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ABSTRACT 
This paper introduces a new unobtrusive and cost-effective 
method for the capture and compression of program execution 
traces in real-time, which is based on a double move-to-front 
transformation. We explore its effectiveness and describe a cost-
effective hardware implementation. The proposed trace 
compressor requires only 0.12 bits per instruction of trace port 
bandwidth, at the cost of 25K gates. 

Categories and Subject Descriptors 
B 7.2 [Integrated Circuits]: Design Aids-Verification. D.2.5: 
[Testing and Debugging]: Debugging aids, Tracing.  

General Terms 
Design, Verification. 

Keywords 
Debugging, Program Trace, Compression.

1. INTRODUCTION 
Continual growth in the complexity of embedded systems-on-a-
chip (SoCs) makes traditional approaches to system-level testing 
and debugging infeasible or impractical. For example, the 
development of a dedicated In-Circuit-Emulator (ICE) with 
additional support for debugging is cost-prohibitive; in addition, 
the ICE’s physical characteristics such as chip floorplan, pin 
layout, and timing characteristics, differ from the targeted SoC. 
Traditional software approaches to debugging that rely on 
hardware and software breakpoints are often insufficient to 
capture the real sources of a bug. Moreover, they interfere with 
normal program execution, often causing the original error to 
disappear. This is especially important for real-time and safety-
critical embedded systems that often need to be tested in real 
operating conditions. Last but not least, software step-by-step 
debugging is time consuming and places an additional strain on 
system developers, resulting in either poorly tested designs or 
product delays or both. 

Embedded processor manufacturers responded to this debugging 
challenge by incorporating on-chip hardware resources 
exclusively dedicated to program tracing and debugging. For 

example, ARM based embedded systems may include Embedded 
Trace Macrocell [1] modules to support program tracing; Altera 
Nios II [2] and Xilinx Microblaze [3] based systems may also 
include trace modules to enable real-time tracing of programs and 
data. Lauterbach [4] offers a number of program tracing hardware 
and software tools for a variety of processors. Typically, trace 
modules capture instruction and data traces (and possibly other 
bus signals), perform branch filtering, and store traces in on-chip 
trace buffers. The trace buffers can be read by external trace units 
through a JTAG interface or through the system bus. 
Alternatively, a trace module can send traced data directly through 
a trace port. The traces are then used in conjunction with program 
binaries to faithfully replay program execution and locate a bug 
source. In addition to debugging, program execution traces are 
also vital for workload characterization and performance tuning 
and optimization.  

The existing commercially available trace modules rely either on 
large on-chip buffers to store execution traces of sufficiently large 
program segments or on wide trace ports that can sustain a large 
amount of trace data in real-time. However, large trace buffers 
and/or wide trace ports significantly increase the system 
complexity and cost. Moreover, they do not scale well, which is a 
significant problem in the era of multicore systems.   

Compressing program execution traces at runtime in hardware can 
be used to reduce requirements for on-chip trace buffers and trace 
port communication bandwidth. Whereas commercially available 
trace modules typically implement only rudimentary forms of 
hardware compression with a relatively small compression ratio 
(5:1), several recent research efforts in academia propose effective 
trace compression techniques that can achieve compression ratios 
one order of magnitude higher [5-7]. For example, Kao et al. [5] 
propose an LZ-based program trace compressor that achieves a 
good compression ratio for a selected set of programs. However, 
the proposed module has a relatively high complexity (50K gates). 
In addition, the selected program segments are relatively small 
with less than 10 million instructions, so it is unclear how 
effective it would be in tracing more diverse programs.  

In this paper we introduce a new cost-effective technique for 
compression of program traces in real-time. The proposed 
technique exploits common program characteristics and utilizes a 
two-level move-to-front transformation. We thoroughly explore 
program characteristics with regard to trace compression (Section 
2), introduce a new Double Move-To-Front method (DMTF) for 
compression of program traces (Section 3), explore its design 
space (Section 4), and describe a cost-effective hardware 
implementation (Section 5). We also introduce two enhancements 
to the original method and explore their effectiveness using 17 
diverse benchmarks from the MiBench benchmark suite [8]. A 
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trace module configuration of 25,000 logic gates achieves 
compression ratios between 83 and 29,389, depending on the 
benchmark. The average weighted compression ratio is 268:1, 
which translates into 0.12 bits/instruction.  

