
1

An Educational Environment for Teaching a Course in
Computer Architecture and Organization

Jovan Djordjevic, Aleksandar Milenkovic, Nenad Grbanovic, Miroslav Bojovic
Faculty of Electrical Engineering, University of Belgrade

P.O.Box 3554, 11120 Belgrade, Yugoslavia
e-mail: jdjordjevic@kiklop.etf.bg.ac.yu

Abstract: The paper presents an educational
environment for teaching a course in Computer
architecture and organization. It is made up of an
educational computer system, a reference manual,
a software package and a set of laboratory
experiments. The educational computer system is
devised in such a way that it covers the basic
structure of a computer system: processor,
memory, input/output subsystem and bus. The
reference manual provides all implementation
details with the appropriate circuits drawings and
detailed descriptions. For the devised educational
computer system a software package is developed
which includes the program development tools and
the graphic simulator. They make it possible to
develop programs for it and execute them under the
graphic simulator. The simulator allows to execute
programs at the clock, instruction and program
levels and to examine, at any time, the values of all
signals of the educational computer system down to
the register transfer level. In the paper is also
given a set of laboratory experiments that the
students must carry out successfully using the
reference manual and the software package as a
prerequisite for taking an exam in Computer
architecture and organization.

1. Introduction
The course in Computer architecture and

organization is a second year undergraduate course
at the Faculty of Electrical Engineering, University
of Belgrade attended by the students at the
Department of Communications, Automation and
Electronics and the Department of Computer
Science. The students of both departments acquire
the knowledge necessarry for following such a
course through the first year course in Fundamentals
of Computer Science and the second year course in
Programming methodology and languages. In them
they study, first, the binary arithmetic, the standard

combinational and sequential circuits and the design
of digital computers and, then, the programming
methodology, the assembly language and high level
programming languages such as Fortran, Pascal and
C. The course in Computer architecture and
organization covers the basic concepts related to the
most commonly found structure of a computer
which includes the processor, the memory, the
input/output subsystem and the bus. Such approach
of the course is taken under the assumption that the
students from the Department of Communications,
Automation and Electronics will primarily use
relatively simple configurations of computer
systems as controllers in communication pieces of
equipment, automated control systems and other
computer controlled electronic devices. For the
students at the Department of Computer Science
this is just an introductory course. Their knowledge
in this area they further widen during the remaining
three years of studies through the courses such as
Advanced computer architecture and organization,
Microprocessor systems, Design of VLSI circuits,
Distributed computer systems, Parallel computer
systems, Multoprocessor systems etc.

The course in Computer architecture and
organization is made up of four self contained
entities within which are considered the basic
concepts of the processor architecture and
organization, the memory, the input/output
subsystem and the bus. The processor architecture
is considered through the study of the processor
program controlled registers, data types, instruction
formats, addressing modes, instruction set and
interrupt mechanism. The processor organization
study begins by pointing out that the processor of a
particular architecture can be realized with different
processor organizations. This follows by the
presentation of the digital system design
methodology, also applied to the processor design,
whereby a digital system is made up of a processing

2

unit and a control unit. Possible implementations of
processing units and control units (hardwired and
microprogrammed) are considered in detail. The
memory considerations are directed to the problems
of the memory modules organizations and their
interconnections with the processor and the
input/output subsystem through the bus. The
input/output subsystem is presented through the
description of programming techniques used for
input/output and the structure of peripheral device
controller and the direct memory access controller
(DMA). The bus considerations are directed
towards the problems arising when the processor,
the memory and the input/output subsystem are
being interconnected with common address, data
and control lines. The read, write and interrupt
vector number acquisition bus cycles are presented
as well as the specifics of the asynchronous and
synchronous busses.

