Xen Network Flow Analysis for Intrusion Detection:

Reece Johnston', Sun-il Kimf, David Coe*, Letha Etzkornt, Jeffrey Kulick:, and
Aleksandar Milenkovic!
Computer Science’ and Electrical and Computer Engineering* Departments
University of Alabama in Huntsville

{reece.johnston,sunil.kim,coed,etzkorl kulickj,milenka}@uah.edu

ABSTRACT

Virtualization technology has become ubiquitous in the com-
puting world. With it, a number of security concerns have
been amplified as users run adjacently on a single host. In
order to prevent attacks from both internal and external
sources, the networking of such systems must be secured.
Network intrusion detection systems (NIDSs) are an impor-
tant tool for aiding this effort. These systems work by an-
alyzing flow or packet information to determine malicious
intent. However, it is difficult to implement a NIDS on a vir-
tualized system due to their complexity. This is especially
true for the Xen hypervisor: Xen has incredible heterogene-
ity when it comes to implementation, making a generic so-
lution difficult. In this paper, we analyze the network data
flow of a typical Xen implementation along with identifying
features common to any implementation. We then explore
the benefits of placing security checks along the data flow
and promote a solution within the hypervisor itself.

CCS Concepts

eSecurity and privacy — Intrusion detection systems;
Virtualization and security; Network security;

Keywords

Hypervisor, Xen

1. INTRODUCTION

Cloud computing has become ubiquitous in today’s world
due to its transparency and ease-of-use for a client and due
to its profitability as a utility [3]. As with any computer
system, security is a major concern, especially considering
the nature of clouds: they run multiple users’ applications
adjacently on a single machine which incurs greater impact
from a successful attack. Ultimately, to secure the cloud its
constituent technologies must be secured, the most impor-
tant being virtualization. We focus on the Xen hypervisor,
an increasingly popular virtualization technology.

*This work was supported by the National Security Agency
grant H98230-15-1-0268.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

CISRC 16, April 05-07, 2016, Oak Ridge, TN, USA

© 2016 ACM. ISBN 978-1-4503-3752-6/16/04. .. $15.00

DOL: http://dx.doi.org/10.1145/2897795.2897802

Unfortunately, the Xen hypervisor is a minimally docu-
mented piece of software, making security analysis difficult;
it also utilizes a vast number of computing techniques all
of which need securing. Fortunately, one technique that is
paramount is networking, so we will look at Xen’s archi-
tecture through the lens of network security. Specifically,
we will inspect the inner workings of Xen with regard to
network flow and analyze said flow for potential intrusion
detection implementation.

The rest of the paper is organized as follows: first we dis-
cuss background information, followed by a trace of Xen’s
networking, then the resulting analysis, and finally a con-
clusion with a discussion of future work.

2. BACKGROUND

In this section, we discuss virtualization, and cover intru-
sion detection systems (IDSs) with a focus on clouds.

2.1 Virtualization

Virtualization is the process of creating and managing a
virtual version of a resource or entity. Typically, the entity is
an operating system (OS) or physical device (i.e. NIC). For
this paper, we are primarily concerned with virtualization
of physical devices. This type of virtualization is commonly
handled via a virtual machine monitor (VMM /hypervisor)
which lies between a collection of virtual machines (VMs)
and the underlying hardware. This VMM provides all of
the resource sharing and shared memory mechanisms of a
traditional OS, but it does so for OSs that run atop it (the
VMs). Due to its popularity, the Xen hypervisor, as in-
troduced in [1], is of particular concern. Xen has a few
particularities when compared to other VMMs; its use of
privileged domains being most relevant to our discussion.
Xen has various domains (VMs) that can be granted certain
hardware access. These domains are referred to as Doms
(ie. Dom0, Doml, ..., DomU). Typically, Dom0 is treated
as the single privileged domain handling all I0. However,
stub domains are arising that handle specific types of 10
for guest DomUs. Either way, there are still a number of
security concerns with any privileged domain. Therefore, a
number of security mechanisms should be utilized such as
firewalling, intrusion detection, and virus scanning. For this
paper, we will focus on intrusion detection.

2.2 Intrusion Detection Systems

IDSs are used to detect incoming attacks using either
signature-based detection (SD) or anomaly-based detection
(AD). These work by analyzing data and then stopping or
allowing an action based on the analysis. The methods for

Physical Network —— Event Channel - Grant Copy —-—

Key

Virtual Network = = - Grant Reference ----- Grant Map ----

Doml

Netfront Netfront
Driver @ Driver @ 2X |:
A *

Dom?2

Dom1 Grant Table Dom?2 Grant Table

Figure 1: Typical Xen Network Data Flow

analysis can be statistics-based, pattern-based, rule-based,
etc; and a large body of research literature covers many such
methods. However, most focus on supporting a single sys-
tem or application. Recently, there have been some advances
towards IDSs designed for virtualized environments [5].

