
Industrial Control System Simulation and Data Logging for

Intrusion Detection System Research
Thomas H. Morris

Distributed Analytics and Security
Institute

Mississippi State University
Starkville, MS, USA

morris@ece.msstate.edu

Zach Thornton
Distributed Analytics and Security

Institute
Mississippi State University

Starkville, MS, USA
zach@dasi.msstate.edu

Ian Turnipseed
Distributed Analytics and Security

Institute
Mississippi State University

Starkville, MS, USA
ian@dasi.msstate.edu

ABSTRACT

Industrial control system intrusion detection is a popular topic of

research for several years, and many intrusion detection systems

(IDS) have been proposed in literature. IDS researchers lack a

common framework to train and test proposed algorithms. This

leads to an inability to properly compare proposed IDS and limits

research progress. This paper documents 2 approaches to data

sharing for the industrial control system IDS research

community. First, a network traffic data log captured from a gas

pipeline is presented. The gas pipeline data log was captured in a

laboratory and includes artifacts of normal operation and cyber-

attacks. Second, an expandable virtual gas pipeline is presented

which includes a human machine interface, programmable logic

controller, Modbus/TCP communication, and a Simulink based

gas pipeline model. The virtual gas pipeline provides the ability

to model cyber-attacks and normal behavior. IDS solutions can

overlay the virtual gas pipeline for training and testing.

Categories and Subject Descriptors

C.2.0 [Computer-Communication Networks]: General –

Security and protection (e.g., firewalls).

General Terms

Security

Keywords

Industrial Control System, SCADA, Intrusion Detection System,

Cyber Security.

1. INTRODUCTION
Supervisory Control and Data Acquisition (SCADA) systems are

computer-based process control systems that interconnect and

monitor remote physical processes. SCADA systems have a

strategic importance due to the fact that they are adopted by the

critical infrastructure of nations. Any damage to critical

infrastructure may have an impact on the economy of a country.

There have been several real-world documented incidents and

cyber-attacks affecting SCADA systems, which clearly illustrate

critical infrastructure vulnerabilities. These reported incidents

demonstrate that cyber-attacks on SCADA systems might

produce a variety of financial damage and harmful events to

humans and their environment. The Stuxnet [1] worm targeted

industrial control systems and altered system behavior at the

client and server level. A disgruntled engineer penetrated a

sewage control system in Maroochi Australia and caused

approximately 264,000 gallons of raw sewage leak in to nearby

rivers [2]. Finally, in 2003, the Davis-Besse nuclear plant in Oak

Harbor Ohio was attacked by the Slammer Worm which caused a

safety monitoring system of the plant to go offline for

approximately five hours [3].

IDS researchers need tools and data to facilitate research. First,

IDS researchers commonly use data logs which include attack

and normal artifacts from a system to train and test classifiers

used to detect cyber-attacks. The 1999 DARPA dataset produced

by MIT’s Lincoln Labs was created with the intent for

researchers to test viable Intrusion Detection Systems (IDS) for

effectiveness. The dataset has been a vital part in furthering

research for evaluating computer network IDSs and providing a

benchmark for other researchers to compare and validate results,

but the dataset was found to contain unintended patterns that led

algorithms to easily learn differences between scenarios [4].

Currently, no commonly shared data logs exist for industrial

control system IDS research. As a result researchers commonly

develop a set of cyber-attacks against a locally owned system,

capture data logs, and then train and test their IDS. These data

logs are not commonly shared which makes comparison of

proposed IDS difficult. This paper presents a set of data logs

captured from a laboratory scale gas pipeline system described in

[5]. The data logs include labeled network transactions during

normal operation and during 35 cyber-attacks. Second, in

addition to data logs, IDS researchers need a common platform to

model industrial control systems and cyber-attacks against these

systems. This paper describes a virtual gas pipeline built using

Python. The virtual pipeline which includes a human machine

interface (HMI), a virtual physical process, a virtual

programmable logic controller (PLC), and a virtual network. The

behavior of the virtual pipeline is compared to a laboratory scale

gas pipeline. In addition to modeling the gas pipeline, the

underlying components of the virtual pipeline constitute a

platform for modeling other industrial control systems. Because

the modeled systems are virtual, there is no physical limit on the

size of modelled systems. As such, the platform allows modelling

of industrial control systems at scale.