Generally, a great problem in teaching a course
in Computer architecture and organization is to
provide means which would facilitate the students to
make a cognitive leap from the blackboard
description of the architecture and organization of a
computer to its utilization as a programmable device
and connect their theoretic knowledge with practical
experience. This problem is usually solved by
providing some kind of computer simulation
demonstrating the behavior of the computer system
during the execution of an instruction. Therefore,
the authors looked at the papers which describe the
concept of using the computer emulation or
simulation for teaching the computer architecture
and organization with the aim to find something
suitable for the above course. A software
educational tool, called ET, which simulate a wide
variety of computers on a fixed MOH
(Microprogram Organized Hardware) is described
in [1]. A computer-aided teaching (CAT) package
used in a microprocessor system course based on
the Z80 CPU is presented in [2]. A computer
simulator of a simple educational processor called
ASP (Animated Simple Processor) which
demonstrates the program execution on the macro-
and microcode and electronic level is shown in [3].
However, since none of these covers the outlined
course in computer architecture and organization,
the authors decided to devise and develop their own
educational environment.

The educational environment for teaching the
course in Computer architecture and organization
includes the Educational Computer System (ECS),
the reference manual for it, the Software Package of
the ECS (SPECS) and a set of laboratory
experiments. The ECS is devised to cover all
concepts relevant for the course in Computer
architecture and organization and its detailed
description is given in the accompanying manual
[4]. The ECS is described in Section 2. The SPECS
includes: (a) tools for program development which
allow writing programs in assembly language,
editing, translating, linking and loading programs
into the memory, and (b) tools which provide
graphical animation of all implementation details of
the ECS down to the register level during a program
execution. A brief description of the SPECS is given
in Section 3. A set of laboratory experiments is
devised to demonstrate to the students the situations
of interest during their practical work with ECS.
The set of laboratory experiments is presented in
Section 4.

2. The educational computer system
The educational computer system (ECS) is made

up of the processor, the memory and the
input/output subsystem while the communication
between them is carried out through the
asynchronous bus. A detailed description of all its
parts is given in the accompanying manual written
specifically for the course in Computer architecture
and organization.

2.1. The processor architecture and
organization

The processor architecture is the load/store type.
Thus, only the Load and Store instructions can
access operands in the memory, while all remaining
instructions work with operands in one of the
general purpose registers. The processor program
controlled registers include, besides 16 general
purpose registers, the program counter (PC), the
stack pointer (SP), the program status word (PSW),
the interrupt mask register (IMR) and the interrupt
vector table pointer (IVTP). Data types supported
are 16-bit signed and unsigned integers. The length
of the instructions is 16 or 32 bits. The instruction
format is the variable one, so that, depending on the
operation specified by a particular instruction, the
three address, the two address, the one address and

3

the zero address instruction formats are used. The
Load and Store instructions can only explicitly
specify the use of one of the following addressing
modes: the immediate (only for Load), the memory
direct, the register indirect and the register indirect
with displacement. All the remaining instructions
implicitly use the register direct addressing mode.
The instruction set includes the transfer, arithmetic,
logic, shift, rotate and control instructions. There are
internal and external interrupts. The external
interrupts are maskable and have assigned priorities.
The intr0 till intr3 and inta0 till inta3 lines are used
to exchange the interrupt request and interrupt
acknowledgment signals between the processor and
input/output units, respectively.

The processor organization follows the design
approach by which the processor is made up of the
processing unit and the controlling unit. The
processing unit is made up of the register file unit
(RFU), the execution unit (EXU), the interrupt
service unit (ISU) and the bus interface unit (BIU)
interconnected with the 16-bit internal bus. The
register file unit contains the program controlled and
auxiliary registers. The execution unit is made of the
ALUSHIFT block, where the basic arithmetic, logic
and shift operations are performed, the auxiliary X
and Y registers, where the input data for the
ALUSHIFT block are kept, and the combinational
circuit, where the values to be set into the condition
code bits of the program status register are
generated. The bus interface unit contains the
circuitry necessarry to perform the read, write and
interrupt vector number acquisition bus cycles on
the bus and arbitrate between the processor and the
DMA controller requests for accessing the bus. The
hold and hlda lines are used to exchange the bus
request and bus acknowledgment signals between
the processor and the DMA controller. The interrupt
service unit contains the circuitry necessarry to
accept all internal and external interrupt requests
and establish the address of the appropriate interrupt
routine. The adopted processor design approach,
where the processor is made up of a separate
processing and controlling unit, made it possible to
design four types of controlling units for the same
processing unit. One of them use the hardwired
technique, while the remaining three the
microprogramming technique with the mixed and

vertical formats of microinstructions and
nanoprogramming.

