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Motivation 
 

Viruses that are designed to attack SCADA systems, such as Stuxnet, have given rise to many doubts 
about the level of security from cyber attacks in critical infrastructure. Society is highly dependent upon 
the standard operations of critical infrastructure. The security of these SCADA systems is paramount. 
Discerning between normal transactions and anomalies is of utmost importance. 
 
There are many proposed algorithms available for use with anomaly detection based intrusion detection 
systems. Choosing an appropriate algorithm for use with SCADA systems requires multiple steps. First, 
criteria for algorithm selection system must be developed. Second, algorithms which meet minimum 
selection criteria should be compared.  Finally, the strengths and weaknesses of each algorithm should 
be discussed.  
 
This project aimed develop criterion for algorithm selection, and examine the effectiveness of  several 
machine learning algorithms in detecting anomalous SCADA transactions. In addition to examining the 
algorithms, this project examined the training datasets to determine their usefulness in  SCADA anomaly 
detection. Training datasets which include normal and cyber attack data logs were used from a 
laboratory scale gas pipeline, water storage tank, and electric transmission protection system. 

 
Methods 
 
1. Algorithm Criterion & Algorithm Selection 
 
The first step of this project was to develop criterion for algorithm selection. In order to do this, a list of 
potential algorithms had to be developed, an implementation scheme chosen, and datasets chosen.  
 
Because MSU's Dr. Thomas Morris had ready available datasets, and due to the untested nature of these 
datasets, 3 datasets were chosen for use in this examination. These included a dataset from a laboratory 
scale gas pipeline, a lab scale water tower, and a lab scale electric transmission system. All 3 of these 
datasets contained preprocessed network transaction data, preprocessed to strip lower layer 
transmission data(TCP, MAC, etc).  The number of entries in the datasets ranged from 100,000 for the 
gas data, to 200,000 for the water data, to 5,000,000 for the electric data. The datasets included 24 
unique parameters for the water data, 27 for the gas data, and 132 for the electric data.  
 
The result parameter for the water and gas datasets categorized each entry into 1 of 7 attack vectors.  
The full list of parameters and attack vectors for the water and gas datasets is shown below in Tables 1 
and 2. 

  
Attack Name Abbreviation 

Normal Normal(0) 

Naïve Malicious Reponse Injection NMRI(1) 

Complex Malicious Response Injection CMRI(2) 

Malicous State Command Injection  MSCI(3) 

Malicous Parameter Command Injection  MPCI(4) 

Malicous Function Code Injection  MFCI(5) 

Denial Of Service DOS(6) 



Reconnaisance Recon(7) 

Table 1: Attacks 
 

Gas Parameters Water Parameters 

command address command address 

response address response address 

command memory command memory 

response memory response memory 

command_memory_count command_memory_count 

response_memory_count response_memory_count 

comm_read_function comm_read_function 

comm_write_fun comm_write_fun 

resp_read_fun resp_read_fun 

resp_write_fun resp_write_fun 

sub_function sub_function 

command_length command_length 

resp_length resp_length 

gain HH 

resest HH 

deadband L 

cycletime LL 

rate control_mode 

setpoint control_scheme 

control_mode pump 

control_scheme crc_rate 

pump measurement 

solenoid time 

crc_rate result 

measurement 
 time 
 result 
 Table 2: Gas and Water Parameters 

 
The "marker" parameter for the electric dataset identifies each entry as belonging to one of 40 
scenarios, 26 of which are attacks. These in turn belong to 7 essential categories of behavior. The 
behavior categories and parameters are shown in Tables 3 and 4, respectively. 
 