The rest of this paper is organized as follows. Section 2 describes

the gas pipeline data logs and section 3 describes the virtual gas

pipeline. Finally, conclusions and future work are provided.

2. GAS PIPELINE DATA LOGS
The data logs described in this paper are a second iteration of

previous data logs described by Morris et al. in [6] which were

found to contain unintended patterns. These unintended patterns

cause machine learning algorithms to build a model which does

not match real system behavior and leads to overly optimistic

classification accuracy. For this work, a new test bed

architecture was developed which randomizes system state by

making period control changes from the HMI, randomizes attack

order, and randomizes attack attributes. This new randomization

minimizes the presence of unintended patterns in the data logs.

Modbus packets include header and payload. For Modbus over

Serial Line a packet includes a device address, function code,

payload, and a cyclic redundancy code (CRC) or linear

redundancy code (LRC). Modbus/TCP packets include a Modbus

Application Protocol header (MBAP) header, function code, and

payload. The MBAP header includes a transaction identifier,

protocol identifier, length, and device identifier. The device

identifier is similar to the Modbus over Serial Line address. The

data logs described in this work are taken from a Modbus over

Serial Line, however, they can be safely used as proxy for

Modbus/TCP data with the exception that there is no transaction

identifier, protocol identifier, and length field. The transaction

identifier is generally a count of transactions. The protocol

identifier is always 0 for legal Modbus/TCP packets, and the

length is the number of bytes in the payload plus 1 byte for the

function code.

Inside the payload Modbus/TCP and Modbus over Serial Line

packets are identical. Modbus read and write commands are the

most common command types. Read and write payload includes

additional packet attributes such as coil or register addresses,

quantities of requested or returned coils or registers, coil or

register contents, error codes, and exception codes. Some

exceptional commands, such as the Diagnostic, file record

access, mask write, and read FIFO commands include sub

function codes, and other attributes to describe specific queries

and responses.

Figure 1: Test Bed Architecture

SCADA systems have very regular communication patterns.

Often the same limited set of read and write commands will be

repeated in a loop. For example, the gas pipeline system used for

this work repeats the same two commands in a loop. First, it

writes the contents of all registers and coils used for control.

Next, a Modbus read holding register command is used to read

the measured state of the system. These two commands are each

followed by a response. This regularity leads to a set of

commands in which all device addresses are constant, each of the

4 packets always have the same length, and each of the 4 packets

always have the same function code. This lack of variation is

expected. These regular patterns can be exploited by machine

learning algorithms which build a model of normal behavior and

detect abnormal deviations. In general deviations in header

attribute values and attributes which describe payload contents

are indicative of an attack.

For a given system read and write command payload describes

coils and register contents to monitor and control the system.

This information effectively represents the intended control state

of the measured system. This state information should change

to represent normal variation of control and measured system

state.

 shows the architecture of the test bed used to collect data logs.

The test bed first randomly chooses whether to change system

control state or to initiate a cyber-attack. An AutoIt automation

and scripting language [7] script was written to interact with the

test bed HMI software. When a control state change was

selected, the AutoIt script randomly chooses from multiple legal

system states and initiates the mouse clicks in the HMI to effect

the state change. The gas pipeline includes a system control

mode input with 3 states; off, manual control, or automatic

control. In automatic mode the control scheme controls pressure

by turning a pump on or off or by opening and closing a relief

valve using a solenoid. In automatic mode, a proportional integral

derivative (PID) controller is used to control the pump or

solenoid depending upon the control scheme chosen. Six PID

parameters can be set from the HMI; pressure set point, gain,

reset rate, rate, dead band, and cycle time. In manual mode, the

HMI can be used to manually change the pump state and

manually control the relief valve state by opening or closing the

solenoid. When the test bed chooses to change the gas pipeline

control state, the AutoIt script chooses a legal combination of

system control mode, control scheme, and PID set points. The

gas pipeline has one physical limitation. The pump must

periodically rest to allow it to cool. This is not normal for gas

pipelines, but, is required for the lab system. Because of this, the

AutoIt script forced the pump to have a 20% duty cycle. This

results in periods of the pump being off in the data logs.