The cloud IDSs proposed are typically network-based sys-
tems (NIDS) or host-based systems (HIDS) [4]. NIDSs work
by inspecting network flow and packet content, and it is
worth noting that packet content may be encrypted mak-
ing certain implementations impossible. One example of a
NIDS in the cloud, SnortFlow, targets OpenFlow-based vir-
tual networks via SD techniques; meaning, it sits on a net-
work management VM [8]. However, a NIDS need not be
loaded onto a VM since it can be on a cluster controller [6].
As for HIDS, they inspect local behaviour through various
introspection or monitoring techniques. An important HIDS
example, Collabra, is situated within the VMM but utilizes
multiple hosts for attack detection. Moreover, it targets hy-
percalls and their parameters which is similar to the model
we will be promoting. However, their implementation is
more a HIDS than a NIDS since it does not focus on network
data [2]. With this, the various flavors of cloud IDSs have
been addressed, and notably, none of the NIDS lie within
the VMM layer.

3. XEN NETWORK DATA FLOW

In this section, the Xen hypervisor is examined for NIDS
deployment. Specifically, the network data flow of a Xen
system is explored at the VM layer and at the VMM layer.

3.1 Xen Network Architecture

When dealing with Xen, a number of significant issues
arise: it is in rapid flux, has wildly heterogeneous imple-
mentations, and exposes various public interfaces that may
not be used by a given VM.

Figure 1 shows a typical Xen network data flow. The
VM layer (comprised of Dom0, Doml, and Dom?2) sits on
top of a VMM layer (Xen 4.5) which sits atop a physical
layer. In each layer, the networking components are shown.
Specifically, each DomU depicts the network drivers, their
data flows (grant operations), and their control flows (event
channels). However, the distinction between the VM type
(HVM/full or PVM/paravirtualized) is not depicted since
similar mechanisms will be used, especially when a HVM
uses PV drivers. Also, the netback driver(s) are not ex-
pounded upon, but there is likely an instance per DomU.
Then, the VMM layer depicts the grant tables of each DomU
which are key to shared memory in a Xen system. These

570 while (xenvif_rx_ring_slots_available(queue)

571 && (skb = xenvif rx dequeue(queue)) != NULL) {
572 queue—>last_rx time = jiffies;

573

574 XENVIF_RX_CB(skb)—>meta_slots_used =

xenvif_gop_skb(skb, &npo, queue);

585 gnttab_batch_copy(queue—>grant_copy_op, npo.copy_prod);

Listing 1: linux/drivers/net/xen-netback/netback.c

248 ref = get_free_entries(1);

249 if (unlikely(ref < 0))

250 return —ENOSPC;

251

252 gnttab_grant_foreign_access_ref(ref, domid, frame, readonly);

770 if (HYPERVISOR grant_table_op(GNTTABOP_copy, batch,
count))

Listing 2: linux/drivers/xen/grant-table.c

function via the references shown which serve as capabilities
for foreign DomUs. This completes the architecture expla-
nation, so we can move to the data flows.

3.2 Xen VM Layer Network Flow

For network flow, there are a few possibilities: external
to VM, VM to external, or VM to VM. Each of these has a
slightly different flow and so each shall be discussed. How-
ever, it is important to keep in mind that some specifics of
the flows can change with implementation, but the VMM
level will remain consistent. Therefore, after detailing the
VM level flows by examining Linux 4.4-rc8 code, we will
switch to discuss the flows at the VMM level.

