CPE 633 Chapter 7 - Case Studies

Dr. Rhonda Kay Gaede

Electrical and Computer Engineering

UAH

Chapter 7

CPE 633

7.1 NonStop Systems

- The main use of these fault-tolerant systems has been in online transaction processing, where a reliable response to inquiries in real time must be guaranteed.
- The systems, and their fault-tolerant features, have been evolving since 1976 through several generations.

Electrical and Computer Engineering

7.1 NonStop Systems

- Key Design Principles
- Modularity Hardware and software are constructed of fine grain modules. These modules constitute units of failure, diagnosis, service, and repair.
- Fail-Fast Operation A fail-fast module either works properly or stops. Hardware checks and software consistency checks support fail-fast operation.
- Single Failure Tolerance For processors, this means that a second processor is available. For storage modules, it means that the module and the path to it are duplicated.
- Online Maintenance Hardware and software modules can be diagnosed, disconnected for repair and then reconnected, without disrupting the entire system's operation.

Electrical and Computer Engineering

Page 3

Chapter 7 CPE 633 UAH 7.1.1 NonStop Systems - Architecture The system consists of clusters of up to 16 processors. CPU Each custom processor has a CPU, local memory with its own operating system copy, a bus control unit and an I/O channel. Page 4 Electrical and Computer Engineering

UAH

Chapter 7

CPE 633

7.1.1 NonStop Systems

- Architecture
- · CPU Error Detection
 - Datapath
 - All units that don't modify data propagate (buses, registers) the parity bits.
 - Other units that alter data (arithmetic, counters) use special circuits that predict parity based on data and parity inputs, doesn't work well for multiply.
 - For multiply, a second multiplication is performed with one operand shifted.
 - Control
 - Parity checks, illegal state detection, selfchecking logic.
 - · Scan path support.

Electrical and Computer Engineering

Page 5

UAH

Chapter 7

CPE 633

7.1.1 NonStop Systems

- Architecture
- Memory Error Detection
 - No shared memory for single point of failure.
 - Cache and main memory have Hamming code capable of single-error correction and double error detection for data and single-error-detection parity code for address.
 - The cache performs retries to take care of transient faults.
 - There is a spare memory module that can be switched in if permanent failures occur.
 - The cache supports a write-through policy, guaranteeing the existence of a valid copy of the data in main memory.
 - A parity error in the cache forces a cache miss followed by a fetch from main memory.

Electrical and Computer Engineering

UAH

Chapter 7

CPE 633

7.1.1 NonStop Systems

- Architecture

- The 16 processors operate independently and asynchronously and communicate via messages sent over the dual Dynabuses.
- The Dynabus interface is designed so that a single processor failure will not disable both buses.
- Similar duplication occurs in the I/O systems, in which a group of disks is controlled by dual-ported controllers connected to I/O buses from two different processors.
- One of the ports is primary with the other backup.
- All data transfers are parity-checked, and a watchdog timer detects that a controller stops responding or that a nonexistent controller address.
- The controllers achieve fail-fast by using dual lockstepped microprocessors with self-checking logic.
- The two independent ports are physically separated circuits.

Electrical and Computer Engineering

Page 7

UAH

Chapter 7

CPE 633

7.1.1 NonStop Systems

- Architecture

- Power and cabling also matter. Parts of the system are redundantly powered from two different power supplies and battery backups are provided.
- The system supports disk mirroring which, along with 4 different controller device paths, provides eight paths for data read and write operations.
- The disk data is protected by end-to-end checksums in which the processor calculates a checksum and appends it to the data written to the disks.
- · Checksum error detection
- Disk mirroring data recovery

Electrical and Computer Engineering

7.1.2 NonStop Systems

- Maintenance and Repair Aids
- A maintenance and diagnostic processor
 - Communicates with all processors and remote service center
 - · Collects failure related information
 - Capable of some automated failure diagnosis
 - Allows engineers at remote center to run diagnostic tests
 - Can reconfigure the system
- Each computing processor diagnostic unit
 - Monitors status, memory, Dynabus interface, I/O channel
 - Reports to the maintenance processor
 - Can force the computing processor to single-step and collect diagnostic information using the scanpaths
 - · Generate pseudo-random tests