Category Type Num Scenarios 

Primary protection properly working Normal 6 

Fault replay Attack 6 

Line maintenance Normal 2 

Command injection (one relay) Attack 4 

Command injection (two relays) Attack 2 



Primary protection disabled (one relay) Attack 14 

Primary protection disabled (two relay) Attack 6 

Table 3: Categories of Behavior for Electric Data 
 

Network/Other Relay 1 Relay 2 Relay 3 Relay 4 

Date R1-PA1:VH R2-PA1:VH R3-PA1:VH R4-PA1:VH 

Timestamp R1-PM1:V R2-PM1:V R3-PM1:V R4-PM1:V 

control_panel_log1 R1-PA2:VH R2-PA2:VH R3-PA2:VH R4-PA2:VH 

control_panel_log2 R1-PM2:V R2-PM2:V R3-PM2:V R4-PM2:V 

control_panel_log3 R1-PA3:VH R2-PA3:VH R3-PA3:VH R4-PA3:VH 

control_panel_log4 R1-PM3:V R2-PM3:V R3-PM3:V R4-PM3:V 

relay1_log R1-PA4:IH R2-PA4:IH R3-PA4:IH R4-PA4:IH 

relay2_log R1-PM4:I R2-PM4:I R3-PM4:I R4-PM4:I 

relay3_log R1-PA5:IH R2-PA5:IH R3-PA5:IH R4-PA5:IH 

relay4_log R1-PM5:I R2-PM5:I R3-PM5:I R4-PM5:I 

snort_log1 R1-PA6:IH R2-PA6:IH R3-PA6:IH R4-PA6:IH 

snort_log2 R1-PM6:I R2-PM6:I R3-PM6:I R4-PM6:I 

snort_log3 R1-PA7:VH R2-PA7:VH R3-PA7:VH R4-PA7:VH 

snort_log4 R1-PM7:V R2-PM7:V R3-PM7:V R4-PM7:V 

marker R1-PA8:VH R2-PA8:VH R3-PA8:VH R4-PA8:VH 

fault_loc R1-PM8:V R2-PM8:V R3-PM8:V R4-PM8:V 

load_con R1-PA9:VH R2-PA9:VH R3-PA9:VH R4-PA9:VH 

  R1-PM9:V R2-PM9:V R3-PM9:V R4-PM9:V 

  R1-PA10:IH R2-PA10:IH R3-PA10:IH R4-PA10:IH 

  R1-PM10:I R2-PM10:I R3-PM10:I R4-PM10:I 

  R1-PA11:IH R2-PA11:IH R3-PA11:IH R4-PA11:IH 

  R1-PM11:I R2-PM11:I R3-PM11:I R4-PM11:I 

  R1-PA12:IH R2-PA12:IH R3-PA12:IH R4-PA12:IH 

  R1-PM12:I R2-PM12:I R3-PM12:I R4-PM12:I 

  R1:F R2:F R3:F R4:F 

  R1:DF R2:DF R3:DF R4:DF 

  R1-PA:Z R2-PA:Z R3-PA:Z R4-PA:Z 

  R1-PA:ZH R2-PA:ZH R3-PA:ZH R4-PA:ZH 

  R1:S R2:S R3:S R4:S 

Table 4: Parameters for Electric Data 
  
Note that the electric data differs fundamentally in that it is sequential in nature - in addition to 
including network transaction data, it consists largely of sensor measurements which have been 
sampled at a rate of 120 times per second. Thus, each instance of a scenario may be represented by 
thousands of data entries rather than a single entry as in the case of the water and gas data sets. As a 
result, the approach used for analysis differs somewhat from that used for the water and gas data sets, 
as shall be reported. 
 



The implementation scheme chosen was the University of Waikato's WEKA software. This software 
includes 96 different machine learning algorithms, implemented with a graphical user interface for 
selecting the algorithm, the input data, the parameters to be used, the results, and other useful 
information. This software was chosen because of its ease of use, availability, and easily accessible 
literature and documentation.  
 
The algorithms chosen for initial analysis were chosen based on research into similar applications using 
machine learning algorithms(see previous work), as well as their availability in WEKA. The full list of 35 
algorithms is given as below Table 5. 

 
 

Algorithm Category 

  Best First Decision Tree(BFTree) Decision Tree 

Decision Stump Decision Tree 

FaultTree(FT) Decision Tree 

J48 Decision Tree Decision Tree 

J48Graft Decision Tree Decision Tree 

Logiboost Alternating Decision Tree(LADTree) Decision Tree 

Logistic Model Tree(LMT) Decision Tree 

RandomErrorPruning Tree(REPTree) Decision Tree 

RandomForrest Decision Tree 

RandomTree Decision Tree 

SimpleCart Decision Tree 

Naïve Bayes Tree(NBTree) Decision Tree 

Radial Basis Function Network(RBFNetwork) Nerual Network 

Multilayer Perceptron Nerual Network 

Logistic Regression Regression 

SimpleLogistic Regression 

Sequential Minimal Optimization(SMO) Support Vector Machine 

ConjunctiveRule Rule Based 

DecisionTable Rule Based 

DTNB Rule Based 

Jrip Rule Based 

Nnge Rule Based 

OneR Rule Based 

PART Rule Based 

Ridor Rule Based 

ZeroR Rule Based 

BayesNet Bayes 

ComplementNaiveBayes Bayes 

DMNBtext Bayes 

NaiveBayes Bayes 

NavieBayesMultinomial Bayes 



NaiveBayesMultinomialUpdateable Bayes 

NaiveBayesSimple Bayes 

NaiveBayesUpdateable Bayes 

Table 5: Initial Algorithm List 
 
 In order to determine the viability of each of these algorithms, each algorithm was run in WEKA 
with a 10% subset of the training data. This method was chosen because for most of the 35 algorithms, 
tests with the full dataset was time prohibitive, whereas running with a 10% subset was much more 
time efficient. In addition, due to ignorance of the algorithms specific workings, this method seemed to 
reveal the effectiveness of the algorithms for the MSU datasets, without requiring detailed knowledge 
of the algorithms. 
  
The results of these tests from the gas and water datasets are given as Table 9 in the Results section. 
From this, 7 algorithms were chosen for further study. Additionally, the tests from the 10% subset were 
repeated with the full dataset for the 7 selected algorithms. These results were compared to determine 
whether using a 10% subset is a legitimate method for algorithm criterion. 
 
As the electric dataset is an order of magnitude larger than the water and gas datasets, running the 
entire dataset in WEKA was not possible, due to program memory constraints. Thus, a 10% subset of 
one of the 10 constituent datasets was used for preliminary analysis. This subset was  run with 19 
algorithms, the results of which are given in Table 10 in the Results section. From this, 3 algorithms were 
chosen for further study. 
 