Table 1: Cyber-attacks 1-12

Attack

Name

Number Type Description

Setpoint

Attacks

1-2 MPCI Changes the pressure set point

outside and inside of the range of

normal operation.

PID Gain

Attacks

3-4 MPCI Changes the gain outside and inside

of the range of normal operation.

PID Reset

Rate

Attacks

5-6 MPCI Changes the reset rate outside and

inside of the range of normal

operation.

PID Rate

Attacks

7-8 MPCI Changes the rate outside and inside

of the range of normal operation.

PID

Deadband

Attacks

9-10 MPCI Changes the dead band outside and

inside of the range of normal

operation.

PID Cycle

Time

Attacks

11-12 MPCI Changes the cycle time outside and

inside of the range of normal

operation.

When the AutoIt script chooses to execute a cyber-attack, a

random attack is chosen from 4 categories; response injection,

reconnaissance, denial of service (DOS), and command injection.

The response injection class is further divided into naïve

malicious response injection (NMRI) and complex malicious

response injection (CMRI) attacks. The command injection class

is further divided into malicious state command injection

(MSCI), malicious parameter command injection (MPCI), and

malicious function code command injection (MFCI) attacks.

Reconnaissance attacks gather control system network

information, map the network architecture, and identify the

device characteristics such as manufacturer, model number,

supported network protocols, system address, and system

memory map. Response injection attacks alter the response from

server to client and thereby provide false system state

information. NMRI attacks lack sophistication. NMRI attacks

leverage the ability to inject or alter response packets in the

network, but, lack information about the process being monitored

and controlled.

CMRI attacks add a level of sophistication above that of the

NMRI attacks. CMRI require more understanding of the cyber

physical system being attacked. CMRI attacks attempt to mask

the real state of the physical process being controlled to

negatively affect the feedback control loop managing the cyber

physical system. CMRI attacks are designed to appear like

normal process functionality. These attacks can be used to mask

other process changes. Because these attacks project a state of

normalcy they are more difficult to detect.

Table 2: Cyber-attacks 13-23

Attack

Name

Number Type Description

Pump

Attack

13 MSCI Randomly changes the state of

the pump.

Solenoid

Attack

14 MSCI Randomly changes the state of

the solenoid.

System

Mode

Attack

15 MSCI Randomly changes the system

mode.

Critical

Condition

Attacks

16-17 MSCI Places the system in a Critical

Condition. This condition is not

included in normal activity.

Bad CRC

Attack

18 DOS Sends MODBUS packets with

incorrect CRC values. This can

cause denial of service.

Clean

Registers

Attack

19 MFCI Cleans registers in the slave

device.

Device

Scan

Attack

20 Recon Scan for all possible devices

controlled by the master.

Force

Listen

Attack

21 MFCI Forces the slave to only listen.

Restart

Attack

22 MFCI Restart communication on the

device.

Read Id

Attack

23 Recon Read ID of slave device. The

data about the device is not

recorded, but is performed as if it

were being recorded.

Command injection attacks inject false control and configuration

commands into a control system to alter system behavior. The

potential impacts of malicious command injections include loss

of process control, interruption of device communications,

unauthorized modification of device configuration, and

unauthorized modification of process set points. Malicious State

Command Injection (MSCI) attacks change the state of the

process control system to drive the system from a safe state to a

critical state by sending malicious commands to remote field

devices. MSCI attacks may require a single injected command or

multiple injected commands. Malicious Parameter Command

Injection (MPCI) attacks alter PLC set points. Malicious

Function Code Injection (MFCI) attacks transmit commands

which misuse protocol network parameters to alter network

behavior. Denial of Service (DOS) attacks target communication

links or attempt to disable programs running on system endpoints

which control the system, log data, and govern communications.

In total 35 cyber-attacks were used in creation of the data logs.

Tables 1-3 provide brief descriptions of the cyber-attacks. In total

the data log contains records from 214,580 Modbus network

packets with 60,048 packets associated with a cyber-attack. In the

data logs, each packet is labeled with the attack number shown in

Tables 1-3 or the label 0 for packets associated with a normal

event (no attack).

