

Using NOR Flash Memory in Microcontrollers

for Generating True Random Numbers

by

PRAWAR POUDEL

A THESIS

Submitted in partial fulfillment of the requirements

for the degree of Master of Science in Engineering

in

The Department of Electrical & Computer Engineering

to

The School of Graduate Studies

of

The University of Alabama in Huntsville

HUNTSVILLE, ALABAMA

2018

ii

In presenting this thesis in partial fulfillment of the requirements for a master’s de-

gree from The University of Alabama in Huntsville, I agree that the Library of this

University shall make it freely available for inspection. I further agree that permis-

sion for extensive copying for scholarly purposes may be granted by my advisor or, in

his/her absence, by the Chair of the Department or the Dean of the School of Gradu-

ate Studies. It is also understood that due recognition shall be given to me and to

The University of Alabama in Huntsville in any scholarly use which may be made of

any material in this thesis.

(student signature) (date)

iii

THESIS APPROVAL FORM

Submitted by Prawar Poudel in partial fulfillment of the requirements for the de-

gree of Master of Science in Engineering in Computer Engineering and accepted on

behalf of the Faculty of the School of Graduate Studies by the thesis committee.

We, the undersigned members of the Graduate Faculty of The University of Ala-

bama in Huntsville, certify that we have advised and/or supervised the candidate on

the work described in this thesis. We further certify that we have reviewed the the-

sis manuscript and approve it in partial fulfillment of the requirements for the de-

gree of Master of Science in Engineering in Computer Engineering.

 Committee Chair

(Date)

 Department Chair

 College Dean

 Graduate Dean

iv

ABSTRACT

The School of Graduate Studies

The University of Alabama in Huntsville

Degree Master of Science in Engineering College/Dept. Engineering/Electrical &

 Computer Engineering

Name of Candidate Prawar Poudel

Title Using NOR Flash Memory in Microcontrollers for Generating True

Random Numbers

This thesis introduces a new technique for generating true random numbers

that exploits read noise of perturbed cells in NOR Flash memories. The existing

techniques for generating true random numbers rely on additional hardware re-

sources that serve as a source of entropy or exploit memory components such as

SRAM or NAND Flash memories. The proposed technique utilizes NOR Flash mem-

ories that are readily available in modern microcontrollers. We characterize behav-

ior of the NOR Flash memories, introduce an algorithm for inducing a perturbed

state of Flash memory cells, and introduce an algorithm for extracting randomness

from these cells and generating true random numbers. The proposed technique is

demonstrated and experimentally evaluated on a TI MSP430 family of microcontrol-

lers. The experimental evaluation shows that the proposed technique enables high-

throughput and low-cost extraction of random sequences that pass tests from the

NIST statistical suite. The proposed technique requires no hardware modifications,

is entirely implemented in software, and can be tailored to work in low-end and low-

cost embedded systems.

Abstract Approval: Committee Chair

 Department Chair

 Graduate Dean

v

This thesis is dedicated to

all who have supported me.

vi

ACKNOWLEDGMENTS

My greatest and sincere thanks goes to Dr. Aleksandar Milenkovic, who

served as my advisor. Besides that, he has always been the person that I could reach

out anytime I needed help. He has been a guardian figure for last six months for me,

a motivator and counsellor at times.

I would also like to thank Dr. Jeffrey Kulick. In addition to serving in my

committee, Dr. Kulick served as my instructor in several courses. Working as a TA

in his Operating Systems course gave me an opportunity to learn new things in the

area of computer security.

Special thanks goes to Dr. Biswajit Ray, who has constantly provided moral

and technical support. His initial work in NAND Flash memory true random num-

ber generators served as a starting point for this research.

I am grateful to my lab mates Mr. Ranjan Hebbar Raviraj and Mrs. Mounika

Ponugoti. They have been true friends to me whom I could reach out even for small-

est of the problems that I faced. Thank you for helping me selflessly, even during the

busiest of your times.

I would like to express my gratitude to Dr. Gorur, the ECE Chairman, for his

continual support. Special thanks goes to Ms. Jacqueline Siniard who has helped me

and all other students with the paper works and administrative matters.

vii

TABLE OF CONTENTS
Contents Page

LIST OF FIGURES..…………………………………………………………………………. ix

LIST OF TABLES.………………………………………………………………………….... xi

CHAPTER 1 .. 1

1.1 Background and Motivation ... 1

1.2 What is this thesis about? .. 2

1.3 Contributions .. 3

1.4 Outline .. 4

CHAPTER 2 .. 5

2.1 Types of Random Number Generators ... 6

2.1.1 Pseudo Random Number Generator ... 6

2.1.2 True Random Number Generators .. 7

2.2 Related Work .. 9

2.2.1 Electronic Components Based TRNGs ...10

2.2.2 Memory Components Based TRNGs ..11

2.2.3 Commercial RNGs ..13

2.2.4 Other Physical TRNGs ...14

2.3 Software Based Tools for Random Numbers ...15

2.4 The Case for NOR Flash Memory TRNG ..16

CHAPTER 3 ...18

3.1 Flash Memory Basics ...18

3.1.1 Structure of Flash Memory ..19

3.1.2 Split-Gate Flash Memory Cell ..23

3.2 Programmers’ View of NOR Flash Memory ..26

3.3 Perturbed States in NOR Flash Memory ..32

viii

CHAPTER 4 ...34

4.1 Algorithm for Perturbing Flash Cells ...34

4.2 Algorithm for Identifying Strongly Perturbed Flash Bits (SPFB)................41

4.3 Algorithm for Generating True Random Numbers45

CHAPTER 5 ...51

5.1 System View ...51

5.1.1 Experimental Platform Flow ..52

5.1.2 Workstation Experiment Flow ...55

5.2 Experimental Platform ..56

5.3 NIST Tests ...57

CHAPTER 6 ...63

6.1 Characterization of Flash Memories for Perturbed States63

6.1.1 Characterization of Partial Programming Duration..............................63

6.1.2 Characterizing Bits: SPFB or WPFB ...73

6.1.3 Characterization of Flash Segment ..76

6.2 Random Number Generation and NIST Tests Results.................................78

6.3 Performance ...82

CHAPTER 7 ...85

REFERENCES ...87

ix

LIST OF FIGURES

Figure Page

Figure 2.1 Functional Model of DRBG [4] .. 7

Figure 2.2. Entropy Source Model for TRNG [5] .. 9

Figure 3.1 Floating Gate Flash Memory Cell ..19

Figure 3.2 NAND Flash Memory Structure. ...21

Figure 3.3 NOR Flash Memory Architecture. ...23

Figure 3.4 Cross Sectional View of a Split-Gate Flash Memory Cell24

Figure 3.5 I-V Characteristic of Split Gate Flash Memory Cell25

Figure 3.6 Threshold Voltage Distribution for Different States of Flash26

Figure 3.7 Flash Memory Module: Controller and Flash Memory27

Figure 3.8 Typical Flash Memory Programming Cycle28

Figure 3.9 Typical Flash Erase Cycle ..28

Figure 3.10 Flash Memory Segment Erase Cycle in Software29

Figure 3.11. Subroutine for Flash Memory Segment Erase30

Figure 3.12 Flash Memory Word Write Cycle in Software31

Figure 3.13 Subroutine for Flash Word Write ...31

Figure 4.1. Steps for Perturbing a Flash Memory Segment35

Figure 4.2 Algorithm for Perturbing Flash Memory Segment37

Figure 4.3 Subroutine for Perturbing Flash Memory Segment38

Figure 4.4 Algorithm for Partial Programming ...39

Figure 4.5 Subroutine for Partial Programming ...40

Figure 4.6 Program Cycle with EMEX Signal ...41

Figure 4.7 Algorithm for Determining SPFB and WPFB................................43

x

Figure 4.8. Subroutine for Determining SPFB and WPFB44

Figure 4.9 XOR Operation in Bit Sequences ...45

Figure 4.10 Algorithm for Generation of N-bit Random Sequence47

Figure 4.11. Subroutine for Generating N-bit Random Sequence48

Figure 4.12 Algorithm for Von-Neumann Debiasing49

Figure 4.13 Subroutine for Von Neumann Be-biasing50

Figure 5.1 System View of Experimental Flow ...52

Figure 5.2 Packet Format Generated for Perturbed Bit53

Figure 5.3 Experimental Platform Flow ..54

Figure 5.4 Workstation Experiment Flow ...56

Figure 5.5 Experimental Platform Used ..57

Figure 6.1 SPFBs and WPFBs distribution over time for Sample Chip 171

Figure 6.2 SPFBs and WPFBs distribution over time for Sample Chip 272

Figure 6.3 SPFBs and WPFBs distribution over time for Sample Chip 373

Figure 6.4 Sample WPFB Bit Biased Towards ‘0’ ...74

Figure 6.5 Sample WPFB Biased Towards ‘1’ ...74

Figure 6.6 A Sample SPFB Bit ..75

Figure 6.7 Fluctuation Count for Different Perturbed Flash Bits76

Figure 6.8 Characterization of Bits in a Segment as SPFB, WPFB, Logic 0 or

Logic 1 ..78

Figure 6.9 Visual Representation of a TRN generated using 10 SPFBs82

xi

LIST OF TABLES

Table Pages

Table 6.1 SPFB and WPFB count for Sample Chip 1 at 1,048,576 Hz 67

Table 6.2 SPFB and WPFB count for Sample Chip 1 at 4,194,304 Hz 67

Table 6.3 SPFB and WPFB count for Sample Chip 1 at 8,388,608 Hz 67

Table 6.4 SPFB and WPFB count for Sample Chip2 at 1,048,576 Hz 67

Table 6.5 SPFB and WPFB count for Sample Chip2 at 4,194,304 Hz 68

Table 6.6 SPFB and WPFB count for Sample Chip2 at 8,388,608 Hz 68

Table 6.7 SPFB and WPFB count for Sample Chip3 at 1,048,576 Hz 68

Table 6.8 SPFB and WPFB count for Sample Chip3 at 4,194,304 Hz 69

Table 6.9 SPFB and WPFB count for Sample Chip3 at 8,388,608 Hz 69

Table 6.10 Number of PFBs in Sample Chip1 71

Table 6.11 Number of PFBs in Sample Chip2 72

Table 6.12 Number of PFBs in Sample Chip3 73

Table 6.13 NIST Statistical Test Result for case using 3 SPFBs (m=3) 80

Table 6.14 NIST Statistical Test Result for case using 5 SPFBs (m=5) 81

Table 6.15 NIST Statistical Test Result for case using 10 SPFBs (m=10) 81

1

CHAPTER 1

INTRODUCTION

1.1 Background and Motivation

Random numbers are corner stone in many computer applications, including

secure communication and authentication, simulations, machine learning algo-

rithms, games, and electronic gambling, to name just a few. These applications pose

a different set of requirements for random numbers, some requiring numbers to be

non-deterministic and others requiring deterministic random numbers. In secure

communications, a communication session between two parties is identified by a

session key. This key needs to be unique and unpredictable. Every message being

transferred between communicating parties is encrypted. Keys used for encryption

and decryption operations also need to be as unpredictable as possible. But in cases

like simulation, to achieve the repeatability of the result, random numbers are de-

sired to follow a certain pattern.

Generation of random numbers may utilize non-deterministic physical phe-

nomenon or some deterministic algorithms. True random numbers are a result of

non-deterministic physical phenomenon. Sampling and conditioning physical source

for producing output forms a low throughput system. Pseudo-random numbers are a

2

result of deterministic operations on small true random numbers, often referred to

as seed. This makes generation of pseudo random number a high throughput system.

However, this also poses a risk of many cryptanalytic attacks [1]. One recent attack

on casinos exploiting the deterministic nature of pseudo random numbers and at-

tackers ability to guess the seed caused significant loss to the gambling industry [2].

True random numbers are more secure against such attacks. However, they pose

challenges in terms of complexity and throughput since they have to be extracted

from physical random processes. This highlights a need for a simple system able to

produce a true random number.

Flash memories are available in almost every type of computing devices, from

low-end embedded systems, mobile devices and smartphones, to high-end computers.

They are an important part of modern microcontrollers that are brains of modern

Internet-of-Things. This makes Flash memories an ideal platform for generating

true random numbers.

1.2 What is this thesis about?

This thesis introduces a new random number generator that is easy to use,

scalable, fast, and robust. It exploits read noise of perturbed NOR Flash memory

cells that are typically found in microcontrollers. Flash memory cells exhibit thresh-

old voltage fluctuations caused by thermal noise and random telegraph noise effects.

Recent proposals have demonstrated how these inherent Flash memory characteris-

tics can be exploited for generating true random numbers. However, these proposals

focus on NAND Flash memories that have higher density and are more susceptible

to noise and they cannot be directly applied to NOR Flash memories. NOR Flash

3

memories are used in modern microcontrollers to store code and read only data.

They have lower density and feature larger memory cells that are less susceptible to

noise and have high endurance.

We characterize behavior of NOR Flash memories found in a commercial mi-

crocontroller family and introduce an algorithm for inducing a perturbed state in

Flash memory cells. Perturbed Flash memory cells can be read as either logic 1 or

logic 0 depending on read noise, which is a combination of both thermal and random

telegraph noise effects. We introduce an algorithm for generating true random num-

bers from strongly perturbed Flash memory cells.

The proposed algorithms have been demonstrated on the TI’s MSP430 family

of microcontrollers. The generated sequences are tested using the NIST statistical

test suite [3]. The evaluation shows that the proposed algorithm passes the NIST

tests.

1.3 Contributions

The major contributions made through this thesis are as follows:

1. We introduce an algorithm for inducing perturbed states in NOR

Flash memory cells.

2. We characterize split-gate NOR Flash memory found in TI’s MSP430

family of microcontrollers.

3. We introduce an algorithm for generating true random numbers that

utilizes read noise of perturbed NOR Flash memory cells.

4

4. We demonstrate the proposed techniques and evaluate their effective-

ness and quality of the generated random sequences using the NIST

statistical tests.

1.4 Outline

This thesis is organized as follows. CHAPTER 2 gives background. It intro-

duces random number generators and gives an overview of related work from the

open literature. CHAPTER 3 discusses Flash memory organization in microcontrol-

lers. CHAPTER 4 introduces the proposed algorithm for perturbing Flash memory

cells, the algorithm used for identifying the nature of perturbed Flash memory cells,

and finally the algorithm for generating true random numbers. CHAPTER 5 dis-

cusses the experimental environment, and presents the two aspects of implementa-

tion, analysis and production. CHAPTER 6 presents the results of the experimental

evaluation. CHAPTER 7 presents the concluding remarks and future work.

5

CHAPTER 2

RANDOM NUMBER GENERATORS

Random numbers are routinely used in many areas of computing, including

simulations, gaming, electronic gambling, and secure communications and cryptog-

raphy. Software and hardware artifacts used to generate random numbers are called

Random Number Generators (RNGs). The requirements for random number genera-

tors differ depending on application type. Some applications, e.g., simulations and

gaming, require random numbers to be deterministic or predictable. Some other ap-

plications, e.g., cryptography applications, require random numbers to be nondeter-

ministic or unpredictable. Thus, we recognize two major types of random number

generators: (a) Pseudo Random Number Generators (PRNGs) and (b) True Random

Number Generators (TRNGs).

Section 2.1 discusses types of random number generators. Section 2.2 dis-

cusses relevant related work where we present academic as well as commercial im-

plementations of random number generators. In Section 2.3, we give a brief overview

of the existing software-based random number generators, and finally in Section 2.4

we present the case for the proposed TRNG.

