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ABSTRACT 

Industrial control system intrusion detection is a popular topic of 

research for several years, and many intrusion detection systems 

(IDS) have been proposed in literature.  IDS researchers lack a 

common framework to train and test proposed algorithms. This 

leads to an inability to properly compare proposed IDS and limits 

research progress.  This paper documents 2 approaches to data 

sharing for the industrial control system IDS research 

community. First, a network traffic data log captured from a gas 

pipeline is presented. The gas pipeline data log was captured in a 

laboratory and includes artifacts of normal operation and cyber-

attacks.  Second, an expandable virtual gas pipeline is presented 

which includes a human machine interface, programmable logic 

controller, Modbus/TCP communication, and a Simulink based 

gas pipeline model.  The virtual gas pipeline provides the ability 

to model cyber-attacks and normal behavior. IDS solutions can 

overlay the virtual gas pipeline for training and testing.  

Categories and Subject Descriptors 

C.2.0 [Computer-Communication Networks]: General – 

Security and protection (e.g., firewalls). 

General Terms 

Security 

Keywords 

Industrial Control System, SCADA, Intrusion Detection System, 

Cyber Security. 

1. INTRODUCTION 
Supervisory Control and Data Acquisition (SCADA) systems are 

computer-based process control systems that interconnect and 

monitor remote physical processes. SCADA systems have a 

strategic importance due to the fact that they are adopted by the 

critical infrastructure of nations. Any damage to critical 

infrastructure may have an impact on the economy of a country. 

There have been several real-world documented incidents and 

cyber-attacks affecting SCADA systems, which clearly illustrate 

critical infrastructure vulnerabilities. These reported incidents 

demonstrate that cyber-attacks on SCADA systems might 

produce a variety of financial damage and harmful events to 

humans and their environment. The Stuxnet [1] worm targeted 

industrial control systems and altered system behavior at the 

client and server level. A disgruntled engineer penetrated a 

sewage control system in Maroochi Australia and caused 

approximately 264,000 gallons of raw sewage leak in to nearby 

rivers [2]. Finally, in 2003, the Davis-Besse nuclear plant in Oak 

Harbor Ohio was attacked by the Slammer Worm which caused a 

safety monitoring system of the plant to go offline for 

approximately five hours [3]. 

IDS researchers need tools and data to facilitate research. First, 

IDS researchers commonly use data logs which include attack 

and normal artifacts from a system to train and test classifiers 

used to detect cyber-attacks. The 1999 DARPA dataset produced 

by MIT’s Lincoln Labs was created with the intent for 

researchers to test viable Intrusion Detection Systems (IDS) for 

effectiveness. The dataset has been a vital part in furthering 

research for evaluating computer network IDSs and providing a 

benchmark for other researchers to compare and validate results, 

but the dataset was found to contain unintended patterns that led 

algorithms to easily learn differences between scenarios [4].  

Currently, no commonly shared data logs exist for industrial 

control system IDS research. As a result researchers commonly 

develop a set of cyber-attacks against a locally owned system, 

capture data logs, and then train and test their IDS. These data 

logs are not commonly shared which makes comparison of 

proposed IDS difficult. This paper presents a set of data logs 

captured from a laboratory scale gas pipeline system described in 

[5]. The data logs include labeled network transactions during 

normal operation and during 35 cyber-attacks. Second, in 

addition to data logs, IDS researchers need a common platform to 

model industrial control systems and cyber-attacks against these 

systems.  This paper describes a virtual gas pipeline built using 

Python. The virtual pipeline which includes a human machine 

interface (HMI), a virtual physical process, a virtual 

programmable logic controller (PLC), and a virtual network. The 

behavior of the virtual pipeline is compared to a laboratory scale 

gas pipeline.  In addition to modeling the gas pipeline, the 

underlying components of the virtual pipeline constitute a 

platform for modeling other industrial control systems. Because 

the modeled systems are virtual, there is no physical limit on the 

size of modelled systems. As such, the platform allows modelling 

of industrial control systems at scale. 

The rest of this paper is organized as follows. Section 2 describes 

the gas pipeline data logs and section 3 describes the virtual gas 

pipeline. Finally, conclusions and future work are provided. 

