
Alex Milenkovich 1

CPE/EE 421 Microcomputers:
Motorola 68000: Architecture &
Assembly Programming

Instructor: Dr Aleksandar Milenkovic
Lecture Notes

CPE/EE 421/521 Microcomputers 2

Outline

Programmer’s Model
Assembly Language Directives
Addressing Modes
Instruction Set

CPE/EE 421/521 Microcomputers 3

Motorola 68000

CISC processor
sixteen 32-bit registers

eight general purpose data registers
eight general purpose address registers

User/supervisor space
64-pin package
Clock 8MHz, 12.5 MHz

CPE/EE 421/521 Microcomputers 4

Programming Model of the 68000*

*Registers, Addressing
Modes, Instruction Set
NOTE: The 68000
architecture forms a
subset of the 68020’s
architecture
(i.e., 68020 is
backward compatible)
NOTE:

D31 – subscripted 2 digits
mean bit location
D0 – unsubscripted one
digit means register name

Pointer re
gisters

General purpose

registers

Alex Milenkovich 2

CPE/EE 421/521 Microcomputers 5

Memory Organization

Long word address = Address of the high order 16 bits of the longword
Big-Endian – The most significant unit is stored at the lowest address

Figure 2.4

CPE/EE 421/521 Microcomputers 6

Special Purpose Registers
Status Register

PC – Program
Counter:

32 bits, contains
the address of the
next instruction
to be executed

Outcome of
ALU operation

ADD.B D0,D1
78
DF

157
Carry

Figure 2.5

CPE/EE 421/521 Microcomputers 7

The Bits of the MC68000
Status Register

CPE/EE 421/521 Microcomputers 8

C, V and X Bits of Status Register

ADD.B

78
+DF

57
157Carry

C - set

40
+70
B0

1011 0000

sign V - set

1011000011111111
…X - extendint a;

char b;

a=(int)b;

Alex Milenkovich 3

CPE/EE 421/521 Microcomputers 9

Outline

Programmer’s Model
Assembly Language Directives
Addressing Modes
Instruction Set

CPE/EE 421/521 Microcomputers 10

Assembly Language Programming

Machine code/Assembly language
A form of the native language of a computer

Development environment
Assembly program structure
Assembly directives

CPE/EE 421/521 Microcomputers 11

Assembly Language Programming

SOURCE FILE
fname.x68

MACHINE CODE
OBJECT LISTING FILE

COMPUTER
MEMORY

ASSEMBLY LANGUAGE:
Symbolic representation of the
native language of the computer

MACHINE INSTRUCTIONS → MNEMONICS

ADDRESSES & CONSTANTS → SYMBOLS

LINKER/LOADER

ASSEMBLER

CPE/EE 421/521 Microcomputers 12

Assembly Language Program:
Example

BACK-SP EQU $08 ASCII code for backspace
DELETE EQU $01 ASCII code for delete
CAR-RET EQU $OD ASCII code for carriage return

ORG $004000 Data origin
LINE-BUF DS.B 64 Reserve 64 bytes for line buffer
*
* This procedure inputs a character and stores it in a buffer

ORG $001000 Program origin
LEA LINE-BUF,A2 A2 points to line buffer

NEXT BSR GET_DATA Call subroutine to get input
CMP.B #BACK_SP, D0 Test for backspace
BEQ MOVE_LFT If backspace then deal with it
CMP.B #DELETE Test for delete
BEQ CANCEL If delete then deal with it
CMP.B #CAR-RET Test for carriage return
BEQ EXIT If carriage return then exit
MOVE.B DO,(A2)+ Else store input in memory
BRA NEXT Repeat
.
. Remainder of program
END $001000

$ represents HEX
% represents BIN

indicates a
literal or
immediate value
(i.e. not an
address)

LABEL
FIELD

INSTRUCTION
FIELD

COMMENT
FIELD

Alex Milenkovich 4

CPE/EE 421/521 Microcomputers 13

Assembly Language Program

3 fields associated with each line:
LABELS

Start in the first column of a line
Refers to the address of the line it labels
Must be 8 or less characters
Start with a non-number

