieved when the emergency exit
is activated with the delay of 97 processor clock cycles, which
translates to 23.137 us. The average total number of perturbed bits
per segment is 301 and the average number of strongly perturbed
bits is over 135. Similar results are observed in the third series of
experiments when the processor clock is further increased to
Fepy = 8,388,608 Hz. Higher processor clock frequency enables
more precise control of timing that results in an increased number
of perturbed Flash cells. Thus, the best-case average total number
of perturbed bits is 324 and the average number of SPFBs is 142
(Table 1). At this clock frequency, multiple delay periods result in
perturbed Flash bits.

One may notice a discrepancy in the “optimal” duration of par-
tial programming—it changes with changes in the processor clock
frequency. It should be noted that the exact relationship between
the Flash controller operation and the processor clock is not fully
disclosed in chip documentation for MSP430F5438. In addition, it
appears that the optimal software delay for perturbing flash seg-
ment slightly varies among different Erase-Program cycles for the
single chip as well as among different chips.

312 IEEE TRANSACTIONS ON COMPUTERS, VOL.68, NO.2, FEBRUARY 2019
TABLE 2
NIST Statistical Tests
Original Sequence, N = 10 Debiased Sequence, N =5
NIST Test SC1 SC2 SC3 SC1 SC2 SC3
P-Value Proportion P-Value Proportion P-Value Proportion P-Value Proportion P-Value Proportion P-Value Propo rtion
Frequency 0.740 10/10 0.534 10/10 0.534 9/10 0.122 10/10 0.534 9/10 0.122 10/10
Block Frequency 0.740 10/10 0.740 10/10 0.350 10/10 0.534 10/10 0.069 10/10 0.035 9/10
Cumulative Sums 0.740 10/10 0.122 10/10 0.534 9/10 0.911 10/10 0.740 9/10 0.351 10/10
Runs 0.213 10/10 0911 9/10 0.740 9/10 0.350 10/10 0.534 10/10 0911 10/10
Longest Run 0.213 10/10 0.911 10/10 0.534 10/10 0.067 10/10 0.534 9/10 0.213 10/10
Rank 0.740 10/10 0.350 10/10 0.122 10/10 0.534 10/10 0.122 10/10 0.350 10/10
FFT 0.740 10/10 0.350 10/10 0.534 10/10 0.351 10/10 0.018 10/10 0.213 10/10
NonOverlapping T. 0.911 10/10 0.911 10/10 0.534 10/10 0.911 10/10 0.740 10/10 0.740 10/10
Overlapping Template 0.534 10/10 0.740 10/10 0.534 10/10 0.035 10/10 0.911 10/10 0.740 10/10
Universal 0.740 10/10 0.350 10/10 0.213 10/10 0.351 10/10 0.350 9/10 0.740 10/10
Approximate Entropy ~ 0.534 10/10 0.740 10/10 0.534 10/10 0.740 10/10 0911 10/10 0911 10/10
RandomExcursions - 8/8 - 5/5 - 3/3 - 5/5 - 6/6 - 7/7
Random Excursions V. - 8/8 - 5/5 - 3/3 - 5/5 - 6/6 - 7/7
Serial 0.534 10/10 0.122 10/10 0.534 9/10 0.740 10/10 0.70 10/10 0.740 10/10
Linear Complexity 0.534 9/10 0.35 10/10 0911 10/10 0911 10/10 0.350 10/10 0911 10/10

We can draw several conclusions from these experiments. First,
regardless of external conditions we are able to bring each Flash
memory segment into a perturbed state with a sufficient number of
SPFBs. Next, by increasing the processor clock frequency we can
significantly increase the number of Flash memory cells in the per-
turbed state; it reaches over 300 bits per segment (out of 4,096 bits),
with over 100 being strongly perturbed. This by far exceeds the
minimum number of strongly perturbed bits needed for our algo-
rithm to produce quality random bits. The optimal duration of par-
tial programming does not vary between different Flash segments
in a single chip or words within a segment, but it is a function of
the processor clock frequency and general state of the Flash mem-
ory. It should be noted that Table 1 shows findings for one particu-
lar sample chip. We find that other chips of the same type may
differ in the optimal duration of partial programming that produ-
ces the largest number of perturbed bits. Thus, the program for
perturbing a Flash segment should allow for fine-tuning of the par-
tial programming time. On the other hand, a Flash memory seg-
ment once brought into a perturbed state remains in such a state
for years — the preconditioning steps are done only once and do
not depend on powering cycle. In our experiments, we have not
observed any loss of characteristics over a period of 6 months. Soft-
ware development tools often support an option that just a portion
of Flash memory is updated when downloading a new firmware
through JTAG. This means that once a Flash segment is perturbed,
it can remain in use throughout the lifetime of the product, regard-
less of possible firmware upgrades.