2. PROGRAM CHARACTERISTICS AND  
MOVE-TO-FRONT TRANSFORMATION  
To replay a program flow offline, we only need to trace the 
information about program dynamic basic blocks (or streams). An 
instruction stream is a sequential run of instructions, from the 
target of a taken branch to the first taken branch in the sequence. 
Each instruction stream can be uniquely represented by its starting 
address (SA) and its length (SL). Thus, the complete trace of 
instruction addresses from an instruction stream can be replaced 
by the corresponding stream descriptor, i.e., the (SA, SL) pair. 
Relatively simple logic can be used to capture (SA, SL) pairs. In 
processors with fixed instruction word length, the current program 
counter (PC) is compared to the previous PC. If they differ for a 
value other than the instruction length, the current instruction is 
the beginning of a new stream. The current values of the SA and 
SL registers are output and the current PC is moved to the SA 
register to mark the beginning of a new stream. The SL register is 
set to 1. If the difference corresponds to the instruction length, the 
current value in the SL is incremented. In processors with variable 
instruction length, the stream detector requires an additional 
control line from the CPU to indicate a taken branch instruction. 
We introduce a slight modification to the original definition of an 
instruction stream. When we encounter an unconditional direct 
branch we do not terminate the current stream because the address 
of the next instruction in sequence can be inferred directly from 
the binary. Thus, when such a branch is identified, the SL register 
is just incremented as it was a non-branching instruction. 

Most programs have only a small number of unique program 
streams, with just a fraction of them responsible for majority of 
program execution. Figure 1 shows some important characteristics 
of MiBench [8] benchmarks collected using SimpleScalar [9] 
while running ARM binaries. The first 4 columns (a-d) show the 
number of executed instructions (in millions), the number of 
unique streams, the maximum and average stream length, 
respectively. The number of unique streams ranges from 341 to 
6871, and the average dynamic stream length is between 5.9 
(bf_e) and 54.7 (adpcm_c) instructions. The fifth column (e) 
shows the number of unique program streams that constitute 90% 
of dynamically executed streams. This number ranges between 1 
and 235, and it is 78 on average. Note that all calculations assume 
weighted average, where weights are determined based on the 
number of executed instructions, since the raw instruction address 
trace is directly proportional to the number of executed 
instructions. The maximum stream length never exceeds 256, thus 
we may choose to use 8 bits to represent SL. In addition to this, it 
can be shown that these frequently executed program streams 
create repeating patterns with strong local correlation.  Our 
approach is to exploit these program characteristics in designing a 
cost-effective trace compressor that will achieve an excellent 
compression ratio with minimal storage and trace port bandwidth 
requirements.  

Move-to-Front (MTF) [10] is an encoding of data designed to 
reduce the entropy of symbols in a data message by exploiting the 
local correlation between symbols. It is used in conjunction with 
the Burrows-Wheeler transform in the bzip2 utility program [11]. 

The MTF algorithm encodes an input data message as follows. If 
an incoming input symbol is found in a history table ht, it is 
replaced with its index i in the ht, and the symbol is moved at the 
top of the table (the entry with index 0). The ht is updated by 
shifting down first i-1 entries by one position, such that ht[i]=ht[i-
1], ..., ht[1]=ht[0]. To illustrate the MTF operation, let us consider 
an input message AABC, and a history table ht=[C, B, A] (symbol 
C is at the position 0). The MTF transforms the 3-symbol input 
message into a new 2-symbol message 2022. 