INSTRUCTION
Mnemonic (op code) and 0 or more parameters (operands)
Parameters separated by commas

COMMENTS
Can appear after instruction
(many assemblers require a ; or ‘)
Can also be used in label field

CPE/EE 421/521 Microcomputers 14

Assembly Language Program (cont’d)

Macroassembler
A MACRO: a unit of inline code that is given a
name by the programmer
Example:

Instruction to push data on the stack:
MOVE.W D0, -(A7)
Define the macro:
PUSH D0
to replace it

Can define a macro for more than one
instruction

CPE/EE 421/521 Microcomputers 15

Assembler Directives

EQU – The equate directive
DC – The define a constant directive
DS – The define a storage directive
ORG – The origin directive
END – The end directive

CPE/EE 421/521 Microcomputers 16

The DC Directive
ORG $001000 Start of data region

First DC.B 10,66 The values 10 and 66 are stored in consecutive bytes
DC.L $0A1234 The value $000A1234 is stored as a longword

Date DC.B 'April 8 1985‘ The ASCII characters as stored as a sequence of 12 bytes
DC.L 1,2 Two longwords are set up with the values 1 and 2

7041001006

420A001000
0A00001002
3412001004

6972001008

01
00
35
39
20
20

Mem. contentsaddress

6C00100A
3800100C
3100100E
38001010

00

02
00

00101A
00001018
00001016

001014
00001012

DC.B 10,66

DC.L $0A1234

DC.B ‘April 8 1985’

DC.L 1,2

Alex Milenkovich 5

CPE/EE 421/521 Microcomputers 17

The DC Directive (cont’d)

Assembler listing

1 00001000 ORG $001000
2 00001000 0A42 FIRST: DC.B 10,66
3 00001002 000A1234 DC.L $0A1234
4 00001006 417072696C20 DATE: DC.B ‘April 8 1985’

382031393835
5 00001012 000000010000 DC.L 1,2

0002

NOTE: Assemblers
automatically align
word and longword
constants on a word
boundaryDC – define a constant

.B, .W, .L – specify 8, 16, or 32-bit constants
Normally preceded by a label to enable referring
Prefix:

Decimal
$ - Hexadecimal
% - Binary

CPE/EE 421/521 Microcomputers 18

DS – The Define Storage Directive
Reserves the specified amount of storage
Label DS.<size> <operand>

.B, .W, or .L Number of elements
List1 DS.B 4 Reserve 4 bytes of memory
Array4 DS.B $80 Reserve 128 bytes of memory
Pointer DSLB 16 Reserve 16 longwords (64 bytes)
VOLTS DS.W 1 Reserve 1 word (2 bytes)
TABLE DS.W 256 Reserve 256 words

Unlike DC does not initialize the values
Useful to reserve areas of memory that will be
used during run time
Label is set to equal the first address of
storage

CPE/EE 421/521 Microcomputers 19

ORG – The Origin Assembler Directive
Defines the value of the location counter
ORG <operand> Absolute value

of the origin

ORG $001000 Origin for data
TABLE DS.W 256 Save 256 words for "TABLE"
POINTER1 DS.L 1 Save one longword for "POINTER1"
POINTER2 DS.L 1 Save one longword for "POINTER2"
VECTOR_1 DS.L 1 Save one longword for "VECTOR_1"
INIT DC.W 0,$FFFF Store two constants ($0000, $FFFF)
SETUP1 EQU $03 Equate "SETUP1" to the value 3
SETUP2 EQU $55 Equate "SETUP2" to the value $55
ACIAC EQU $008000 Equate "ACIAC" to the value $8000
RDRF EQU 0 RDRF = Receiver Data Register Full
PIA EQU ACIAC+4 Equate "PIA" to the value $8004