2. Algorithm and Dataset Analysis 
 
 2.1 Gas and Water Data 
 
After the 7 algorithms were chosen for further study, the effectiveness of the algorithms was called into 
question. In order to determine which parameters were the most useful to the algorithms in 
determining an attack, the number of parameters was reduced from the full parameter set to a minimal 
parameter set with the same results as the full dataset. 
 
This was done first by removing non-changing parameters. From here, each remaining parameter was 
removed 1 at a time, and a test performed without that parameter. This was done to determine the 
effect of that parameter on the algorithm's performance.  After removing all parameters whose effect 
was negligible, a reduced parameter set was determined. Tables 6 and 7 below give the reduced 
parameter set, and which attack vector detection requires that parameter for the gas pipeline. 

 
 

Parameter Abbreviation 

command_address CA 

resp_address RA 

resp_length RL 

com_read_fun CRF 

resp_read_fun RRF 

subfunction SF 



setpoint SP 

control_mode CM 

control_scheme CS 

Measurement M 

Table 6: Reduced Parameter Set 
 
 

Algorithm CA RA RL CRF RRF SF SP CM CS M 

J48Graft Decision Tree DOS N/A N/A DOS N/A MFCI MPCI MSCI MSCI 
NMRI, CMRI, 

Recon 

Logistic Regression DOS Recon N/A DOS CMRI MFCI MPCI Normal MSCI N/A 

Multilayer Perceptron DOS N/A Recon DOS CMRI MFCI MPCI MFCI MSCI N/A 

RandomErrorPruningTree 
(REPTree) 

DOS N/A N/A DOS N/A MFCI MPCI MSCI MSCI 
NMRI, CMRI, 

Recon 

Table 7: Reduced Parameter Set Attack Vectors 
 
 
After this reduced parameter set was discovered, an investigation began into the relationship between 
each parameter and the result parameter. The result of this investigation for the gas pipeline is given as 
Table 11 in the Results section below. 
 
 2.2 Electric Data 
 
After the 3 algorithms were chosen for further study, a similar approach of parameter reduction was 
taken. To establish some leads on what to select, the parameters were analyzed using the InfoGain 
evaluator within WEKA. The results of this evaluation is given in Table 12 in the Results section. Tests on 
the 3 algorithms were then run with certain parameters stripped based on information gain. The results 
of these tests are given as Table 13 in the Results section. It was then decided that a separate dataset 
should be generated by isolating two scenarios (a normal fault and fault replay) and extracting every 
instance from all 10 constituent datasets. Tests with one of the selected algorithms were then 
performed. The results of this are contained in Table 14 in the Results section. 
 

 
Results 

 
1. Algorithm Criterion & Algorithm Selection 

 
 1.1  Gas and Water Data 
 
The first noteworthy result is that the effectiveness of the algorithms with the 10% subset did prove a 
legitimate criterion for algorithm selection. After running 7 of the algorithms with both the 10% subset 
and the full dataset, the results proved very similar. A comparison of the performance of both for 4 of 
the algorithms using the gas data is given as Table 8 below.  
 
 
 



Algorithm Normal(0) NMRI(1) CMRI(2) MSCI(3) MPCI(4) MFCI(5) DOS(6) Recon(7) 

J48Graft Decision Tree(100%) 100% 94% 100% 95% 98% 96% 97% 100% 

J48Graft Decision Tree (10%) 100% 95% 100% 89% 99% 68% 88% 100% 

Logistic Regression(100%) 98% 1% 99% 95% 98% 96% 71% 100% 

Logistic Regression(10%) 100% 4% 99% 93% 99% 95% 67% 100% 

Multilayer Perceptron(100%) 98% 3% 99% 95% 98% 96% 77% 100% 

Multilayer Perceptron(10%) 98% 2% 99% 93% 99% 95% 68% 100% 

RandomErrorPruning 
Tree(100%) 100% 98% 100% 95% 98% 96% 97% 100% 

RandomErrorPruning 
Tree(10%) 100% 95% 100% 90% 99% 95% 95% 100% 

Table 8: 10% Vs. 100% 

 
 
The second noteworthy result is that almost all of the algorithms examined performed very well, even 
with the 10% subset.  The results of these tests from the gas and water datasets are given as Table 9 
below 

 

Algorithm Normal(0) NMRI(1) CMRI(2) MSCI(3) MPCI(4) MFCI(5) DOS(6) Recon(7) 