2. GAS PIPELINE DATA LOGS 
The data logs described in this paper are a second iteration of 

previous data logs described by Morris et al. in [6] which were 

found to contain unintended patterns.  These unintended patterns 

cause machine learning algorithms to build a model which does 

not match real system behavior and leads to overly optimistic 



classification accuracy.  For this work, a new test bed 

architecture was developed which randomizes system state by 

making period control changes from the HMI, randomizes attack 

order, and randomizes attack attributes.  This new randomization 

minimizes the presence of unintended patterns in the data logs. 

Modbus packets include header and payload. For Modbus over 

Serial Line a packet includes a device address, function code, 

payload, and a cyclic redundancy code (CRC) or linear 

redundancy code (LRC). Modbus/TCP packets include a Modbus 

Application Protocol header (MBAP) header, function code, and 

payload.  The MBAP header includes a transaction identifier, 

protocol identifier, length, and device identifier. The device 

identifier is similar to the Modbus over Serial Line address.  The 

data logs described in this work are taken from a Modbus over 

Serial Line, however, they can be safely used as proxy for 

Modbus/TCP data with the exception that there is no transaction 

identifier, protocol identifier, and length field. The transaction 

identifier is generally a count of transactions. The protocol 

identifier is always 0 for legal Modbus/TCP packets, and the 

length is the number of bytes in the payload plus 1 byte for the 

function code. 

Inside the payload Modbus/TCP and Modbus over Serial Line 

packets are identical. Modbus read and write commands are the 

most common command types. Read and write payload includes 

additional packet attributes such as coil or register addresses, 

quantities of requested or returned coils or registers, coil or 

register contents, error codes, and exception codes.  Some 

exceptional commands, such as the Diagnostic, file record 

access, mask write, and read FIFO commands include sub 

function codes, and other attributes to describe specific queries 

and responses.  

 

Figure 1: Test Bed Architecture 

SCADA systems have very regular communication patterns. 

Often the same limited set of read and write commands will be 

repeated in a loop. For example, the gas pipeline system used for 

this work repeats the same two commands in a loop. First, it 

writes the contents of all registers and coils used for control.  

Next, a Modbus read holding register command is used to read 

the measured state of the system. These two commands are each 

followed by a response. This regularity leads to a set of 

commands in which all device addresses are constant, each of the 

4 packets always have the same length, and each of the 4 packets 

always have the same function code.  This lack of variation is 

expected.  These regular patterns can be exploited by machine 

learning algorithms which build a model of normal behavior and 

detect abnormal deviations. In general deviations in header 

attribute values and attributes which describe payload contents 

are indicative of an attack. 

For a given system read and write command payload describes 

coils and register contents to monitor and control the system. 

This information effectively represents the intended control state 

of the measured system.    This state information should change 

to represent normal variation of control and measured system 

state. 

 shows the architecture of the test bed used to collect data logs.  

The test bed first randomly chooses whether to change system 

control state or to initiate a cyber-attack.   An AutoIt automation 

and scripting language [7] script was written to interact with the 

test bed HMI software. When a control state change was 

selected, the AutoIt script randomly chooses from multiple legal 

system states and initiates the mouse clicks in the HMI to effect 

the state change.  The gas pipeline includes a system control 

mode input with 3 states; off, manual control, or automatic 

control. In automatic mode the control scheme controls pressure 

by turning a pump on or off or by opening and closing a relief 

valve using a solenoid. In automatic mode, a proportional integral 

derivative (PID) controller is used to control the pump or 

solenoid depending upon the control scheme chosen.  Six PID 

parameters can be set from the HMI; pressure set point, gain, 

reset rate, rate, dead band, and cycle time.  In manual mode, the 

HMI can be used to manually change the pump state and 

manually control the relief valve state by opening or closing the 

solenoid.  When the test bed chooses to change the gas pipeline 

control state, the AutoIt script chooses a legal combination of 

system control mode, control scheme, and PID set points.  The 

gas pipeline has one physical limitation. The pump must 

periodically rest to allow it to cool. This is not normal for gas 

pipelines, but, is required for the lab system.  Because of this, the 

AutoIt script forced the pump to have a 20% duty cycle. This 

results in periods of the pump being off in the data logs. 

Table 1: Cyber-attacks 1-12 

Attack 

Name 

Number Type Description 

Setpoint 

Attacks 

1-2 MPCI Changes the pressure set point 

outside and inside of the range of 

normal operation.  

PID Gain 

Attacks 

3-4 MPCI Changes the gain outside and inside 

of the range of normal operation. 

PID Reset 

Rate 

Attacks 

5-6 MPCI Changes the reset rate outside and 

inside of the range of normal 

operation. 