6

2.1 Types of Random Number Generators

2.1.1 Pseudo Random Number Generator

Pseudo Random Number Generators (PRNG) are also called Deterministic

Random Bit Generators (DRBG). DRBGs are the software artifacts that use a ran-

dom seed to produce a bit sequence that acts as a random number. This means that

they have a predefined algorithm that takes in the seed as an input, performs some

operations, and gives a random number as the output.

The output of such a DRBG is random as long as the seed cannot be guessed

correctly. The whole operation of a DRBG thus depends on the seed value and com-

plexity of the deterministic algorithm employed internally.

National Institute of Standards and Technology (NIST) defines recommenda-

tions in SP 800-9A [4] how to generate random number using DRBGs. The NIST al-

so specifies conditions an entropy source should meet to be used for DRBGs, several

algorithms that can be used for DRBGs, implementation issues, and assurance con-

ditions.

Figure 2.1 shows the functional model of a DRBG described in the NIST’s SP

800-9A [4]. The Instantiate function takes in the entropy input from an entropy

source, combines it with other inputs if available, e.g. nonce value and personalized

string, and produces the seed. The Reseed function creates the seed for other rounds

by combining the entropy input, other available inputs and the current internal

state of DRBG. Here, the internal state refers to all the information that is stored

about the DRBG. Reseeding, in particular, is an important factor since using the

same seed over time might reveal sufficient information that might compromise the

7

security of DRBG. When requested, the Generate function generates the pseudoran-

dom values based on the current internal state, and also saves the new internal

state. The Generate function can be one of many functions. It can be a hash based

function (e.g., Hash_DRGB and HMAC_DRBG), block cipher based algorithm, dual

elliptic curve deterministic DRBG, etc.

Figure 2.1 Functional Model of DRBG [4]

2.1.2 True Random Number Generators

True Random Number Generators, or TRNGs for short, are dependent upon a

physical entropy source. These systems utilize the randomness in the entropy source

to generate the output that is inherently random, after certain preconditioning

steps. These preconditioning steps are dependent upon the situation and the entropy

Instantiate Function Reseed Function

Internal State
Un-Instantiate

Function
Generate Function

Tests Error State

Entropy InputNonce

Personalized String Additional Input

Pseudorandom Output

8

source being used. However, TRNGs are considered to be not very efficient and are

often difficult to implement. Since entropy is the major component, NIST recom-

mendations presented in the NIST SP 800-90B [5] can be followed to verify if the en-

tropy source in question can be used for random number generation.

Figure 2.2 shows a sample entropy source model as defined in NIST SP 800-

90B [5] where a noise source is used to provide entropy. Entropy can be derived from

multiple noise sources if the entropy derived from a single source is not enough to

meet the randomness requirement. The output of such source/s has to be digitized

since the output is highly likely to be an analog signal. Reading the user movement

or thermal noise can be taken as an example of analog entropy source. After digitiza-

tion, the signal can be processed to filter out more robust signal that is not anymore

biased to any specific property of the entropy source. The last step of conditioning is

mentioned as an optional step for further reduction of bias. This is a deterministic

function that might depend on the prior steps and highly based on the signal that is

under consideration. Health tests are also performed to check if the entropy level is

maintained in the source. This is to ensure that any failure in the source of entropy

does not affect the quality of output produced.

9

Figure 2.2. Entropy Source Model for TRNG [5]

2.2 Related Work

This section gives a brief overview of academic research in the area of TRNGs

as well as commercial state-of-the-art implementations for generating random num-

bers. Section 2.2.1 discusses hardware TRNGs that makes use of electronic compo-

nents for generating TRNGs. Although memory components like SRAM, Flash

memory, DRAM are electronic components, we assign a separate section to describe

them in Section 2.2.2. The primary reason for doing this is to discuss works utilizing

memory components separately so that readers can have a clear view on works mak-

ing use of memory components and get an idea about works relevant to our work.

Digitization

(Optional)
Conditioning

Health Tests

Analog Noise Source

Digital Noise
Source

Error
Message Output

10

Commercial random number generators are presented in Section 2.2.3. It discusses

mainly Intel’s and AMD’s random number generators. Some other random number

generators that are implemented using non-electronic means as major source of en-

tropy are discussed in Section 2.2.4.

2.2.1 Electronic Components Based TRNGs

Oscillators are used as one of the major entropy source for random number

generators. Maiti et al. use clock jitters from ring-oscillators to produce true random

numbers [6]. Here, output of many ring-oscillators are fed into XOR gates and the

output is fed into a D flip-flop. Post-processing gives a TRNG, while the pair-wise

comparison of the ring-oscillators output is used to create a Physical Un-clonable

Function (PUF) that can be used to identify a device. Texas Instruments has re-

leased an application note on an oscillator-based random number generator using

MSP430 family of microcontrollers [7]. Here, two independent clock sources are used

and the timing differences induced by these clock sources is exploited for generation

of random numbers.

Majzoobi et al. implement a metastability based TRNG in FPGA-based

TRNG [8]. In this work the authors induce metastability in bi-stable circuit elements

by using programmable delay lines. Hata et al. achieve metastability using two look-

up tables for NAND gate in FPGA implementation of RS flip-flop [9]. Multiple such

latches are input to an XOR gate to produce a single bit of a random number, thus

forming TRNG. Tokunaga et al. propose a quality control based TRNG using meta-

stability [10] by implementing a mechanism to counteract the changes in TRNG.

Here, the resolution time is recorded for each of the metastable events which allows

11

the capability to tune the output. Wu et al. [11] introduce four different circuits that

make use of metastable to bi-stable state transition for generation of true random

numbers. The major idea is that when a circuit switches from metastable to bi-stable

state, the resulting state will be random. Wieczorek et al. use the concept of dual-

metastability [12]. Here the researchers, instead of relying on the instability of the

logical states, use time taken by bi-stable circuits to resolve its state, or resolve time,

as a source of entropy.

2.2.2 Memory Components Based TRNGs

Several research proposals have introduced TRNGs that utilize Flash memo-

ries as a source of entropy. Wang et al. use NAND-based Flash memory for generat-

ing true random numbers [13]. In addition, they also demonstrate how the same

Flash memory can be used as device fingerprint. Here, the Flash memory cells are

brought into unstable state using repeated partial programming. Next, the noise

cells are characterized into those that exhibit Random Telegraphic Noise (RTN) [14]

or Thermal Noise. The Flash memory cells that exhibit RTN or both RTN and

Thermal Noise are used for generating true random numbers. For device finger-

printing, the authors use threshold voltage variation of Flash cells to create unique

identifier for each chip. Wang et al utilize program time of Flash memory cells as a

technique to hide information in Flash memory cells [15].

Ray and Milenkovic introduce an alternative NAND-based Flash memory

TRNG. Their technique [16] uses repeated programming of Flash memory using

checkerboard pattern to stress the Flash memory cells. This causes the threshold

voltage to fluctuate from its original level introducing read noise in memory cells.

12

The noisy Flash memory cells that exhibit either thermal, RTN or both thermal and

RTN noise behavior are used for generating random numbers, thus increasing

throughput.

Another approach to generate random number exploits the power-up state of

SRAM memory. Holcomb et al. demonstrate that on power-up, SRAM cells are in an

undefined state – some cells are skewed towards logic 0, some cells are skewed to-

wards logic 1, and some cells are neither [17]. The SRAM cells that are skewed can

be used to create a unique device fingerprint. The state read from a single power-up

is termed as latent fingerprint of the particular SRAM. From the latent fingerprint

of 512-bits, a random number of up to 128 bits in length can be generated.

DRAM memories exhibits remanence effects. Remanence effect refers to the

procedure by which some information remains in the memory even after the power

is turned off. Using this property, researchers have proposed extraction of random

numbers. Tehranipoor et al. [18] propose a method in which they write 1’s to all the

DRAM cells in use, power them off and after some delay time turn the power back

on to find not all the bits are settled to 0. They say that the difference in storage ca-

pacitance of each bit cause them to have different properties, which makes it possi-

ble to read random values out of them.

At start up, DRAM cells act similar to SRAM cells and do not all go to state of

‘0’ as expected, but rather go to either state of ‘1’ or ‘0’. Tehranipoor et al. develop

PUF exploiting variation in each of the DRAM cells’ start-up values [19]. Pyo et al

have proposed refresh cycles in DRAM cells can cause variations in access times

which can be exploited to produce random numbers [20].

13

Vendor specific Flash memory has also been used to generate PUF as well as

random number. Clark et al. use SST39VF1601C device from Microchip Inc. to in-

terrupt the erase cycle of the Flash memory thereby giving partial erase operation

[21]. The key idea here is that over multiple trials, same fingerprint from bit values

read can be generated with some bit mismatches. Certain functions are applied on

the raw-bit strings to generate TRNG.

Balatti et al. use resistive switching RAM (RRAM) for generation of random

numbers [22]. Here, voltages are applied independently to two RRAM cells connect-

ed in parallel, and resulting output voltage is measured. The High Resistance State

(HRS) of the cells cause large statistical variations which is the source of entropy in

this experiment.

Jiang et al. develop TRNG based on memristors [23]. Delay in threshold

switching in the memristors at On-switching is exploited to generate true random

numbers. Here, a constant width pulse is applied to the memristor. Under this volt-

age, the memristor is turned On which would cause sudden rise in output voltage

after some delay time. A comparator is used to compare this output with a pulse.

2.2.3 Commercial RNGs

Intel introduced its random number generator that uses a ring oscillator

based analog circuit [24]. Their RNG uses Johnson’s Noise or thermal noise derived

from voltage across un-driven resistors [25]. Since this RNG is based on an oscilla-

tor, the thermal noise was used to drive the slow clock. The output of a faster clock is

sampled on every output of the slower clock. The researchers claim that given the

slower clock contains enough randomness, any other non-random signals should not

14

affect the quality of randomness. The major demerits of this circuits is that the sig-

nal used to drive the slower clock are very small and they have to be amplified,

which would consume more power.

Intel introduced an alternative TRNG that exploits metastability in digital

circuitry. Moving to digital circuitry made the throughput increase from few kilobits

per second to 3 gigabits per second [24]. Intel also provides machine instructions for

dealing with the random numbers RDRAND and RDSEED [26]. In this technology

named Bull Mountain [24] [26], they sample the thermal noise source, which is the

entropy source, condition it with AES-CBC-MAC that will generate a high quality

random seeds of 256 bits. This seed is used to generate Cryptographically Secure

Random Number (CSPRNG) and other high quality seed.

Ring Oscillators are also a major source of randomness in case of other com-

puter vendors. AMD [27] uses 16 ring oscillators as the source of entropy in its ran-

dom number generator system under Cryptographic Co-processor (CCP). Here, 512

raw bits are fed to AES-256 CBC-MAC to construct 128 bit of random seed. The pro-

cess is repeated three times so that an initial seed of 384 bits is generated which is

fed to DRBG.

2.2.4 Other Physical TRNGs

Several research efforts propose random number generators that use other

physical components besides the electronic components as a major source of entropy.

Tang et al. [28] propose a random number generator that utilizes the noise

from an image sensor in a smartphone camera. Guo et al. suggest using Phase Noise

in laser signals to generate TRNG [29]. Similarly, Zhang et al. propose the random

15

number generation based on use of chaotic laser signals generated by dividing the

original signal and using feedback [30]. Terashima et al. use an alternative approach

for generating chaotic signals using photonic integrated circuit and employing post

processing to generate random signal [31]

2.3 Software Based Tools for Random Numbers

There are many software based implementations of random number genera-

tors. Most of the time these random number generators use a source of entropy

which is sampled for production of a random seed. The random seed is then fed to a

deterministic algorithm. This deterministic algorithm then generates random num-

ber. Thus software based random number generators are inherently pseudo-random

in nature.

rand() function is provided in C++ for the purpose of generation of random

numbers under cstdlib library [32]. Many random number generation templates, like

linear_congruential_engine, mersenne_twister_engine and sub-

tract_with_carry_engine can be chosen in C++11 using random header [33]. Custom

user defined seed can be defined using seed() function as well. rand() function is also

available in OpenSSL library.

Random class in defined in Java for similar purpose. It uses a 48-bit seed and

linear congruential formula [34]. Python also has implementation of random class,

using function getrandbits() of which pseudo random bits can be obtained. It uses

mersenne_twister generator internally [35].

16

2.4 The Case for NOR Flash Memory TRNG

TRNGs produce sequence of bits that are derived from a source that is non

deterministic, which is the case in most of the systems discussed in Section 2.2. It

can also be seen that most hardware based TRNG implementations described in Sec-

tion 2.2 have some extra component attached to a processing element, while others

seem to be stand-alone TRNG. This means if someone has to integrate a random

number generation functionality in his/her product, it has to come from that added

component, which increases on-chip area and hardware complexity. It might not be a

viable approach in all the cases since increase in on-chip area increases the cost and

area occupied. Ring oscillators based implementations in particular are known for

consuming more energy.

We propose a Flash memory based random number generator. There have

been implementations of TRNG using Flash memory, as already discussed. But the

proposals are external components which can only be used as external TRNG while

attached to another processing element. This does not always form a portable sys-

tem. This is the case with previous works where off-the-shelf NAND Flash memory

was used [16], [36]. Our work is based on NOR Flash memory that is available in all

modern microcontrollers, typically integrated with processors on a single chip. Being

on a single chip, and being addressable through programming makes our approach

no-cost, zero extra space occupying solution for TRNG and totally portable. Our

work is the first of its kind to use on-system Flash memory component as an entropy

source.

Modification to hardware is another challenge in TRNG systems proposed

until now. Our work is fully implemented in software and does not require any sys-

17

tem that is already deployed to go through any modifications in terms of hardware.

Our work can be used as a library or a function call. Thus, it does not interfere with

the already existing software in the system. Our implementation algorithm has

small memory footprint, and has a high throughput for producing high quality ran-

dom numbers. This makes it an easy-to-install and easy-to-deploy system. This also

addresses the problem that most TRNGs proposed are only deployable to new

ASICs.

Since our mechanism is implemented on-system, we can boast that our

TRNG is robust in the sense that it is tamper proof. Any physical attacker has to at-

tack the processor physically to damage the TRNG system. NAND Flash memory

based techniques use the method of stressing the memory cells. Our method is based

on partial programming, which is a one-time operation. So there is no chance of de-

stroying the memory components this is particularly important in case of systems

with NOR Flash memory since they have lesser endurance than NAND Flash

memory.

18

CHAPTER 3

FLASH MEMORIES IN MICORCONTROLLERS

This chapter gives a brief background in Flash memories. Section 3.1 intro-

duces basics of Flash memories with a special emphasis on NOR Flash memories

that are used in this thesis. It presents physical structure of Flash memory cells,

Flash memory organization, and basic Flash memory operations. Section 3.2 pre-

sents the programmer’s view of Flash memory in microcontrollers. Section 3.3 de-

scribes perturbed states of NOR Flash memory cells and how they can be exploited

for generating random numbers.

3.1 Flash Memory Basics

Flash memories are non-volatile memory components. This means that data

stored in Flash memories are retained even when the power supply is turned off.

They are found in almost all the electronic devices that store information and/or con-

tain software or firmware. They are found in computing systems ranging from small

embedded devices to laptops and workstation computers, or specialized standalone

storage devices. In Section 3.1.1 we discuss general structure of Flash memory,

while in Section 3.1.2, we discuss the structure of a single memory element of the

Flash memory that is used in this research.

