
A Real-Time Program Trace Compressor
Utilizing Double Move-to-Front Method

Vladimir Uzelac, Aleksandar Milenkovic
The University of Alabama in Huntsville

{uzelacv, milenka}@ece.uah.edu

ABSTRACT
This paper introduces a new unobtrusive and cost-effective
method for the capture and compression of program execution
traces in real-time, which is based on a double move-to-front
transformation. We explore its effectiveness and describe a cost-
effective hardware implementation. The proposed trace
compressor requires only 0.12 bits per instruction of trace port
bandwidth, at the cost of 25K gates.

Categories and Subject Descriptors
B 7.2 [Integrated Circuits]: Design Aids-Verification. D.2.5:
[Testing and Debugging]: Debugging aids, Tracing.

General Terms
Design, Verification.

Keywords
Debugging, Program Trace, Compression.

1. INTRODUCTION
Continual growth in the complexity of embedded systems-on-a-
chip (SoCs) makes traditional approaches to system-level testing
and debugging infeasible or impractical. For example, the
development of a dedicated In-Circuit-Emulator (ICE) with
additional support for debugging is cost-prohibitive; in addition,
the ICE’s physical characteristics such as chip floorplan, pin
layout, and timing characteristics, differ from the targeted SoC.
Traditional software approaches to debugging that rely on
hardware and software breakpoints are often insufficient to
capture the real sources of a bug. Moreover, they interfere with
normal program execution, often causing the original error to
disappear. This is especially important for real-time and safety-
critical embedded systems that often need to be tested in real
operating conditions. Last but not least, software step-by-step
debugging is time consuming and places an additional strain on
system developers, resulting in either poorly tested designs or
product delays or both.

Embedded processor manufacturers responded to this debugging
challenge by incorporating on-chip hardware resources
exclusively dedicated to program tracing and debugging. For

example, ARM based embedded systems may include Embedded
Trace Macrocell [1] modules to support program tracing; Altera
Nios II [2] and Xilinx Microblaze [3] based systems may also
include trace modules to enable real-time tracing of programs and
data. Lauterbach [4] offers a number of program tracing hardware
and software tools for a variety of processors. Typically, trace
modules capture instruction and data traces (and possibly other
bus signals), perform branch filtering, and store traces in on-chip
trace buffers. The trace buffers can be read by external trace units
through a JTAG interface or through the system bus.
Alternatively, a trace module can send traced data directly through
a trace port. The traces are then used in conjunction with program
binaries to faithfully replay program execution and locate a bug
source. In addition to debugging, program execution traces are
also vital for workload characterization and performance tuning
and optimization.

The existing commercially available trace modules rely either on
large on-chip buffers to store execution traces of sufficiently large
program segments or on wide trace ports that can sustain a large
amount of trace data in real-time. However, large trace buffers
and/or wide trace ports significantly increase the system
complexity and cost. Moreover, they do not scale well, which is a
significant problem in the era of multicore systems.

Compressing program execution traces at runtime in hardware can
be used to reduce requirements for on-chip trace buffers and trace
port communication bandwidth. Whereas commercially available
trace modules typically implement only rudimentary forms of
hardware compression with a relatively small compression ratio
(5:1), several recent research efforts in academia propose effective
trace compression techniques that can achieve compression ratios
one order of magnitude higher [5-7]. For example, Kao et al. [5]
propose an LZ-based program trace compressor that achieves a
good compression ratio for a selected set of programs. However,
the proposed module has a relatively high complexity (50K gates).
In addition, the selected program segments are relatively small
with less than 10 million instructions, so it is unclear how
effective it would be in tracing more diverse programs.

In this paper we introduce a new cost-effective technique for
compression of program traces in real-time. The proposed
technique exploits common program characteristics and utilizes a
two-level move-to-front transformation. We thoroughly explore
program characteristics with regard to trace compression (Section
2), introduce a new Double Move-To-Front method (DMTF) for
compression of program traces (Section 3), explore its design
space (Section 4), and describe a cost-effective hardware
implementation (Section 5). We also introduce two enhancements
to the original method and explore their effectiveness using 17
diverse benchmarks from the MiBench benchmark suite [8]. A

42.3

738

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
DAC’09, July 26-31, 2009, San Francisco, California, USA
Copyright 2009 ACM 978-1-60558-497-3/09/07....10.00

trace module configuration of 25,000 logic gates achieves
compression ratios between 83 and 29,389, depending on the
benchmark. The average weighted compression ratio is 268:1,
which translates into 0.12 bits/instruction.