PID Rate 

Attacks 

7-8 MPCI Changes the rate outside and inside 

of the range of normal operation. 

PID 

Deadband 

Attacks 

9-10 MPCI Changes the dead band outside and 

inside of the range of normal 

operation. 

PID Cycle 

Time 

Attacks 

11-12 MPCI Changes the cycle time outside and 

inside of the range of normal 

operation. 

 

When the AutoIt script chooses to execute a cyber-attack, a 

random attack is chosen from 4 categories; response injection, 

reconnaissance, denial of service (DOS), and command injection. 

The response injection class is further divided into naïve 

malicious response injection (NMRI) and complex malicious 

response injection (CMRI) attacks.  The command injection class 

is further divided into malicious state command injection 

(MSCI), malicious parameter command injection (MPCI), and 

malicious function code command injection (MFCI) attacks. 

Reconnaissance attacks gather control system network 

information, map the network architecture, and identify the 

device characteristics such as manufacturer, model number, 



supported network protocols, system address, and system 

memory map. Response injection attacks alter the response from 

server to client and thereby provide false system state 

information. NMRI attacks lack sophistication. NMRI attacks 

leverage the ability to inject or alter response packets in the 

network, but, lack information about the process being monitored 

and controlled.  

CMRI attacks add a level of sophistication above that of the 

NMRI attacks. CMRI require more understanding of the cyber 

physical system being attacked. CMRI attacks attempt to mask 

the real state of the physical process being controlled to 

negatively affect the feedback control loop managing the cyber 

physical system. CMRI attacks are designed to appear like 

normal process functionality. These attacks can be used to mask 

other process changes.  Because these attacks project a state of 

normalcy they are more difficult to detect.  

Table 2: Cyber-attacks 13-23 

Attack 

Name 

Number Type Description 

Pump 

Attack 

13 MSCI Randomly changes the state of 

the pump. 

Solenoid 

Attack 

14 MSCI Randomly changes the state of 

the solenoid. 

System 

Mode 

Attack 

15 MSCI Randomly changes the system 

mode. 

Critical 

Condition 

Attacks 

16-17 MSCI Places the system in a Critical 

Condition. This condition is not 

included in normal activity. 

Bad CRC 

Attack 

18 DOS Sends MODBUS packets with 

incorrect CRC values. This can 

cause denial of service. 

Clean 

Registers 

Attack  

19 MFCI Cleans registers in the slave 

device. 

Device 

Scan 

Attack 

20 Recon Scan for all possible devices 

controlled by the master. 

Force 

Listen 

Attack 

21 MFCI Forces the slave to only listen. 

Restart 

Attack 

22 MFCI Restart communication on the 

device. 

Read Id 

Attack 

23 Recon Read ID of slave device. The 

data about the device is not 

recorded, but is performed as if it 

were being recorded. 

 

Command injection attacks inject false control and configuration 

commands into a control system to alter system behavior. The 

potential impacts of malicious command injections include loss 

of process control, interruption of device communications, 

unauthorized modification of device configuration, and 

unauthorized modification of process set points. Malicious State 

Command Injection (MSCI) attacks change the state of the 

process control system to drive the system from a safe state to a 

critical state by sending malicious commands to remote field 

devices. MSCI attacks may require a single injected command or 

multiple injected commands. Malicious Parameter Command 

Injection (MPCI) attacks alter PLC set points. Malicious 

Function Code Injection (MFCI) attacks transmit commands 

which misuse protocol network parameters to alter network 

behavior. Denial of Service (DOS) attacks target communication 

links or attempt to disable programs running on system endpoints 

which control the system, log data, and govern communications.  

In total 35 cyber-attacks were used in creation of the data logs. 

Tables 1-3 provide brief descriptions of the cyber-attacks. In total 

the data log contains records from 214,580 Modbus network 

packets with 60,048 packets associated with a cyber-attack. In the 

data logs, each packet is labeled with the attack number shown in 

Tables 1-3 or the label 0 for packets associated with a normal 

event (no attack). 

Table 3: Cyber-attack 24-35 

Attack 

Name 

Number Type Description 

Function 

Code 

Scan 

Attack 

24 Recon Scans for possible functions that 

are being used on the system. The 

data about the device is not 

recorded, but is performed as if it 

were being recorded. 

Rise/Fall 

Attacks 

25-26 CMRI Sends back pressure readings 

which create trends on the 

pressure reading’s graph. 