19

3.1.1 Structure of Flash Memory

Flash memories are organized as an array of memory cells. Each of the cells

is a floating gate transistor. Floating gate transistors are MOSFETs that are similar

to standard MOSFETs but contain an extra gate. This means that floating gate

transistors have two gates: a control gate (CG) and a floating gate (FG) as shown in

the Figure 3.1. The floating gate (FG) is surrounded on all sides by oxide layer which

makes it completely electrically isolated and the charge is trapped in it. To program

a Flash memory cell means inducing charge carriers i.e. electrons to the floating

gate (FG) and to erase means to remove these charge carriers. Logically, erasing

would change the state from ‘0’ to ‘1’ and programming would change the state from

‘1’ to ‘0’.

Figure 3.1 Floating Gate Flash Memory Cell

Based on the arrangement of the memory cells, the Flash memory can be of

two types: a) NAND Flash memory and b) NOR Flash memory. Section 3.1.1.1 and

Section 3.1.1.2 introduce each of these Flash memory, respectively.

3.1.1.1 NAND Flash Memory

Memory cells in NAND Flash are organized in series as shown in Figure

3.2(a). This series array is called NAND String [37] and can contain 32 to 64

D

S

CG

FG

VCGS
IDS

20

memory cells. There are two selection transistors that connect each NAND String to

Source Line and Bit Line.

Figure 3.2(b) shows NAND Flash memory that combines multiple NAND

Strings from Figure 3.2(a) to form a complete storage element. A Word Line (WL)

connects control gates of all memory cells in a row. Cells that are connected by a sin-

gle Word Line form a memory Page, which is the smallest unit that can be pro-

grammed. Multiple Word Lines form a Block in a Flash memory, which is the small-

est unit to be erased i.e. any erase operation has to span an entire Block. Each of the

cells store either a single bit of information in case of Single Level Cell (SLC) tech-

nology or multiple bits of information in case of Multi-Level Cell (MLC) Flash tech-

nology.

NAND Flash memory allows for higher storage density compared to other

kinds of Flash memory, e.g. NOR Flash memory. They have faster program times

and faster erase times. However, since they are arranged in series random access is

not available. They are good for high volume storage applications, but since they do

not provide random access, they are not used in cases where execute-in-place1 func-

tionality is required.

1 Execute In Place is a method of executing codes from memory where they are stored

rather than copying them to RAM

21

Figure 3.2 NAND Flash Memory Structure.

(a) Arrangement of Flash Memory Cells in an Array Forming NAND String (b) A

Complete Storage Element Forming NAND Flash Memory

3.1.1.2 NOR Flash Memory

Memory cells in NOR Flash memory are arranged in parallel. Here, all the

control gates of memory cells in a row are connected through Word Line (WL). Simi-

(b) Organization of Flash Memory
Cells in a NAND Block

WL0

WL N

WL N-1

WL N-2

WL N-3Fl
as

h
 M

em
o

ry
 C

el
ls

Select Gate

Select Gate Select Gate

Select Gate

1 Block of data

1 page of data

Bit Lines

Source Lines

(a) A NAND Cell
array

22

larly, the memory cells in a column are connected through the Bit Line (BL) which

connects the drain of these cells. The source is connected to a common source termi-

nal as shown in Figure 3.3.

Since the memory cells are connected in parallel, random access of the data is

possible in NOR Flash memory. Random access of data is particularly useful in cas-

es where execute-in-place is a necessity. Execute-in-place allows the code stored in

NOR Flash memory to be executed from Flash memory without copying the code to

RAM, which is often the case in embedded applications. Another advantage of a

NOR based Flash memory is that byte or word programming is possible, while in

case of NAND Flash memory, most of the times the minimum entity to be pro-

grammed is a page, which is much larger than a word.

Figure 3.3(a) shows a NOR Flash memory block. Multiple such blocks togeth-

er form a segment. A segment is the smallest unit of memory that can be erased be-

fore programming again. Multiple such segments group together to form a bank as

shown in Figure 3.3(b). Here the capacity of the illustrated Flash memory block is

128 bytes i.e. 64 16-bit words. Four such blocks form a segment and 128 such seg-

ments form a bank.

23

Figure 3.3 NOR Flash Memory Architecture.

(a) A Block of NOR Based Flash Memory (b) Organization of Flash Memory Blocks,

Segments and a Bank

The Flash memory used in this work is a NOR Flash memory. Specifically, it

is composed of Split-Gate Flash memory cells. The following section gives a brief de-

scription of Split-Gate Flash memory cell.

3.1.2 Split-Gate Flash Memory Cell

Flash memory used in our research is composed of a special memory cell,

known as the split-gate Flash memory cell. Figure 3.4 shows a cross section of a

split-gate Flash memory cell. The floating gate (FG) in case of split-gate Flash

memory cell occupies only a portion of the area above the substrate between the

source and drain. The Control Gate (CG) occupies a portion of the area between the

source and drain, as well as the area that lies above the floating gate.

Flash
Bank

WL 0
BL 15 BL 14 BL 0. . .

WL 1

WL 63

.

.

.

Common
Source

(a) NOR Flash Memory Block

Block 0

Block 1

Block 2

Block 3

Segment 0

(b) Flash Blocks, Segments, Banks

Segment 127

. . .

24

P-substrate

Source Drain

Floating Gate (FG) VD

VS

VSUB

VCG

Control
Gate (CG)

“Program”

“Erase”

Figure 3.4 Cross Sectional View of a Split-Gate Flash Memory Cell

Flash memory cell can be in one of two states in a stable condition. Logic ‘1’ is

erased state while logic ‘0’ is programmed state. Operationally, in order to change

the state of Flash memory cell, either a program operation has to be performed, or

an erase operation has to be performed. Other operation that can be performed in

Flash memory is read. In this section, we will briefly discuss each of the operations

for split-gate Flash memory cell.

To program the Flash memory cell means to charge the floating gate with

electrons. During this operation, a large voltage (Vs > 10V) is applied to the source

terminal. This application of large voltage results in electron injection on the float-

ing gate by Source-Side Hot Carrier Injection (SSI) as illustrated by the red arrow in

Figure 3.4. The electrons are thus trapped into the floating gate. This negative

charge on the floating gate effectively lowers the voltage between the control gate

and the source terminal which increases the threshold voltage (VTH), which is now

the threshold voltage for programmed state (VTH=VTHP) as shown in Figure 3.5.

To erase the Flash memory cell, a large voltage has to be applied to the con-

trol gate. This large voltage (VCG ~12V) removes the trapped electrons from the float-

25

ing gate through the Fowler-Nordheim (F-N) tunneling as illustrated by the blue ar-

row in Figure 3.4 [38], [39]. This removal of electrons reduces the threshold voltage

VTH, which is now the erase threshold voltage (VTH=VTHE) as shown in Figure 3.5.

IDS

VCGSVTHE VTHP

“1” “0”

erase program

VREF

Figure 3.5 I-V Characteristic of Split Gate Flash Memory Cell

Memory Cells Reading from the Flash memory implies application of voltage

to the control gate and the drain terminal. The voltage applied to the control gate is

called the read voltage (VREAD=VCG=3V) and that applied to the drain is called sense

voltage (VSENSE=VD=2V). The threshold voltage is sensed to determine the state of

the Flash memory cell. The erased cell, which does not have the trapped electrons in

the floating gate would conduct the current, and thus give a logic ‘1’. On the other

hand, the programmed cell will not be able to conduct the current, thereby giving a

logic ‘0’ as shown in Figure 3.6. The reference voltage (VREF) is chosen between the

programmed threshold voltage (VTHP) and erased threshold voltage (VTHE), so that

the correct state can be identified.

26

VTHE VTHPVREF VTH

PDF
“0”“1”

Figure 3.6 Threshold Voltage Distribution for Different States of Flash

3.2 Programmers’ View of NOR Flash Memory

NOR Flash memory is an integral part of modern microcontrollers. By de-

fault, the operation to be performed in Flash memory is read in which case it acts as

a ROM, but it can be programmed and erased as well. As already discussed in Sec-

tion 3.1.2, it can be programmed and erased based on need. However, it should be

noted that each of the bit can be programmed from ‘1’ to ‘0’ individually, but repro-

gramming from ‘0’ to ‘1’ requires an erase cycle.

The Flash memory module used in this research includes a controller that is

responsible for controlling the erase and program (or write) operations. As shown in

Figure 3.7, it consists of a voltage generator, timing generator and control registers.

The voltage generator is responsible for generating voltages for erase and program

operations. Timing generator controls the duration of operations. While in read

mode, i.e. in the default mode the voltage generator and timing generator are both

off.

27

Figure 3.7 Flash Memory Module: Controller and Flash Memory

Writing to a Flash memory or the programming operation can be done from

Flash memory itself or from RAM. While writing from the Flash memory, the CPU is

halted until the completion of operation, but it is not the case when programming is

done from RAM. The processor continues to execute the code from RAM.

Figure 3.8 shows a typical Flash memory programming operation cycle. It in-

cludes the time for the voltage generator to bring up the programming voltage, time

to perform programming operation itself, and time to remove the programming volt-

age. During this whole period, the CPU cannot access the Flash memory and must

wait until the completion of the operation (it can be detected by checking a flag

Address/Data Latches
Control Registers

Flash Memory
Array

Timing
Generator

Voltage
Generator

Address Bus Data Bus

28

which in our case it is the BUSY signal), either the code is executed from Flash

memory itself or from RAM.

Figure 3.8 Typical Flash Memory Programming Cycle

Figure 3.9 shows a typical Flash erase cycle that includes times for the volt-

age generator to bring up erase voltages, time to perform erasing, and time to turn

off the voltage generator. However, the erase cycle typically takes significantly more

time than the typical program cycle. In our particular case, the Flash memory pro-

gramming for a word/byte takes between 64 and 85 s, whereas erasing a segment

takes between 23 and 32 ms.

Figure 3.9 Typical Flash Erase Cycle

Figure 3.10 shows the program flow for Flash memory segment erase opera-

tion. Figure 3.11 shows a C language subroutine for the same operation. The first

step is to check if the Flash memory is currently busy programming or erasing which

Program Cycle Time (TPROG)

Generate
Prog. Voltage

Programming Operation Active Remove
Prog. Voltage

Erase Cycle Time (TERASE)

Generate
Erase Voltage

Erase Operation Active Remove
Erase Voltage

29

is done by checking the BUSY signal. Then, the Flash control registers are initial-

ized operation (lines 5 and 7 in Figure 3.11). The erase operation is triggered by a

dummy write operation (line 9 in Figure 3.11). The program waits for the operation

completion by checking the BUSY signal which is high as long as the operation is in

progress (line 11 in Figure 3.11).By setting the LOCK bit, the Flash memory returns

to its default read mode.

Figure 3.10 Flash Memory Segment Erase Cycle in Software

Erase Flash Memory
Segment Start

Is BUSY = 1?

Set Up Flash Controller
Set Up Erase Mode

Perform Dummy Write

Is BUSY = 1?

Set Lock Bit

End

Y

N

Y

N

30

Flash Memory Erase Subroutine

1. void EraseFlashSegment(uint_16 *pFlashAdr) {

2. //wait while BUSY=1

3. while(FCTL3&BUSY);

4. //Clear LOCK bit to unlock the flash memory for erasing

5. FCTL3 = FWPW;

6. //Enable erase

7. FCTL1 = FWPW + ERASE;

8. // Dummy write (erase)

9. *pFlashAdr = 0;

10. //Wait while BUSY=1

11. while(FCTL3&BUSY);

12. //Set LOCK bit to lock the flash memory for writing or erasing

13. FCTL3 = FWPW + LOCK;

14. }

Figure 3.11. Subroutine for Flash Memory Segment Erase

Program flow for writing to a Flash memory word is shown in Figure 3.12

while a C language subroutine for the same operation is shown in Figure 3.13. First

the busy state of Flash is checked by checking the BUSY flag. Then, the controller is

set into the programming mode by setting the corresponding control registers (lines

5 and 7 in Figure 3.13). The desired information is then written to a selected location

(line 9 in Figure 3.13). The BUSY signal is inspected to detect the end of operation

(line 11 in Figure 3.13) and then the default read mode is restores (lines 13 and 15

Figure 3.13).

31

Figure 3.12 Flash Memory Word Write Cycle in Software

Flash Memory Write Subroutine

1. void WriteFlashWord(uint_16 *pFlashAdr, uint_16 wVal) {

2. //wait while BUSY=1

3. while(FCTL3&BUSY);

4. //Clear LOCK bit to unlock the flash memory for writing

5. FCTL3 = FWPW;

6. //Enable write

7. FCTL1 = FWPW+WRT;

8. //Write new value

9. *pFlashAdr = wVal;

10. //Wait while BUSY=1

11. while(FCTL3&BUSY);

12. // Clear WRT bit

13. FCTL1 = FWPW;

14. //Set LOCK to lock the flash memory for writing or erasing

15. FCTL3 = FWPW + LOCK;

16. }

Figure 3.13 Subroutine for Flash Word Write

Write Flash Memory
Word Start

Is BUSY = 1?

Set Up Flash Controller
Set Up Write Mode

Perform Write

Is BUSY = 1?

Set Lock Bit
Clear Write Mode

End

Y

N

Y

N

32

3.3 Perturbed States in NOR Flash Memory

In a steady state, read from the Flash memory cell gives either logic ‘1’ or ‘0’

depending whether it is in the erased or programmed state, respectively. During the

read operation, as discussed in Section 3.1.2, the read voltage (VREAD) is applied on

the Word Line (refer to Figure 3.3) and the sense voltage (VSENSE) is applied to the

Bit Lines. The current will flow from those cells in the selected word if the threshold

voltage is less than read reference voltage. The threshold voltage in Flash memory

cell might fluctuate because of the noise.

The noise is caused by either Random Telegraphic Noise (RTN) [14] or ther-

mal noise, or both. We call this noise the read noise and it is always present in a

Flash memory. Thermal noise is the white noise that is present because of the ther-

mal agitation of the charge carriers. RTN is the noise caused by random trapping

and emission of charge carriers in small electronic devices because of the defects

present. This trapping and emission of the charge carriers cause random variations

in the resistance of device. These variations are called RTN. However, the noise

margin for reference voltage is generally kept at a safe level, so that the value read

from a Flash cell is unaffected during any read operation.

Figure 3.6 shows the distribution of threshold voltages in cases when the log-

ic state is either ‘0’ (programmed) or ‘1’ (erased), centered around VTHP and VTHE, re-

spectively. The solid lines represent the state of bits in stable conditions, while the

vertical line representing VREF is the reference voltage used to determine the state of

Flash memory cell.

In order to extract any behavior that is random, the approach is to agitate the

Flash memory cells. The threshold voltage should be brought closer to the read ref-

33

erence voltage so that combination of the noises, referred to in our text as “read

noise” would influence the threshold voltage, thereby giving alternate reading be-

tween ‘0’ and ‘1’. The Flash memory cells in this state where the threshold voltage is

brought closer to the reference voltage are referred to as perturbed cells.

Previous experiments done by Ray and Milenkovic [16] here at the UAH uses

an approach where repeated programming of a checkerboard pattern is performed to

disturb states of NAND Flash memory cells. The experiments done by Wang et al.