2. PROGRAM CHARACTERISTICS AND
MOVE-TO-FRONT TRANSFORMATION
To replay a program flow offline, we only need to trace the
information about program dynamic basic blocks (or streams). An
instruction stream is a sequential run of instructions, from the
target of a taken branch to the first taken branch in the sequence.
Each instruction stream can be uniquely represented by its starting
address (SA) and its length (SL). Thus, the complete trace of
instruction addresses from an instruction stream can be replaced
by the corresponding stream descriptor, i.e., the (SA, SL) pair.
Relatively simple logic can be used to capture (SA, SL) pairs. In
processors with fixed instruction word length, the current program
counter (PC) is compared to the previous PC. If they differ for a
value other than the instruction length, the current instruction is
the beginning of a new stream. The current values of the SA and
SL registers are output and the current PC is moved to the SA
register to mark the beginning of a new stream. The SL register is
set to 1. If the difference corresponds to the instruction length, the
current value in the SL is incremented. In processors with variable
instruction length, the stream detector requires an additional
control line from the CPU to indicate a taken branch instruction.
We introduce a slight modification to the original definition of an
instruction stream. When we encounter an unconditional direct
branch we do not terminate the current stream because the address
of the next instruction in sequence can be inferred directly from
the binary. Thus, when such a branch is identified, the SL register
is just incremented as it was a non-branching instruction.

Most programs have only a small number of unique program
streams, with just a fraction of them responsible for majority of
program execution. Figure 1 shows some important characteristics
of MiBench [8] benchmarks collected using SimpleScalar [9]
while running ARM binaries. The first 4 columns (a-d) show the
number of executed instructions (in millions), the number of
unique streams, the maximum and average stream length,
respectively. The number of unique streams ranges from 341 to
6871, and the average dynamic stream length is between 5.9
(bf_e) and 54.7 (adpcm_c) instructions. The fifth column (e)
shows the number of unique program streams that constitute 90%
of dynamically executed streams. This number ranges between 1
and 235, and it is 78 on average. Note that all calculations assume
weighted average, where weights are determined based on the
number of executed instructions, since the raw instruction address
trace is directly proportional to the number of executed
instructions. The maximum stream length never exceeds 256, thus
we may choose to use 8 bits to represent SL. In addition to this, it
can be shown that these frequently executed program streams
create repeating patterns with strong local correlation. Our
approach is to exploit these program characteristics in designing a
cost-effective trace compressor that will achieve an excellent
compression ratio with minimal storage and trace port bandwidth
requirements.

Move-to-Front (MTF) [10] is an encoding of data designed to
reduce the entropy of symbols in a data message by exploiting the
local correlation between symbols. It is used in conjunction with
the Burrows-Wheeler transform in the bzip2 utility program [11].

The MTF algorithm encodes an input data message as follows. If
an incoming input symbol is found in a history table ht, it is
replaced with its index i in the ht, and the symbol is moved at the
top of the table (the entry with index 0). The ht is updated by
shifting down first i-1 entries by one position, such that ht[i]=ht[i-
1], ..., ht[1]=ht[0]. To illustrate the MTF operation, let us consider
an input message AABC, and a history table ht=[C, B, A] (symbol
C is at the position 0). The MTF transforms the 3-symbol input
message into a new 2-symbol message 2022.

IC SC Max Avg CDF ht CDF ht[x] ht2[0]
(mil.) SL SL 90% 90% HR HR

adpcm_c 733 341 71 54.7 1 1 0.99 1.00
bf_e 544 403 70 5.9 22 5 0.41 0.69
cjpeg 105 1590 239 12.3 47 11 0.46 0.90
djpeg 23 1261 206 25.1 31 11 0.69 0.87
fft 631 846 94 10.5 209 32 0.17 0.66
ghostscript 708 6871 251 10.0 67 22 0.20 0.76
gsm_d 1299 711 165 19.5 33 6 0.48 0.90
lame 1285 3229 237 32.4 235 21 0.23 0.74
mad 287 1528 206 20.7 42 25 0.30 0.75
rijndael_e 320 513 77 21.0 45 2 0.57 0.79
rsynth 825 1238 180 17.6 49 10 0.26 0.77
stringsearch 4 436 65 6.0 48 38 0.62 0.81
sha 141 519 65 15.4 10 2 0.86 0.92
tiff2bw 143 1038 43 12.8 2 1 0.97 0.99
tiff2rgba 152 1131 75 27.7 2 1 0.92 0.99
tiffmedian 541 1335 92 22.3 5 1 0.91 0.97
tiffdither 833 1777 67 14.3 63 38 0.45 0.78
Average 816 1791 145 21.6 77.8 14.5 0.46 0.82

(a) (b) (c) (d) (e) (f) (g) (h)
Figure 1. MiBench program characteristics.