IC SC Max Avg CDF ht CDF ht[x] ht2[0]
(mil.) SL SL 90% 90% HR HR

adpcm_c 733 341 71 54.7 1 1 0.99 1.00
bf_e 544 403 70 5.9 22 5 0.41 0.69
cjpeg 105 1590 239 12.3 47 11 0.46 0.90
djpeg 23 1261 206 25.1 31 11 0.69 0.87
fft 631 846 94 10.5 209 32 0.17 0.66
ghostscript 708 6871 251 10.0 67 22 0.20 0.76
gsm_d 1299 711 165 19.5 33 6 0.48 0.90
lame 1285 3229 237 32.4 235 21 0.23 0.74
mad 287 1528 206 20.7 42 25 0.30 0.75
rijndael_e 320 513 77 21.0 45 2 0.57 0.79
rsynth 825 1238 180 17.6 49 10 0.26 0.77
stringsearch 4 436 65 6.0 48 38 0.62 0.81
sha 141 519 65 15.4 10 2 0.86 0.92
tiff2bw 143 1038 43 12.8 2 1 0.97 0.99
tiff2rgba 152 1131 75 27.7 2 1 0.92 0.99
tiffmedian 541 1335 92 22.3 5 1 0.91 0.97
tiffdither 833 1777 67 14.3 63 38 0.45 0.78
Average 816 1791 145 21.6 77.8 14.5 0.46 0.82

(a) (b) (c) (d) (e) (f) (g) (h)  
Figure 1.  MiBench program characteristics. 

The original MTF transformation can be easily extended to allow 
operation starting from an empty history table. The history table is 
searched for an incoming input symbol. If the symbol is not found 
in the table (we call this event an ht miss), the original symbol is 
output and the table is updated by shifting its content by one 
position and by placing the incoming symbol in the ht[0]. If the 
symbol is found in the history table (an ht hit event), its index is 
output and the table is updated as described above. The MTF 
allows for an effective encoding of frequently executed program 
sections. Let us consider several typical examples of program 
loops where symbols A, B, and C represent unique instruction 
streams characterized by their respective (SA, SL) pairs. For 
example, a program loop consisting of a sequence of two streams 
A and B repeating many times, illustrated as {AB}, is transformed 
into a hit pattern {11}; similarly, a loop with a repeating pattern 
{ABC} is transformed into {222}.  
A relatively small history table will suffice to achieve a good hit 
rate due to a strong temporal locality of instruction streams in 
common programs. When a stream descriptor (SA, SL) is found in 
the history table, it is replaced with its index in the history table. 
Otherwise, the full stream descriptor of 40 bits is output in case 
that the SA is a target of an indirect branch. If the SA is a target of 
a direct branch, it can be inferred from the program binary, and 
we output only 8 bits for SL. The effectiveness of the MTF 
transformation on program execution traces consisting of a 
sequence of stream descriptors is shown in Figure 1(f). We 
measure the frequency of the output symbols after the MTF 
transformation is applied. The average number of unique MTF 
output symbols that constitute 90% of all dynamically executed 
program streams is only 14.5 (down from 78 before the MTF 
transformation), ranging from 1 (adpcm_c) to 38 (stringsearch). 
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Note: the experiments are conducted assuming a history table with 
128 entries; the hit rate is over 97%, so a very small number of 
streams are not transformed with the MTF. 
A perfect trace compression without stream pattern recognition 
would replace each stream with just a single bit. As described 
above, the MTF transformation significantly reduces the number 
of trace symbols. To come close to a one bit per stream goal, we 
need to identify the most frequent entry and to encode it with a 
single bit.  Figure 1(g) shows the percentage of the hit events in 
the most frequent ht entry. Although this percentage is fairly high 
for many benchmarks (e.g., adpcm_c, tiff2bw), it is relatively 
modest for others (e.g, 17% for fft, and 46% on average across all 
benchmarks). An additional problem is how to identify the most 
frequent entry in the ht because it varies across benchmarks.  
In order to resolve these two problems, we introduce an 
additional, second level move-to-front transformation. Let us 
consider the following repeating stream pattern {ABAC}. The hit 
pattern at the output from the first-level MTF is {1212}. If we 
supply this pattern to the second-level MTF history table, the hit 
pattern at the output is {1111}, with even lower entropy of 
information. Because the MTF transformation lowers the number 
of frequent symbols, the level 2 history table can be significantly 
smaller.  
This approach can be further extended by introducing another 
level of MTF transformation; in general we could introduce a 
hierarchy of MTF history tables. The size of the MTF history 
tables will exponentially decrease as we move toward the upper 
levels. However, an increase in the number of MTF levels will 
reach the point of diminishing returns, and will not yield expected 
gains. In general, the optimal configuration is application specific. 
Our analysis shows that a 2-level MTF configuration appears to 
be optimal. Figure 1(h) shows a high percentage of program 
streams that end up in the entry 0 of the level 2 history table (ht2), 
from 66% to 100%. By encoding this entry with a single bit we 
approach the goal of having one bit per instruction stream. Note: 
the experiments are conducted using ht2 with 16 entries achieving 
94% hit rate. 