[36] also employ the technique of partial programming. Here the bits in NAND

Flash memory cells are programmed-partially until sufficient amount of noise is ob-

served. The bit values are conditioned later to produce random numbers.

In this thesis we use partial programming to perturb state of Flash memory.

This way we do not require repeated program-erase cycles or repeated program cy-

cles that take more time and wear-down Flash memory faster.

34

CHAPTER 4

PROPOSED NOR FLASH TRNG

The technique for generating true random numbers from NOR Flash involves

three major steps. First, we perturb the Flash memory cells using partial program-

ming as described in Section 4.1. Second, we classify the Flash memory cells based

on the values read as described Section 4.2. The partially programmed cells are re-

peatedly read and bits that fluctuation between states ‘1’ and ‘0’ are identified as

Perturbed Flash Bits (PFB). A subset of these bits with the number of fluctuations

exceeding a certain threshold are identified as Strongly Perturbed Flash Bit (SPFB)

and the bits that do not exceed the threshold are identified as Weakly Perturbed

Flash Bit (WPFB). Third, we feed the SPFBs into an algorithm that produces a ran-

dom bit sequence as described in Section 4.3.

4.1 Algorithm for Perturbing Flash Cells

Figure 4.1 shows a flowchart that outlines main step in perturbing a Flash

memory segment. The first step involves erasing the selected Flash memory seg-

ment. After that, each word (or byte) in the segment is partially programmed. Par-

tial programming involves initiating a Flash program operating and aborting it be-

fore it is completed. This causes the removal of the programming voltage abruptly,

35

thus leaving the Flash memory cells in a perturbed state where their threshold volt-

age is close to the read reference voltage.

Figure 4.1. Steps for Perturbing a Flash Memory Segment

But there are certain implementation constraints concerning the approach

presented in Figure 4.1. The constraints are presented below.

a. When a write operation is being performed by the Flash memory control-

ler, the CPU is stalled and cannot issue an abort signal.

Erase a Flash
Memory Segment

Is i the last
word?

Program ith Word

i=0

i++

Initiate Abort Signal
After Some Time

End

Perturb Flash
Segment Start

N

Y

36

b. The time for issuing the abort signal should be carefully chosen relative to

the beginning of the program cycle to maximize the number of Flash cells

in the perturbed state.

As a solution to the above listed constraints, the following adjustments to the

flowchart in Figure 4.1 are performed.

a. The program performing the partial programming is copied to the RAM

and executed from the RAM. This way, the abort signal can be issued by

the CPU after a certain delay after the beginning of the programming cy-

cle.

b. The software delay between the moment programming cycle starts and

the moment abort signal is issued can be determined by characterizing

the behavior of the Flash memory.

Figure 4.2 shows the algorithm for perturbing Flash memory segment. Figure

4.3 shows a C subroutine for same operation. The selected segment at the starting

address SEGMENT_ADDR is first erased (line 6 in Figure 4.3). After this step each

word in the segment reads as 0xFFFF. Next, the function that carries a partial pro-

gramming of a given word, paritalProgramWord(), is copied into the RAM (line 8 in

Figure 4.3). For each word in the segment, the function for partial programming is

invoked (line 12 in Figure 4.3).

37

Figure 4.2 Algorithm for Perturbing Flash Memory Segment

N

Perturb Flash
Segment Start

Erase Flash Segment

Copy Partial Program
Function to RAM

Address = SEGMENT_ADDR
i= 0

Call RAM Function for Flash
Memory “Address”

Is i <
SEGWORDS?

End

i = i+1
Address = Address+1

Y

38

CPU Subroutine For Perturbing a Flash Memory Segment

1. uint16_t *pFlashAdr = SEGMENT_ADDR;

2. void perturbFlashSegment(){

3. //RAM address to copy function

4. uint16_t *ramAddr = RAM_ADDR;

5. //erase the segment

6. eraseFlashSegment(pFlashAdr);

7. //copy function to RAM

8. copy2Ram(partialProgramWord,ramAddr);

9. //For each word

10. for(uint8_t i=0;i<SEGWORDS;i++){

11. //invoke RAM function

12. asm(“CALLA #ramAddr”);

13. //move to next word

14. pFlashAdr++;

15. }

16. }

Figure 4.3 Subroutine for Perturbing Flash Memory Segment

Figure 4.4 shows the algorithm for partial programming operation to be per-

formed from RAM. Figure 4.5 shows the C subroutine partialProgramWord() imple-

mented to perform partial programming of a word in the Flash memory pointed to

by pFlashAdr. The Flash memory control registers are first properly initialized for a

write operation (lines 3 and 5). FCTL1 and FCTL3 are the Flash memory controller

registers - FCTL1 is used to specify the operation to be performed, while FCTL3 is

used to unlock the Flash memory and check the status of the Flash memory control-

ler. The actual programming (or writing) of the word starts when a value 0 is writ-

ten to the word at address pFlashAdr as shown in line 4. But the major objective

here is to perform a partial programing. Thus, the abort signal is created by setting

the emergency exit (EMEX) bit in the control register FCTL3 as shown in line 12.

39

Figure 4.4 Algorithm for Partial Programming

Configure Flash Controller
Registers for Write Operation

Partial Program RAM
Function Start

Write Value 0 to Word Address

Wait

Issue Emergency Exit Signal

Configure Flash Controller
Registers for End of Operation

Is BUSY signal high?

End

N

Y

40

Subroutine For Partial Programming Copied To RAM

1. void partialProgramWord(){

2. //clear lock bit

3. FCTL3 = FWPW;

4. //enable write

5. FCTL1 = FWPW+WRT;

6. //write 0 to the address

7. *pFlashAdr = 0;

8. //waiting..

9. _NOP();

10. ...

11. //issue emergency signal

12. FCTL3 = FWPW+EMEX;

13. //clear WRT bit

14. FCTL1 = FWPW;

15. //set lock bit

16. FCTL3 = FWPW+LOCK;

17. //wait while BUSY=1

18. while(FCTL3&BUSY);

19. }

Figure 4.5 Subroutine for Partial Programming

Setting the EMEX bit right after the program command would cause the pro-

gram operation to be aborted early during the program cycle. This would leave all

the bits in the given word in the erased state (they read as logic ‘0’). Issuing program

abort too late would result in all the bits of the given word to be in the programmed

state (they read as logic ‘1’). The software delay between the beginning of program-

ming cycles and the moment emergency exit is issued is controlled by the NOP() in-

structions. These instructions burn time (1 NOP is equivalent to 1 processor clock

cycle) and by adding a series of these instructions between lines 9 and 11 we can ad-

just the duration of the partial programming as shown in Figure 4.6. Alternatively,

to reduce a memory footprint of the software delay code section, a series of NOP in-

structions can be replaced by an empty loop.

41

Figure 4.6 Program Cycle with EMEX Signal

4.2 Algorithm for Identifying Strongly Perturbed Flash Bits (SPFB)

After partial programming operation is completed, each of the word address

is read a certain number of times. The value read is stored in a buffer. The values

are read in a continuous sequence, and operation for characterizing the bit as SPFB,

WPFB or none is done later. This is done so as not to interfere or obstruct the read-

ing values from perturbed location.

After the word address is read to fill the buffer, the number of fluctuations in

each of the bit position is calculated. A fluctuation is defined as the transition of the

bit value from ‘1’ to ‘0’ or from ‘0’ to ‘1’. The threshold set for classifying a Flash bit

as SPFB is 1/8th of the total number reads. If the number of fluctuations is larger

than that value, the bit is considered an SPFB. If the number of fluctuations is 0,

the bit is ignored. If the fluctuation value is greater than 0 but less than the thresh-

old value, the bit is considered to be a WPFB.

Figure 4.7 describes the algorithm for determining the SPFBs and WPFBs af-

ter perturbation is performed, while the C subroutine is presented in Figure 4.8. The

total number of reads that is performed is nStep times. The read values from the ad-

Emergency Exit

Generate
Prog.

Voltage

Remove
Prog.

Voltage

Program Cycle Time (TPROG)

BUSY

42

dress (pFlashAddr+j) are kept in the buffer at the starting address BUFF-

ER_ADDRESS. Then each bit position value is compared with the same bit position

value obtained from next read value. If these two values are same, this means that

the bit has not changed its value. If they are different, then the number of fluctua-

tions is increased. This is done by increasing the kth item of the countFluctuationArr

array.

After finding the number of fluctuations per nStep values read from a word

address, each of the fluctuation values that are stored in array countFluctuationArr

is checked to see if it is greater than or equal to SPF_Threshold (i.e. nStep/8). If it

is, then the bit satisfies the condition for SPFB. The information about the word ad-

dress as well as the bit position is kept in a global array. In case of the above algo-

rithm, the address information is placed in SPFBAddr and the bit information is

kept in SPFBit. If the number of fluctuation is less than SPF_Threshold value, but

is greater than 0, then the bit satisfies the condition for a WPFB. The address in-

formation is kept in another global array named WPFBAddr and the bit information

is kept in WPFBit.

43

Figure 4.7 Algorithm for Determining SPFB and WPFB

Characterize Flash Location
Function Start

j=0

myBuffer = Read Values from jth Flash
memory location nStep times

Initialize Fluctuation Count Array
countFluctuationArr[16] to 0

Initialize Each member of Previous Bit
Value Array bitPrevValue[16] to bit values

of myBuffer[0]

i=1

k=0

myBitNow = kth bit in myBuffer[i]

Is
myBitNow==bitPrevVal

ue[k]?

countFluctuationArr[k]++

bitPrevValue[k] = myBitNow
k++

Is k<16

i++

Is i<nStep? B

A

N

Y

Y

N

Y N

l=0

Is
countFluctuationArr[l]>

SPF_Threshold?

Push jth Flash Memory Location to
SPFBAddr

Push l to SPFBit

l++

Is l<16?

j++

Is jth Address Segment
End?

End

B

A

Is
countFluctuationArr[l]>

0?

Push jth Flash Memory Location to
WPFBAddr

Push l to WPFBit

Y

N

Y

N

Y

N

Y

N

44

Subroutine For Characterization Of Flash Bits

1. uint16_t* pFlashAdr = SEGMENT_ADDR;

2. //For each word in the segment

3. for(int j=0;j<SEGWORDS;j++){

4. //storage buffer

5. uint16_t* myBuffer = (uint16_t*)BUFFER_ADDRESS;

6. //reading each address nStep times

7. for(uint16_t i=0;i<nStep;i++){

8. //j is the word number in the flash segment

9. *myBuffer++ = *(pFlashAdr+j);

10. }

11. //reset storage buffer

12. myBuffer = (uint16_t*)BUFFER_ADDRESS;

13. //fluctuation count for each of 16 bit positions

14. uint16_t countFluctuationArr[16] =

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};

15. uint8_t bitPrevValue[16];

16.

17. //read the first value in buffer

18. uint16_t myTempVal = *myBuffer++;

19. //initialize the bit count

20. for(uint8_t i=0;i<16;i++){

21. bitPrevValue[i] = myTempVal&(0x01<<i);

22. }

23. //for each value in buffer

24. for(uint16_t i = 1;i<nStep;i++){

25. //read the value

26. myTempVal = *myBuffer++;

27. //for each bit in each value read

28. for(uint8_t k=0;k<16;k++){

29. uint8_t myBitNow = myTempVal&(1<<k);

30. //compare if bit is equal to previous bit at same position

31. if(myBitNow!= bitPrevValue[k]){

32. //increase count if it is

33. countFluctuationArr [k]++;

34. //save for next iteration

35. bitPrevValue[k] = myBitNow;

36. }

37. }

38. }

39. //store the address and bit

40. for (uint8_t i=0;i<16;i++){

41. //if they are SPFB, store them

42. if(countFluctuationArr [i]>=SPF_Threshold){

43. *SPFBAddr++ = pFlashAdr;

44. *SPFBit++ = i;

45. }else if (countFluctuationArr [i]>0){

46. *WPFBAddr++ = pFlashAdr;

47. *WPFBit++ = i;

48. }

49. }

50. }

Figure 4.8. Subroutine for Determining SPFB and WPFB

45

4.3 Algorithm for Generating True Random Numbers

Initial algorithms to generate true random numbers considering just a single

SPFB as a source of entropy failed. Thus, we opted for an algorithm that combines

multiple entropy sources. In this case, the bit values read from more than one SPFB

are combined using XOR operation which is equivalent to performing addition of in-

dividual bit values. Figure 4.9 illustrates a simple XOR operation on three bit se-

quences.

seq1 = [1 0 0 0 1 1 0 1 0 1 0]

seq2 = [0 1 0 0 0 1 0 0 1 0 1]

seq3 = [1 1 1 0 0 1 0 0 1 1 0]

Sum = [2 2 1 0 1 3 0 1 2 2 1]

XOR = [0 0 1 0 1 1 0 1 0 0 1]

Figure 4.9 XOR Operation in Bit Sequences

Figure 4.10 shows the algorithm for generating N-bit random number. Figure

4.11 shows the subroutine for implementation of the algorithm. Information about M

strongly perturbed bit in a Flash segment is kept in arrays SPFBAddr and SPFBit.

SPFBAddr contains the address of the word that contains SPFB while the corre-

sponding bit index is kept in array SPFBit.

A variable k is used to index the SFPB being read. Another variable m is

used to indicate the number of SPFBs that are considered for generating a set of

random sequence. If M > m, then out of M available SPFBs, m SPFBs are read in a

sequence (indexed by k) nStep times each, the bit position indicated by respective

value in SPFBit are XORred together and random sequence of length nStep is thus

generated. Remaining m SPFBs are used to produce next nStep length of random

46

sequence and the process is continued in a cycle until random bits of desired length

N is produced. In the case when M<m, M SPFBs are read in a sequence (indexed by

k) and the bit positions indicated by respective value in SPFBit are read and

XORred and again this process is continued in cycle starting from first SPFB ad-

dress until k=m. This produces a single sequence of random bits of length nStep. For

next random sequence of length nStep, the process is started from the SPFB k is

currently pointing to.

Sorting out the bit value pointed by SPFBit for creation of readVal is not pre-

sented in algorithm and subroutine to make the illustration simple. The bit values

at the respective positions can be extracted by using a bitmask once the word is

read.

countFluctuation() function implementation is not shown in the subroutine

presented in Figure 4.11 for simplicity. The concept can be derived from line 13-line

38 form subroutine presented in Figure 4.8. This is additional cautionary step that is

adapted in the implementation to make sure that the Flash memory cell identified

as SPFB still holds the property. This can be removed from the actual implementa-

tion for increasing throughput since our experiments show that once a bit is identi-

fied as SPFB, it maintains the property indefinitely.

47

Figure 4.10 Algorithm for Generation of N-bit Random Sequence

Legend:
N: total number of random bits to
generate
n: number of random bits generated
until now
nStep: number of random bits
generated in a single round
M: number of SPFB locations
m: number of SPFB location to use for
a single round
k: variable to index SPFB being read in
SPFBAddr and SPFBit
RNGVector: Array to hold random bits
generated in a round
readVal: Array to hold bit vector read
from SPFB
SPF_Threshold: Threshold for SPFB
outputRNGVec: Final output vector

Generate N Random Bits
Function Start

n=0,k=0

RNGVector[0:nStep-1] = 0
i=0

readVal[0:nStep-1] = Bit Vector Created
By Reading nStep-times SPFB Indexed

by k

numOsc = Count Number of
Fluctuation in readVal

Is numOsc>=
SPF_Threshold?