The original MTF transformation can be easily extended to allow
operation starting from an empty history table. The history table is
searched for an incoming input symbol. If the symbol is not found
in the table (we call this event an ht miss), the original symbol is
output and the table is updated by shifting its content by one
position and by placing the incoming symbol in the ht[0]. If the
symbol is found in the history table (an ht hit event), its index is
output and the table is updated as described above. The MTF
allows for an effective encoding of frequently executed program
sections. Let us consider several typical examples of program
loops where symbols A, B, and C represent unique instruction
streams characterized by their respective (SA, SL) pairs. For
example, a program loop consisting of a sequence of two streams
A and B repeating many times, illustrated as {AB}, is transformed
into a hit pattern {11}; similarly, a loop with a repeating pattern
{ABC} is transformed into {222}.
A relatively small history table will suffice to achieve a good hit
rate due to a strong temporal locality of instruction streams in
common programs. When a stream descriptor (SA, SL) is found in
the history table, it is replaced with its index in the history table.
Otherwise, the full stream descriptor of 40 bits is output in case
that the SA is a target of an indirect branch. If the SA is a target of
a direct branch, it can be inferred from the program binary, and
we output only 8 bits for SL. The effectiveness of the MTF
transformation on program execution traces consisting of a
sequence of stream descriptors is shown in Figure 1(f). We
measure the frequency of the output symbols after the MTF
transformation is applied. The average number of unique MTF
output symbols that constitute 90% of all dynamically executed
program streams is only 14.5 (down from 78 before the MTF
transformation), ranging from 1 (adpcm_c) to 38 (stringsearch).

739

Note: the experiments are conducted assuming a history table with
128 entries; the hit rate is over 97%, so a very small number of
streams are not transformed with the MTF.
A perfect trace compression without stream pattern recognition
would replace each stream with just a single bit. As described
above, the MTF transformation significantly reduces the number
of trace symbols. To come close to a one bit per stream goal, we
need to identify the most frequent entry and to encode it with a
single bit. Figure 1(g) shows the percentage of the hit events in
the most frequent ht entry. Although this percentage is fairly high
for many benchmarks (e.g., adpcm_c, tiff2bw), it is relatively
modest for others (e.g, 17% for fft, and 46% on average across all
benchmarks). An additional problem is how to identify the most
frequent entry in the ht because it varies across benchmarks.
In order to resolve these two problems, we introduce an
additional, second level move-to-front transformation. Let us
consider the following repeating stream pattern {ABAC}. The hit
pattern at the output from the first-level MTF is {1212}. If we
supply this pattern to the second-level MTF history table, the hit
pattern at the output is {1111}, with even lower entropy of
information. Because the MTF transformation lowers the number
of frequent symbols, the level 2 history table can be significantly
smaller.
This approach can be further extended by introducing another
level of MTF transformation; in general we could introduce a
hierarchy of MTF history tables. The size of the MTF history
tables will exponentially decrease as we move toward the upper
levels. However, an increase in the number of MTF levels will
reach the point of diminishing returns, and will not yield expected
gains. In general, the optimal configuration is application specific.
Our analysis shows that a 2-level MTF configuration appears to
be optimal. Figure 1(h) shows a high percentage of program
streams that end up in the entry 0 of the level 2 history table (ht2),
from 66% to 100%. By encoding this entry with a single bit we
approach the goal of having one bit per instruction stream. Note:
the experiments are conducted using ht2 with 16 entries achieving
94% hit rate.

3. DMTF METHOD
The analysis from the previous section suggests the use of a
2-level move-to-front transformation as optimal in compressing
program instruction traces. Consequently, we design an
instruction trace compressor with two history tables in sequence.
We name this scheme Double Move-to-Front (DMTF). The first-
and the second-level history tables are named mtf1 and mtf2,
respectively.
Figure 2 illustrates operation of the proposed trace compressor.
When a new stream is detected, its descriptor (SA, SL) is
forwarded to mtf1. As described before, the mtf1 table is searched
for the stream descriptor. If we find a match, we have an mtf1 hit;
the index of the matching entry is output to the next stage, and
mtf1 is updated accordingly. Otherwise, we have an mtf1 miss; the
mtf1 content is shifted down by one position, and mtf1[0] is
loaded with the stream descriptor. In case of an mtf1 hit, the
index i1 is sent to the mtf2 history table; mtf2 is searched for the
index i1. If we find a match in the entry 0, mtf2[0], we have an
mtf2 zero entry hit. If we find a match in the remaining mtf2
entries, we have an mtf2 non-zero entry hit. Otherwise we have
an mtf2 miss event.