To explore sensitivity to temperature variations, the setup is
placed in a heated oven and a freezer and the number of SPFBs per
segment is observed. The number of SPFBs varies with tempera-
ture—e.g., a Flash segment with 116 SPFBs at 23 °C has 95 SPFBs at
0 °C and 140 at 80 °C. The proposed algorithm ensures that only
“good” SPFBs are used to generate random sequences and is thus
robust in presence of temperature variations. SPFBs that lose their
property are not used for generating random sequences. Having a
pool of SPFBs (M > N) ensures that we can always find a sufficient
number of “good” SPFBs.

5.3 Analysis of Randomness

To evaluate the randomness of the bits produced by the proposed
Flash memory TRNG, we utilize the NIST Test Suite, a statistical
package consisting of 15 tests developed to test randomness of
arbitrarily long binary sequences produced by either hardware or
software [18]. Each statistical test calculates a P-value that shows
the randomness of the given sequences based on that test. If P-
value > 0.0001, then the sequence can be considered to be

uniformly distributed. Note that some of the tests such as Non
Overlapping Template, Random Excursions, and Random Excur-
sions Variant consists of several individual tests. We report the
least P-value out of several internal tests for them.

Table 2 shows the results for three different MSP430F5438 sam-
ple chips (SC1, SC2, SC3). For each chip, ten original random
sequences (without de-biasing) and ten de-biased sequences of
1,000,000 bits are considered. The results show the P-values as well
as the proportion—the number of sequences that pass the test
requirements. Each test passes if at least 8 out of 10 sequences pass,
excluding Random Excursion tests. The parameters of the pro-
posed algorithm used for the original sequences in are as follows:
K =1,024; N = 10; P = 10,000, 000. For de-biased sequences, we
use K =1,024,N =5,P = 10,000,000. We can see that all tests
pass on all sample chips, which is an excellent result. One interest-
ing question is what is the minimum N for which we can pass the
NIST tests for original and de-biased sequences? As shown above
when N > 10, all original sequences pass the NIST tests. By lower-
ing N, the original RNG sequences start failing individual tests.
However, with the Von-Neumann de-biasing, we find that the pro-
posed algorithm passes all the tests on all tested chips with N as
lowas N = 5.

5.4 Performance and Complexity
The throughput, defined as the number of good random bits gener-
ated in a unit of time, is a function of the algorithm parameters (N
and K), the number of perturbed bits, and the processor clock fre-
quency. The algorithm includes repeated reads from Flash memory
locations that are marked to contain perturbed bits, extraction of
read states from the perturbed bits, and calculation of the resulting
vector as shown in Fig. 6. For N =10 and K = 1,024 we find that
our optimized algorithm implementation on MS430F5438 requires
~123 processor clock cycles per one good random bit generated.
Depending on the processor clock frequency, this computational
complexity translates into 8,525 random bits per second for Fcpy =
1,048,576 Hz (~ 1 MHz) or 68200 bits per second for Fcpy =
8,388,608 Hz. This throughput by far exceeds typical requirements
for random numbers in low-end embedded systems that may
require 256-bit random keys per one communication session estab-
lished periodically, e.g., once every minute or hour. Whereas hard-
ware TRNGs in microcontrollers are often able to achieve higher
throughputs—e.g., produce one good random bit per clock cycle—
several implementations require 100 processor clock cycles per 1
good random bit [19] which is comparable to our algorithm.

In addition to good throughput, the proposed algorithm does
not require significant RAM memory resources (less than 512 Bytes

IEEE TRANSACTIONS ON COMPUTERS, VOL.68, NO.2, FEBRUARY 2019

to generate numbers) and they can be even further reduced by
tuning algorithm parameters (e.g., by lowering parameter K).
In our experiments we allocated one Flash memory segment of
512 bytes that serves as a source of entropy. This segment is
reserved for our algorihtm and cannot be used for other purposes.
However, depending on the number of SPFBs, a portion of one
segment would often be sufficient, whereas the rest can be used
for code or data.

6 CONCLUSION

In this paper, we introduce a new technique for true random num-
ber generation that exploits read noise of partially programmed
NOR Flash memory cells in microcontrollers. The proposed tech-
nique relies on a pre-conditioning algorithm to bring Flash mem-
ory bits into a perturbed state and an algorithm to efficiently
generate true random numbers by reading states of strongly per-
turbed Flash memory cells. We describe various design trade-offs
and test the randomness of generated sequences using the NIST
statistical test suite. The proposed technique offers a number of
advantages over the existing approaches: (a) it requires no addi-
tional hardware support, (b) it is solely implemented in software
and can be easily implemented in modern microcontrollers, (c) it
produces high-quality random sequences, (d) it achieves a good
throughput, and (e) it can be easily tuned to work on low-end
resource-constrained microcontrollers.

REFERENCES

[1] J. Kelsey, B. Schneier, D. Wagner, and C. Hall, “Cryptanalytic attacks on
pseudorandom number generators,” in Fast Software Encryption, vol. 1372,
S. Vaudenay, Ed. Berlin, Germany: Springer, 1998, pp. 168-188.