Best First Decision Tree(BFTree) 100% 97% 99% 87% 99% 95% 95% 100% 

Decision Stump 99% 0% 0% 0% 0% 0% 0% 100% 

FaultTree(FT) 100% 94% 100% 93% 99% 95% 96% 100% 

J48 Decision Tree 100% 95% 100% 90% 99% 73% 91% 100% 

J48Graft Decision Tree 100% 95% 100% 89% 99% 68% 88% 100% 

Logiboost Alternating Decision 
Tree(LADTree) 100% 94% 99% 93% 99% 0% 73% 100% 

Logistic Model Tree(LMT) 100% 86% 100% 93% 99% 95% 93% 100% 

Logistic Regression 100% 4% 99% 93% 99% 95% 67% 100% 

Multilayer Perceptron 98% 2% 99% 93% 99% 95% 68% 100% 

Naïve Bayes Tree(NBTree) 100% 96% 99% 93% 98% 95% 95% 100% 

Radial Basis Function 
Network(RBFNetwork) 98% 1% 99% 93% 99% 95% 88% 100% 

RandomErrorPruning Tree(REPTree) 100% 95% 100% 90% 99% 95% 95% 100% 

RandomForrest 100% 96% 100% 90% 99% 93% 93% 100% 

RandomTree 99% 96% 100% 90% 98% 81% 91% 100% 

SimpleCart 100% 96% 100% 88% 99% 95% 94% 100% 

SimpleLogistic 98% 36% 99% 93% 99% 95% 68% 100% 

Sequential Minimal 
Optimization(SMO) 98% 1% 99% 93% 99% 73% 44% 100% 

BayesNet 98% 98% 95% 97% 100% 100% 99% 100% 

ComplementNaiveBayes 100% 0% 0% 0% 29% 100% 0% 100% 

DMNBtext 100% 0% 0% 0% 44% 100% 0% 100% 

NaiveBayes 43% 0% 99% 97% 99% 100% 96% 100% 

NavieBayesMultinomial 100% 0% 0% 97% 81% 100% 39% 100% 

NaiveBayesMultinomialUpdateable 100% 0% 0% 97% 81% 100% 39% 100% 



NaiveBayesSimple 0% 95% 98% 56% 62% 0% 0% 2% 

NaiveBayesUpdateable 43% 0% 99% 97% 99% 100% 96% 100% 

ConjunctiveRule 100% 0% 0% 0% 0% 0% 0% 100% 

DecisionTable 98% 98% 95% 94% 98% 95% 91% 100% 

DTNB 98% 98% 95% 97% 99% 100% 100% 100% 

Jrip 99% 98% 94% 97% 99% 100% 100% 100% 

Nnge 97% 97% 75% 97% 99% 100% 97% 100% 

OneR 97% 98% 95% 0% 0% 0% 0% 100% 

PART 99% 98% 95% 97% 99% 100% 100% 100% 

Ridor 99% 98% 94% 97% 99% 100% 100% 100% 

ZeroR 0% 0% 0% 0% 0% 0% 0% 0% 

Table 9: Results From 10% Test of Water & Gas Datasets 
 
 1.2  Electric Data 
 
Using the 10% dataset within WEKA resulted in suspiciously high performance for many algorithms. The 
test results are given as Table 10 below. 
 

Algorithm Category Overall Accuracy Cross-Validation 

BayesNet Bayes 99.2% 10 

DMNBtext Bayes 75.9% 10 

NaïveBayes Bayes 98.5% 10 

NaiveBayesUpdateable Bayes 98.5% 10 

Logistic Regression 100.0% 10 

Multilayer Perceptron NeuralNet 100.0% 2 

RBFNetwork NeuralNet 98.7% 10 

Conjunctive Rule Rule Based 23.4% 10 

Jrip Rule Based 99.9% 10 

OneR Rule Based 100.0% 10 

PART Rule Based 100.0% 10 

ZeroR Rule Based 12.6% 10 

DecisionStump Decision Trees 23.4% 10 

J48 Decision Trees 100.0% 10 

J48graft Decision Trees 100.0% 10 

RandomForest Decision Trees 100.0% 10 

RandomTree Decision Trees 99.9% 10 

REPTree Decision Trees 100.0% 10 

SimpleCart Decision Trees 100.0% 10 

Table 10: Results from 10% Test of Electric Dataset 
 
Note: The default 10-fold cross-validation was used for all algorithms except Multilayer Perceptron, 
which used 2-fold cross-validation due to time constraints. 
 
 
 



 
2. Algorithm and Dataset Analysis 
 
 2.1  Gas and Water Data 
 
The effectiveness of the algorithms in determining an attack, as shown in Tables 4 and 5, gave rise to 
questions about these numbers. It was not expected that so many of these algorithms should perform 
so well. This was not expected because many of the attacks, such as Complex Malicious Response 
Injection, should resemble Normal network traffic in most ways. However, the detection of CMRI attacks 
ranged from 94% to 99% in most of the examined algorithms.  
 
It was in response to these questions that the usefulness of the dataset itself was called into question. If 
obvious trends could be found in the dataset, and these trends could be shown to be avoidable and due 
to human error in their creation, the datasets could be shown to be not useful for IDS research.  
 
In order to further examine this, the set of input parameters was reduced in order to find a minimal 
parameter set for the gas and water data. After a minimal parameter set was found, each of the 
parameters in this minimal set was examined and a strong correlation was found between each of these 
parameters and an attack to be predicted. All of these correlations were due to human error and were 
avoidable.  These correlations are shown in below Table 11. 