For external to VM, data moves from the NIC to some
driver. Then, utilizing a virtual network (commonly, Linux
bridge utilities and/or Open vSwitch), the data is connected
to the appropriate netback driver. Essentially, this works
like a physical network, either through routing or switching-
like behaviour. Also, virtual interfaces (VIFs) are created
which function like standard network interfaces. From here,
the netback driver queues the packet and waits for available
space in the associated DomU’s RX buffer. The availabil-
ity of this buffer is indicated by the netfront driver via the
depicted RX event channel. In the Linux source, the net-
back and netfront drivers handle these channels via a Xen
ring. These rings rely on Xen’s event and grant mechanisms
which are discussed in the next subsection. Looking at List-
ing 1, we see some code segments from the xenvif_rx_action
function of the netback driver. In which, grant copy oper-
ations are constructed via a xenvif_gop_skb call that uses
RING_COPY_REQUESTS to acquire available slots (and
grant references) from the RX ring. Then, further down, a
batch gnttab_batch_copy operation is performed using these
constructed operations. In this batch operation, we finally
arrive at the hypercall responsible for moving packet data.
Specifically, this is the HYPERVISOR_grant_table_op hy-
percall seen in Listing 2. From here, execution switches over
to the VMM to perform a grant copy operation. The details
of which are discussed in Section 3.3. Once execution returns
to the netback driver, the packet data will be in the grant
entries referenced in the RX buffer, so netback proceeds to
do response checking, fragment pushing, and cleanup. With
this completed, the netfront driver can access the data, so
once that DomU begins execution and netfront gets CPU
time, the response messages are read and the packet data
is retrieved. This exact functionality lies in the xennet_poll
function of ”linux/drivers/net/xen-netfront.c”; which is not
covered since a NIDS should not be used past this point.

In the VM to external flow, the same mechanisms are

1011 case EVTCHNOP_alloc_unbound: {

1012 struct evtchn_alloc_unbound alloc_unbound;

1013 if (copy_from_guest(&alloc_unbound, arg, 1) != 0)
1014 return —EFAULT;

1015 rc = evtchn_alloc_unbound(&alloc_unbound);

1021 case EVTCHNOP_bind_ interdomain: {

1022 struct evtchn_bind_interdomain bind_interdomain;
1023 if (copy_from_guest(&bind_interdomain, arg, 1) !=0)
1024 return —EFAULT;

1025 rc = evtchn_bind_interdomain(&bind_interdomain);

1069 case EVITCHNOP_send: {

1070 struct evtchn_send send;

1071 if (copy_from_guest(&send, arg, 1) != 0)

1072 return —EFAULT;

1073 rc = evtchn_send(current—>domain, send.port);

2643 case GNTTABOP_map_grant_ref:
2644

2645 XEN_GUEST_HANDLE_PARAM (gnttab_map_grant_ref_t
map =

2646 guest_handle_cast(uop, gnttab_map_grant_ref_t);

2647 if (unlikely(!guest_handle_okay(map, count)))

2648 goto out;

2649 rc = gnttab_map_grant_ref(map, count);

2709 case GNTTABOP _copy:
2710

2711 XEN_GUEST_HANDLE_PARAM (gnttab_copy_t) copy =
2712 guest_handle_cast(uop, gnttab_copy_t);

2713 if (unlikely(!guest_handle_okay(copy, count)))

2714 goto out;

2715 rc = gnttab_copy(copy, count);

Listing 3: xen-4.5/xen/common/event_channel.c

used, but the roles are reversed between the netfront and
netback drivers: the DomU netfront driver now puts the
packet data into the grant entries referenced in the TX ring;
then, the netback driver copies that data directly since the
entries were made available to its domain during the TX
ring setup. This can be seen in the setup_netfront func-
tion of ”linux/drivers/net/xen-netfront.c” which calls xen-
bus_grant_ring in turn invoking gnttab_grant_foreign_access.
Looking in Listing 2, this grant operation requests a free
grant entry via get_free_entries. Then, it updates that en-
try to allow foreign access by calling gnttab_grant_foreign_
access_ref. Notably, this does not invoke a hypercall as it is
working in its own memory space. As for the marshaling,
this occurs in the xennet_start_xmit of the netfront driver.
After loading the marshaled data into the TX ring, the net-
front driver uses a ring request or notify_remote_via_irq call
to message the netback driver. From here, execution picks
back up at the netback driver. Specifically, the xenvif tx_
action function processes the requests: it performs a gnttab_
batch_copy operation which in turn makes the grant copy hy-
percall(s). Once the data is copied, it’s pushed to the virtual
network which in turn routes it out the NIC interface.

For VM to VM communication, portions of the flows for
external to VM and VM to external are followed. Specifi-
cally, the VM to VM flow can be viewed as identical to a VM
to external until the virtual network is reached. Then, the
arbiter of this virtual network simply redirects the traffic to
the VIF associated with the destination DomU. From this
point on, the flow mimics an external to VM flow.

3.3 Xen VMM Layer Network Flow

Network flows in the VMM layer rely on hypercalls to in-
voke event channel and grant operations. As such, this sub-
section will introduce hypercalls, then cover how the event
channel and grant operations function. These mechanisms
are used in the Section 3.2’s various flows which can be ref-
erenced in relation to the hypercalls covered here.