We can distinguish four different events in the DMTF scheme and
they are encoded as follows. An mtf2[0] hit is encoded with a
single bit '0'. An mtf2 non-zero entry hit is encoded with a one-bit
header '1' and the mtf2 index i2 ('1'+i2). An mtf1 hit with a miss in
mtf2 is encoded with ('1'+i2miss+i1); note that the last index in
the mtf2 table, i2miss, is reserved to indicate a miss event in the
mtf2. Finally, a miss in mtf1 is encoded with a header
('1'+i2miss+i1miss) followed by a full or a partial stream
descriptor ([SA], SL) – 40 or 8 bits. Note: the last index in the
mtf1 table, i1miss, is reserved to indicate a miss in the mtf1.
The compression ratio that can be achieved using DMTF scheme
can be expressed analytically as follows. Equation 1 shows the
number of bits needed to encode a single stream after DMTF
compression, as a function of five parameters: mtf2 zero-entry hit
rate, mtf2.zhr; mtf2 non-zero entry hit rate, mtf2.ohr; mtf1 hit rate,
mtf1.hr; mtf1 size, mtf1.size; and mtf2 size, mtf2.size. Note:
mtf2.hr=mtf2.zhr + mtf2.ohr. Equation 2 shows the compression
ratio as a function of the number of instructions in a program, the
number of executed instruction streams, and the number of bits
per one instruction stream.

Figure 2. DMTF Operation.

Eq. 1

])32[8.1log.2log1(*).11(
).1log.2log1(*).2.1(

).2(log1(*.2(
.2

22

22

2

++++−
+++−

++
+=

sizemtfsizemtfhrmtf
sizemtfsizemtfhrmtfhrmtf

sizemtfohrmtf
zhrmtfStreamBitsPer

Eq. 2
eamBitsPerStr

tStreamCounnCountInstructioCR /*32=

An Example Compression/Decompression. Let us illustrate the
compression flow using an example from Figure 3(a). We
consider the following sequence of instruction streams
ABCAABABAC, where A, B, and C denote 3 instruction streams
with distinct stream descriptors. Let us assume a 64-entry mtf1
and an 8-entry mtf2. Note that the actual number of entries is 63
and 7, respectively, since the last indices are reserved to indicate
miss events. First three instruction streams are not found in the
mtf1 and are output with the header '1', followed by a 3-bit index
in the mtf2 reserved for miss events ('111'), a 6-bit index in the
mtf1 reserved for miss events ('111111'), and individual stream
descriptors ([SA], SL). Next, the stream A is found in mtf1[2], but
index 2 is not found in the mtf2 resulting in an mtf2 miss with mtf1
hit event; we emit a header '1'+'111' followed by the mtf1 index

740

'000010'. The next stream in sequence is A, resulting again in an
mtf2 miss with mtf1 hit event; this event is encoded with
'1+'111'+'000000'. The rest of the compression flow continues as
illustrated in Figure 3(a).

Steps: 1 2 3 4 5 6 7 8 9 10
Input: A B C A A B A B A C

… mtf1
2 A B B C C C C B
1 A B C C A B A B A
0 A B C A A B A B A C

mtf1
output -- -- -- 2 0 2 1 1 1 2

… mtf2
2 0 0 0 0
1 2 0 2 2 2 1
0 2 0 2 1 1 1 2

1+7+ 1+7+ 1+7+
Output: 63+A 63+B 63+C 1+7+2 1+7+0 1+1 1+7+1 0 0 1+1

(a)
Steps: 1 2 3 4 5 6 7 8 9 10
Input: 1+7+ 1+7+ 1+7+ 1+7+2 1+7+0 1+1 1+7+1 0 0 1+1

63+A 63+B 63+C
… mtf1
2 A C B C C C C B
1 A B B C A B A B A
0 A B C A A B A B A C

mtf1
output -- -- -- 2 0 2 1 1 1 2

… mtf2
2 0 0 0 0
1 2 0 2 2 2 1
0 2 0 2 1 1 1 2

Output: A B C A A B A B A C
(b)

Figure 3. DMTF compression (a) and decompression (b) flow
examples.