 
 

command_address 

Always 4, unless DOS attack 

response_address 

only 0 when Recon attack 

response_length 

always 19 unless Recon attack 

comm_read_function 

always 3 unless DOS attack 

resp_read_fun 

only 1 when normal or CMRI attack 

subfunction 

always 0 unless MFCI attack 

setpoint 

always 20 unless MPCI attack 

control_mode 

only 1 when MSCI 

control scheme 

only 0 when MSCI 

Measurement 

All CMRIs in range 6-11  

all NMRIs grossly out of bounds 

Table 11: Reduced Parameter Set Vs. Result 
 



 
 2.2  Electric Data 
 
As shown in Table 10, many of the algorithms have exceptionally high accuracies. Given the wide array 
of scenarios and the discrete nature of some of the attacks, such high accuracies are not expected. After 
selecting 3 algorithms from the set of 19, focus was shifted to the reduction of parameters. Parameter 
selection was guided by the results of an attribute information gain evaluation (InfoGain within WEKA), 
which are shown in Table 12. 
 

Parameter Ranking Parameter Ranking Parameter Ranking Parameter Ranking 

load_con 3.811 R2-PA10:IH 3.152 R3-PM3:V 2.090 R1:DF 0.066 

Timestamp 3.811 R1-PA4:IH 3.149 R1-PA:Z 2.081 relay1_log 0.057 

Date 3.811 R4-PM5:I 3.146 R1-PM1:V 1.759 R3:DF 0.057 

R4-PA1:VH 3.473 R2-PA4:IH 3.134 R1-PM3:V 1.749 R1-PM9:V 0.052 

R4-PA7:VH 3.469 R3-PM5:I 3.056 R1-PM7:V 1.744 R3-PA9:VH 0.052 

R4-PA2:VH 3.464 R2-PM5:I 3.011 R1-PM2:V 1.568 R2-PA9:VH 0.052 

R4-PA3:VH 3.461 R1-PM5:I 2.883 R4-PA:ZH 1.242 R1-PM8:V 0.052 

R2-PA1:VH 3.423 R4-PM10:I 2.820 R3-PA11:IH 1.224 R1-PA9:VH 0.052 

R2-PA3:VH 3.421 R2-PM10:I 2.726 R2-PA11:IH 1.223 R1-PA8:VH 0.050 

R2-PA2:VH 3.421 R4-PM4:I 2.719 R1-PA11:IH 1.221 R2-PA8:VH 0.050 

R2-PA7:VH 3.420 R3-PM10:I 2.664 R4-PA11:IH 1.218 R3-PA8:VH 0.050 

R3-PA3:VH 3.419 R1-PM10:I 2.661 R4-PA12:IH 1.191 R2-PM9:V 0.044 

R3-PA7:VH 3.417 R2-PM4:I 2.636 R3-PA12:IH 1.170 R3-PM9:V 0.043 

R3-PA1:VH 3.416 R4-PM6:I 2.602 R2-PA12:IH 1.153 R4-PA9:VH 0.043 

R3-PA2:VH 3.416 R2-PM6:I 2.585 R2-PA:ZH 1.128 R4-PA8:VH 0.043 

R1-PA1:VH 3.398 R3-PM4:I 2.571 R1-PA12:IH 1.082 R2-PM8:V 0.042 

R1-PA7:VH 3.396 R1-PM4:I 2.553 R1-PA:ZH 1.056 R3-PM8:V 0.042 

R1-PA2:VH 3.393 R3-PM6:I 2.518 R3-PA:ZH 1.035 R4-PM8:V 0.042 

R1-PA3:VH 3.392 R1-PM6:I 2.511 R4-PM12:I 0.519 R4-PM9:V 0.040 

R4-PA5:IH 3.387 R2-PM1:V 2.469 R2-PM12:I 0.509 relay4_log 0.038 

R3-PA5:IH 3.384 R2-PM7:V 2.451 R2-PM11:I 0.497 R1:S 0.038 

R4-PA6:IH 3.310 R2-PM3:V 2.424 R4-PM11:I 0.495 R4:S 0.036 

R4-PA10:IH 3.305 R2-PM2:V 2.414 R2:F 0.450 relay3_log 0.036 

R4-PA4:IH 3.286 R4-PM7:V 2.311 R4:F 0.445 R3:S 0.019 

R3-PA10:IH 3.273 R4-PM1:V 2.299 R4:DF 0.240 snort_log4 0.000 

R3-PA6:IH 3.268 R4-PM3:V 2.257 R2:DF 0.221 snort_log1 0.000 

R3-PA4:IH 3.239 R4-PM2:V 2.236 R3-PM12:I 0.170 snort_log2 0.000 

R2-PA5:IH 3.232 R4-PA:Z 2.212 R1-PM11:I 0.161 control_panel_log4 0.000 

R1-PA5:IH 3.224 R3-PM2:V 2.207 R3-PM11:I 0.157 control_panel_log3 0.000 

fault_loc 3.174 R3-PM1:V 2.192 R1-PM12:I 0.138 R2:S 0.000 

R1-PA10:IH 3.166 R3-PA:Z 2.186 R3:F 0.091 control_panel_log1 0.000 

R1-PA6:IH 3.159 R3-PM7:V 2.176 R1:F 0.078 control_panel_log2 0.000 

R2-PA6:IH 3.152 R2-PA:Z 2.147 relay2_log 0.066 snort_log3 0.000 

Table 12: Information gain evaluation for 10% electric data 



 
 
From the above results, it is clear that there are an abundance of parameters which are extremely 
revealing to the algorithms. To help confirm this, some parameters were stripped and a test was 
performed with the selected algorithms, with the expectation that a minor reduction in parameters 
would have minor impact on the accuracies (i.e. the high results would remain). This expectation was 
met as shown in Table 13. 
 