3. DMTF METHOD 
The analysis from the previous section suggests the use of a  
2-level move-to-front transformation as optimal in compressing 
program instruction traces. Consequently, we design an 
instruction trace compressor with two history tables in sequence. 
We name this scheme Double Move-to-Front (DMTF). The first- 
and the second-level history tables are named mtf1 and mtf2, 
respectively.  
Figure 2 illustrates operation of the proposed trace compressor.  
When a new stream is detected, its descriptor (SA, SL) is 
forwarded to mtf1. As described before, the mtf1 table is searched 
for the stream descriptor.  If we find a match, we have an mtf1 hit; 
the index of the matching entry is output to the next stage, and 
mtf1 is updated accordingly. Otherwise, we have an mtf1 miss; the 
mtf1 content is shifted down by one position, and mtf1[0] is 
loaded with the stream descriptor.  In case of an mtf1 hit, the 
index i1 is sent to the mtf2 history table; mtf2 is searched for the 
index i1. If we find a match in the entry 0, mtf2[0], we have an 
mtf2 zero entry hit. If we find a match in the remaining mtf2 
entries, we have an mtf2 non-zero entry hit.  Otherwise we have 
an mtf2 miss event.   

We can distinguish four different events in the DMTF scheme and 
they are encoded as follows. An mtf2[0] hit is encoded with a 
single bit '0'. An mtf2 non-zero entry hit is encoded with a one-bit 
header '1' and the mtf2 index i2 ('1'+i2). An mtf1 hit with a miss in 
mtf2 is encoded with ('1'+i2miss+i1); note that the last index in 
the mtf2 table, i2miss, is reserved to indicate a miss event in the 
mtf2. Finally, a miss in mtf1 is encoded with a header 
('1'+i2miss+i1miss) followed by a full or a partial stream 
descriptor ([SA], SL) – 40 or 8 bits. Note: the last index in the 
mtf1 table, i1miss, is reserved to indicate a miss in the mtf1. 
The compression ratio that can be achieved using DMTF scheme 
can be expressed analytically as follows. Equation 1 shows the 
number of bits needed to encode a single stream after DMTF 
compression, as a function of five parameters: mtf2 zero-entry hit 
rate, mtf2.zhr; mtf2 non-zero entry hit rate, mtf2.ohr; mtf1 hit rate, 
mtf1.hr; mtf1 size, mtf1.size; and mtf2 size, mtf2.size. Note: 
mtf2.hr=mtf2.zhr + mtf2.ohr. Equation 2 shows the compression 
ratio as a function of the number of instructions in a program, the 
number of executed instruction streams, and the number of bits 
per one instruction stream.  

 
Figure 2. DMTF Operation. 
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An Example Compression/Decompression.  Let us illustrate the 
compression flow using an example from Figure 3(a). We 
consider the following sequence of instruction streams 
ABCAABABAC, where A, B, and C denote 3 instruction streams 
with distinct stream descriptors. Let us assume a 64-entry mtf1 
and an 8-entry mtf2. Note that the actual number of entries is 63 
and 7, respectively, since the last indices are reserved to indicate 
miss events. First three instruction streams are not found in the 
mtf1 and are output with the header '1', followed by a 3-bit index 
in the mtf2 reserved for miss events ('111'), a 6-bit index in the 
mtf1 reserved for miss events ('111111'), and individual stream 
descriptors ([SA], SL). Next, the stream A is found in mtf1[2], but 
index 2 is not found in the mtf2 resulting in an mtf2 miss with mtf1 
hit event; we emit a header '1'+'111' followed by the mtf1 index 
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'000010'. The next stream in sequence is A, resulting again in an 
mtf2 miss with mtf1 hit event; this event is encoded with 
'1+'111'+'000000'. The rest of the compression flow continues as 
illustrated in Figure 3(a).  