The decompression flow is a reversed compression flow and it
requires the same configuration of the history tables. The
compressed trace is read, headers are analyzed and the history
tables updated according to the DMTF method described above.
The decompression flow is illustrated in Figure 3(b). The first
item starts with the header '1'+'111'+'111111', which indicates that
the next 40 bits represent the first stream descriptor, (SA, SL).
The stream descriptor is loaded into mtf1[0]. The de-compressor
now can recreate a complete instruction trace for this stream. The
next two items in the trace are decompressed in the same way.
The next trace record '1+'111'+'000010' directs the de-compressor
to find the original stream descriptor in mtf1[2] (instruction stream
A). The following trace record '1'+'111'+'000000' directs the de-
compressor to find the stream in mtf1[0], which is stream A. The
rest of the decompression process is illustrated in Figure 3(b).
Performance Analysis. Figure 4(a) shows the compression ratio
for MiBench benchmarks; the size of the mtf1 is fixed to 128
entries and the mtf2 size is varied from 4 to 16 entries. The last
row (Average) shows the total compression ratio calculated as the
weighted harmonic mean of individual benchmark compression
ratios. The results show that we are able to achieve an excellent
compression ratio ranging from 45 to 1738. The results also
indicate that a DMTF configuration with only 4-entry mtf2 will
outperform configurations with larger mtf2.

CR (mtf1 size = 128) Distribution per component
mtf2 size 4 8 16 zht mtf2ht mtf1ht mtf1mt

adpcm_c 1738 1734 1729 99% 1% 0% 0%
bf_e 110 94 84 40% 52% 8% 0%
cjpeg 250 253 252 57% 10% 31% 2%
djpeg 434 434 433 47% 12% 30% 11%
fft 45 44 43 9% 3% 10% 78%
ghostscript 107 106 107 25% 7% 55% 13%
gsm_d 358 343 327 52% 13% 4% 32%
lame 326 329 323 23% 12% 28% 37%
mad 210 210 212 24% 8% 48% 20%
rijndael_e 323 409 362 38% 17% 45% 0%
rsynth 209 199 186 29% 18% 13% 41%
strings. 81 78 75 34% 7% 58% 2%
sha 425 399 375 79% 20% 0% 0%
tiff2bw 391 390 388 95% 2% 3% 0%
tiff2rgba 852 844 834 95% 3% 0% 1%
tiffmedian 523 515 505 71% 5% 2% 22%
tiffdither 170 161 155 29% 9% 44% 18%
Average 181 175 169 42.8% 12.3% 20.0% 25.0%

 (a) (b)
Figure 4. Compression ratio for DMTF(128,X), X= 4-16 (a).

Distribution of the individual trace components (b).

4. ENHANCED DMTF METHOD
The output of the DMTF trace compressor contains a lot of
redundant information. We introduce two low-cost enhancements
that exploit this redundancy and/or reduce complexity of the
compressor implementation. The four components of the output
trace, mtf2 zero hit trace (zht), mtf2 non-zero hit trace (mtf2ht),
mtf2 miss with mtf1 hit trace (mtf1ht), and mtf1 miss trace
(mtf1mt) are analyzed separately. Figure 4(b) shows the
contribution of each component to the total trace size for
DMTF(128,4) (128-entry mtf1 and 4-entry mtf2). The results show
the mtf1mt component is responsible for 25% of the total size, in
spite of high hit rates in the mtf1. Fortunately, the redundant
information in this trace can be easily exploited using a simple
last-value predictor on upper address bits that stay constant during
program execution. This enhancement is described in Section 4.1
and also helps reduce hardware complexity of the compressor
implementation. Next, the zero trace occupies 43% of the total
trace. We expect it to contain long runs of '0's, and its size can be
reduced by replacing them by a counter value (Section 4.2).
Finally, in Section 4.3 we put both enhancements together and
evaluate the effectiveness of the DMTF instruction trace
compressor.