Algorithm AttrRem 2 3 6 12 15 16 19 22 23 27 28 30 37 38 wavg 

Bayes Net 
2 0.99 0.99 0.99 0.99 1.00 0.99 0.99 0.98 0.99 0.98 0.99 0.99 1.00 0.99 0.99 

3 0.99 0.99 0.99 0.99 1.00 0.99 0.99 0.98 0.99 0.97 0.99 0.99 0.99 0.99 0.99 

JRip 
2 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

3 0.99 0.99 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

RandomForest 
2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Table 13: Results of parameter reduction on 10% electric data 
 
Through visualization of the features within WEKA, it did not seem that there is anything inherent to the 
data itself causing excessive information gain. To investigate further, a separate dataset was generated 
by selecting a scenario "pair" - one scenario of normal behavior and an attack scenario meant to 
resemble the normal behavior - and extracting all instances of the two scenarios into a new dataset. The 
benefit of this was that there were many more instances of a given scenario (albeit only two scenarios 
total) compared to the 10% dataset, as well as a higher degree of variability within the features. This 
dataset was run with the selected algorithms. As shown in Table 14, this still produced exceptionally 
high accuracies as previously.  
 

Algorithm Category Overall Acc Cross-Validation TP Rate Scenario 1 TP Rate Scenario 7 

BayesNet Bayes 95.28% 10 0.959 0.946 

Jrip Rules 99.98% 10 1 1 

RandomForest Trees 99.96% 10 1 0.999 

Table 14: Results of two-scenario constructed data set 
 
From the above results, it is strongly implied that there is a fundamental skewing of results when 
running the sequential-type electric data in WEKA with little or no advanced preprocessing performed 
prior. In particular, the issue lies with WEKA considering data entries to be individual entities to be 
classified, whereas the electric data has many entries corresponding to a single event to be classified, 
despite each entry having a marker parameter associating it with a member of the classifier. Thus, WEKA 
considers orders of magnitude more instances than are genuinely represented in the electric data, and 
the accuracies reported by the tool are not indicative of the true classification of sequential events.  
 
Furthermore, what may in actuality be a change in a parameter during a single instance of a scenario is 
instead seen by WEKA as individual instances of a scenario with differing parameter values. This has a 
particularly strong impact on the networking parameters (control panel, relay, and snort logs), which 
tend to be characterized by bursts but are otherwise zeroed. Instead of treating such transactions as a 
meaningful sequence within a single event, the tool considers each in isolation and thus tends to classify 



based on the more prevalent, normal, zeroed state. This effect seems to be supported by the extremely 
low rankings of information gain given by WEKA to all networking parameters. 
 
  

 
Open Problems and Future Work 

 
Gas and Water Data 
 
The primary open problem for the gas pipeline and water storage tower datasets, is that they are 
unsuitable in their current form for use in IDS research.  In each case of a correlation between a 
parameter and an attack, the correlation could have been avoided.  
 
1. Gas Pipeline Dataset 
  1.1  command_address   

   If the command_address is something other than 4, Weka classifies it as a DOS  

   attack. Some of this is good, because the MODBUS address of the device  

   sending commands is 4, so something else could easily be an attacker. However, 

   a few man in the middle attacks impersonating device 4 would add randomness.  

 

  1.2 response_address 

   This value is only ever 4 or 0 and only 0 when it's a recon attack.  

   This is because 0 is the MODBUS address of a broadcast message and the   

   reconnaissance attacks send a broadcast message to determine the address of a 

   device that responds. Some of this is legitimate because broadcast messages are 

   not common in an established ICS system. However, broadcast messages are a  

   legitimate MODBUS function, so adding legitimate broadcast messages would  

   help to add randomness. 

  1.3 response_Length 

   This is always only 19 unless it's a reconnaissance attack. Then it's 123.  

   Again, this is because the device response to a broadcast message is of size 123. 

   so adding legitimate broadcast messages would  help to add randomness. 

 

  1.4 comm_read_function 

   This value is almost always 3, except in case of a DOS attack. This because 3 is  

   the MODBUS read registers function code. I don't think parameter is needed,  

   because there is no particular "read" field in the MODBUS data, just a function  

   code. This field should be combined with resp_read_fun and subfunction to give 

   just the MODBUS function code.  

  1.5 resp_read_fun 

   This value is only ever 3 or 1. CMRI only happens when it is 1. I don't think  



   parameter is needed. This field should be combined with comm_read_function  

   and subfunction to give just the MODBUS function code.  