2.2. The memory
The memory of the educational computer system

has the capacity of 64KWords, the memory word
length is 16 bits and the processor generated
addresses are for 16 bit words. The memory module
has the usual input address lines, the bidirectional
data lines and the input control lines to start the
memory read or write operations and the output
control line to indicate that the requested memory
cycle has been finished.

2.3. The input/output subsystem
The input/output subsystem is made up of three

input/output units and one direct memory access
controller. Each input/output unit is made up of a
peripheral device controller and the peripheral
device itself. The control part of the peripheral
device controller is responsible to accept data from
the input peripheral device, store into its data
register, set the ready bit in its status register and
generate an interrupt request if the interrupt enable
bit in its control register is set. In addition to that, it
reset the ready bit in its status register when the
contents of the data register is read by the processor.
The control part of the peripheral device controller
also reset the ready bit in its status register when the
contents of the data register is written by the
processor. In addition to that, it sends the contents of
its data register to the output peripheral device, set
the ready bit in its status register and generate an
interrupt request if the interrupt enable bit in its
control register is set. The peripheral device
controller has not only the usual control, status and
data registers, but, also, the interrupt vector register
where the interrupt vector table entry number of this
input/output unit is being kept.

The DMA controller is assigned to one of the
input/output units. In addition to the usual control,
status and data registers, it, also, has the source and
destination address registers, the block count
register and the interrupt vector register. It supports,
not only transfers between the peripheral device and
memory and vice versa, but, also, the memory to
memory transfers. The transfers can be carried out
in the cycle stealing and burst modes. The direct
memory access controller is a slave when its
registers are being initialized by the processor and a

4

master during the transfer of data. The required
mode of operation is specified by writing the
appropriate value into the control register of the
direct memory address controller.

The input/output address space is memory
mapped, so that the highest 8Kwords addresses of
the memory address space are reserved for the
purpose of addressing the registers in the peripheral
device controllers and the direct memory access
controller.

2.4. The bus
The components of the educational computer

system are interconnected through the asynchronous
bus. The bus is made up of the 16 address lines, 16
data lines and three control lines. By generating the
active values on the rd (read) or wr (write) control
lines, the processor or the direct memory access
controller, as the bus masters, specify that the read
or write cycle should be performed on the bus. By
generating the active values on the fc (function
completed) control line, the memory, the peripheral
device controller or the direct memory access
controller, as the bus slaves, specify that the initiated
read or write cycle has been completed.

3. The Software Package of the ECS
The Software Package of the ECS (SPECS) is

presented by giving, firstly, the rational behind the
design of the SPECS, and, secondly, the facilities
offered by the SPECS.

3.1. The rational behind the design of the
SPECS

The laboratory experiments are organized in such
a way that the students should at home, before
coming to the laboratory, study a particular part of
the ECS from the manual and, then, in the
laboratory carry out the appropriate experiments that
would demonstrate some typical situations
concerning this particular part of the ECS. Thus,
such organization of laboratory experiments and the
use of the ECS in laboratory experiments was
possible only if some kind of simulators of the ECS
was to be developed. The first choice was to do it by
using high level hardware description programming
language ISP and programming package ENDOT.
This was a natural choice for at least two reasons.
Firstly, it allows to describe a piece of hardware
down to the register transfer level and carry out the

simulation at the clock level. Secondly, it was used
in some other courses at the Faculty and there was
significant experience in using it which made it
possible to develop the simulator of the ECS in a
reasonable period of time [5]. The simulator of the
ECS was implemented in such a way that the
simulation was carried out at the register transfer
level. The simulator, used together with the
reference manual of the ECS, made it possible to
follow the values of all signals inside the ECS at the
level of standard combinational and sequential
modules while executing the carefully prepared set
of laboratory experiments. The simulator, together
with the manual, was a useful aid in teaching the
inner workings of a computer system and fulfilled
its design objectives. However, the textual instead
of graphical presentation of all relevant signals and
the lack of ability to interactively write, modify,
translate and execute programs were obvious
shortcomings of the simulator. It was, therefore,
decided to start the development of a new
graphically oriented simulator and the appropriate
user friendly environment named the SPECS.