Slope 

Attacks 

27-28 CMRI Randomly increases/decreases 

pressure reading by a random 

slope. 

Random 

Value 

Attacks 

29-31 NMRI Random pressure measurements 

are sent to the master. 

Negative 

Pressure 

Attack 

32 NMRI Sends back a negative pressure 

reading from the slave. 

Fast 

Attacks 

33-34 CMRI Sends back a high set point then a 

low setpoint which changes “fast” 

Slow 

Attack 

35 CMRI Sends back a high setpoint then a 

low setpoint which changes “slow” 

 

The data logs were stored in two formats; raw and Attribute 

Relationship File Format (ARFF). Raw data log entries include 

raw packet contents in Modbus ASCII format, attack category, 

specific attack, source, destination, and a time stamp. The raw 

data is parsed into individual features in the ARFF data log. Table 

4 lists all features in the ARFF data logs.  The data logs are 

available by request from the author. 

3. VIRTUAL GAS PIPELINE 
Fundamental risks to SCADA systems can be identified and 

detected with research into the patterns, attack vectors, and 

impacts related to malicious activity. Traditionally, such research 

has required access to a real control system or a test bed 

environment that includes a scaled physical model and 

accompanying hardware, software, and information 

communications technologies (ICT) which form the complete 

cyber physical system. Such lab scale test beds, as used to create 

the previous ICS data logs, present two limitations for 

researchers. First, only researchers with physical access to the 

test bed can engage in SCADA intrusion detection research. 

Second, such test beds are expensive, difficult to expand, and 

difficult to maintain.  

A virtual SCADA laboratory was developed as a potential 

solution to these difficulties. The virtual SCADA laboratory is 

portable, distributable, and expandable. The virtual SCADA 

laboratory closely models commercial SCADA products, is able 

to communicate with commercial SCADA products, is easily 

expandable, and is run in a virtual computing environment. The 



model of the physical process, initially a curve fit of a physical 

lab process, lacked fidelity to the original model in all operating 

modes. The original laboratory, with improvements to the 

physical process model using Simulink, is described below. 

3.1 Virtual Pipeline Components 
The virtual pipeline consists of 4 components; a virtual process, a 

PLC simulation, a network simulation, and an HMI. The virtual 

process, the PLC, and HMI all run in a separate virtual machines 

(VM). The virtual PLC and the HMI communicate via 

Modbus/TCP over a virtual network provided by the VM 

platform. 

Table 4: Features in ARFF Data Log 

Attribute Description 

address The station address of the MODBUS slave device. 

This address is the same on a query and response to 

a given slave device. 

function  MODBUS function code. 

length The length of the MODBUS packet. 

setpoint The pressure set point when the system is in the 

Automatic system mode. 

gain PID gain. 

reset rate PID reset rate. 

deadband PID dead band. 

cycle time PID cycle time. 

rate PID rate. 

system mode The system’s mode automatic (2), manual (1), or off 

(0). 

control scheme The control scheme is either pump (0) or solenoid 

(1). This determines which mechanism is used to 

regulate the set point. 

pump Pump control; on (1) or off (0).  Only used in manual 

mode.  

solenoid Relief valve control; opened (1) or closed (0). Only 

used in manual mode. 

pressure 

measurement 

Pressure measurement. 

command 

response 

Command (1) or response (0). 

time Time stamp. 

binary result Binary class; attack (1) or normal (0). 

Attack category Category of attack (0-7). 

specific result Specific attack (0-35) 

3.2 Process Simulation 
Simulation of the physical processes forms the base component 

of this laboratory. In real world control systems, the process itself 

is typically a physical/chemical/mechanical phenomenon which 

must be measured and controlled. The process is usually 

described by complex sets of multi-order differential equations.  

To simplify process simulation Matlab Simulink was used to 

model the gas pipeline, a pump, and a relief valve.  The 

SimHydraulics Simulink package was used to model pipeline 

components [8].  

The virtual system models a pump, a valve, a pipeline, a fluid, 

and fluid flow. For the modeled physical system, the source of 

fluid (in the field of fluid dynamics, air is considered a fluid [9]) 

was air from the compressor. Because Simulink requires a 

source, and open air is not an option, a reservoir of non-descript 

fluid was chosen as the source of the fluid. There is also a valve 

between the valve controlled by the virtual PLC and the return 

reservoir. This valve is used to simulate load and changes 

position at least once a second.  shows the design of the system in 

Simulink.  