 

  1.6 subfunction 

   There are only three values of subfunction: 0, 1.5, and 4. It's always 0 unless  

   it's an MFCI attack. . I don't think parameter is needed. This field should be  

   combined with comm_read_function and resp_read_fun to give just the  

   MODBUS function code.  

  1.7 setpoint 

   Setpoint only has unique 4 values: 20, 70, 80, and 90. Anytime the setpoint is  

   not 20, it's an MPCI attack.  More randomness could easily be added by   

   modifying the setpoint legitimately to a wide range of pressures. 

  1.8 control_mode 

   control_mode is only ever either 0, 1, or 2.  If it's ever 1, it's certainly MSCI.  

   1 is for manual mode of the pipeline. The system should be run in all 3   

   modes(manual, automatic, and off) legitimately to add randomness  

.   1.9 control_scheme 

   control_mode is only ever 0 or 1. If it's 0, it's an MSCI attack. 

   control_mode indicates whether the system is in "pump" control or "solenoid"  

   control.  The system should be run in both modes legitimately to add   

   randomness. 

 

  1.10. measurement 

   All the CMRI attacks are in exact same measurement range from about 6 to  

   about 11. The CMRI attacks should be more spread out to add randomness. 

    

   All the NMRI attacks are all above 100 or below -1. This is acceptable for attacks  

   like Negative Sensor Measurement, Sensor Measurement Grossly Out Of  

   Bounds , or Random Sensor Measurement, as all of these attacks will produce  

   measurements that  are an anomaly. 

2. Water Storage Tank 
  2.1 command_address 

The command_address attribute is needed by all algorithms to classify DOS 

attacks. The command address used for normal transactions is 7. Any command 

address that is not 7 is classified as a DOS attack. 

 
 
 



2.2 com_write_fun 
This attribute is needed by the algorithms to classify a variety of attacks. The 

NaïveBayes and PART classifiers use it to identify DOS attacks. PART and Ridor 

need it to classify CMRI attacks. Ridor also needs it to identify NMRI and MSCI 

attacks.This attribute is only ever of value 0x10 or 0x11. The value 0x10 is the 

normal Modbus function code for writing multiple registers. 

  2.3 resp_write_fun 
This attribute is only need by the NaïveBayes classifier to aide in identifying 

Normal transactions. This attribute is only ever of value 0x00 or 0x10. The value 

0x10 is the normal Modbus function code for writing multiple registers. When 

the value is 0x00, the transaction is a Recon attack.  

  2.4 sub_function 
This attribute is needed by the algorithms to aide in classifying various attacks.  

NaïveBayes and Ridor use this attribute to classify MFCI attacks. Ridor also uses 

this attribute to classify normal transactions as well as CMRI and MPCI attacks. 

PART uses this attribute to aide in DOS attack classification. Sub_function is only 

ever of value 0x00 or 0x10. If the value is 0x10, the transaction is an MFCI 

attack.  

  2.5 resp_length 
This attribute is also used by the algorithms to classify various attacks. All the 

algorithms use this attribute to aide in normal transaction classification. PART 

needs this attribute to classify MSCI attacks. Ridor needs this attribute to classify 

NMRI and CMRI attacks.This attribute is only ever of value 21 or 123. When the 

value is 123, the transaction is a recon attack. 

  2.6 HH 
The NaïveBayes classifier uses this attribute to identify MPCI attacks. Ridor uses 

this attribute to classify MSCI attacks. For normal operations, this attribute’s 

value is 90. When it is anything else, the transaction is an MPCI attack. 

Whenever this attribute’s value is changed, the attribute H is changed as well. 

  2.7 H 
The NaïveBayes and Ridor classifiers use this attribute to identify MPCI attacks. 

Ridor also uses this to classify NMRI, CMRI, and MSCI attacks. For normal 

operations, this attribute’s value is 80. When it is anything else, the transaction 

is an MPCI attack. Whenever this attribute’s value is changed, the attribute HH 

is changed as well. 

  2.8 L 
The NaïveBayes and Ridor classifiers use this attribute to identify MPCI attacks. 

Ridor also uses this to classify NMRI, CMRI, and MSCI attacks. For normal 

operations, this attribute’s value is 20. When it is anything else, the transaction 



is an MPCI attack. Whenever this attribute’s value is changed, the attribute LL is 

changed as well. 

  2.9 LL 
Ridor uses this attribute to classify CMRI attacks. For normal operations, this 

attribute’s value is 10. When its value is not 10 but L is 20, the transaction is an 

MSCI attack. 

  2.10 control_mode 
 NaïveBayes and Ridor use this attribute to classify MPCI attacks. NaïveBayes also 

uses this attribute to classify CMRI attacks. Control_mode is only ever of value 0 

or 2. There is no clear relation between the values and any transaction 

classification. 

2.11 crc_rate 
Ridor uses this attribute to identify MPCI attacks. This attribute’s value is only 

ever 0 or 1. There is no clear correlation between this attribute’s value and 

transaction classification. 

  2.12 measurement 
 All algorithms use this attribute to identify CMRI attacks.  PART and Ridor also 

uses this attribute to identify NMRI attacks. NaïveBayes does not correctly 

classify any NMRI attacks. 