RNGVector = RNGVector XOR readVal

k=(k+1)mod M
i = i+1

Is i<m?

Append RNGVector to outputRNGVec
n=n+nStep

Is n<N

End

N

N

Y

Y

Y

N

48

Subroutine For Generating Random Numbers

1. //generate N bit random sequence

2. void generateRandom(N){

3. uint8_t k=0;

4. //generates in a chunk of nStep

5. for(uint32_t n=0;n<N;n+=nStep){

6. //initialize the value to 0

7. uint16_t RNGVector[nStep-1] = 0;

8. //for each bit position SPFB

9. for(uint8_t i=0;i<m;i++,k=(k+1)%M){

10. //read the kth location pointed by k in SPFBAddr and SPFBit

11. //generate a bit vector

12. uint16_t readVal[nStep] = getBitVector();

13. //check fluctuation count

14. uint16_t numOsc = countFluctuations(readVal);

15. if(numOsc>=SPF_Threshold) {

16. //if still maintains fluctuation

17. RNGVector = RNGVector XOR readVal;

18. }

19. }

20. //push to output sequence

21. outputRNGVec[n*nStep:(n+1)*nStep] = RNGVector;

22. }

23. }

Array notation arr[n:k] is borrowed for simplicity from standard nota-

tion which is not available in C. arr[n:k] refers to elements of arr

from k to n-1

Figure 4.11. Subroutine for Generating N-bit Random Sequence

Optionally, the value obtained as the random sequence can be de-biased us-

ing Von Neumann de-biasing [40]. The algorithm for Von-Neumann de-biasing is

presented in Figure 4.12 and the C subroutine is shown in Figure 4.13. Here, inVec

is the vector that is supplied as input. outVec is the vector that is obtained as output.

Von Neumann de-biasing works by comparing the two consecutive input bits. If the

two bits are same, both of them are discarded. If they are not the same, the first one

is considered as output and the second bit is discarded. Von Neumann de-biasing

reduces the length of the sequence by at least half in the best case scenario, so for

analysis as many data has to be gathered. However, our experiments have shown

that given sufficient value of m i.e. the number of SPFB being considered for genera-

49

tion of random numbers, Von Neumann de-biasing is not necessary for quality ran-

dom number generation.

Figure 4.12 Algorithm for Von-Neumann Debiasing

Von Neumann De-biasing
Start

inVec=Input
Sequence

outVec = Empty
Sequence

len = 0

n=0

Is inVec[n]=inVec[n+1]
?

n = n+2

Is n<N-1?

End

outVec[len]=inVec[n]
len = len+1

N

Y

Y

N

50

Subroutine For Von Neumann De-Biasing

1. void debais(uint8_t* inVec,uint8_t* outVec,uint16_t &len){

2. //for each bit in sequence

3. for(uint16_t n=0;n<N;n+=2){

4. uint16_t i=0;

5. //check if the bit is equal to next bit

6. if(inVec[n]!=inVec[n+1]){.

7. //output if not equal

8. outVec[i++] = inVec[n];.

9. }

10. }

11. //output the length

12. len = i;

13. }

Figure 4.13 Subroutine for Von Neumann Be-biasing

51

CHAPTER 5

EXPERIMENTAL ENVIRONMENT

Experimental evaluation of the proposed Flash TRNG is performed on a TI’s

MSP430 family of microcontrollers. This chapter describes the experimental flow.

Section 5.1 gives a system view of the experimental flow. Section 5.2 describes the

experimental platform used. Section 5.3 describes the standard testing module,

namely NIST Statistical Test Suite, used for verification of the generated random

number sequences.

5.1 System View

Figure 5.1 shows a high level diagram of our experimental flow. An experi-

mental board is used as a testbed. Selected segments of the MSP430’s Flash memory

are perturbed and then repeatedly read during characterization phase. The state of

the Flash memory cells are exported through a serial communication interfaces to a

workstation for further analysis. Matlab programs running on the workstation are

used to characterize individual Flash memory bits and produce random sequences.

This setup allows us to explore effectiveness and quality of random sequences pro-

duced by a set of candidate TRNG algorithms. The following subsections describe the

experimental platform (Section 5.1.1) and characterization and verification pro-

grams running on the workstation (Section 5.1.2).

52

Figure 5.1 System View of Experimental Flow

5.1.1 Experimental Platform Flow

Our experimental platform consists of an experimenter board featuring an

MSP430 microcontroller. A selected portion of the Flash memory in the microcon-

troller is deliberately taken into a perturbed state using algorithms described in

Figure 4.3 and Figure 4.5. Perturbing of a Flash memory segment is a one-time pro-

cess. Once perturbed Flash memory segments will remain in that state indefinitely.

A simple initial profiling mechanism is implemented in the microcontroller to

identify words that contain at least one perturbed bit (this process is referred to as

Initial Profile in Figure 5.3). Here, each word is read into a RAM buffer for a prede-

fined number of times. The states of that word are then analyzed to identify any

fluctuations in individual bits. If the sequence of read states show some fluctuations,

and the number of fluctuations exceeds a certain threshold, the word is marked as a

Experimental Platform

Storage
Unit

Bit Sorting
Program

Standard
Testing

Workstation

Microcontroller

Perturb Flash
Memory

Read Out Flash
Memory

UART

Characterize
Program

RNG Program

MATLAB

Experimental Flow

53

potential good source of entropy and fluctuating bits are marked as Strongly Per-

turbed Flash Bits (SPFBs). One word may include one or more SPFBs.

After this step a list of SPFBs in the selected segment is created. Each SPFB

is uniquely described by its word address and its bit position within the word. The

next step is to traverse words with SPFBs, extract state changes of each SPFB into a

bit vector, and send out the bit vector over the serial communication interface to the

workstation. For example, reading a word with a single SPFB 1,024 times and ex-

tracting states of the SPFB into a bit vector creates a message that looks like the one

shown in Figure 5.2. This message is sent to the workstation for further processing.

Algorithms for creating true random numbers benefit from combining multiple

sources of entropy, and each SPFB bit is considered a good source of entropy.

This process is repeated in a cyclic fashion so that we have at least a million

bits of data which is essential for NIST test. Figure 5.3 describes of these steps on

one contiguous chunk of Flush memory.

Figure 5.2 Packet Format Generated for Perturbed Bit

Word Address Bit Packed Data Value

2 Bytes 1 Byte 128 Byte

54

Figure 5.3 Experimental Platform Flow

Experimental Platform
Implementation Start

Perturb Flash Segment

Initial Profile

Read Out SPFB to UART

round = 0
numWords= NUM_WORDS

Read Word ‘wordNum’ in the
segment

Is wordNum ==
numWords?

wordNum++

round++

Is round==
MAXROUNDS?

wordNum = 0

Finish

Legend:
NUM_WORDS: number of
words in a segment
MAXROUNDS: maximum
number of rounds

Does word ‘wordNum’
 has SPFB?

Y

N

Y

N

Y

N

55

5.1.2 Workstation Experiment Flow

Figure 5.4 illustrates the workstation experiment flow. The packets obtained

from the experimental platform are logged into a file in the workstation. This file is

read by the Bit Sorting Program that creates a separate file for each SPFB bit.

A characterizing program is run that determines whether the bit that is ini-

tially flagged as SPFB still meets the requirements, i.e., the number of state changes

is still above a certain threshold. The files containing states of SPFBs that meet the

requirement are then used in exploring various algorithms for generating true ran-

dom numbers that combine information from multiple SPFBs. The last step involves

testing the generated random sequences using standard tests designed by National

Institute of Standard and Technology (NIST) and defined in the NIST SP 800-22 [3].

56

Figure 5.4 Workstation Experiment Flow

5.2 Experimental Platform

Our experimental evaluation is based on Texas Instrument’s MSP430 micro-

controllers. MSP430 is a family of mixed signal microcontrollers. It features 16-bit

RISC CPU with on-chip SRAM, Flash memory, oscillators and peripherals like digi-

The Bit Sequence File
from Experimental

Platform

Bit Sorting Program

Bit Sequence
File per Bit

Position

Characterizing
Program

(Count the Number of
Fluctuation)

Satisfying Bit Positions
(is Fluctuation greater

than Threshold?)AND

Design RNG

vonNeumann Debias

NIST Test Suite
NIST Test

Result

Random
Number

Undebiased

Random
Number
Debiased

57

tal I/O, power management module, real time clock, watchdog timer, analog-to-

digital converter, digital-to-analog converter, DMAs, LCD controllers etc.

The particular MSP430 microcontroller used in the experimental evaluation

is MSP430F5438 shown in Figure 5.5(a). This microcontroller contains 256KB of

Flash memory that is composed of 4 banks each of 64KB. It also has 16KB SRAM

memory, timers, parallel ports and an AD controller. Figure 5.5(b) shows the TI’s

Experimenter EXP430F5438 board used in our experiments. It contains a 100-pin

drop in socket allowing quick changes of microcontroller chips.

(a) Microcontroller MSP430F5438 (b) TI Experimenter’s Board EXP430F5438

Figure 5.5 Experimental Platform Used

(a) Microcontroller MSP430F5438 (b) TI Experimenter Board

5.3 NIST Tests

National Institute of Standards and Technology (NIST) defines a suite of

tests [3] that can be applied to a sequence of random bits to test whether they meet

the expectations for truly random numbers. The suite consists of a number of tests

58

and the following section gives a short description of individual tests. These test

treat randomness as probabilistic property and try to find the probability that the

sequence shows randomness.

Each of these tests assume a Null Hypothesis that the sequence provided is

random. Correspondingly the alternate hypothesis is that the sequence is not ran-

dom. A parameter based on the sequence is calculated. If it is higher than a prede-

fined critical value, Null Hypothesis is rejected. Otherwise, Null Hypothesis is ac-

cepted. However, these are internal to the test. For a user’s point of view, each of the

test will output a P-Value. Each P-Value denotes the probability that a truly random

generator will generate a sequence less random than the sequence tested. The high-

er the P-Value is, the better. For the case of NIST test suite, a sequence is consid-

ered to be sufficiently random if the sequence produces a P-Value greater than

0.0001.

The source code for each of these tests is available publicly [41], and thus is

easier to download, compile and run for test purpose.

The 15 tests that NIST defines are discussed in brief in the following section.

1. The Frequency Test

The Frequency Test, also called monobit test, determines the proportion of

‘1’s and ‘0’s in the sequence of number produced. As the requirement in each random

number generator is to produce equal number of ‘1’s and ‘0’s, this test is the first and

basic test on which all other tests depend. Internally, this test converts 0s to -1s and

1s to 1s and calculates the sum of the bits in sequence. Closeness of this value to 0

defines the quality of sequence produced.

2. Frequency Test within Block

59

Random number generators should produce sequence in which number of ‘1’s

and ‘0’s should be equal. This not only applies for the total sequence but also applies

to any chosen sub-sequence. Frequency Test within a Block tests this property. It

tests if the frequency of 1s in a sequence of M bit sequence is M/2. Here the total

sequence of length n is divided into floor(n/M) non-overlapping sequences. Here

floor(x) means highest whole number lower than x. Proportion of 1s in each of the

sequence is calculated, and the Chi-Squared statistic value is calculated. Using in-

complete gamma function igmac, P-Value is calculated.

3. Runs Test:

A Run is a continuous sequence of a single bit that is bounded on both sides

by bit of opposite value. The Runs test finds the runs of 1s and 0s in a sequence and

determines if the transition from runs is fast or slow.

4. Test of Longest Runs of Ones:

The purpose of this test is to check the longest run of ones in an M-bit block

in the sequence generated. This test checks if the longest runs of 1s is consistent

with the longest runs of ones in a sequence that is truly random. Each M-bit block is

categorized in the basis of the longest runs of ones and Chi-Squared statistic value is

calculated. P-value is calculated using incomplete gamma function.

5. Binary Matrix Rank Test:

The purpose of this tests is to determine the linear dependency among the

substrings in the original sequence. The sequence is divided into matrices of certain

defined dimension. Rank of each matrices is calculated. Based on these rank, matri-

ces are categorized. Chi-Squared statistic value is calculated and P-value based on

this is calculated.

60

6. Discrete Fourier Transform Test:

This test detects the periodic features in the sequence. This test detects if the

number of peaks in DFT that reach higher than or equal to 95% is significantly dif-

ferent than 5%.

7. Non-Overlapping Template Matching Test:

This test checks for the occurrence of a periodic sequence. Here a window of

certain length is used to search bit-pattern of same length. If the pattern is not

found, the window slides one bit position. Else, the window is reset to bit after the

pattern found, and new search begins.

8. Overlapping Template Matching Test:

This test also uses a window of certain length to find the matching pattern in

the sequence. The difference between the Non-Overlapping Template Matching Test

and this test is that the window slides only one-bit position if the matching pattern

is found in this case.

9. Maurer’s Test (Universal Test):

This test checks if the sequence can be compressed significantly without loss

of information. The whole sequence is divided into two segments, an initialization

segment and a test segment. A sum value is calculated based on the repetition of

the certain bit-length values in sequence. This sum is used to calculate test statistic,

and thus calculate P-value.

10. Linear Complexity Test:

This test finds the complexity of the sequence by finding the length of Linear

Feedback Shift Register (LFSR). If the length if too short, it means non-randomness.

The original sequence is broken into certain number of blocks of specified length

61

each. Using Berlekamp-Massey algorithm, the linear complexity value of each of the

sequence is calculated. The mean value is calculated, and test statistic is calculated

from which P-value is calculated

11. Serial Test:

This test determines whether the number of occurrences of the 2m m-bit over-

lapping patterns is approximately the same as would be expected for a random se-

quence. Here, the original sequence is padded with first m-1 bits to the end, and the

frequency of all possible overlapping m-bit block is determined. Frequency of possi-

ble overlapping m-1 bits and m-2 bits also calculated. Using these frequency values,

test statistic is generated and P-value is calculated.

12. Approximate Entropy Test:

This test is similar to Serial Test, but in this test the frequency of the over-

lapping blocks of consecutive length are compared with the expected truly random

sequence.

13. Cumulative Sum Test:

Cumulative sum for each position is calculated in forward and backward di-

rection after the sequence is converted to a sequence of -1 and 1 replacing 0 with -1.

Test statistic is computed as the largest absolute cumulative sum value. This is used

to compute the P-value. The goal of this test is to see if the cumulative sum of partial

sequence is too large or too small as compared to a truly random sequence.

14. Random Excursion Test:

This test checks the number of cycles having exactly K visits in a cumulative

sum random walk. Here, the 0 in original sequence is replace by -1, and cumulative

sum is calculated. The sequence is padded with 0s at the either end and the number

62

of zero crossing is calculated, which gives the number of cycles. This test consists of

series of eight tests.

15. Random Excursion Variant Test:

This test checks the number of visits to a particular state in a cumulative

sum random walk, and detect deviation from what is expected of a truly random se-

quence. This test is a series of eighteen sub-tests.

63

CHAPTER 6

RESULTS

In order to properly identify the time for generating a maximum number of

SPFBs, we first characterize the Flash memory in microcontroller chips. Section 6.1

presents the results of this characterization. In Section 6.2, we present the results

obtained from the standard NIST Statistical Tests on the generated random se-

quences. The performance of our technique focusing on throughput and size of our

algorithm implementations are discussed in Section 6.3.