Table 3: Cyber-attack 24-35

Attack

Name

Number Type Description

Function

Code

Scan

Attack

24 Recon Scans for possible functions that

are being used on the system. The

data about the device is not

recorded, but is performed as if it

were being recorded.

Rise/Fall

Attacks

25-26 CMRI Sends back pressure readings

which create trends on the

pressure reading’s graph.

Slope

Attacks

27-28 CMRI Randomly increases/decreases

pressure reading by a random

slope.

Random

Value

Attacks

29-31 NMRI Random pressure measurements

are sent to the master.

Negative

Pressure

Attack

32 NMRI Sends back a negative pressure

reading from the slave.

Fast

Attacks

33-34 CMRI Sends back a high set point then a

low setpoint which changes “fast”

Slow

Attack

35 CMRI Sends back a high setpoint then a

low setpoint which changes “slow”

The data logs were stored in two formats; raw and Attribute

Relationship File Format (ARFF). Raw data log entries include

raw packet contents in Modbus ASCII format, attack category,

specific attack, source, destination, and a time stamp. The raw

data is parsed into individual features in the ARFF data log. Table

4 lists all features in the ARFF data logs. The data logs are

available by request from the author.

3. VIRTUAL GAS PIPELINE
Fundamental risks to SCADA systems can be identified and

detected with research into the patterns, attack vectors, and

impacts related to malicious activity. Traditionally, such research

has required access to a real control system or a test bed

environment that includes a scaled physical model and

accompanying hardware, software, and information

communications technologies (ICT) which form the complete

cyber physical system. Such lab scale test beds, as used to create

the previous ICS data logs, present two limitations for

researchers. First, only researchers with physical access to the

test bed can engage in SCADA intrusion detection research.

Second, such test beds are expensive, difficult to expand, and

difficult to maintain.

A virtual SCADA laboratory was developed as a potential

solution to these difficulties. The virtual SCADA laboratory is

portable, distributable, and expandable. The virtual SCADA

laboratory closely models commercial SCADA products, is able

to communicate with commercial SCADA products, is easily

expandable, and is run in a virtual computing environment. The

model of the physical process, initially a curve fit of a physical

lab process, lacked fidelity to the original model in all operating

modes. The original laboratory, with improvements to the

physical process model using Simulink, is described below.

3.1 Virtual Pipeline Components
The virtual pipeline consists of 4 components; a virtual process, a

PLC simulation, a network simulation, and an HMI. The virtual

process, the PLC, and HMI all run in a separate virtual machines

(VM). The virtual PLC and the HMI communicate via

Modbus/TCP over a virtual network provided by the VM

platform.

Table 4: Features in ARFF Data Log

Attribute Description

address The station address of the MODBUS slave device.

This address is the same on a query and response to

a given slave device.

function MODBUS function code.

length The length of the MODBUS packet.

setpoint The pressure set point when the system is in the

Automatic system mode.

gain PID gain.

reset rate PID reset rate.

deadband PID dead band.

cycle time PID cycle time.

rate PID rate.

system mode The system’s mode automatic (2), manual (1), or off

(0).

control scheme The control scheme is either pump (0) or solenoid

(1). This determines which mechanism is used to

regulate the set point.

pump Pump control; on (1) or off (0). Only used in manual

mode.

solenoid Relief valve control; opened (1) or closed (0). Only

used in manual mode.

pressure

measurement

Pressure measurement.

command

response

Command (1) or response (0).

time Time stamp.

binary result Binary class; attack (1) or normal (0).

Attack category Category of attack (0-7).

specific result Specific attack (0-35)

3.2 Process Simulation
Simulation of the physical processes forms the base component

of this laboratory. In real world control systems, the process itself

is typically a physical/chemical/mechanical phenomenon which

must be measured and controlled. The process is usually

described by complex sets of multi-order differential equations.

To simplify process simulation Matlab Simulink was used to

model the gas pipeline, a pump, and a relief valve. The

SimHydraulics Simulink package was used to model pipeline

components [8].

The virtual system models a pump, a valve, a pipeline, a fluid,

and fluid flow. For the modeled physical system, the source of

fluid (in the field of fluid dynamics, air is considered a fluid [9])

was air from the compressor. Because Simulink requires a

source, and open air is not an option, a reservoir of non-descript

fluid was chosen as the source of the fluid. There is also a valve

between the valve controlled by the virtual PLC and the return

reservoir. This valve is used to simulate load and changes

position at least once a second. shows the design of the system in

Simulink.