  2.13 time 
 Ridor uses this attribute to help classify CMRI and MSCI attacks. The value varies 

greatly; therefore, there is no clear correlation. 
 
It is recommended that these datasets be recreated with a wider range of normal transactions and 
attacks that mimic more closely the behaviors of SCADA attackers, as described above. 
 
3. Electric Dataset 
 
The primary open problem with the electric transmission dataset is that without considerable 
preprocessing, they are unsuitable for use with the implementation of algorithms used by WEKA and 
thus results of analysis using the tool are likely not indicative of the true classification strength of the 
algorithms. The recommended solution is to attempt to preprocess the data in such a way that it 
remains representative of the original data, particularly the scope of behavioral scenarios, while being 
better suited to use with algorithms within WEKA. Given that high accuracies are achieved with such a 
technique, a test of downsampling could then be applied to determine whether or not the effective 
sampling rate of the data can be reduced while retaining similar value of information. 
 
 

 
 
 



Conclusions 
 
The primary conclusion of this project is that 2 of the datasets being used for analysis(the water and gas 
datasets in particular) are unsuitable for IDS research as they currently exist, due to the obvious 
correlations between particular parameters and the result to be predicted. These correlations are 
unrealistic in real SCADA transactions, which is what renders the datasets unsuitable in their current 
form. 
  The remaining dataset (electric power transmission) is not necessarily unsuitable for IDS, but 
rather is not well suited to the implementations of machine learning algorithms used for analysis due to 
its sequential nature. A significant amount of preprocessing on the electric transmission dataset is likely 
required in order to conduct appropriate research using given methods.  

 
Previous Work 
 
Jianmin Jiang and Lasith Yasakethu  in their paper "Anomaly Detection via One Class SVM for Protection 
of SCADA Systems"[4] write about using Support Vector Machines(SVMs), a class of Machine Learning 
algorithms, in an intrusion detection system developed at The University of Surrey. While detailed in 
their analysis of the basic theory of SVMs, not much time is devoted to the particulars of the data used 
for analysis.  It is our intention to include an analysis of the particular data being used, and how this 
affects the performance of the tested algorithms. 
 
Maria Muntean et al. in their paper "Data Mining Learning Models and Algorithms on a SCADA System 
Data Repository"[5] perform a similar analysis of 3 Machine Learning Algorithms in the WEKA 
environment and their effectiveness at predicting inlet water temperature. While helpful in their 
baseline analysis of 3 algorithms, the data being analyzed has only 2 features and is therefore only 
minimally representative of a real SCADA control system. The data sets used for the proposed project 
are much more extensive and more representative of actual SCADA control systems.  
 
Mohammad Al-Subaie and Mohammad Zulkernine in their paper "Hidden Markov Models Over Neural 
Networks in Anomaly Intrusion Detection"[6] state the importance of accounting for sequential 
relationships between events of patterns when analyzing system behavior. To this end, the authors 
investigate and compare the performance of two machine learning techniques: Hidden Markov Models 
(HMMs) and Multilayer Perceptron (MLP) neural network. While the paper does affirm the strength of 
sequential learning-based techniques for anomaly detection, it does not have specific focus on SCADA 
systems - our intention is to investigate and compare machine learning techniques in the particular 
context of SCADA systems. 
 
In the paper “Predicting Mine Dam Levels and Energy Consumption Using Artificial Intelligence 
Methods,”[7] authors Ali Hasan, Bhekisipho Twala, et al. use four machine learning algorithms to 
determine the viability of the use of artificial intelligence in the mining industry to predict dam levels 
and energy consumption. The four algorithms used are: artificial neural networks, a naïve Baye’s 
classifier, an SVM, and decision trees. Their results show that artificial neural networks worked the best 
in predicting both cases. While artificial neural networks may be the best of the four at predicting their 
cases, we intend to study the effectiveness of other algorithms in predicting our case. 
 
In the paper “A Log Mining Approach for Process Monitoring in SCADA,”[8] authors  ina 
Had iosmanovic  , Damiano Bolzoni, et al. propose a method to “identify process-related threats in 



SCA A” systems. Their goal is to prove that their proposed methodology can effectively detect 
anomalous behavior. Similar to our project, the authors of this paper also test their method on data 
obtained from a real SCADA system. While the goal of anomaly detection is similar to ours, the authors 
of this paper do not use machine learning techniques or algorithms. Also, the data sets we will use are 
produced from different SCADA systems than the one used in their research. 
 
In the paper “Neural Network Based Intrusion Detection System for Critical Infrastructures,”[9] authors 
Ondrej Linda, Todd Vollmer, et al. propose the Intrusion Detection System using Neural Network based 
Modeling (IDS-NNM). Similarly to our project, the authors use real data from a SCADA system; however, 
the authors do not specify from which kind of system the data was obtained. The IDS-NNM uses two 
neural network algorithms. They are the Error-Back Propagation and the Levenberg-Marquardt 
algorithms. While the authors performed analysis with data from one SCADA system using neural 
network algorithms, we intend to analyze the effectiveness of three different algorithms on detailed 
data sets obtained from three different SCADA systems. 
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