6.1 Characterization of Flash Memories for Perturbed States

The first task in generating perturbed Flash memory bits is to identify the

appropriate time for issuing EMEX signal. The goal is to obtain as much perturbed

Flash memory bits as possible. Section 6.1.1 presents the data and discussion re-

garding optimal duration of partial programming. Section 6.1.2 discusses character-

istics and types of perturbed Flash bits, whereas Section 6.1.3 describes characteris-

tics of perturbed Flash segments as a function of processor clock frequency.

6.1.1 Characterization of Partial Programming Duration

The time for issuing emergency exit signal for partial programming is im-

portant component in maximizing the number of perturbed Flash bits. By setting

64

the EMEX bit too soon results in having all Flash bits in the erased state. By setting

the EMEX bit too late results in having all Flash bits in the programmed state. Our

ability to control duration of partial programming is a function of the processor clock

frequency. By increasing the processor frequency, we increase time resolution with

which we can abort the ongoing Flash program operation.

Table 6.1 shows the number of SPFB and WPFB bits in sample chip 1 when

the processor is running at frequency FCPU=1,048,576 Hz. Each segment consists of

256 words each of 16 bits. The time column indicates the duration of partial pro-

gramming i.e. the time after which the EMEX bit is set. Clock Cycles column indi-

cates the number of processor clock cycles corresponding to the duration of partial

programming. With increase number of clock cycles, there is a sudden increase the

number of bits that qualify as SPFB and WPFB. But this is only true for one in-

stance. Increasing the time again would cause all the bits to be in programmed

state, thus giving no bits that qualify as SPFB or WPFB. But the condition is slight-

ly different when we increase the processor frequency.

Table 6.2 shows the number of SPFB and WPFB in sample chip 1 when the

processor is running at frequency FCPU=4,194,304 Hz. There is an increase in the

number of bits that qualify as SPFB and WPFB with increase in partial programing

time. This trend continues for two more clock cycles. After the peak value is reached,

the number of bits decreases. Further increase in the time would cause all the bits to

be in programmed state thus giving no bits in SPFB and WPFB state.

Table 6.3 shows the number of SPFB and WPFB for sample chip, but the pro-

cessor is running at frequency FCPU=8,388,608 Hz. Here the duration for which the

number of SPFB and WPFB continue to increase for a larger number of clock cycles.

65

But the trend of reducing the number of SPFB and WPFB from the peak point can

also be seen here. This indicates that with the increase in clock cycles, the number of

bits that reaches the programmed state also increases. After certain number of clock

cycles, all the bits will be at programmed state, thus the number of SPFB and WPFB

is noticed as 0.

In data presented for FCPU=4,194,304 Hz and FCPU=8,388,608 Hz, same num-

ber of clock-cycles and thus same value in time column are presented multiple times

for some cases. This is because the time is controlled using a for loop and additional

NOP commands following the for loop. This results in same number of clock-cycles

for multiple cases. Although we have same clock-cycles at two such instances, the

number of SPFBs and WPFBs are different in these cases essentially acting as being

different by at least one clock-cycle.

The distribution of SPFBs and WPFBs follow similar trend for sample chip 2

as well. Table 6.4 presents the data for sample chip 2 when the clock is running at

frequency FCPU=1,048,576 Hz. The number of bits observed in this case are relatively

small than that observed for other sample chips. But the trend of sudden increase in

number of SPFB and WPFB can be seen here as well. Table 6.5 presents the number

of SPFB and WPFB for sample chip 2 when the processor clock frequency is

FCPU=4,194,304 Hz. Table 6.6 presents the number of SPFB and WPFB for sample

chip 2 when the processor clock is running at FCPU=8,388,608 Hz.

Observation similar to sample chip 1 and sample chip 2 can be seen for sam-

ple chip 3. Data for sample chip 3 is presented in Table 6.7 for processor running at

frequency FCPU=1,048,576 Hz, Table 6.8 for processor running at frequency

66

FPCU=4,194,304 Hz and Table 6.9 for processor running at frequency FPCU=8,388,608

Hz.

67

Table 6.1 SPFB and WPFB count for Sample Chip 1 at 1,048,576 Hz

Sample Chip1 at 1,048,576 Hz

Time

(s)

Clock-

cycles

Seg 0 Seg 1 Seg 2 Seg 3 Seg 4 Seg 5 Seg 6 Seg 7

SPFB WPFB SPFB WPFB SPFB WPFB SPFB WPFB SPFB WPFB SPFB WPFB SPFB WPFB SPFB WPFB

24.80 26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

25.75 27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

26.70 28 85 100 79 118 85 93 89 132 102 100 85 94 75 94 59 100

27.66 29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 6.2 SPFB and WPFB count for Sample Chip 1 at 4,194,304 Hz

 Sample Chip1 at 4,194,304 Hz

Time

(s)

Clock-

Cycles

Seg 0 Seg 1 Seg 2 Seg 3 Seg 4 Seg 5 Seg 6 Seg 7

SPFB WPFB SPFB WPFB SPFB WPFB SPFB WPFB SPFB WPFB SPFB WPFB SPFB WPFB SPFB WPFB

19.31 81 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

19.55 82 1 2 0 0 1 1 3 1 1 2 1 1 2 4 3 1

19.79 83 44 44 16 22 40 41 56 73 36 44 42 44 53 63 42 47

20.02 84 159 189 162 208 148 208 160 193 166 202 176 200 140 198 164 214

20.02 84 90 130 28 43 32 64 41 48 39 41 58 52 35 49 34 34

20.26 85 6 6 3 5 7 7 3 3 4 7 2 2 5 4 3 5

20.50 86 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0

Table 6.3 SPFB and WPFB count for Sample Chip 1 at 8,388,608 Hz

Sample Chip1 at 8,388,608 Hz

Time

(s)

Clock-

Cycles

Seg 0 Seg 1 Seg 2 Seg 3 Seg 4 Seg 5 Seg 6 Seg 7

SPFB WPFB SPFB WPFB SPFB WPFB SPFB WPFB SPFB WPFB SPFB WPFB SPFB WPFB SPFB WPFB

15.61 131 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15.73 132 3 2 2 2 0 5 2 3 4 1 2 5 2 7 2 4

15.73 132 142 171 157 184 168 187 148 170 131 189 156 191 145 198 147 184

15.84 133 153 189 126 186 145 193 154 187 125 183 156 208 160 191 139 200

15.97 134 91 114 89 144 93 110 106 129 96 121 91 102 108 122 94 109

16.09 135 38 48 36 35 32 37 28 46 43 38 34 36 31 35 27 35

16.21 136 9 5 4 10 8 14 9 15 5 10 5 6 10 11 6 3

16.33 137 2 4 6 4 2 4 3 7 2 6 2 0 2 1 1 2

16.45 138 0 1 0 0 1 0 1 1 1 2 0 0 1 1 0 0

16.57 139 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 6.4 SPFB and WPFB count for Sample Chip2 at 1,048,576 Hz

Sample Chip2 at 1,048,576 Hz

Time

(s)

Clock-

Cycles

Seg 0 Seg 1 Seg 2 Seg 3 Seg 4 Seg 5 Seg 6 Seg 7

SPFB WPFB SPFB WPFB SPFB WPFB SPFB WPFB SPFB WPFB SPFB WPFB SPFB WPFB SPFB WPFB

24.80 26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

25.75 27 3 4 5 9 4 7 1 2 4 7 3 2 1 1 0 2

26.70 28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

68

Table 6.5 SPFB and WPFB count for Sample Chip2 at 4,194,304 Hz

Sample Chip2 at 4,194,304 Hz

Time

(s)

Clock-

Cycles

Seg 0 Seg 1 Seg 2 Seg 3 Seg 4 Seg 5 Seg 6 Seg 7

SPFB WPFB SPFB WPFB SPFB WPFB SPFB WPFB SPFB WPFB SPFB WPFB SPFB WPFB SPFB WPFB

18.59 78 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

18.84 79 97 107 85 104 104 116 90 140 84 113 141 157 99 132 119 127

19.07 80 41 61 53 75 64 79 48 59 42 68 53 65 40 46 34 43

19.31 81 2 3 7 6 4 9 2 3 3 9 0 3 2 1 0 1

19.55 82 1 2 2 1 0 2 0 0 1 2 0 0 0 1 0 0

19.79 83 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

20.02 84 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

Table 6.6 SPFB and WPFB count for Sample Chip2 at 8,388,608 Hz

Sample Chip2 at 8,388,608 Hz

Time

(s)

Clock-

Cycles

Seg 0 Seg 1 Seg 2 Seg 3 Seg 4 Seg 5 Seg 6 Seg 7

SPFB WPFB SPFB WPFB SPFB WPFB SPFB WPFB SPFB WPFB SPFB WPFB SPFB WPFB SPFB WPFB

14.90 125 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15.02 126 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0

15.02 126 135 154 142 208 140 179 144 194 134 197 136 158 163 184 148 178

15.13 127 81 94 124 128 93 119 71 88 104 116 75 97 79 106 81 95

15.25 128 20 25 37 44 28 42 21 30 29 35 23 30 18 24 11 19

15.38 129 5 7 13 16 9 10 7 5 8 18 8 3 3 7 6 5

15.49 130 3 4 3 7 1 3 1 2 5 6 1 2 0 3 0 1

15.61 131 2 0 3 2 2 3 1 0 0 2 0 1 1 0 0 0

15.73 132 0 0 2 1 0 0 0 0 0 0 0 1 1 0 0 0

15.73 132 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 6.7 SPFB and WPFB count for Sample Chip3 at 1,048,576 Hz

Sample Chip3 at 1,048,576 Hz

Time

(s)

Clock-

Cycles

Seg 0 Seg 1 Seg 2 Seg 3 Seg 4 Seg 5 Seg 6 Seg 7

SPFB WPFB SPFB WPFB SPFB WPFB SPFB WPFB SPFB WPFB SPFB WPFB SPFB WPFB SPFB WPFB

25.75 27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

26.70 28 13 12 10 10 4 15 4 12 8 12 9 19 14 10 20 20

27.65 29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

69

Table 6.8 SPFB and WPFB count for Sample Chip3 at 4,194,304 Hz

Sample Chip3 at 4,194,304 Hz

Time

(s)

Clock-

Cycles

Seg 0 Seg 1 Seg 2 Seg 3 Seg 4 Seg 5 Seg 6 Seg 7

SPFB WPFB SPFB WPFB SPFB WPFB SPFB WPFB SPFB WPFB SPFB WPFB SPFB WPFB SPFB WPFB

22.64 95 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

22.88 96 3 2 1 5 1 1 3 2 4 113 141 157 99 132 119 127

23.12 97 135 139 135 192 133 167 152 202 146 68 53 65 40 46 34 43

23.36 98 5 12 0 3 11 9 4 5 3 9 0 3 2 1 0 1

23.6 99 0 0 0 0 0 1 0 0 0 2 0 0 0 1 0 0

23.84 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 6.9 SPFB and WPFB count for Sample Chip3 at 8,388,608 Hz

Sample Chip3 at 8,388,608 Hz

Time

(s)

Clock-

Cycles

Seg 0 Seg 1 Seg 2 Seg 3 Seg 4 Seg 5 Seg 6 Seg 7

SPFB WPFB SPFB WPFB SPFB WPFB SPFB WPFB SPFB WPFB SPFB WPFB SPFB WPFB SPFB WPFB

23.24 195 0 0 0 1 0 0 0 0 0 0 1 1 0 1 1 1

23.36 196 5 4 3 7 5 5 7 5 7 7 4 7 1 11 4 6

23.48 197 39 54 46 53 46 58 23 58 23 33 32 38 42 50 47 65

23.6 198 133 185 159 211 150 179 119 152 119 152 160 196 125 135 151 194

23.72 199 75 92 52 63 110 129 44 56 44 56 52 62 50 73 57 71

23.84 200 15 35 10 7 15 16 16 14 16 14 13 17 13 16 20 23

23.96 201 0 1 4 6 3 5 4 2 4 2 0 0 0 0 1 0

The number of SPFB and WPFB in a particular segment of a sample chip in-

creases with increase in frequency. This is one important observation that can be

noticed in data presented from Table 6.1-Table 6.9. It can be concluded that the in-

crease in frequency allows finer time resolution when controlling the duration of

partial programming. This also allows more bits to attain the perturbed state thus

increasing giving larger number of SPFB and WPFB as the frequency is increased.

Table 6.1-Table 6.9 also indicate that the total number of SPFB is similar

over multiple segments in a single chip. This case is true for all the tested frequen-

cies. Table 6.10, Table 6.11 and Table 6.12 summarizes the number of SPFB and to-

tal number of SPFB and WPFB, jointly referred to as Perturbed Flash Bits (PFB) for

sample chip1, sample chip 2 and sample chip 3 respectively. These data show that

there exists a optimal time to achieve the best result in terms of the number of

70

SPFB for a chip at a particular frequency regardless of the segment. This indicates

that the number of SPFB (and WPFB) is actually a function of partial programming

time and the chip itself. However, the optimal time to achieve the maximum number

of SPFB and WPFB for a single chip over different frequencies are different. The

MSP430 family, although reveal the internal timing details to software interface, do

not reveal this information in case of MSP4305438 which is used in our work. Thus,

according to our result we conclude that the optimal time to achieve the maximum

number of SPFB is the function of time after which emergency exit bit is set, clock

frequency and the chip.