Not pictured in is the interface to the PLC which models sensor

and actuator connections to the physical process. Simulink

contains libraries for communicating using UDP packets. JSON

attribute-value pairs are sent between the virtual PLC and

Simulink process simulation to model connections between a real

PLC and actuators and sensors. The process simulation

implements separate ports for each actuator and sensor.

3.3 PLC Simulation
A central component of the virtual pipeline is the simulation of

the PLC hardware and software. In real world systems, a typical

PLC controller is programmed to perform 4 steps in an infinite

loop: read inputs, analyze current state, calculate responses, and

write outputs. This process is what the PLC simulation seeks to

emulate.

Almost all programming in PLCs is written in a language known

as Ladder Logic [10]. The virtual PLC simulates the behavior of

PLC ladder logic via a Python routine. Each data read,

calculation, and output setting takes place one at a time,

emulating each rung of a ladder logic program.

The virtual PLC communicates with other networked devices

using Modbus/TCP by utilizing the modbus_tk Python libraries.

This enables the virtual PLC to communicate with external

devices including physical PLCs and commercial HMI using a

standard SCADA communication protocol and allows researchers

and students to view, capture, analyze, and route the traffic just

as in a real SCADA system. The implementation of Modbus/TCP

within this simulation is indistinguishable from Modbus traffic of

real SCADA devices. Both Wireshark and Snort classify the

simulated network traffic as Modbus/TCP packets.

3.4 Human Machine Interface (HMI)
The third critical component of the virtual pipeline is the human

machine interface (HMI) which is used to remotely monitor and

control the physical process.

Two separate HMIs were used. The first HMI, shown in Figure 2,

uses GE iFix [11] software. This HMI is the same set of HMI

screens used for the modeled physical process. Since the virtual

pipeline exactly models the sensors, controls, and PLC ladder

logic from the physical system, no changes were required to use

the iFix HMI.

Figure 2: GE iFix HMI

The GE iFix software is proprietary, and therefore not

distributable by the authors. As such, a second HMI was

developed using the Python TkInter libraries for sharing with

other researchers and educators. Figure 3 shows below the

TkInter HMI.

Figure 3: TkInter HMI

Both HMI are functionally equivalent. Both provide the same

control inputs and display the same system measurements.

3.5 Results
The virtual pipeline was compared to the physical model.

Normal, startup, and attack behaviors were compared and

contrasted.

3.5.1 Normal Operation
Figure 4 and Figure 5 show the physical and virtual pipelines

regulating pressure around a set point using the relief valve

control scheme. The pressure set point of both systems is 15

PSI, the time range is 8 minutes, and the pressure scale on the

graph is 0-25 PSI.

Figure 4: Physical Pipeline Pressure Regulation

As can be seen, the pressure changes in the virtual pipeline

simulation resemble the physical pipeline. The frequency of

pressure change in the virtual system is faster than the real

system. The behavior differences occur because the modeled

pump size, the relief valve size, and the diameter and length of

the pipe all differ between the two systems. Since both the

physical pipeline and virtual pipeline are simulated pipelines it

was not important to exactly match behaviors between the two

simulations. Both accurate model real gas pipelines for the

purposes of intrusion detection system and SCADA security

research.

Figure 5: Virtual Pipeline Pressure Regulation

3.5.2 Startup Operation
Figure 6 plots pipeline pressure during startup for both the

physical and virtual pipeline. During startup both pipeline models

incrementally gain pressure with a stair step pattern. The stair

step pattern is an artifact of the measurement frequency. The

slope of the virtual pipeline pressure is higher than the physical

mode. This results from a difference in modeled pump size, relief

valve size, and pipeline diameter and length.

3.5.3 Attack Operation
Command Injection attacks are a category of attacks used by

attackers to maliciously adjust settings within a SCADA system.

One way to implement such an attack is to impersonate a SCADA

client, inject a command into the system by sending the command

to the server, and modify settings such as pressure set point, PID

parameters, or relief valve control state.