Not pictured in  is the interface to the PLC which models sensor 

and actuator connections to the physical process. Simulink 

contains libraries for communicating using UDP packets. JSON 

attribute-value pairs are sent between the virtual PLC and 

Simulink process simulation to model connections between a real 

PLC and actuators and sensors.  The process simulation 

implements separate ports for each actuator and sensor. 

3.3 PLC Simulation 
A central component of the virtual pipeline is the simulation of 

the PLC hardware and software. In real world systems, a typical 

PLC controller is programmed to perform 4 steps in an infinite 

loop: read inputs, analyze current state, calculate responses, and 

write outputs. This process is what the PLC simulation seeks to 

emulate.  

Almost all programming in PLCs is written in a language known 

as Ladder Logic [10]. The virtual PLC simulates the behavior of 

PLC ladder logic via a Python routine. Each data read, 

calculation, and output setting takes place one at a time, 

emulating each rung of a ladder logic program.  

The virtual PLC communicates with other networked devices 

using Modbus/TCP by utilizing the modbus_tk Python libraries. 

This enables the virtual PLC to communicate with external 

devices including physical PLCs and commercial HMI using a 

standard SCADA communication protocol and allows researchers 

and students to view, capture, analyze, and route the traffic just 

as in a real SCADA system. The implementation of Modbus/TCP 

within this simulation is indistinguishable from Modbus traffic of 

real SCADA devices.  Both Wireshark and Snort classify the 

simulated network traffic as Modbus/TCP packets. 

3.4 Human Machine Interface (HMI) 
The third critical component of the virtual pipeline is the human 

machine interface (HMI) which is used to remotely monitor and 

control the physical process. 

Two separate HMIs were used. The first HMI, shown in Figure 2, 

uses GE iFix [11] software. This HMI is the same set of HMI 

screens used for the modeled physical process. Since the virtual 

pipeline exactly models the sensors, controls, and PLC ladder 

logic from the physical system, no changes were required to use 

the iFix HMI.   

 

Figure 2: GE iFix HMI 

The GE iFix software is proprietary, and therefore not 

distributable by the authors. As such, a second HMI was 

developed using the Python TkInter libraries for sharing with 

other researchers and educators. Figure 3 shows below the 

TkInter HMI.   



  

Figure 3: TkInter HMI 

Both HMI are functionally equivalent.  Both provide the same 

control inputs and display the same system measurements.   

3.5 Results 
The virtual pipeline was compared to the physical model. 

Normal, startup, and attack behaviors were compared and 

contrasted.   

3.5.1 Normal Operation 
Figure 4 and Figure 5 show the physical and virtual pipelines 

regulating pressure around a set point using the relief valve 

control scheme.  The pressure set point of both systems is 15 

PSI, the time range is 8 minutes, and the pressure scale on the 

graph is 0-25 PSI.  

 

Figure 4: Physical Pipeline Pressure Regulation 

As can be seen, the pressure changes in the virtual pipeline 

simulation resemble the physical pipeline. The frequency of 

pressure change in the virtual system is faster than the real 

system. The behavior differences occur because the modeled 

pump size, the relief valve size, and the diameter and length of 

the pipe all differ between the two systems.   Since both the 

physical pipeline and virtual pipeline are simulated pipelines it 

was not important to exactly match behaviors between the two 

simulations. Both accurate model real gas pipelines for the 

purposes of intrusion detection system and SCADA security 

research. 

 

Figure 5: Virtual Pipeline Pressure Regulation 

3.5.2 Startup Operation 
Figure 6 plots pipeline pressure during startup for both the 

physical and virtual pipeline. During startup both pipeline models 

incrementally gain pressure with a stair step pattern.  The stair 

step pattern is an artifact of the measurement frequency. The 

slope of the virtual pipeline pressure is higher than the physical 

mode. This results from a difference in modeled pump size, relief 

valve size, and pipeline diameter and length. 

3.5.3 Attack Operation 
Command Injection attacks are a category of attacks used by 

attackers to maliciously adjust settings within a SCADA system. 

One way to implement such an attack is to impersonate a SCADA 

client, inject a command into the system by sending the command 

to the server, and modify settings such as pressure set point, PID 

parameters, or relief valve control state.  