The SPECS contains the simulator that provide
the graphical presentation of all implementation
details of the given computer system down to the
register transfer level and makes it possible to
follow the functioning of all parts of the computer
system at the clock, instruction and program levels,
and the current values of all signals at the inputs and
outputs of all combinational and sequential modules.
The SPECS offers various facilities such as the
interactive setting and examination of the contents of
memory locations, registers etc., the drawing of
timing diagrams of any of the selected signals of the
computer system during the complete duration of
the simulation, etc. It provides program
development tools to write programs in its assembly
language, edit, translate, link and load them into the
memory of the computer system, etc. All these
features are provided in a user friendly manner by
extensive use of modern tools for the development
of Windows applications.

The SPECS is developed using the MS Visual
BASIC 3.00 programming language. The simulator
works with the Windows95 or WindowsNT
operating systems and the minimal configuration
required to run it is the 486 PC with 8MB RAM
memory.

5

3.2. The facilities offered by the SPECS
The facilities offered by the SPECS make it

possible to (a) specify the configuration and
initialize the ECS, and (b) run the simulator.

3.2.1. Specifying the configuration and
initialization of the ECS

The specification of the configuration of the
ECS is the step which allows to select one of four
implemented control units (section 2.1) to be used
with the processor processing unit. If this step is not
performed then as the default control unit the
microprogramming one with the mixed format of
control signal encoding is used.

The initialization of the ECS is the step required
in order to have the system ready for running. It
consists of the initialization of the processor, the
memory and the input/output units. The initialization
of the processor involves the loading of the PC
register with the starting address of the program, the
IVTP register with the starting address of the
interrupt vector table, the IMR register with the
value specifying the input/output units from which
interrupts will be accepted, the SP register denoting
the top of the stack, the general purpose registers
etc. The initialization of the memory includes the
loading of the appropriate memory locations with
the binary values of the programs, the data to be
used during the execution of the program, the
addresses of interrupt routines in the interrupt vector
table, the data to be sent to the output units, etc. The
initialization of the input/output units means the
loading of the simulated input peripheral device with
the sequence of data that this device will generate
and the time when the data should be generated.

The initialization of the ECS can be done in two
ways. In the first case the user can interactively
write his own programs in a symbolic manner,
translate, link and load them into the memory. For
this purpose the software tools such as the editor,
the translator, the linker and the loader are devised.
There are also programs which can be used to write
and read into and from memory locations, processor
registers and simulated peripheral devices, and to
automatically initialize the processor, memory, and
simulated peripheral devices. There is, also, the
possibility to save the current state of the
educational computer system in a file. In the second
case the user can select one of the prepared test
examples carefully devised to illustrate the typical

situations of the above enumerated topics lectured in
the course in Computer architecture and
organization or recall one of the files with previously
saved state of the ECS. This will cause the
initialization of ECS with the values necessarry to
successfully run the simulator.

3.2.2. Running the simulator
The running of the simulator is the step

performed in the same way regardless of which of
two possible ways of the initialization of the ECS is
used. It allows to follow the values of signals of the
ECS at various levels during the execution of a
program after a clock, an instruction or a complete
program. Due to the fact that a limited number of
elements can be displayed on a screen, a hierarchical
scheme of the ECS, as shown in Fig. 1, is
developed. Each block from the hierarchical scheme
is further presented with one or more screens. The
traversing through the blocks of the hierarchical
scheme can be achieved by selecting the appropriate
block.

Each screen, in general, is made up of two
windows. The larger window in the upper part of
the screen, named the Block diagram window,
contains either only a composition of combinational
and sequential circuits, if this is a leaf block in the
hierarchical scheme, or a composition of subblocks,
that can be further selected, and combinational and
sequential circuits, if this is not a leaf block in the
hierarchical scheme. The smaller window in the
lower part of the screen, named the Info and
Command window, is divided into the Info window
at its left hand side and Command window at its
right hand side. The Status buttons PC and Tclk in
the Info window display the current values of
program counter and the number of clock periods
executed, respectively. The Info window Sequence
gives either the value of the microprogram counter
mPC, in case that one of the microprogram Control
units are used, or the value of the step counter, in
case that the hardwired Control unit is used, then the
control signals generated for that clock period and,
finally, a brief explanation of the actions that are
going to take place during that clock period. The
Command window contains three groups of
command buttons: Navigation, Simulation and
Miscellaneous. The Navigation command buttons
are UP and Hierarchy. Button UP allows to move
from the current screen to the screen one level up in