One such attack is an Altered Control Set Point attack. In this

attack, the attacker purports to be a MODBUS device with a

unique MODBUS device number, acts as a client, and sends a

command to the server to alter the set point of the system. The

server perceives this command as an authentic, alters the set

point, and begins adjusting the process actuators to achieve the

new set point.

Figure 6: Physical and Virtual Pipeline Pressure during

System Startup

In Figure 7, the blue line plots the pressure set point and the red

line plots the measured pressure. The set point is increased twice,

then decreased, then increased. The measured pressure follows

the set point. This attack was not compared to the physical

system. The pump in the physical system is too small to achieve

similar pressures.

4. CONCLUSIONS
This paper provides an overview of two tools useful for industrial

control system IDS researchers. First, a set of labeled network

data logs captured while a laboratory scale gas pipeline was in

normal states and under cyber-attack is described. The data logs

include artifacts of 35 cyber-attacks and can be used to train and

test classifiers used by IDS. The data logs are available from the

authors of this paper and will facilitate comparison of different

IDS implementations. Second, a virtual gas pipeline is described.

The virtual gas pipeline includes a HMI, PLC, virtual physical

process, and network connections. The virtual pipeline behaves

similarly to a laboratory scale pipeline and uses the industry

standard Modbus/TCP network protocol.

Figure 7: Virtual Pipeline Responding to Command

Injection Attack

The virtual pipeline components can be used to model many

types of industrial control systems. One future work is to model

an interstate gas pipeline to allow investigation of IDS

performance and to enable cyber-attack impact studies at scale.

Another future work is to map the 35 cyber-attacks presented in

the data log section of this work to a virtual interstate gas pipeline

system and capture data logs from the larger system.

5. ACKNOWLEDGMENTS
This work was supported both by the National Science

Foundation Secure and Trustworthy Cyberspace program under

Grant No. 1315726, and by the Pacific Northwest National

Laboratory, under U.S. Department of Energy Contract DE-

AC05-76RL01830.

6. REFERENCES
[1] N. Falliere, L. O’Murchu, and E. Chien, W32.Stuxnet

Dossier, Symantec Technical Report 1.4, 2011.

[2] J. Slay and M. Miller, Lessons Learned From the Maroochy

Water Breach, Critical Infrastructure Protection, eds. E.

Goetz and S. Shenoi, New York: Springer, vol. 253, pp. 73–

82, 2007

[3] K. Poulsen, Slammer Worm Crashed Ohio Nuke Plant

Network. http://www.securityfocus.com/news/6767. 2009

[4] McHugh, J. Testing Intrusion detection systems: a critique

of the 1998 and 1999 DARPA intrusion detection system

evaluations as performed by Lincoln Laboratory, ACM

Transactions on Information and System Security (TISSEC),

v.3 n.4, p.262-294, Nov. 2000

[5] Morris, T. Srivastava, A., Reaves, B., Gao, W., Pavurapu,

K., Reddi, R. A Control System Testbed to Validate Critical

Infrastructure Protection Concepts. International Journal of

Critical Infrastructure Protection (2011). Elsevier.

doi:10.1016/j.ijcip.2011.06.005

[6] Morris, T., Gao, W., Industrial Control System Network

Traffic Data sets to Facilitate Intrusion Detection System

Research, Critical Infrastructure Protection VIII, Sujeet

Shenoi and Johnathan Butts, Eds. IFIP Advances in

Information and Communication Technology, Springer

Berlin Heidelberg, Volume 441, 2014, pp 65-78.

[7] Brand, J., Balvanz, J. Automation is a Breeze with AutoIt.

Proceedings of the 33rd Annual ACM SIGUCCS

Conference on User Services, pp. 12-15. 2005.

[8] Dabney, James B., and Thomas L. Harman. Mastering

Simulink 4. Prentice Hall PTR, 2001.

[9] Hutchinson, J., The Physics of Flight, University of

California Museum of Paleontology, January 1996.

[10] Pollard, J. Ladder Logic Remains the PLC Language of

Choice, Control Engineering vol. 41, no. 5, pp. 77-79, 1994.

[11] Cong-Jiang, L., Control System of GE iFix and SIMATIC

PLC in Alkali-callback Evaporator, Light Industry

Machinery 1, 2008.

http://www.securityfocus.com/news/6767