71

Table 6.10 Number of PFBs in Sample Chip1

Clock rate

[Hz]

Partial program time Average number of

perturbed bits  stdev

 #CPU

Cycles

[s] SPFB Total

(SPFB+WPFB)

1,048,576

26 24.80 00.0 00.0

27 25.75 00 00

28 26.70 8212.3 18619.8

29 27.66 00 00

4,194,304

81 19.31 00.0 00.0

82 19.55 21.1 31.8

83 19.79 4112.1 8826.9

84 20.02 15911 36114.3

84 20.02 4520.4 10249.5

85 20.26 41.7 93.3

86 20.50 00 00.5

8,388,608 131 15.61 00.0 00

132 15.73 21.1 61.6

132 15.73 14911.1 33415.3

133 15.84 14513.6 33718.7

134 15.97 967.1 21516.1

135 16.09 345.3 727.8

136 16.21 72.3 165.4

137 16.33 31.5 63.2

138 16.45 10.5 11.1

Figure 6.1 SPFBs and WPFBs distribution over time for Sample Chip 1

0
50

100
150
200
250
300
350
400

N
u

m
b

er
 o

f
W

P
FB

s

Partial Programming Time in MicroSeconds

WPFBs for Sample Chip1

1Mhz 4Mhz 8Mhz

0

50

100

150

200

N
u

m
b

er
 o

f
SP

FB
s

Partial Programming Time in Microseconds

SPFBs for Sample Chip1

1Mhz 4Mhz 8Mhz

72

Table 6.11 Number of PFBs in Sample Chip2

Clock rate

[Hz]

Partial program time Average number of

perturbed bits  stdev

 #CPU

Cycles

[s] SPFB Total

(SPFB+WPFB

1,048,576

26 24.80 00.0 00.0

27 25.75 31.8 74.6

28 26.70 00.0 00.0

4,194,304

78 18.59 00.0 00.4

79 18.84 10219.3 22734.5

80 19.07 479.6 10921.4

81 19.31 32.3 75.0

82 19.55 10.8 21.4

83 19.79 00.0 00.0

8,388,608 125 14.90 00.0 00.0

126 15.02 00.5 00.5

126 15.02 1439.5 32422.7

127 15.13 8917.8 19431.3

128 15.25 237.9 5516.4

129 15.38 73.0 167.5

130 15.49 21.8 53.7

131 15.61 11.1 21.9

132 15.73 00.7 11.1

132 15.73 00 00

Figure 6.2 SPFBs and WPFBs distribution over time for Sample Chip 2

0
50

100
150
200
250
300
350
400

N
u

m
b

er
 o

f
W

P
FB

s

Partial Programming Time in Microseconds

WPFBs for Sample Chip2

1Mhz 4Mhz 8Mhz

0

20

40

60

80

100

120

140

160

N
u

m
b

er
 o

f
SP

FB
s

Parital Programming Time in Microseconds

SPFBs for Sample Chip2

1Mhz 4Mhz 8Mhz

73

Table 6.12 Number of PFBs in Sample Chip3

Clock rate

[Hz]

Partial program time Average number of

perturbed bits  stdev

 #CPU

Cycles

[s] SPFB Total

(SPFB+WPFB

1,048,576

27 25.75 00.0 00.0

28 26.70 105.3 247.5

29 27.66 00.0 00.0

4,194,304

95 22.65 00.0 00.0

96 22.89 21.3 41.6

97 23.13 13519.1 30132.2

98 23.37 53.0 105.6

99 23.60 00.4 00.5

100 23.84 00.0 00.0

8,388,608 195 23.25 00.4 10.8

196 23.37 52.0 111.7

197 23.48 389.1 8818.9

198 23.60 14215.4 32439.2

199 23.72 6321.6 13944.7

200 23.84 143.1 339.9

201 23.96 21.9 44.1

Figure 6.3 SPFBs and WPFBs distribution over time for Sample Chip 3

6.1.2 Characterizing Bits: SPFB or WPFB

Figure 6.4 shows the state of a sample WPFB as a function of the read num-

ber. The bit is biased towards logic ‘0’. Figure 6.5 shows another sample WPFB bit

that is biased towards logic ‘1’. For the SPFB bit shown in Figure 6.6, the fluctuation

0

50

100

150

200

250

300

350

400

N
u

m
b

er
 o

f
W

P
FB

s

Partial Programming Time in Microseconds

WPFBs for Sample Chip3

1Mhz 4Mhz 8Mhz

0

20

40

60

80

100

120

140

160

N
u

m
b

er
 o

f
SP

FB
s

Partial Programming Time in Microseconds

SPFBs for Sample Chip3

1Mhz 4Mhz 8Mhz

74

of the state is very high, whereas the WPFBs shown in Figure 6.4 and Figure 6.5 are

biased and the number of state changes is relatively small.

Figure 6.4 Sample WPFB Bit Biased Towards ‘0’

Figure 6.5 Sample WPFB Biased Towards ‘1’

0

1

0 128 256 384 512 640 768 896 1024

B
it

 L
ev

el

Read Number

WPFB Biased Towards '0'

0

1

0 128 256 384 512 640 768 896 1024

B
it

 L
ev

el

Read Number

WPFB Biased Towards '1'

75

Figure 6.6 A Sample SPFB Bit

Figure 6.7 shows the number of state changes for several exemplary per-

turbed bits as a function of read count. The number of state changes (fluctuations) is

counted for every 256 states of the perturbed bit read from the bit position. In our

experiments, we set the SPFB threshold to 1/8th of the total number of reads, that is,

a perturbed bit is considered strongly perturbed if the number of state changes is at

least 1/8th of the total number of reads. The blue line in each of the diagram is the

minimum threshold value for being considered as SPFB. For perturbed bits charac-

terized in Figure 6.7(a) and Figure 6.7(b), the number of state changes is always be-

low the threshold, so these bits are just WPFBs. For perturbed bits characterized in

Figure 6.7(c) and Figure 6.7(d), the number of state changes occasionally dips below

the threshold for brief periods of time. Finally, for perturbed bits characterized in

Figure 6.7(e) and Figure 6.7(f), the number of state changes is always above the

threshold, so these bits are just SPFBs.

0

1

0 128 256 384 512 640 768 896 1024

B
it

 L
ev

el

Read Number

SPFB

76

Figure 6.7 Fluctuation Count for Different Perturbed Flash Bits

6.1.3 Characterization of Flash Segment

Each Flash memory segment in MSP430F5438 has 256 16-bit words. This

means there is the total of 4096 bits that are either unperturbed, weakly perturbed,

or strongly perturbed.

Figure 6.8 Characterization of Bits in a Segment as SPFB, WPFB, Logic 0 or

Logic 1 shows the state of individual bits in a perturbed region of the Flash memory.

Columns represent individual words and 16 rows in each image represent individual

0

5

10

15

20

25

30

35

0 128 256 384 512 640 768 896 1024

Fl
u

ct
u

ta
ti

o
n

 C
o

u
n

t

Count Number

(a) Fluctutation Count per 256 Bit Reads

Bit Position 4 Threshold

0

5

10

15

20

25

30

35

0 128 256 384 512 640 768 896 1024

Fl
u

ct
u

at
io

n
 C

o
u

n
t

Count Number

(b) Fluctuation Count per 256 Reads

Bit Position 2 Threshold

0

20

40

60

80

100

120

140

0 128 256 384 512 640 768 896 1024

Fl
u

ct
u

at
io

n
 C

o
u

n
t

Count Number

(c) Fluctutation Count per 256 Bit Reads

Bit Position 3 Threshold

0

20

40

60

80

100

120

140

0 128 256 384 512 640 768 896 1024

Fl
u

ct
u

at
io

n
 C

o
u

n
t

Count Number

(d) Fluctutation Count per 256 Bit Reads

Bit Position 1 Threshold

0

20

40

60

80

100

120

140

160

0 128 256 384 512 640 768 896 1024

Fl
u

ct
u

at
io

n
 C

o
u

n
t

Count Number

(e) Fluctutation Count per 256 Bit Reads

Bit Position 15 Threshold

0

20

40

60

80

100

120

140

160

0 128 256 384 512 640 768 896 1024

Fl
u

ct
u

at
io

n
 C

o
u

n
t

Count Number

(f) Fluctutation Count per 256 Bit Reads

Bit Position 16 Threshold

77

bit positions. The top most strip shows the state of the Flash bits when the partial

programming is done at 8 MHz clock frequency, the middle strip is at 4 MHz, and

the lower one is at 1 MHz clock frequency. The yellow pixels represent fully pro-

grammed bits, while pixels represent erased bits, green pixels represent weakly per-

turbed bits, and red pixels represent SPBs. The visual inspection of the images al-

lows us the following conclusions.

a. Running at higher clock frequency allows for a better control of the par-

tial programming duration. This in turn results in an increased number

of weakly and strongly perturbed Flash bits. This observation holds true

regardless of chip sample.

b. Some chips may produce a relatively small number of perturbed Flash

bits when the processor clock frequency is low (sample chips 2 and 3 at 1

MHz processor clock).

c. The majority of unperturbed Flash bits appear to be in the programmed

state rather than in the erased state in sample chips 2 and 3. An excep-

tion to this rule may be sample chip 3 when higher clock frequency is used

during partial programming.

d. Flash bits that are SPFBs are not concentrated to any particular area of

the segment thus allowing almost uniform distribution over the segment.

78

Figure 6.8 Characterization of Bits in a Segment as SPFB, WPFB, Logic 0 or Logic 1

6.2 Random Number Generation and NIST Tests Results

Random Numbers are generated from the values read from SPFB. The gen-

erated random number sequence are packed into binary form and written to a file,

which are then later fed to the NIST Test suite [3]. We generate random number for

different chips at different conditions, and save them in individual files. The differ-

ent conditions are defined by the number of SPFB taken for generation of random

numbers, which is indicated by m in random number generation algorithm discussed

in Figure 4.10. In each of the case, we make sure that the number of random bits

that is at least 10 million. We specify the number of bit-streams as 10 for each case

for NIST Test with each bit-stream of length 1 million bits.

1
 M

h
z

4
 M

h
z

8
 M

h
z

1
 M

h
z

4
 M

h
z

8
 M

h
z

1
 M

h
z

4
 M

h
z

8
 M

h
z

(a) Sample Chip 1

(b) Sample Chip 2

(c) Sample Chip 3

SPFB WPFB Logic 0 Logic 1

79

The result of NIST Test is given briefly as the P-Value and Proportion. P-

Value is displayed as a decimal value while Proportion is indicated as a ratio. In or-

der to be considered a random sequence, the P-Value should be greater than 0.0001.

In case when 10 sequences are provided, the whole sequence is considered a random

sequence if at least 8 sequences out of 10 sequences pass the test. This implies, in

our case the sequence is considered random is P-Value is 0.0001 and Proportion is

greater than or equal to 8/10.

In our case, m is varied from 3 to 10 to find the optimal number of SPFB that

would satisfy the randomness requirement. The motivation behind doing this is to

find the minimum number of bits that would generate random bits most efficiently.

Our experiments show that random number generated by combining at least 5

SPFBs satisfy the NIST Test, but it comes at a cost of application of Von-Neumann

De-biasing. Using 10 SPFBs would produce random numbers that pass the NIST

Test without application of Von-Neumann De-biasing. This means the original se-

quence generated using m=10 would pass the NIST Test. However, for the case

when m=3 and 4 or below, the generated bit sequence would not pass the NIST Test

for all the cases even after application of Von-Neumann De-biasing.

NIST Test result for these three cases, i.e. using m=3, 5 and 10 are presented

in Table 6.13, Table 6.14 and Table 6.15 respectively. For the case when 3 SPFBs

are used, each chip fails all the test mentioned for the original sequence. The de-

biased sequences however pass all the tests, except for sample chip 2. So using 3

SPFBs might not be sufficient for the proposed algorithm. Using 5 SPFBs, however,

result in passing all the tests after de-biasing. Thus, we can say that the proposed

algorithm that uses 5 SPFBs with de-biasing passes produces quality random se-

80

quences. With 10 SPFBs, the proposed algoritham produces random sequences that

pass all the NIST tests with original bit sequences (without de-biasing).

Table 6.13 NIST Statistical Test Result for case using 3 SPFBs (m=3)

NIST Test
Sample 1 Sample 2 Sample 3

Original De-biased Original De-biased Original De-biased

P-

value

Propo-

rtion

P-

value

Propo-

rtion

P-

value

Propo-

rtion

P-

value

Propo-

rtion

P-

value

Propo-

rtion

P-

value

Propo-

rtion

Frequency 0 3/10 0.740 10/10 0 2/10 0.000 6/10 0 2/10 0.035 9/10

BlockFrequency 0 0/10 0.0351 10/10 0 3/10 0.740 10/10 0 0/10 0.534 10/10

CumulativeSums 0 3/10 0.740 8/10 0 2/10 0.018 6/10 0 1/10 0.350 9/10

Runs 0 0/10 0.018 10/10 0 2/10 0.213 10/10 0 0/10 0.035 8/10

LongestRun 0 0/10 0.534 10/10 0.911 9/10 0.350 9/10 0 3/10 0.534 9/10

Rank 0.534 10/10 0.350 10/10 0.122 10/10 0.035 10/10 0.911 10/10 0.740 10/10

FFT 0.067 7/10 0.122 10/10 0.350 8/10 0.534 10/10 0 6/10 0.122 9/10

NonOverlappingT. 0.534 10/10 0.911 10/10 0.213 10/10 0.740 10/10 0.740 9/10 0.911 10/10

OverlappingTemplate 0 0/10 0.350 10/10 0.035 7/10 0.740 10/10 0 2/10 0.740 10/10

Universal 0 0/10 0.122 9/10 0.066 7/10 0.350 10/10 0 0/10 0.740 10/10

ApproximateEntropy 0 0/10 0.350 10/10 0 5/10 0.740 10/10 0 0/10 0.350 9/10

RandomExcursions -- 2/3 -- 7/7 -- -- -- 6/6 -- 3/3 -- 4/4

RandomExcursionsV. -- 3/3 -- 7/7 -- -- -- 6/6 -- 3/3 -- 4/4

Serial 0 0/10 0.740 10/10 0.534 9/10 0.350 10/10 0.035 8/10 0.740 10/10

LinearComplexity 0.122 9/10 0.534 10/10 0.740 10/10 0.911 10/10 0.740 10/10 0.740 10/10

81

Table 6.14 NIST Statistical Test Result for case using 5 SPFBs (m=5)

NIST Test
Sample 1 Sample 2 Sample 3

Original De-biased Original De-biased Original De-biased

P-

value

Propo-

rtion

P-

value

Propo-

rtion

P-

value

Propo-

rtion

P-

value

Propo-

rtion

P-

value

Propo-

rtion

P-

value

Propo-

rtion

Frequency 0 3/10 0.122 10/10 0.001 6/10 0.534 9/10 0.069 6/10 0.122 10/10

BlockFrequency 0 2/10 0.534 10/10 0.001 6/10 0.069 10/10 0.069 9/10 0.035 9/10

CumulativeSums 0 2/10 0.911 10/10 0.001 6/10 0.740 9/10 0.000 5/10 0.350 10/10

Runs 0 7/10 0.350 10/10 0.067 6/10 0.534 10/10 0.000 7/10 0.911 10/10

LongestRun 0.740 10/10 0.067 10/10 0.534 8/10 0.534 9/10 0.018 10/10 0.213 10/10

Rank 0.911 9/10 0.534 10/10 0.911 10/10 0.122 10/10 0.740 10/10 0.350 10/10

FFT 0.534 10/10 0.351 10/10 0.213 10/10 0.018 10/10 0.534 10/10 0.213 10/10

NonOverlappingT. 0.740 10/10 0.911 10/10 0.911 10/10 0.740 10/10 0.213 10/10 0.740 10/10

OverlappingTemplate 0.350 10/10 0.035 10/10 0.740 8/10 0.911 10/10 0.740 10/10 0.740 10/10

Universal 0.534 10/10 0.350 10/10 0.213 8/10 0.350 9/10 0.534 10/10 0.740 10/10

ApproximateEntropy 0.534 10/10 0.740 10/10 0.004 6/10 0.911 10/10 0.350 8/10 0.911 10/10

RandomExcursions -- 1/1 -- 5/5 -- 2/2 -- 6/6 -- 3/3 -- 7/7

RandomExcursionsV. -- 1/1 -- 5/5 -- 2/2 -- 6/6 -- 3/3 -- 7/7

Serial 0.350 10/10 0.740 10/10 0.122 10/10 0.740 10/10 0.350 10/10 0.740 10/10

LinearComplexity 0..911 10/10 0.122 10/10 0.740 10/10 0.213 10/10 0.213 10/10 0.911 10/10

Table 6.15 NIST Statistical Test Result for case using 10 SPFBs (m=10)

NIST Test
Sample 1 Sample 2 Sample 3

Original De-biased Original De-biased Original De-biased

P-

value

Propo-

rtion

P-

value

Propo-

rtion

P-

value

Propo-

rtion

P-

value

Propo-

rtion

P-

value

Propo-

rtion

P-

value

Propo-

rtion

Frequency 0.740 10/10 0.534 10/10 0.534 9/10 0.534 10/10 0.534 10/10 0.122 10/10

BlockFrequency 0.740 10/10 0.534 10/10 0.350 10/10 0.911 10/10 0.740 10/10 0.122 10/10

CumulativeSums 0.740 10/10 0.740 10/10 0.534 9/10 0.018 10/10 0.122 10/10 0.350 10/10

Runs 0.213 10/10 0.740 10/10 0.740 9/10 0.018 10/10 0.911 9/10 0.534 10/10

LongestRun 0.213 10/10 0.534 10/10 0.534 10/10 0.911 9/10 0.911 10/10 0.122 10/10

Rank 0.740 10/10 0.534 10/10 0.122 10/10 0.350 10/10 0.350 10/10 0.122 10/10

FFT 0.740 10/10 0.740 10/10 0.534 10/10 0.534 10/10 0.350 10/10 0.350 10/10

NonOverlappingT. 0.911 10/10 0.911 10/10 0.534 10/10 0.740 10/10 0.911 10/10 0.911 10/10

OverlappingTemplate 0.534 10/10 0.213 10/10 0.534 10/10 0.534 10/10 0.740 10/10 0.035 10/10

Universal 0.740 10/10 0.911 9/10 0.213 10/10 0.350 10/10 0.350 10/10 0.122 10/10

ApproximateEntropy 0.534 10/10 0.350 10/10 0.534 10/10 0.911 10/10 0.740 10/10 0.350 10/10

RandomExcursions -- 8/8 -- 3/3 -- 3/3 -- 6/6 -- 5/5 -- 6/6

RandomExcursionsV. -- 8/8 -- 3/3 -- 3/3 -- 6/6 -- 5/5 -- 6/6

Serial 0.534 10/10 0.911 10/10 0.534 9/10 0.740 10/10 0.122 10/10 0.740 10/10

LinearComplexity 0..534 9/10 0.911 10/10 0.911 10/10 0.740 10/10 0.350 10/10 0.350 10/10

82

Although already verified by the Frequency test and Block Frequency Test,

2D binary image representation of a random bit sequence generated is visually illus-

trated in Figure 6.9. The uniform distribution of black and white pixels can be ob-

served in both the sequences presented. Here, the black pixels represent a bit ‘0’

while the white pixels represent a bit ‘1’ in a random bit sequence of length 65536

that is presented as a 256x256 matrix. Of the many random sequences generated,

Figure 6.9 presents random bit sequence generated using 10 SPFBs.