6

the hierarchy, while button Hierarchy allows to
move directly from the current screen to the ECS
Hierarchy screen (Fig.1). Only from the ECS
Hierarchy screen one can go directly to the screen of
any of the blocks down in the hierarchy. This can be
achieved by positioning the cursor at the appropriate
block and clicking the mouse button. The
Simulation command buttons Clk+, Ins+ and Prg+
allow to continue with the simulation just with one
clock period or with the number of clock periods
required to complete the current instruction or the
complete program, respectively. The Miscellaneous
command buttons are Show, Clear and Help. Button
Show opens the window which allows to select one
of three screens. They further facilitate to show and
set the values of memory locations, processor
registers and draw the timing diagrams of selected
set of signals. Button Clear clears the current state
of simulation and returns it to the beginning. Button
Help activates the help system where all details
concerning the functioning of the educational
computer system and its simulator are available.

The running of the simulator with the hierarchy
of screens of the ECS is described briefly in the
following. The first screen with which the
simulation begins is the one with the block structure
of the educational computer system (Fig. 2). One
can also arrive to that screen from the ECS
Hierarchy screen (Fig. 1) by positioning the cursor
at the ECS block and clicking the mouse button.
This screen shows at the block level how the
processor (CPU), memory (MEM), DMA controller

(DMA) and peripheral devices (PER1, PER2 and
PER3) are interconnected through data (DBUS),
address (ABUS) and control (CBUS (RDBUS,
WRBUS and FCBUS)) lines of the system bus. The
simulation can be carried out at this hierarchical
level by activating either Clk+, Ins+ or Prg+ button.
What one can follow, then, are the values of signals
exchanged at the block level. The values for groups
of lines, such as for data (DBUS) and address bus
(ABUS) lines, are given in the hexadecimal form,
while single lines are colored either in blue or red
depending on whether the signal on that line has
logical value zero or one, respectively. If one needs
more detailed structure of any of the blocks from
Fig. 2., he can move one level down in the hierarchy
by positioning the cursor at that block and clicking
the mouse button. As an example of this one can
assume that the cursor is positioned at block CPU
on the screen given in Fig. 2 and the mouse button
clicked. What appears is the screen giving the block
structure of the educational processor (Fig. 3). From
this screen one can go one level down and get more
detailed structure of any of four units of the
Processing Unit (Register File Unit, Executing Unit,
Bus Control Unit or Interrupt Service Unit) and the
Control Unit. By positioning the cursor at block
Register File Unit and clicking the mouse button,
one goes one level down in the hierarchy and gets
the block structure of the Register File Unit (Fig. 4).
The same actions applied this time to the GPR block
of screen from Fig. 4., brings the screen of last level
in the hierarchy (Fig. 5). Here one can see the
design of this block at the level of standard
sequential (registers, flip-flops, etc,) and
combinational (decoders, logical circuits, etc.)
elements.

Such organization of the simulator with the
hierarchical structure of screens, makes it possible
carry out the simulation of the working of the ECS
at various hierarchical levels. At higher levels, one
can follow the simulation at the level of signal
exchanged between blocks considered here as black
blocks. At the lowest level, if it is deemed
interesting, one can follow the simulation at the level
of registers, flip-flops, logical circuits etc.

Figure 1. The ECS Hierarchy screen

7

If one find useful to examine and set registers, he
can use button Show at any moment during the
simulation and get the screen as shown in Fig. 6. By
using the same button one can get the timing
diagram of selected signals from the beginning of
the simulation until the current clock period in the
form shown in Fig. 7. for the signals relevant for the
realization of the read cycle on the system bus.