4.1 Last-Value Predictor for Upper Address Bits
The upper address bits of the starting address (SA) field in the
stream descriptor rarely change during program execution. We
analyzed the locality of stream starting addresses; the SA field of
the incoming stream is compared bit by bit to the SA of the
previous instruction stream or to SAs of the several last
instruction streams. The results indicate that the upper 12 address
bits, SA[31:20], stay constant during program execution in 99%
of cases. Therefore, we divide the SA field into two parts: the
lower 20 address bits SA[19:0] that are compressed through the
DMTF, and the upper 12 bits that are handled using a simple last
value predictor (HLV). Note: SA[1:0] is '00' for the ARM ISA and
could be omitted; SA[0]= '0' for the ARM Thumb ISA, so the
SA[0] could be omitted. Here we keep the whole address.
A 12-bit last value (LV) register keeps the upper 12 bits of the last
stream’s SA. The upper 12 address bits of an incoming stream are
compared to the LV. If they match we have an HLV hit. The

741

lower 20 address bits SA[19:0] and SL are used in mtf1 lookup.
We adopt a scheme where mtf1 hits are conditional upon the
corresponding HLV hits. An HLV miss will cause that a miss trace
record is emitted regardless of mtf1 hits. When we have an HLV
hit with mtf1 miss event, the upper address bits are not emitted (in
case that a full stream descriptor is required). Finally, in case
when both mtf1 and HLV have a hit, a regular DMTF record is
emitted. The miss trace format is consequently extended to
support these modifications.
The effectiveness of this enhancement is analyzed below. In
general, it is beneficial in DMTF configurations with a relatively
small mtf1 and less so with a larger mtf1. The performance
benefits are somewhat limited because direct branches dominate
in the MiBench suite (92% of all branches on average) and all
stream descriptors that start with targets of direct branches do not
require the SA field. However, it significantly reduces the
complexity of the DMTF implementation, as we do not need to
keep upper 12 address bits in the mtf1 history table.

4.2 Zero Hit Trace Counters
We show that the DMTF method ensures that the mtf2 zero hit
event is the most frequent one, and thus it is encoded with a single
bit '0'. In many benchmarks the output trace will consist of long
runs of zeros. The redundancy in this trace can be exploited by
utilizing a zero-length counter (ZLC for short); it counts the
consecutive zeros and replaces them with a counter value
preceded by a new header. The number of bits used to encode this
trace component is determined by the counter size. A longer
counter can capture longer runs of zeros, but too long counter
results in wasted bits. Our analysis of the zht trace component
shows a fairly large variation in the average number of
consecutive zeros, ranging from 5 in ghostscript and fft to
hundreds of in adpcm_c and tiff2bw. In addition, zero runs in a
program may vary across different program phases. This implies
that an adaptive ZLC length method would be optimal.

The adaptive zero-length counter (AZLC) tries to dynamically
adjust the ZLC size to the program flow characteristics. An
additional 4-bit saturating counter monitors the zht component and
it is updated as follows. It is incremented by 3 when the number
of consecutive zeros in the trace (mtf2[0] hits) exceeds the current
size of the ZLC. The monitoring counter is decremented by 1
when a detected zero sequence is smaller than the ZLC counter
maximum value. When the monitoring counter reaches the
maximum (15) or minimum (0) values, a change in the ZLC size
occurs.

The AZLC requires a slight modification of the trace output
format. A header bit '0' is followed by log2(AZLC Size) bits. The
counter size is automatically adjusted as described above. The
decompressor needs to implement the same adaptive algorithm.

4.3 Putting It All Together
Figure 5 shows a modified trace format that supports two
enhancements, HLV and AZLC. Figure 6 shows the average
compression ratio (CR) of several DMTF configurations as a
function of the mtf1 size (64-320). The basic DMTF (bDMTF)
with mtf2=4 performs better than with mtf2=8 for any mtf1 size as
previously indicated in Figure 4. The DMTF with HLV predictor
and mtf2=4 (hDMTF) performs better than bDMTF only for small
mtf1 sizes. When mtf1=192 bDMTF slightly outperforms hDMTH
primarily due to significant performance degradation for lame

benchmark. Finally, the enhanced DMTF with mtf2=4 (eDMTF)
with both improvements performs the best. For all configurations
the compression ratio saturates for the mtf1 with 256 entries, and
the mtf1 with 192 entries strikes an optimal balance between the
complexity and compression ratio. Figure 6 gives a design
guideline and shows how one can trade compression ratio for
complexity (the most complex resource in the enhanced DMTF
module is the mtf1 table).