All of the requests to the VMM layer hinge around a hy-
percall being invoked by a VM. This can be thought of as a
syscall or software trap. However in a hypercall, the return
path is an event channel which works as an asynchronous
queue of notifications. These in turn tell an event-callback
handler what actions to take. The specific hypercalls of
concern revolve around event channel operations and grant
operations, as these are pertinent to Xen networking.

For event channels, the HYPERVISOR_event_channel_op
hypercall performs these significant EVITCHNOP_* opera-
tions: alloc_unbound, bind_interdomain, and send. The do_
event_channel op function shown in Listing 3 handles call-
ing these operations. The EVTCHNOP_alloc_unbound op-
eration sets up a new event channel via the invoked evtchn_

Listing 4: xen-4.5/xen/common/grant_table.c

alloc_unbound function. In the drivers, this operation is
called by netfront to setup event channels for the TX and
RX ring buffers. The next operation, EVTCHNOP_bind_
interdomain, is used to connect to an existing event channel
via the bind_interdomain invocation. In which, the current
domain’s provided port is bound to the remote one. In the
Linux drivers, this operation is used to connect a netback
driver to a netfront driver. Lastly, EVTCHNOP_send oper-
ations send a notification on the event channel by flagging
a bit. In essence, these event channels behave like hard-
ware interrupts, and notably, this means that they are not
directly responsible for any substantive data transmission:
they merely notify, so for the Linux drivers, they notify when
aring has data to process. As for data transmission, we must
look at the grant operations.

The grant hypercall, HYPERVISOR_grant_table_op has a
few important GNTTAB_* operations: map_grant_ref, trans-
fer, and copy. The provided listing, Listing 4, shows how
these are called. In it, the code switches on what opera-
tion is passed in. For GNTTAB_map_grant_ref, the gnttab_
map_grant_ref function is called. This function maps the
referenced grant entry into the current domain’s memory
which allows that domain to perform read or write oper-
ations (depending on flags). This operation is used in the
netback driver to access outgoing packets from a DomU. The
next operation, GNTTABOP_transfer, while rarely used, is
a valid methodology: it allows for the ownership of a grant
entry to be changed to another domain. Meaning, a network
driver could pass grant entries back and forth by switching
their ownership. However, this incurs frequent TLB invali-
dation which is highly inefficient. The last operation, GNT-
TAB_copy, is the most common operation. In fact, the linux
implementation discussed in Section 3.2 relies heavily upon
it. The specifics of the copy operation are handled by the
gnttab_copy invocation. In this function, the appropriate
bounds and error checking is performed before memcpy’ing
the entry into a local page. Thus, duplicating the page into
a completely controlled space. Meaning, both reads and
writes can be done. This operation was heavily used in the
Linux netback driver to copy data to and from a DomU via
the grant references in the RX and TX buffers.

4. XEN NIDS ANALYSIS

Looking at the network flow, a few areas arise for NIDS
placement: at the virtual network, within the netback driver,
within the netfront driver(s), and within the hypercall op-
erations. We evaluate each approach with regards to the
traffic they can capture, the level of security, and the com-
patibility to any possible Xen implementation. A general-
ized summary of this evaluation can be found in Table 1.

For NIDS deployment, the virtual network is a logical

Table 1: NIDS Locale Evaluation

Locale Traffic Security Compatibility
Virtual External to VM,

Network VM to External Moderate Moderate
Netback External to VM,

Driver VM to External Moderate Moderate
Netfront All Low Low

Driver

Hypercall All Except . .

Operations Passthrough High High

choice as it sits between the netback drivers. Thus, when
using specific netback implementations, a NIDS is guaran-
teed to capture all network traffic. However, special drivers
can do direct copies between DomUs, removing the need to
push packets onto the virtual network [7]. Meaning, VM to
VM traffic is not guaranteed to be captured. Moreover, the
NIDS would have to be built into a specific virtual network
technology to be able to stop malicious packets rather than
just identify them. As such, there is no guaranteed com-
patibility for any netback driver nor any virtual network
technology when placing a NIDS at this locale. Fortunately,
these two components are chosen by an administrator, so a
NIDS at the virtual network is moderately compatible. As
for security, it is dependent on the security of the domain the
NIDS is running in. In most cases, this means Dom0 which
is sandboxed from the guest domains. However, it runs on
a significantly sized OS, which is inherently more suscep-
tible to compromise. As such, a virtual network NIDS is
only moderately secure since it runs in a moderately secure
domain. Ultimately, the virtual network is a good choice
for NIDS placement, especially considering the ease of im-
plementing at this layer. However, convenience is not our
concern; thus, we should look to another locale.