4. The organization of laboratory
experiments
The practical work with the simulator of the

educational computer system is organized through
five laboratory experiments the duration of which is
two hours. In all five laboratory experiments the
students have, by using the educational computer
system hierarchical structure of screens, to follow,
either at the clock or the instruction level, its
working during the execution of earlier prepared
example programs that demonstrate the situations of
interest and to answer questions concerning some

typical situations of the subject covered by the
particular laboratory experiment. In addition to that,
in the last two laboratory experiments each student
is also given a problem which he is supposed to
solve independently, write the appropriate piece of
program, by using software tools such as the editor,
the translator, the linker and the loader, and test it
using the simulator. In some cases the students are,
also, requested to draw the timing diagrams of some
interesting signals and compare them with those
obtained by using the show signals option of the
educational computer system for drawing the timing
diagrams of selected signals (Fig. 7). A brief
description of the laboratory experiments carried out
by the students is given in this section.

4.1. LAB1: The execution of instructions
The experiment is aimed to demonstrate how the

instruction fetch, operand address calculation and
operation execution phases for some typical
instructions and addressing modes are performed,

Figure 2. The Educational Computer System
screen

Figure 3. The central processing unit screen

Figure 4. The Register File screen

Figure 5. The General Purpose Registers screen

8

while the interrupt handling phase is considered
separately in LAB 3. To achieve this, the students
are requested to run, clock by clock, an example
program, which includes the transfer, arithmetic and
branch instructions and the register indirect with
displacement, immediate and memory direct
addressing modes. The program is executed four
times each time with the same processing unit and
three types of microprogrammed control units and
one hardwired control unit. By executing
instructions clock by clock the students go through
the sequence of control signals generated for the
same processing unit by four control units for the
instruction phases considered.

4.2. LAB2: The bus arbitration and data
transfers

The aim of this experiment is to demonstrate
how, first, the arbitration between the processor and
the DMA controller, then, the memory read and

write cycles between the processor and a memory
module, and, finally, the interrupt vector number
acquisition cycle between the processor and a
peripheral device, are carried out on the
asynchronous bus. To achieve this single instruction
add R1, R2, R1 is executed. It is, also, taken that
during its execution an interrupt request from a
peripheral device arrives which causes the interrupt
handling phase of the instruction to be, also, carried
out. As the result, the following data transfers
initiated by the processor take place on the bus: one
data read cycle to get the instruction, two data write
cycles to save the contents of the PC and PSW
registers on stack, and, finally, one interrupt vector
number acquisition cycle and one data read cycle to
get the starting address of the interrupt routine. It is,
also, taken that during this time period the DMA
controller sends to the processor three requests for
accessing the bus. They appear at such moments in
time, relative to the requests for accessing the bus
generated by the processor, that five typical
situations, concerning the synchronization between
the processor and the DMA controller in accessing
the bus, are demonstrated.

4.3. LAB3: The interrupt mechanism
The aim of this experiment is to demonstrate

some typical situations concerning the interrupt
mechanism both at the clock and instruction levels.

At the clock level, the sequences of control
signals for the interrupt handling phase of an
instruction and the execution phase of the return
from interrupt (rti) instruction are demonstrated. To
make it possible the following scenario is prepared.
During the execution of the main program, made up
of single instruction add R2, R2, R3, an interrupt
request is generated by a peripheral device. The
execution of the instruction continues until its
interrupt handling phase is reached, and then, after
the checks for whether this interrupt request can be
accepted are carried out, the values of the PC and
PSW registers are saved on stack, the interrupt
acknowledge signal sent to the peripheral device,
the interrupt vector table number acquired, and the
interrupt routine starting address read from the
interrupt vector table and written into the PC
register. This causes a jump to the interrupt routine,
made up of single instruction RTI. Its execution
restores the values of the PSW and PC registers
which results in the return to the main program.

Figure 6. The show registers screen
(foreground) and the show memory locations,

registers and signals screen (background)

Figure 7. The show signals screen

9

At the instruction level some of the situations
demonstrated are: the selective and complete
masking of interrupt requests coming from the
peripheral devices using the interrupt mask register
bits and the PSW interrupt enable bit, respectively,
the servicing of multiple interrupt requests coming
from the peripheral devices according to their
priorities, the trap mechanism, the interrupt nesting
and the execution of the interrupt instruction (int).
For each of these situations a simple scenario is
prepared with very simple main program and the
appropriate interrupt routines.