Steps: 1 2 3 4 5 6 7 8 9 10
Input: A B C A A B A B A C

… mtf1
2 A B B C C C C B
1 A B C C A B A B A
0 A B C A A B A B A C

mtf1
output -- -- -- 2 0 2 1 1 1 2

… mtf2
2 0 0 0 0
1 2 0 2 2 2 1
0 .. .. .. 2 0 2 1 1 1 2

1+7+ 1+7+ 1+7+
Output: 63+A 63+B 63+C 1+7+2 1+7+0 1+1 1+7+1 0 0 1+1  

(a) 
Steps: 1 2 3 4 5 6 7 8 9 10
Input: 1+7+ 1+7+ 1+7+ 1+7+2 1+7+0 1+1 1+7+1 0 0 1+1

63+A 63+B 63+C
… mtf1
2 A C B C C C C B
1 A B B C A B A B A
0 A B C A A B A B A C

mtf1
output -- -- -- 2 0 2 1 1 1 2

… mtf2
2 0 0 0 0
1 2 0 2 2 2 1
0 .. .. .. 2 0 2 1 1 1 2

Output: A B C A A B A B A C  
(b) 

Figure 3. DMTF compression (a) and decompression (b) flow 
examples. 

The decompression flow is a reversed compression flow and it 
requires the same configuration of the history tables. The 
compressed trace is read, headers are analyzed and the history 
tables updated according to the DMTF method described above. 
The decompression flow is illustrated in Figure 3(b). The first 
item starts with the header '1'+'111'+'111111', which indicates that 
the next 40 bits represent the first stream descriptor, (SA, SL). 
The stream descriptor is loaded into mtf1[0]. The de-compressor 
now can recreate a complete instruction trace for this stream. The 
next two items in the trace are decompressed in the same way. 
The next trace record '1+'111'+'000010' directs the de-compressor 
to find the original stream descriptor in mtf1[2] (instruction stream 
A). The following trace record '1'+'111'+'000000' directs the de-
compressor to find the stream in mtf1[0], which is stream A. The 
rest of the decompression process is illustrated in Figure 3(b).  
Performance Analysis. Figure 4(a) shows the compression ratio 
for MiBench benchmarks; the size of the mtf1 is fixed to 128 
entries and the mtf2 size is varied from 4 to 16 entries.  The last 
row (Average) shows the total compression ratio calculated as the 
weighted harmonic mean of individual benchmark compression 
ratios. The results show that we are able to achieve an excellent 
compression ratio ranging from 45 to 1738. The results also 
indicate that a DMTF configuration with only 4-entry mtf2 will 
outperform configurations with larger mtf2.  

CR (mtf1 size = 128)  Distribution per component
mtf2 size 4 8 16 zht mtf2ht mtf1ht mtf1mt 

adpcm_c 1738 1734 1729 99% 1% 0% 0%
bf_e 110 94 84 40% 52% 8% 0%
cjpeg 250 253 252 57% 10% 31% 2%
djpeg 434 434 433 47% 12% 30% 11%
fft 45 44 43 9% 3% 10% 78%
ghostscript 107 106 107 25% 7% 55% 13%
gsm_d 358 343 327 52% 13% 4% 32%
lame 326 329 323 23% 12% 28% 37%
mad 210 210 212 24% 8% 48% 20%
rijndael_e 323 409 362 38% 17% 45% 0%
rsynth 209 199 186 29% 18% 13% 41%
strings. 81 78 75 34% 7% 58% 2%
sha 425 399 375 79% 20% 0% 0%
tiff2bw 391 390 388 95% 2% 3% 0%
tiff2rgba 852 844 834 95% 3% 0% 1%
tiffmedian 523 515 505 71% 5% 2% 22%
tiffdither 170 161 155 29% 9% 44% 18%
Average 181 175 169 42.8% 12.3% 20.0% 25.0%  

       (a)   (b) 
Figure 4. Compression ratio for DMTF(128,X), X= 4-16 (a).  

Distribution of the individual trace components (b).  