SA&SL Detector

PC

HLV

SA[31:20]

mtf2

mtf1
index

ZLC

Counter

Set
Size

'0' |
AZLC

mtf2[0]
hit

mtf2[>0] hit

'1' |
mtf2 index

AZLC

'1' |
mtf2 max. index |

mtf1 index

mtf1 hit and
mtf2 miss

SA[19:0]&SL[7:0]

HLV hit and
mtf1 miss

SA&SL
inc/dec

mtf1

Branch
Type

HLV miss

'1' |
mtf2 max. index |
mtf1 max. index |

SL | '0' |
SA[31:0] (if needed)

'1' |
mtf2 max. index |
mtf1 max. index |

SL | '1' |
SA[19:0] (if needed)

Figure 5. An Enhanced DMTF Trace Format.

Compression Ratio

125

150

175

200

225

250

275

64 128 192 256 320
MTF1 size

bDMTF, mtf2=4
bDMTF, mtf2=8
hDMTF, mtf2=4
eDMTF, mtf2=4

Figure 6. Compression ratio as a function of the mtf1 size.

mtf1=192, mtf2=4 mtf1=64, mtf2=4
CR CR CR bits/inst. CR CR CR bits/inst.

bDMTF hDMTF eDMTF eDMTF bDMTF hDMTF eDMTF eDMTF
adpcm_c 1738 1738 29389 0.001 1738 1738 29441 0.001
bf_e 108.8 108.8 112.7 0.284 110.5 110.5 114.5 0.279
cjpeg 245.3 245.7 353.1 0.091 245.6 248.7 360.5 0.089
djpeg 448.9 451.6 612.9 0.052 421.9 433.6 582.4 0.055
fft 151.7 151.9 159.1 0.201 26.9 31.1 31.6 1.012
ghostscript 104.7 106.1 104.6 0.306 104.8 108.4 106.9 0.299
gsm_d 495.4 495.4 808.4 0.040 363.2 381.2 547.8 0.058
lame 317.1 274.2 283.2 0.113 318.6 279.7 289.8 0.110
mad 202.7 208.8 217.0 0.147 219.0 227.6 237.4 0.135
rijndael_e 308.9 308.9 333.5 0.096 333.7 334.5 363.4 0.088
rsynth 307.2 307.4 296.3 0.108 159.1 176.6 173.8 0.184
strings. 77.0 77.2 82.7 0.387 32.9 37.2 38.8 0.825
sha 424.9 425.1 654.3 0.049 425.1 425.2 654.7 0.049
tiff2bw 390.2 390.4 2807.6 0.011 221.3 241.0 521.8 0.061
tiff2rgba 852.5 853.8 5334.6 0.006 348.8 393.5 637.7 0.050
tiffmedian 653.1 653.4 2712.9 0.012 386.1 418.7 819.1 0.039
tiffdither 167.8 169.6 193.2 0.166 140.9 144.8 162.7 0.197
Average 242.5 239.5 268.1 0.119 143.1 153.1 165.1 0.193

Figure 7. Compression ratios for xDMTF (x=b,h,e).

Figure 7 shows a detailed evaluation for bDMTF, hDMTF, and
eDMTF with two configurations (192,4) and (64,4), x={b,h,e}.
The hDMTF configuration achieves 7% higher CR than bDMTF
for mtf1=64. This improvement is due to reducing the size of the
miss trace. For mtf1=192, we see a decrease in hDMTF

742

performance over bDMTF as explained above. The eDMTF
configuration achieves 15% higher CR over bDMTF for mtf1=64
and 11% for mtf1=192. This improvement is unevenly distributed
over benchmarks and is useful for tests such as adpcm_c (17x) or
tiff2rgba (6x). The best performing configuration (eDMTF with
mtf1=192) achieves the total weighted average bandwidth on the
trace port of only 0.12 bits per instruction.

5. DMTF HARDWARE IMPLEMENTATION
The mtf1 and mtf2 history tables can be implemented as custom
fully associative structures with a single-clock cycle lookup and
additional hardware needed to support the move-to-front update
operation. Instead, we propose a cost-effective implementation
that combines a standard content addressable memory (CAM) and
a most-recently used (MRU) stack (Figure 8). The MRU stack has
the same number of entries as the history table, but its content are
indices in the CAM memory. Each MRU stack entry points to a
particular CAM location, and thus has [log2(MTF_Size)] bits.