4.4. LAB4: The program controlled
input/output

This laboratory experiment demonstrates the
internal structure of a peripheral device controller,
the way it is initialized and started, and how the
transfer of data takes place using the program
controlled input/output. This is done for transfers
between both a peripheral device and the memory
and the other way around and using both the
checking of the status register of the peripheral
device controller and the interrupt mechanism. The
experiment is organized in two parts. In the first part
the students are requested to follow at the
instruction level two example programs that transfer
a block of data between a peripheral device and the
memory using the peripheral device controller status
register and between the memory and a peripheral
device using the interrupt mechanism. In the second
part the students are requested to write, test and
successfully run two programs that transfer a block
of data between a peripheral device and the memory
using the interrupt mechanism and between the
memory and a peripheral device using the peripheral
device controller status register.

4.5. LAB5: The input/output with the direct
memory access controller

This laboratory experiment demonstrates the
internal structure of a direct memory access (DMA)
controller, the way it is initialized and started, and
how the transfer of data takes place using the DMA
controller. The transfers of data are illustrated for
transfers between a peripheral device and the
memory, between the memory and a peripheral
device and between two parts of memory with both
the cycle stealing and burst modes of operation. As
in LAB4, the laboratory experiment is organized in

two parts. In the first part the students are requested
to follow at the instruction level three example
programs that transfer a block of data between a
peripheral device and the memory using the cycle
stealing mode of operation, between the memory
and a peripheral device using the burst mode of
operation and between two parts of the memory
using the cycle stealing mode of operation. In the
second part the students are requested to write, test
and successfully run three programs that transfer a
block of data between a peripheral device and the
memory using the burst mode of operation, between
the memory and a peripheral device using the cycle
stealing mode of operation, between two parts of the
memory using the burst mode of operation.

5. Conclusion
The developed educational environment for

teaching a course in Computer architecture and
organization, made up of (a) an educational
computer system (ECS), (b) a reference manual for
the ECS, a software package for the ECS (SPECS),
and (d) a set of laboratory experiments, is presented.
The ECS is devised to cover the basic concepts
included in the course in Computer architecture and
organization and its implementation details are
described in the accompanying manual. The SPECS
provides a user friendly environment for the graphic
simulation of the ECS during the execution of a
program at the clock, instruction and program
levels, with a number of options. The simulation can
be carried out either for the programs from the set
of devised laboratory experiments or the new ones
that one can create using the other tools provided by
the SPECS.

The presented educational environment has been
used for three years and as a prerequisite for taking
an exam in Computer architecture and organization
the students have been obliged to carry out
successfully the set of laboratory experiments. A lot
of students have been taking advantage from the fact
that the SPECS runs on personal computers (PCs)
and is available free of charge with its reference
manual, by using it at home. Based on the number
of discussions conducted with the students and the
results of the exams, the authors are convinced that
the educational environment has been a power aid in
teaching the course in Computer architecture and
organization and has fulfilled its design objectives.

10

This resulted in the development of similar
environments as a help in teaching topics such
memory interleaving, cache memories, virtual
memories, translation look aside buffers etc. for
some other courses in the field of Computer
architecture and organization.

As the result of the work reported in this paper,
the research which is under way is directed towards
the development of such an user friendly graphic
environment that would allow the students to show a
great deal of creativity by designing their own
computer systems using the library of modules, such
as gates, flip-flops, decoders, registers, buses, cache
memories, etc.

References
[1] M. Cutler, R. Eckert, “A Microprogrammed

Computer Simulator”, IEEE Transactions on

Education, vol. E-30, no. 3, pp. 135-141,
August 1987.

[2] H. Diab, I. Demaskieh, “A Computer Aided
Teaching Package for Microprocessor Systems
Education”, IEEE Transactions on Education,
vol. 34, no. 2, pp. 179-183, May 1991.

[3] W. Henderson, “Animated Models for
Teaching Aspects of Computer Systems
Organization”, IEEE Transactions on
Education, vol. 37, no. 3, pp. 247-255, August
1994.

[4] J. Djordjevic, “Computer Architecture and
Organization – The reference manual for the
Educational Computer System”, Faculty of
Electrical Engineering, University of Belgrade,
1995.

[5] V. Milutinovic, “Surviving the Design of a 200
MHz RISC Microprocessor: Lessons
Learned”, IEEE Computer Society Press, 1997.