4. ENHANCED DMTF METHOD 
The output of the DMTF trace compressor contains a lot of 
redundant information. We introduce two low-cost enhancements 
that exploit this redundancy and/or reduce complexity of the 
compressor implementation. The four components of the output 
trace, mtf2 zero hit trace (zht), mtf2 non-zero hit trace (mtf2ht), 
mtf2 miss with mtf1 hit trace (mtf1ht), and mtf1 miss trace 
(mtf1mt) are analyzed separately. Figure 4(b) shows the 
contribution of each component to the total trace size for 
DMTF(128,4) (128-entry mtf1 and 4-entry mtf2). The results show 
the mtf1mt component is responsible for 25% of the total size, in 
spite of high hit rates in the mtf1. Fortunately, the redundant 
information in this trace can be easily exploited using a simple 
last-value predictor on upper address bits that stay constant during 
program execution. This enhancement is described in Section 4.1 
and also helps reduce hardware complexity of the compressor 
implementation. Next, the zero trace occupies 43% of the total 
trace. We expect it to contain long runs of '0's, and its size can be 
reduced by replacing them by a counter value (Section 4.2). 
Finally, in Section 4.3 we put both enhancements together and 
evaluate the effectiveness of the DMTF instruction trace 
compressor.  

4.1 Last-Value Predictor for Upper Address Bits 
The upper address bits of the starting address (SA) field in the 
stream descriptor rarely change during program execution.  We 
analyzed the locality of stream starting addresses; the SA field of 
the incoming stream is compared bit by bit to the SA of the 
previous instruction stream or to SAs of the several last 
instruction streams. The results indicate that the upper 12 address 
bits, SA[31:20], stay constant during program execution in 99% 
of cases. Therefore, we divide the SA field into two parts: the 
lower 20 address bits SA[19:0] that are compressed through the 
DMTF, and the upper 12 bits that are handled using a simple last 
value predictor (HLV). Note: SA[1:0] is '00' for the ARM ISA and 
could be omitted; SA[0]= '0' for the ARM Thumb ISA, so the 
SA[0] could be omitted. Here we keep the whole address. 
A 12-bit last value (LV) register keeps the upper 12 bits of the last 
stream’s SA. The upper 12 address bits of an incoming stream are 
compared to the LV. If they match we have an HLV hit.  The 
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lower 20 address bits SA[19:0] and SL are used in mtf1 lookup. 
We adopt a scheme where mtf1 hits are conditional upon the 
corresponding HLV hits. An HLV miss will cause that a miss trace 
record is emitted regardless of mtf1 hits. When we have an HLV 
hit with mtf1 miss event, the upper address bits are not emitted (in 
case that a full stream descriptor is required). Finally, in case 
when both mtf1 and HLV have a hit, a regular DMTF record is 
emitted. The miss trace format is consequently extended to 
support these modifications.   
The effectiveness of this enhancement is analyzed below. In 
general, it is beneficial in DMTF configurations with a relatively 
small mtf1 and less so with a larger mtf1. The performance 
benefits are somewhat limited because direct branches dominate 
in the MiBench suite (92% of all branches on average) and all 
stream descriptors that start with targets of direct branches do not 
require the SA field. However, it significantly reduces the 
complexity of the DMTF implementation, as we do not need to 
keep upper 12 address bits in the mtf1 history table.  

4.2 Zero Hit Trace Counters 
We show that the DMTF method ensures that the mtf2 zero hit 
event is the most frequent one, and thus it is encoded with a single 
bit '0'. In many benchmarks the output trace will consist of long 
runs of zeros. The redundancy in this trace can be exploited by 
utilizing a zero-length counter (ZLC for short); it counts the 
consecutive zeros and replaces them with a counter value 
preceded by a new header. The number of bits used to encode this 
trace component is determined by the counter size.  A longer 
counter can capture longer runs of zeros, but too long counter 
results in wasted bits. Our analysis of the zht trace component 
shows a fairly large variation in the average number of 
consecutive zeros, ranging from 5 in ghostscript and fft to 
hundreds of in adpcm_c and tiff2bw. In addition, zero runs in a 
program may vary across different program phases. This implies 
that an adaptive ZLC length method would be optimal.  

The adaptive zero-length counter (AZLC) tries to dynamically 
adjust the ZLC size to the program flow characteristics. An 
additional 4-bit saturating counter monitors the zht component and 
it is updated as follows. It is incremented by 3 when the number 
of consecutive zeros in the trace (mtf2[0] hits) exceeds the current 
size of the ZLC. The monitoring counter is decremented by 1 
when a detected zero sequence is smaller than the ZLC counter 
maximum value. When the monitoring counter reaches the 
maximum (15) or minimum (0) values, a change in the ZLC size 
occurs.   