CPE/EE 421/521 Microcomputers 20

Assembler Directives: Example
ORG $001000 Origin for data

TABLE DS.W 256 Save 256 words for "TABLE"
POINTER1 DS.L 1 Save one longword for "POINTER1"
POINTER2 DS.L 1 Save one longword for "POINTER2"
VECTOR_1 DS.L 1 Save one longword for "VECTOR_1"
INIT DC.W 0,$FFFF Store two constants ($0000, $FFFF)
SETUP1 EQU $03 Equate "SETUP1" to the value 3
SETUP2 EQU $55 Equate "SETUP2" to the value $55
ACIAC EQU $008000 Equate "ACIAC" to the value $8000
RDRF EQU 0 RDRF = Receiver Data Register Full
PIA EQU ACIAC+4 Equate "PIA" to the value $8004

ORG $018000 Origin for program
ENTRY LEA ACIAC,A0A0 points to the ACIA

MOVE.B #SETUP2,(A0) Write initialization
constant into ACIA

GET_DATA BTST.B #RDRF,(A0) Any data received?
BNE GET_DATA Repeat until data ready
MOVE.B 2(A0),D0 Read data from ACIA
END $001000

00
12

10
 (f

re
e)

Alex Milenkovich 6

CPE/EE 421/521 Microcomputers 21

Assembler Directives: Example

CPE/EE 421/521 Microcomputers 22

Outline

Programmer’s Model
Assembly Language Directives
Addressing Modes
Instruction Set

CPE/EE 421/521 Microcomputers 23

Addressing Modes

Addressing modes are concerned with
how the CPU accesses the operands

used by its instructions

CPE/EE 421/521 Microcomputers 24

Register Transfer Language (RTL)

Unambiguous notation to describe information
manipulation
Registers are denoted by their names
(eg. D1-D7, A0-A7)
Square brackets mean “the contents of”
Base number noted by a prefix (%-binary, $-hex)
Backward arrow indicates a transfer of information (←)

[D4] ← 50 Put 50 into register D4
[D4] ← $1234 Put $1234 into register D4
[D3] ← $FE 1234 Put $FE 1234 into register D3

Alex Milenkovich 7

CPE/EE 421/521 Microcomputers 25

SYMBOL Meaning
M Location (i.e., address) M in the main store
Ai Address register i (i = 0 to 7)
Di Data register i (i = 0 to 7)
Xi General register i
[M] The contents of memory location M
[X] The contents of register X
[Di(O:7)] Bits 0 to 7 inclusive of register Di
<> Enclose a parameter required by an expression
ea The effective address of an operand
[M(ea)] The contents of a memory location specified by ea
d8 An 8-bit signed offset (-128 to 127)
d16 A 16-bit signed offset (-32K to 32K -1)
d32 A 32-bit signed offset (-2G to 2G- 1)
ADD <source>,<destination>

[destination] ← [source] + [destination]

MOVE <source>,<destination>
[destination] ← [source]

Register Transfer Language (RTL)

CPE/EE 421/521 Microcomputers 26

Register Direct Addressing

Register direct addressing is the simplest
addressing mode in which the source or destination
of an operand is a data register or an address
register. The contents of the specified source
register provide the source operand. Similarly, if a
register is a destination operand, it is loaded with
the value specified by the instruction. The following
examples all use register direct addressing for
source and destination operands.

MOVE.B D0,D3 D3[0:7] <- D0[0:7]
SUB.L A0,D3 Subtract the source operand in register A0 from register D3
CMP.W D2,D0 Compare the source operand in register D2 with register D0
ADD D3,D4 Add the source operand in register D3 to register D4

CPE/EE 421/521 Microcomputers 27

MOVE.B D0,D1

25

The MOVE.B D0,D1 instruction uses
data registers for both source and destination
operands

The source operand
is data register D0

The instruction
indicates the data
register

D0

D1

Register Direct Addressing

CPE/EE 421/521 Microcomputers 28

Register Direct Addressing

MOVE.B D0,D1

25

The destination operand
is data register D1

D0

D1

Alex Milenkovich 8

CPE/EE 421/521 Microcomputers 29

Register Direct Addressing

The effect of this instruction is
TO COPY the contents of data register
D0 in to data register D1

MOVE.B D0,D1

25

25

D0

D1

CPE/EE 421/521 Microcomputers 30

Register Direct Addressing

Register direct addressing uses short
instructions because it takes only three bits to
specify one of eight data registers.