The mtf lookup operation encompasses a lookup into the CAM
with (SA, SL) pair and a lookup into the MRU stack. In case of a
CAM hit, the corresponding CAM index is forwarded to the MRU
stack and the MRU lookup is performed. The selected entry is
moved at the top of the MRU stack, and the top (i-1) locations are
shifted down. In case of a CAM miss, the MRU stack provides the
address of the CAM location where the new stream is going to be
stored (the index at the bottom of the MRU stack), and the MRU
stack is updated accordingly. Figure 8 shows a block diagram of a
single level MTF history buffer. The lookup and update together
require only two processor clock cycles and are performed only
when a new instruction stream is detected. Hence, the
compression can be done at the full processor speed without ever
slowing the processor.

To estimate the complexity of the proposed implementation we
consider enhanced DMTF(192,4) configuration. The mtf1 CAM
memory has 191 entries, each with 28 bits (20 for SA, and 8 for
SL). With 3 gates per CAM bit [12], the CAM complexity is
estimated at 3x28x191 ~ 16000 logic gates. The mtf1 MRU stack
has 191 8-bit entries, plus comparators attached to each of them.
Registers use latches that occupy approximately 2.5 logic gates
per bit, comparators use 2.5 logic gates per bit while tri-state
buffer use 0.5 logic gates per bit. The mtf1 MRU stack size is
estimated at approximately 8400 gates. Similarly the mtf2 size is
estimated to be approximately 150 logic gates. Together with the
LV predictor (12-bit register + comparator) and the AZLC counter
(4 bits) the total complexity of the DMTF(192,4) is less than
24,600 gates.

6. CONCLUSIONS
This paper presents the double move-to-front method for program
trace compression that successfully exploits temporal and spatial
locality of program streams to achieve compression ratios of two
orders of magnitude. Detailed evaluation of its effectiveness on a
diverse set of benchmarks shows that the compression ratio for
our best performing configuration ranges between 82.7:1 and
29,389:1 (268 on average), that translates into trace port
bandwidth of 0.001 to 0.39 bits/instruction (0.12 bits/instruction
on average). We have introduced a cost-effective implementation

of the proposed program trace compressor. The best performing
configuration has an estimated complexity equivalent to 25,000
logic gates, which is a half of the complexity reported for the LZ-
based trace compressor [5].

Figure 8. MTF Hardware Implementation.

The proposed trace compressor allows designers to effectively
trade complexity and compression ratio, depending on application
characteristics and available on-chip area for the trace module.
For example, with DMTF(64, 4) we achieve 0.2 bits/instruction
on average (ranging from 0.001 to 1) at the cost of 8,200 logic
gates. With DMTF(128, 4) we achieve 0.16 bits/instruction on
average (ranging from 0.001 to 0.6) at the cost of 16,500 logic
gates.

7. REFERENCES
[1] ARM, "Embedded Trace Macrocell Architecture Specification,"

http://infocenter.arm.com.
[2] Altera, "Nios II Processor Reference Handbook,"

http://www.altera.com.
[3] Xilinx, "MicroBlaze Processor Reference Guide Embedded

Development Kit EDK 10.1i," http://www.xilinx.com.
[4] "Lauterbach GmbH," http://www.lauterbach.com.
[5] C.-F. Kao, et al., "A Hardware Approach to Real-Time Program

Trace Compression for Embedded Processors," IEEE Transactions
on Circuits and Systems, vol. 54, pp. 530 - 543, 2007.

[6] M.-C. Hsieh and C.-T. Huang, "An embedded infrastructure of
debug and trace interface for the DSP platform," in 45th ACM
Design Automation Conference, 2008.

[7] M. Milenkovic, et al., "Algorithms and Hardware Structures for
Unobtrusive Real-Time Compression of Instruction and Data
Address Traces " Data Compression Conference, pp. 283-292, 2007

[8] M. R. Guthaus, et al., "MiBench: A free, commercially
representative embedded benchmark suite," in Proceedings of the
IEEE 4th Workshop on Workload Characterization, 2001.

[9] T. Austin, et al., "SimpleScalar: An Infrastructure for Computer
System Modeling," Computer, vol. 35, pp. 59-67, 2002.

[10] B. Jon Louis, et al., "A locally adaptive data compression scheme,"
Commun. ACM, vol. 29, pp. 320-330, 1986.

[11] M. Burrows and D. J. Wheeler, "A block-sorting lossless data
compression algorithm," Digital SRC Research Report 1994.

[12] K. Pagiamtzis and A. Sheikholeslami, "Content-Addressable
Memory (CAM) Circuits and Architectures: A Tutorial and Survey,"
IEEE Journal of Solid-State Circuits, vol. 41, 2006.

743