The AZLC requires a slight modification of the trace output 
format. A header bit '0' is followed by log2(AZLC Size) bits. The 
counter size is automatically adjusted as described above. The 
decompressor needs to implement the same adaptive algorithm.  

4.3 Putting It All Together 
Figure 5 shows a modified trace format that supports two 
enhancements, HLV and AZLC. Figure 6 shows the average 
compression ratio (CR) of several DMTF configurations as a 
function of the mtf1 size (64-320). The basic DMTF (bDMTF) 
with mtf2=4 performs better than with mtf2=8 for any mtf1 size as 
previously indicated in Figure 4. The DMTF with HLV predictor 
and mtf2=4 (hDMTF) performs better than bDMTF only for small 
mtf1 sizes. When mtf1=192 bDMTF slightly outperforms hDMTH 
primarily due to significant performance degradation for lame 

benchmark. Finally, the enhanced DMTF with mtf2=4 (eDMTF) 
with both improvements performs the best. For all configurations 
the compression ratio saturates for the mtf1 with 256 entries, and 
the mtf1 with 192 entries strikes an optimal balance between the 
complexity and compression ratio. Figure 6 gives a design 
guideline and shows how one can trade compression ratio for 
complexity (the most complex resource in the enhanced DMTF 
module is the mtf1 table).  

SA&SL Detector

PC

HLV

SA[31:20]

mtf2

mtf1
index

ZLC

Counter 

Set 
Size

'0' |
AZLC 

mtf2[0] 
hit

mtf2[>0] hit

'1' |
mtf2 index 

AZLC

'1' | 
mtf2 max. index | 

mtf1 index 

mtf1 hit and 
mtf2 miss

SA[19:0]&SL[7:0] 

HLV hit and 
mtf1 miss 

SA&SL
inc/dec

mtf1

Branch
Type

HLV miss

'1' | 
mtf2 max. index | 
mtf1 max. index |

SL | '0' |
SA[31:0] (if needed)

'1' | 
mtf2 max. index | 
mtf1 max. index |

SL | '1' |
SA[19:0] (if needed)

 
Figure 5. An Enhanced DMTF Trace Format. 
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Figure 6.  Compression ratio as a function of the mtf1 size.  

mtf1=192, mtf2=4 mtf1=64, mtf2=4
CR CR CR bits/inst. CR CR CR bits/inst.

bDMTF hDMTF eDMTF eDMTF bDMTF hDMTF eDMTF eDMTF
adpcm_c 1738 1738 29389 0.001 1738 1738 29441 0.001
bf_e 108.8 108.8 112.7 0.284 110.5 110.5 114.5 0.279
cjpeg 245.3 245.7 353.1 0.091 245.6 248.7 360.5 0.089
djpeg 448.9 451.6 612.9 0.052 421.9 433.6 582.4 0.055
fft 151.7 151.9 159.1 0.201 26.9 31.1 31.6 1.012
ghostscript 104.7 106.1 104.6 0.306 104.8 108.4 106.9 0.299
gsm_d 495.4 495.4 808.4 0.040 363.2 381.2 547.8 0.058
lame 317.1 274.2 283.2 0.113 318.6 279.7 289.8 0.110
mad 202.7 208.8 217.0 0.147 219.0 227.6 237.4 0.135
rijndael_e 308.9 308.9 333.5 0.096 333.7 334.5 363.4 0.088
rsynth 307.2 307.4 296.3 0.108 159.1 176.6 173.8 0.184
strings. 77.0 77.2 82.7 0.387 32.9 37.2 38.8 0.825
sha 424.9 425.1 654.3 0.049 425.1 425.2 654.7 0.049
tiff2bw 390.2 390.4 2807.6 0.011 221.3 241.0 521.8 0.061
tiff2rgba 852.5 853.8 5334.6 0.006 348.8 393.5 637.7 0.050
tiffmedian 653.1 653.4 2712.9 0.012 386.1 418.7 819.1 0.039
tiffdither 167.8 169.6 193.2 0.166 140.9 144.8 162.7 0.197
Average 242.5 239.5 268.1 0.119 143.1 153.1 165.1 0.193  

Figure 7. Compression ratios for xDMTF (x=b,h,e). 