Register direct addressing is fast because the
external memory does not have to be accessed.

Programmers use register direct addressing to
hold variables that are frequently accessed (i.e.,
scratchpad storage).

CPE/EE 421/521 Microcomputers 31

Immediate Addressing

In immediate addressing the actual operand
forms part of the instruction. An immediate
operand is also called a literal operand.
Immediate addressing can be used only to
specify a source operand.

Immediate addressing is indicated by a #
symbol in front of the source operand.

For example, MOVE.B #24,D0 uses the
immediate source operand 24.

CPE/EE 421/521 Microcomputers 32

Immediate Addressing

The instruction MOVE.B #4,D0
uses a literal source operand and
a register direct destination operand

MOVE.B #4,D0

D0

Alex Milenkovich 9

CPE/EE 421/521 Microcomputers 33

MOVE.B #4,D0
The literal source operand,
4, is part of the instruction

D0

Immediate Addressing

CPE/EE 421/521 Microcomputers 34

The destination operand is
a data register

MOVE.B #4,D0

D0

Immediate Addressing

CPE/EE 421/521 Microcomputers 35

The effect of this instruction is to
copy the literal value 4 to data
register D0

MOVE.B #4,D0

4 D0

Immediate Addressing

CPE/EE 421/521 Microcomputers 36

Immediate Addressing Example

Typical application is in setting up control loops:

for(i=0; i<128; i++)
A(i) = 0xFF;

68000 assembly language implementation:

MOVE.L #$001000,A0 Load A0 with the address of the array
MOVE.B #128, D0 D0 is the element counter
LOOP MOVE.B #$FF,(A0)+ Store $FF in this elem. and incr. pointer

SUBQ.B #1,D0 Decrement element counter
BNE LOOP Repeat until all the elements are set

Alex Milenkovich 10

CPE/EE 421/521 Microcomputers 37

Direct (or Absolute) Addressing

In direct or absolute addressing, the instruction
provides the address of the operand in memory.

Direct addressing requires two memory
accesses. The first is to access the instruction
and the second is to access the actual operand.

For example, CLR.B 1234 clears the contents of
memory location 1234.

CPE/EE 421/521 Microcomputers 38

Direct (or Absolute) Addressing

MOVE.B 20,D0

20

Memory
This instruction has a direct
source operand

The source operand
is in memory

The destination operand
uses data register direct
addressing

D0
42

CPE/EE 421/521 Microcomputers 39

Direct (or Absolute) Addressing

MOVE.B 20,D0
The address of the operand forms
part of the instruction

Once the CPU has read the operand
address from the instruction, the CPU
accesses the actual operand

This is the actual operand

D0

Memory

20 42

CPE/EE 421/521 Microcomputers 40

Direct (or Absolute) Addressing

MOVE.B 20,D0

The effect of MOVE.B 20,D0
is to read the contents of memory
location 20 and copy them to D0

Memory

D0
20 42

42

Alex Milenkovich 11

CPE/EE 421/521 Microcomputers 41

A = Y + A

Instruction:

1 1 0 1 0 0 0 0 0 0 1 1 1 0 0 1
D 0 3 9

Reg.
D0

Instruction
ADD

Size
BYTE

Source
addressing

Destination
addressing

1002
1000

EA=next
2 words

Register D

0 0 0 0 1 0 0 1Effective Address :

D0 ← [M(1001)] + D0

An Example

ADD Y, D0

CPE/EE 421/521 Microcomputers 42

0 0 0 0 1 0 0 1Effective Address :

D 0 3 9Instruction :

D 0 3 9PC
0 0 0 0

1 0 0 1

1002

1000

Y (DATA)

← Instructions

Assembler: ADD.B Y, D0

ADD Y, D0

An Example

CPE/EE 421/521 Microcomputers 43

Summary of Fundamental
Addressing Modes

Consider the high-level language
example: Z = Y + 4
The following fragment of code
implements this construct

ORG $400 Start of code
MOVE.B Y,D0
ADD #4,D0
MOVE.B D0,Z

ORG $600 Start of data area
Y DC.B 27 Store the constant 27 in memory
Z DS.B 1 Reserve a byte for Z