One such attack is an Altered Control Set Point attack.  In this 

attack, the attacker purports to be a MODBUS device with a 

unique MODBUS device number, acts as a client, and sends a 

command to the server to alter the set point of the system. The 

server perceives this command as an authentic, alters the set 

point, and begins adjusting the process actuators to achieve the 

new set point.  

 

Figure 6: Physical and Virtual Pipeline Pressure during 

System Startup 

In Figure 7, the blue line plots the pressure set point and the red 

line plots the measured pressure. The set point is increased twice, 

then decreased, then increased.  The measured pressure follows 

the set point.  This attack was not compared to the physical 

system. The pump in the physical system is too small to achieve 

similar pressures. 

4. CONCLUSIONS 
This paper provides an overview of two tools useful for industrial 

control system IDS researchers. First, a set of labeled network 

data logs captured while a laboratory scale gas pipeline was in 

normal states and under cyber-attack is described. The data logs 



include artifacts of 35 cyber-attacks and can be used to train and 

test classifiers used by IDS.  The data logs are available from the 

authors of this paper and will facilitate comparison of different 

IDS implementations. Second, a virtual gas pipeline is described. 

The virtual gas pipeline includes a HMI, PLC, virtual physical 

process, and network connections.  The virtual pipeline behaves 

similarly to a laboratory scale pipeline and uses the industry 

standard Modbus/TCP network protocol. 

 

Figure 7: Virtual Pipeline Responding to Command 

Injection Attack 

The virtual pipeline components can be used to model many 

types of industrial control systems. One future work is to model 

an interstate gas pipeline to allow investigation of IDS 

performance and to enable cyber-attack impact studies at scale. 

Another future work is to map the 35 cyber-attacks presented in 

the data log section of this work to a virtual interstate gas pipeline 

system and capture data logs from the larger system.   

5. ACKNOWLEDGMENTS 
This work was supported both by the National Science 

Foundation Secure and Trustworthy Cyberspace program under 

Grant No. 1315726, and by the Pacific Northwest National 

Laboratory, under U.S. Department of Energy Contract DE-

AC05-76RL01830. 

6. REFERENCES 
[1] N. Falliere, L. O’Murchu, and E. Chien, W32.Stuxnet 

Dossier, Symantec Technical Report 1.4, 2011. 

[2] J. Slay and M. Miller, Lessons Learned From the Maroochy 

Water Breach, Critical Infrastructure Protection, eds. E. 

Goetz and S. Shenoi,  New York: Springer, vol. 253, pp. 73–

82, 2007 

[3] K. Poulsen, Slammer Worm Crashed Ohio Nuke Plant 

Network. http://www.securityfocus.com/news/6767. 2009 

[4] McHugh, J. Testing Intrusion detection systems: a critique 

of the 1998 and 1999 DARPA intrusion detection system 

evaluations as performed by Lincoln Laboratory, ACM 

Transactions on Information and System Security (TISSEC), 

v.3 n.4, p.262-294, Nov. 2000   

[5] Morris, T. Srivastava, A., Reaves, B., Gao, W., Pavurapu, 

K., Reddi, R. A Control System Testbed to Validate Critical 

Infrastructure Protection Concepts. International Journal of 

Critical Infrastructure Protection (2011). Elsevier. 

doi:10.1016/j.ijcip.2011.06.005  

[6] Morris, T., Gao, W., Industrial Control System Network 

Traffic Data sets to Facilitate Intrusion Detection System 

Research, Critical Infrastructure Protection VIII, Sujeet 

Shenoi and Johnathan Butts, Eds. IFIP Advances in 

Information and Communication Technology, Springer 

Berlin Heidelberg, Volume 441, 2014, pp 65-78. 

[7] Brand, J., Balvanz, J. Automation is a Breeze with AutoIt. 

Proceedings of the 33rd Annual ACM SIGUCCS 

Conference on User Services, pp. 12-15. 2005. 

[8] Dabney, James B., and Thomas L. Harman. Mastering 

Simulink 4. Prentice Hall PTR, 2001. 

[9] Hutchinson, J., The Physics of Flight, University of 

California Museum of Paleontology, January 1996. 

[10] Pollard, J. Ladder Logic Remains the PLC Language of 

Choice, Control Engineering vol. 41, no. 5, pp. 77-79, 1994. 

[11] Cong-Jiang, L., Control System of GE iFix and SIMATIC 

PLC in Alkali-callback Evaporator, Light Industry 

Machinery 1, 2008. 

 

http://www.securityfocus.com/news/6767