Figure 7 shows a detailed evaluation for bDMTF, hDMTF, and 
eDMTF with two configurations (192,4) and (64,4), x={b,h,e}. 
The hDMTF configuration achieves 7% higher CR than bDMTF 
for mtf1=64. This improvement is due to reducing the size of the 
miss trace. For mtf1=192, we see a decrease in hDMTF 
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performance over bDMTF as explained above. The eDMTF 
configuration achieves 15% higher CR over bDMTF for mtf1=64 
and 11% for mtf1=192. This improvement is unevenly distributed 
over benchmarks and is useful for tests such as adpcm_c (17x) or 
tiff2rgba (6x). The best performing configuration (eDMTF with 
mtf1=192) achieves the total weighted average bandwidth on the 
trace port of only 0.12 bits per instruction. 

5. DMTF HARDWARE IMPLEMENTATION 
The mtf1 and mtf2 history tables can be implemented as custom 
fully associative structures with a single-clock cycle lookup and 
additional hardware needed to support the move-to-front update 
operation. Instead, we propose a cost-effective implementation 
that combines a standard content addressable memory (CAM) and 
a most-recently used (MRU) stack (Figure 8). The MRU stack has 
the same number of entries as the history table, but its content are 
indices in the CAM memory. Each MRU stack entry points to a 
particular CAM location, and thus has [log2(MTF_Size)] bits. 

The mtf lookup operation encompasses a lookup into the CAM 
with (SA, SL) pair and a lookup into the MRU stack. In case of a 
CAM hit, the corresponding CAM index is forwarded to the MRU 
stack and the MRU lookup is performed. The selected entry is 
moved at the top of the MRU stack, and the top (i-1) locations are 
shifted down. In case of a CAM miss, the MRU stack provides the 
address of the CAM location where the new stream is going to be 
stored (the index at the bottom of the MRU stack), and the MRU 
stack is updated accordingly. Figure 8 shows a block diagram of a 
single level MTF history buffer. The lookup and update together 
require only two processor clock cycles and are performed only 
when a new instruction stream is detected. Hence, the 
compression can be done at the full processor speed without ever 
slowing the processor. 

To estimate the complexity of the proposed implementation we 
consider enhanced DMTF(192,4) configuration. The mtf1 CAM 
memory has 191 entries, each with 28 bits (20 for SA, and 8 for 
SL). With 3 gates per CAM bit [12], the CAM complexity is 
estimated at 3x28x191 ~ 16000 logic gates. The mtf1 MRU stack 
has 191 8-bit entries, plus comparators attached to each of them. 
Registers use latches that occupy approximately 2.5 logic gates 
per bit, comparators use 2.5 logic gates per bit while tri-state 
buffer use 0.5 logic gates per bit. The mtf1 MRU stack size is 
estimated at approximately 8400 gates. Similarly the mtf2 size is 
estimated to be approximately 150 logic gates.  Together with the 
LV predictor (12-bit register + comparator) and the AZLC counter 
(4 bits) the total complexity of the DMTF(192,4) is less than 
24,600 gates.  

6. CONCLUSIONS 
This paper presents the double move-to-front method for program 
trace compression that successfully exploits temporal and spatial 
locality of program streams to achieve compression ratios of two 
orders of magnitude. Detailed evaluation of its effectiveness on a 
diverse set of benchmarks shows that the compression ratio for 
our best performing configuration ranges between 82.7:1 and 
29,389:1 (268 on average), that translates into trace port 
bandwidth of 0.001 to 0.39 bits/instruction (0.12 bits/instruction 
on average). We have introduced a cost-effective implementation 

of the proposed program trace compressor. The best performing 
configuration has an estimated complexity equivalent to 25,000 
logic gates, which is a half of the complexity reported for the LZ-
based trace compressor [5].  

 
Figure 8.  MTF Hardware Implementation. 

The proposed trace compressor allows designers to effectively 
trade complexity and compression ratio, depending on application 
characteristics and available on-chip area for the trace module. 
For example, with DMTF(64, 4) we achieve 0.2 bits/instruction 
on average (ranging from 0.001 to 1) at the cost of 8,200 logic 
gates. With DMTF(128, 4) we achieve 0.16 bits/instruction on 
average (ranging from 0.001 to 0.6) at the cost of 16,500 logic 
gates. 
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