[2] B. Koerner, “Russians engineer a brilliant slot machine cheat—and casinos
have no fix,” Wired, 06-Feb-2017. [Online]. Available: https:/ /tinyurl.com/
jc6u8rh, Accessed Mar. 2018.

[3] Intel Corporation, “Intel digital random number generator (DRNG),”
15-May-2014. [Online]. Available: https://tinyurl.com/z5cn3dy, Accessed
Mar. 2018.

[4] A. Maiti, R. Nagesh, A. Reddy, and P. Schaumont, “Physical unclonable
function and true random number generator: A compact and scalable
implementation,” in Proc. 19th ACM Great Lakes Symp. VLSI, 2009, pp. 425-
428.

[5] Z. Tang, X. Zhang, Y. Zhang, and L. Qi, “Portable true random number
generator for personal encryption application based on smartphone
camera,” Electron. Lett., vol. 50, no. 24, pp. 1841-1843, Nov. 2014.

[6] A.P.Johnson, R. S. Chakraborty, and D. Mukhopadyay, “An improved
DCM-based tunable true random number generator for xilinx FPGA,” IEEE
Trans. Circuits Syst. I Express Briefs, vol. 64, no. 4, pp. 452-456, Apr. 2017.

[71 M. Majzoobi, F. Koushanfar, and S. Devadas, “FPGA-based true random
number generation using circuit metastability with adaptive feedback con-
trol,” in Cryptographic Hardware Embedded Syst., vol. 6917, B. Preneel and
T. Takagi, Eds. Berlin, Germany: Springer, 2011, pp. 17-32.

[8] P.Z. Wieczorek and K. Golofit, “Dual-metastability time-competitive true
random number generator,” IEEE Trans. Circuits Syst. Reg. Paper, vol. 61,
no. 1, pp. 134-145, Jan. 2014.

[91 D. E. Holcomb, W. P. Burleson, and K. Fu, “Power-Up SRAM state as an

identifying fingerprint and source of true random numbers,” IEEE Trans.

Comput., vol. 58, no. 9, pp. 1198-1210, Sep. 2009.

F. Tehranipoor, W. Yan, and J. A. Chandy, “Robust hardware true random

number generators using DRAM remanence effects,” in Proc. IEEE Int.

Symp. Hardware Oriented Security Trust, 2016, pp. 79-84.

Y. Wang, W. Yu, S. Wu, G. Malysa, G. E. Suh, and E. C. Kan, “Flash mem-

ory for ubiquitous hardware security functions: True random number gen-

eration and device fingerprints,” in Proc. IEEE Symp. Security Privacy, 2012,

pp. 33-47.

B. Ray and A. Milenkovic, “True random number generation using read

noise of flash memory cells,” IEEE Trans. Electron Devices, vol. 65, no. 3,

Pp- 963-969, Mar. 2018.

S. Balatti, S. Ambrogio, Z. Wang, and D. Ielmini, “True random number

generation by variability of resistive switching in oxide-based devices,”

IEEE]. Emerg. Sel. Top. Circuits Syst., vol. 5, no. 2, pp. 214-221, Jun. 2015.

Won Ho Choij, et al., “A magnetic tunnel junction based true random num-

ber generator with conditional perturb and real-time output probability

tracking,” in Proc. IEEE Int. Electron Devices Meeting, 2014, pp. 12.5.1-12.5.4.

P. Forstner, “MSP430 flash memory characteristics,” Apr. 2008. [Online].

Auvailable: https:/ /tinyurl.com/y8zfmp4f, Accessed Mar. 2018.

A. R. Duncan, M. J. Gadlage, A. H. Roach, and M. J. Kay, “Characterizing

radiation and stress-induced degradation in an embedded split-gate NOR

flash memory,” IEEE Trans. Nucl. Sci., vol. 63, no. 2, pp. 1276-1283,

Apr. 2016.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

313

L. Crippa, R. Micheloni, I. Motta, and M. Sangalli, “Nonvolatile memories:
NOR versus NAND architectures,” in Memories in Wireless Systems,
R. Micheloni, G. Campardo, and P. Olivo, Eds. Berlin, Germany: Springer,
2008, pp. 29-53.

L. E. Bassham, et al., “A statistical test suite for random and pseudorandom
number generators for cryptographic applications,” National Institute of
Standards and Technology, Gaithersburg, MD, NIST SP 800-22r1a, 2010.
Freescale, “KL82 sub-family reference manual,” Jan. 2016. [Online]. Avail-
able: https:/ /tinyurl.com/y73b78lz, Accessed Mar. 2018.

https://tinyurl.com/jc6u8rh
https://tinyurl.com/jc6u8rh
https://tinyurl.com/z5cn3dy
https://tinyurl.com/y8zfmp4f
https://tinyurl.com/y73b78lz

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