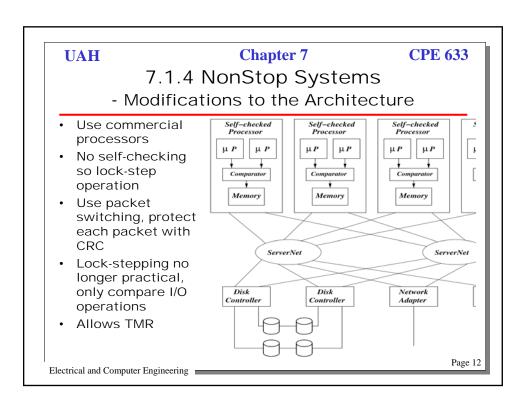
Page 9

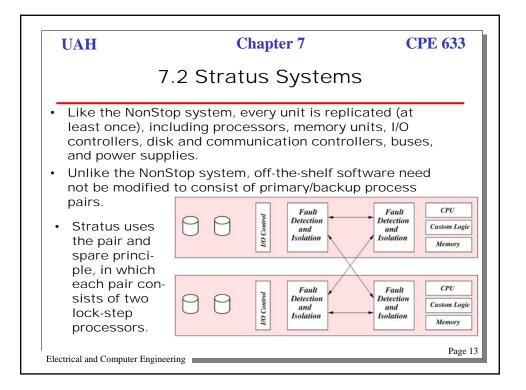
Electrical and Computer Engineering

UAH Chapter 7 CPE 633

7.1.3 NonStop Systems

- Software


- The hardware redundancy present (redundant communication buses) contribute to the performance of the fault-free systems.
- Most of the burden of the system fault-tolerance is borne by the operating system (OS).
- The OS detects failures of processors or I/O channels and performs the necessary recovery.
- When a new process starts, the OS generates a clone on backup processor. This clone waits for messages from the OS or the primary.
- Checkpoints taken on the primary are sent to the backup, process sate updated by OS.
- If the primary process fails, the OS orders the backup to start execution from the last checkpoint.


Electrical and Computer Engineering

7.1.3 NonStop Systems

- Software
- Processors continuously ping each other and themselves every second and check for responses from all every two seconds.
- If a processor does not hear from another processor, all outstanding communications with it are cancelled.
- An important OS component is the disk access process, it is implemented as a primary/backup process pair.
- To deal with software failures, numerous consistency checks are included in every software module.
- Upon detection of a problem, the processor is halted and the backup process initiated.

Electrical and Computer Engineering

7.2 Stratus Systems

- More recent versions have loosened the lock-step requirement to matching I/O operations.
- Like NonStop, Current Stratus systems can be configured to use TMR structures with voting to detect or mask failures.
- Unlike NonStop, the memory unit is also duplicated allowing the contents of the main memory to be preserved through most system crashes.
- The I/O and disks are duplicated as well, with redundant paths connecting individual I/O controllers and disks to the processors. The disk systems use disk mirroring.
- The processors, memories and I/O units have hardware errorchecking.
- · Special attention is given to device drivers.
- On a crash, one CPU is kept offline to dump memory to disk, it rejoins after the dump is complete.
- Every fault is reported to a remote Stratus support center.

Electrical and Computer Engineering

UAH

Chapter 7

CPE 633

7.3 Cassini Command and Data Subsystem

- Fault-tolerance is key to an 11 year mission and is provided by a dual-redundant system.
- The heart of the CDS is a pair of flight computers, each wil tiny memories (512K and two 2 Gbit solidstate recorders.
- Communication between the computers and storage occurs via a dual-redundant bus.
- Faults handled first FDU Fault Detection Unit: Manages CDS redundancy by ground control, RT then by autonomous BC recovery.

RT RT

Remote Terminal: Permits communication with the other computer Bus Controller: 1553B controller. Only one is active at any time.

Electrical and Computer Engineering

UAH

Chapter 7

CPE 633

7.4 IBM G5

- I/O System
 - There are multiple, dynamically switched paths from the processor to the I/O devices.
 - Inline error checking is provided.
 - Channel adapters prevent propagation of interface errors.
- Processor
 - Duplicated I-unit and E-unit, pairs work in lock-step
 - R-unit registers are protected by ECC
 - Store buffer is protected by ECC
 - Writes to the L1 are written through to the L2
 - L2, main memory data and buses protected by (72, 64) SEC/DED Hamming code, L1 only has parity
 - L2 lines can be invalidated, special logic detects multiple failures of a single line, spare line swapped in
- Memory
 - Address bus has 1 parity bits per 24 bits
 - Memory scrubbing, reading and correcting entire contents

Electrical and Computer Engineering

Chapter 7 CPE 633 UAH 7.5 IBM Sysplex The IBM Sysplex is the current generation IBM mainframe. · Up to 32 single- or multiprocessor units interconnected with a global timer. Storage devices are equally shared. Units periodically emit heartbeats, absence indicates failure, must be sure of failure for restart · Automatic Restart Manager restarts affected tasks, it is aware of global system state. Page 17 Electrical and Computer Engineering

UAH Chapter 7 CPE 633

7.6 Itanium

- L1I and L1D tag and data arrays are protected by errordetecting parity
- L1D has byte-wise parity for fine-grain stores
- Bits from adjacent cache lines are physically interleaved on silicon
- L2 has SEC/DED coding or data array and parity for tag array
- L3 tag and data arrays have SEC/DED coding
- If error not hardware-correctable, hardware containment may be required and error handling initiated.
- Error handling proceeds from hardware layer to processor abstraction layer to system abstraction layer, to operating system
- Processor used for current NonStop systems

Electrical and Computer Engineering