Figure 6.9 Visual Representation of a TRN generated using 10 SPFBs

(a) Original Sequence (b) De-biased Sequence

6.3 Performance

One metric that qualifies our technique as best suited approach for low end

embedded systems is its throughput. Throughput refers to the number of bits pro-

duced per unit time. In our case, for a random number generator, throughput can be

(a) Original Sequence Generated (b) Debiased Sequence Generated

83

defined as the number of good random bits generated per unit time. Since the algo-

rithm for generation of random number is a function of m, the number of SPFBs that

are combined to produce random number and the number of reads performed at a

time nStep, our throughput is also the function of these parameters (as mentioned in

algorithm presented in Figure 4.10). The result presented in Section 6.2 indicate

that using m=10 would produce quality random bits. So the optimal case for generat-

ing nStep=1024 random bits using m=10 would require 123 processor clock cycles in

MSP430F5438. This would correspond to 8,525 random bits when the processor is

run at FCPU=1, 048,576 Hz (~1 Mhz). This would scale to 68,200 random bits per sec-

ond for the case when the processor is run at 8,388,608 Hz (~8 Mhz). This through-

put by far exceeds typical requirement for random numbers on this type of low-end

embedded systems.

Size requirement is another metric that determines the quality of any soft-

ware implementation. The memory footprint occupied by our code is very small, thus

making it best suited for resource constrained systems that will empower IoT low-

est-tier infrastructure. The code for perturbing Flash memory segment occupies 93

bytes of RAM memory at worst case. Worst Case is the case with maximum number

of NOPs required for perturbing. The code for identifying the SPFB would occupy

238 Bytes of memory while the generation of random number would occupy 232

Bytes of memory.

The amount of memory in RAM for data while calculating the random bits is

a function of number of bits required. The algorithm can be tuned by changing the

value of nStep. At any point in generation of nStep-bit random number using m

SPFBs, the memory required will be (nStep * 2) bits of RAM memory. In case when

84

enough memory is not available in RAM, as can be case in some low-end resource

constrained system, the value of nStep can be configured to a smaller value to pro-

duce smaller random number sequence. Many such smaller random number se-

quence can be combined to form a larger random number sequence as post pro-

cessing.

85

CHAPTER 7

CONCLUSIONS

This thesis presented a new technique to generate true random numbers by

utilizing read noise from perturbed NOR Flash memory cells. The proposed method

is demonstrated on a TI MSP430 family of low-power and low-end microcontrollers.

The proposed technique is applicable in a wide range of microcontrollers and offers

the following advantages relative to the state-of-the-art approaches: (a) it does not

require any additional hardware modifications and/or interfaces; (b) it is robust,

cost-effective, and high-throughput; (c) it is implemented in software; and (d) it is

flexible and can be tailored to work in resource-constrained devices.

The proposed technique relies on perturbing NOR Flash memory cells using

partial programming. In the perturbed state, Flash memory cell’s threshold voltage

is close to the read sensing voltage and thus the outcome of read operations is uncer-

tain – cells read as either logic ‘1’ or logic ‘0’ depending on read noise. We character-

ize NOR Flash memory regarding its perturbed state and show how timing control of

partial programming can impact the number of perturbed states. The thesis de-

scribes algorithms for partial programming, characterization of Flash memory cells,

and generating true random numbers using strongly perturbed Flash memory cells.

86

The experimental evaluation shows that the proposed technique results in a high-

quality random sequences that pass all the tests from the NIST statistical suite.

In future work, several new directions can be considered. First, this thesis

utilizes partial programming of Flash memory as a way to introduce a perturbed

state. An alternative approach is to consider partial erasing – though this operations

takes more time, it may have potential to produce more strongly perturbed states.

Next, generating true random numbers is closely related with creating Physical Un-

clonable Functions (PUFs) that can be used to uniquely identify devices. The goal of

this direction is to find an algorithm for generating PUFs from perturbed states of

Flash memory. Another venue for future exploration is to broaden the number and

type of microcontrollers this approach has been tested on.

87

REFERENCES

[1] J. Kelsey, B. Schneier, D. Wagner, and C. Hall, “Cryptanalytic Attacks on

Pseudorandom Number Generators,” in Fast Software Encryption, vol. 1372, S.

Vaudenay, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 168–188,

1998.

[2] B. Koerner, “Russians Engineer A Brilliant Slot Machine Cheat—And Casinos

Have No Fix,” 06-Feb-2017. [Online]. Available:

https://www.wired.com/2017/02/russians-engineer-brilliant-slot-machine-cheat-

casinos-no-fix/.

[3] L. E. Bassham et al., “A statistical test suite for random and pseudorandom

number generators for cryptographic applications,” National Institute of

Standards and Technology, Gaithersburg, MD, NIST SP 800-22r1a, 2010.

[4] E. B. Barker and J. M. Kelsey, “Recommendation for Random Number Genera-

tion Using Deterministic Random Bit Generators,” National Institute of Stand-

ards and Technology, NIST SP 800-90Ar1, Jun. 2015.

[5] M. S. Turan, E. Barker, J. Kelsey, K. A. McKay, M. L. Baish, and M. Boyle,

“Recommendation for the entropy sources used for random bit generation,” Na-

tional Institute of Standards and Technology, Gaithersburg, MD, NIST SP 800-

90b, Jan. 2018.

[6] A. Maiti, R. Nagesh, A. Reddy, and P. Schaumont, “Physical unclonable func-

tion and true random number generator: a compact and scalable implementa-

tion,” in Proceedings of the 19th ACM Great Lakes symposium on VLSI, pp.

425–428, 2009.

[7] L. Westlund, “Random Number Generation Using the MSP430.” Texas Instru-

ments, Oct-2006. [Online]. Available:

http://www.ti.com/lit/an/slaa338/slaa338.pdf.

[8] M. Majzoobi, F. Koushanfar, and S. Devadas, “FPGA-Based True Random

Number Generation Using Circuit Metastability with Adaptive Feedback Con-

trol,” in Cryptographic Hardware and Embedded Systems – CHES 2011, vol.

88

6917, B. Preneel and T. Takagi, Eds. Berlin, Heidelberg: Springer Berlin Hei-

delberg, pp. 17–32, 2011.

[9] H. Hata and S. Ichikawa, “FPGA Implementation of Metastability-Based True

Random Number Generator,” in IEICE Transactions on Information and Sys-

tems, vol. E95.D, no. 2, pp. 426–436, 2012.

[10] C. Tokunaga, D. Blaauw, and T. Mudge, “True Random Number Generator

with a Metastability-Based Quality Control,” in IEEE International Solid-

State Circuits Conference, 2007. Digest of Technical Papers, pp. 404–611, 2007.

[11] J. Wu and M. O’Neill, “Ultra-lightweight true random number generators,”

Electronics Letters, vol. 46, no. 14, p. 988, 2010.

[12] P. Z. Wieczorek and K. Golofit, “Dual-Metastability Time-Competitive True

Random Number Generator,” in IEEE Transactions on Circuits and Systems I:

Regular Papers, vol. 61, no. 1, pp. 134–145, Jan. 2014.

[13] Y. Wang, W. Yu, S. Wu, G. Malysa, G. E. Suh, and E. C. Kan, “Flash Memory

for Ubiquitous Hardware Security Functions: True Random Number Genera-

tion and Device Fingerprints,” presented at the IEEE Symposium on Security

and Privacy, San Francisco, CA, pp. 33–47, 2012.

[14] M. J. Kirton and M. J. Uren, “Noise in solid-state microstructures: A new per-

spective on individual defects, interface states and low-frequency (1/ ƒ) noise,”

Advances in Physics, vol. 38, no. 4, pp. 367–468, Jan. 1989.

[15] Yinglei Wang, Wing-kei Yu, S. Q. Xu, E. Kan, and G. E. Suh, “Hiding Infor-

mation in Flash Memory,” in IEEE Symposium on Security and Privacy (SP) ,

pp. 271–285, 2013.

[16] B. Ray and A. Milenkovic, “True Random Number Generation Using Read

Noise of Flash Memory Cells,” in IEEE Transactions on Electron Devices, vol.

65, no. 3, pp. 963–969, Mar. 2018.

[17] D. E. Holcomb, W. P. Burleson, and K. Fu, “Power-Up SRAM State as an Iden-

tifying Fingerprint and Source of True Random Numbers,” in IEEE Transac-

tions on Computers, vol. 58, no. 9, pp. 1198–1210, Sep. 2009.

[18] F. Tehranipoor, W. Yan, and J. A. Chandy, “Robust hardware true random

number generators using DRAM remanence effects,” in IEEE International

89

Symposium on Hardware Oriented Security and Trust (HOST), pp. 79–84,

2016.

[19] F. Tehranipoor, N. Karimian, W. Yan, and J. A. Chandy, “DRAM-Based Intrin-

sic Physically Unclonable Functions for System-Level Security and Authentica-

tion,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol.

25, no. 3, pp. 1085–1097, Mar. 2017.

[20] C. Pyo, S. Pae, and G. Lee, “DRAM as source of randomness,” Electronics Let-

ters, vol. 45, no. 1, p. 26, 2009.

[21] L. T. Clark, J. Adams, and K. E. Holbert, “Reliable techniques for integrated

circuit identification and true random number generation using 1.5-transistor

flash memory,” Integration, the VLSI Journal, Nov. 2017.

[22] S. Balatti et al., “Physical Unbiased Generation of Random Numbers With

Coupled Resistive Switching Devices,” IEEE Transactions on Electron Devices,

vol. 63, no. 5, pp. 2029–2035, May 2016.

[23] H. Jiang et al., “A novel true random number generator based on a stochastic

diffusive memristor,” Nature Communications, vol. 8, no. 1, Dec. 2017.

[24] T. Greg and G. Cox, “Behind Intel’s New Random Number Generator.” IEEE

Spectrum, 24-Aug-2011.

[25] B. Jun and P. Kocher, “The Intel random number generator.” Intel Corporation,

22-Apr-1999. [Online]. Available:

http://www.cryptography.com/resources/whitepapers/IntelRNG.pdf.

[26] John. M., “Intel® Digital Random Number Generator (DRNG) Software Imple-

mentation Guide.” Intel, 15-May-2014. [Online]. Available:

https://software.intel.com/en-us/articles/intel-digital-random-number-generator-

drng-software-implementation-guide.

[27] “AMD Random Number Generator.” Advanced Micro Devices, 6/27 /17.

[Online]. Available: https://support.amd.com/TechDocs/amd-random-number-

generator.pdf.

[28] Z. Tang, X. Zhang, Y. Zhang, and L. Qi, “Portable true random number genera-

tor for personal encryption application based on smartphone camera,” Electron-

ics Letters, vol. 50, no. 24, pp. 1841–1843, Nov. 2014.

http://www.cryptography.com/resources/whitepapers/IntelRNG.pdf

90

[29] H. Guo, W. Tang, Y. Liu, and W. Wei, “Truly random number generation based

on measurement of phase noise of a laser,” Physical Review E, vol. 81, no. 5,

May 2010.

[30] J. Zhang et al., “A robust random number generator based on differential com-

parison of chaotic laser signals,” Optics Express, vol. 20, no. 7, p. 7496, Mar.

2012.

[31] Y. Terashima, K. Ugajin, A. Uchida, T. Harayama, and K. Yoshimura, “Fast

physical random bit generation using a photonic integrated circuit,” in Interna-

tional Symposium on Nonlinear Theory and Its Applications, Yugawara, Japan,

2016.

[32] “<cstdlib> (stdlib.h).” [Online]. Available:

http://www.cplusplus.com/reference/cstdlib/.

[33] “<random>.” [Online]. Available: http://www.cplusplus.com/reference/random/.

[34] “Class Random.” [Online]. Available:

https://docs.oracle.com/javase/7/docs/api/java/util/Random.html.

[35] “random — Generate pseudo-random numbers.” [Online]. Available:

https://docs.python.org/3/library/random.html.

[36] Y. Wang, “Flash Memory For Ubiquitous Hardware Security Functions,” Cor-

nell University, Ithaca NY, 2014. [Online]. Available:

https://ecommons.cornell.edu/handle/1813/36037.

[37] R. Micheloni, A. Marelli, and S. Commodaro, “NAND overview: from memory to

systems,” in Inside NAND Flash Memories, Dordrecht: Springer Netherlands,

pp. 19–53, 2010.

[38] L. Crippa, R. Micheloni, I. Motta, and M. Sangalli, “Nonvolatile Memories:

NOR vs. NAND Architectures,” in Memories in Wireless Systems, R. Micheloni,

G. Campardo, and P. Olivo, Eds. Berlin, Heidelberg: Springer Berlin Heidel-

berg, pp. 29–53, 2008.

[39] A. R. Duncan, M. J. Gadlage, A. H. Roach, and M. J. Kay, “Characterizing Ra-

diation and Stress-Induced Degradation in an Embedded Split-Gate NOR Flash

Memory,” IEEE Transactions on Nuclear Science, vol. 63, no. 2, pp. 1276–1283,

Apr. 2016.

91

[40] J. von Neumann, “Various Techniques Used in Connection with Random Dig-

its.” [Online]. Available: https://mcnp.lanl.gov/pdf_files/nbs_vonneumann.pdf.

[41] “NIST SP 800-22: Documentation and Software - Random Bit Generation |

CSRC.” [Online]. Available: https://csrc.nist.gov/projects/random-bit-

generation/documentation-and-software.