Another option is the netback driver, or specifically, in the
netback driver after the skb seen in Listing 1 has been filled.
Like the virtual network, a NIDS in the netback driver is not
guaranteed to capture all network traffic. This is because
DomU to DomU copying can avoid passing through the net-
back driver. An implementation like the one described in [7]
covers such a process. Also, a netback NIDS can work with
any existing virtual network technology but requires the use
of a custom netback driver; therefore, an IDS implemented
in a netback driver has moderate compatibility. As for secu-
rity, a netback NIDS is moderately secure due to the exact
reasoning given for a virtual network NIDS: it runs in a mod-
erately secure domain. Again, we have not reached an ideal
locale, so let us consider yet another one.

Implementing a NIDS within a netfront driver is not an
ideal choice for one glaringly obvious reason: it runs in the
guest domain. This makes it relatively insecure since it is
within a user controlled domain. Also, this makes it rela-
tively incompatible since it requires a special driver be cre-
ated for every possible VM OS. However, a NIDS within a
netfront driver does net one benefit that other locales do
not: it captures packets that have direct passthrough to the
physical layer. Granted, this means that the driver is less a
netfront driver and more a network driver, but the logic still
holds. Ultimately, this option is mentioned for completeness
and to address the passthrough concern. Considering all of
this, it should not be used (at least on its own); thus, we
will evaluate the final locale.

Lastly, a NIDS can be implemented within the hypervisor
by utilizing the aforementioned hypercalls. Specifically, the
operations seen in Listings 3 and 4 can be targeted to cap-

ture packet data as it moves through Xen’s shared memory
mechanisms: the event channels and grant entries that are
mapped to a netfront’s TX and RX rings can be flagged (via
IRQs and grant references respectively), and then any grant
entries used by the flagged resources can be monitored via a
NIDS. Such a system nets significant benefits in every factor
of our evaluation: captures all traffic since networking runs
on these shared memory mechanisms, remains compatible
with VM software since the Xen interfaces have not been al-
tered, and provides high security since it lies in the smallest
portion of the trusted computing base, the hypervisor. Ulti-
mately, a VMM-situated NIDS is ideal because it supports
any Xen configuration, unlike the other options.

5. CONCLUSION AND FUTURE WORK

There needs to be significant effort towards securing cloud
technologies, particularly virtualization. In this paper, we
focused on the Xen VMM due to its prominence in the cloud
world. For securing Xen, we analyzed its networking ar-
chitecture and found that a NIDS system could be imple-
mented within the VMM. Such an implementation provides
significant benefits: captures all traffic, is highly compati-
ble, and is highly secure. At present, we have implemented
a grant entry filtering system that identifies network data
within the VMM, and we are in the process of implement-
ing an anomaly-based NIDS that analyzes grant entry byte-
frequencies. Going forward, we plan to refine this system by
having the training phase tune to each VM image’s traffic.
With this approach, a robust, efficient, and securely isolated
NIDS will be constructed within Xen.

6. REFERENCES

[1] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,
A. Ho, R. Neugebauer, I. Pratt, and A. Warfield. Xen
and the art of virtualization. SIGOPS Oper. Syst. Rev.,
37(5):164-177, Oct. 2003.

[2] S. Bharadwaja, W. Sun, M. Niamat, and F. Shen.
Collabra: a xen hypervisor based collaborative
intrusion detection system. In IEEE Information
technology: New generations (ITNG), 2011.

[3] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and
I. Brandic. Cloud computing and emerging it platforms:
Vision, hype, and reality for delivering computing as
the 5th utility. Elsevier FGCS, 25(6), 2009.

[4] M. Laureano, C. Maziero, and E. Jamhour. Intrusion
detection in virtual machine environments. In IEEE
Euromicro Conference, 2004.

[5] H.-J. Liao, C.-H. R. Lin, Y.-C. Lin, and K.-Y. Tung.
Intrusion detection system: A comprehensive review.
Journal of Network and Computer Applications,
36(1):16—24, 2013.

[6] C. Mazzariello, R. Bifulco, and R. Canonico.
Integrating a network ids into an open source cloud
computing environment. In IEEE Information
Assurance and Security, 2010.

[7] J. Wang, K.-L. Wright, and K. Gopalan. Xenloop: a
transparent high performance inter-vm network
loopback. In ACM international symposium on High
performance distributed computing, 2008.

[8] T. Xing, D. Huang, L. Xu, C.-J. Chung, and
P. Khatkar. Snortflow: A openflow-based intrusion
prevention system in cloud environment. In /IEEE
Research and Educational Experiment Workshop, 2013.