CPE/EE 421/521 Microcomputers 44

The Assembled Program

1 00000400 ORG $400
2 00000400 103900000600 MOVE.B Y,D0
3 00000406 06000018 ADD.B #24,D0
4 0000040A 13C000000601 MOVE.B D0,Z
5 00000410 4E722700 STOP #$2700
6 *
7 00000600 ORG $600
8 00000600 1B Y: DC.B 27
9 00000601 00000001 Z: DS.B 1
10 00000400 END $400

Alex Milenkovich 12

CPE/EE 421/521 Microcomputers 45

Memory Map of the Program

000400 103900000600 MOVE.B Y,D0

000406 06000018

00040A 13C000000601

000410 4E722700

000600 1B Y 27

000601 1 Z

Y is a variable
accessed via the
direct address
000600

This is a literal
operand stored as
part of the instruction

Z is a variable
accessed via the
direct address
000601

ADD.B #24,D0

MOVE.B D0,Z

STOP #$2700

Memory
(numeric form)

Memory
(mnemonic form)

CPE/EE 421/521 Microcomputers 46

Summary

Register direct addressing is used for
variables that can be held in registers
Literal (immediate) addressing is used for
constants that do not change
Direct (absolute) addressing is used for
variables that reside in memory
The only difference between register
direct addressing and direct addressing is
that the former uses registers to store
operands and the latter uses memory

CPE/EE 421/521 Microcomputers 47

Address Register Indirect Addressing

In address register indirect addressing, the
instruction specifies one of the 68000’s
address registers;
for example, MOVE.B (A0),D0.

The specified address register contains the
address of the operand.

The processor then accesses the operand
pointed at by the address register.

CPE/EE 421/521 Microcomputers 48

Address Register Indirect Addressing

This instruction means
load D0 with the contents
of the location pointed at
by address register A0

MOVE.B (A0),D0

D01000

A0

42

Memory

1000

The instruction specifies the
source operand as (A0).

RTL Form: [D0] ← [M([A0])]

Alex Milenkovich 13

CPE/EE 421/521 Microcomputers 49

Address Register Indirect Addressing

The address register in the instruction
specifies an address register that holds
the address of the operand

MOVE.B (A0),D0

D01000

A0

Memory

1000

57

RTL Form: [D0] ← [M([A0])]

CPE/EE 421/521 Microcomputers 50

Address Register Indirect Addressing

The address register is used to access
the operand in memory

MOVE.B (A0),D0

D01000

A0

Memory

1000

57

RTL Form: [D0] ← [M([A0])]

CPE/EE 421/521 Microcomputers 51

Address Register Indirect Addressing

Finally, the contents of the address register
pointed at by A0 are copied to the data register

MOVE.B (A0),D0

D01000

A0

Memory

1000

57

RTL Form: [D0] ← [M([A0])]

CPE/EE 421/521 Microcomputers 52

Auto-incrementing

If the addressing mode is specified as (A0)+,
the contents of the address register

are incremented after they have been used.

Alex Milenkovich 14

CPE/EE 421/521 Microcomputers 53

Auto-incrementing

The address register contains 1000
and points at location 1000

MOVE.B (A0)+,D0

D01000

A0

Memory

1000

57

CPE/EE 421/521 Microcomputers 54

Auto-incrementing

Address register A0 is used to access memory
location 1000 and the contents of this location
(i.e., 57) are added to D0

MOVE.B (A0)+,D0

D01000

A0

Memory

1000

57

1001

CPE/EE 421/521 Microcomputers 55

Auto-incrementing

After the instruction has been executed,
the contents of A0 are incremented to
point at the next location

MOVE.B (A0)+,D0

D01000

A0

Memory

1001

1001 43

CPE/EE 421/521 Microcomputers 56

Use of Address Register Indirect
Addressing

MOVE.B #5,D0 Five numbers to add
LEA Table,A0 A0 points at the numbers
CLR.B D1 Clear the sum

Loop ADD.B (A0)+,D1 REPEAT Add number to total
SUB.B #1,D0
BNE Loop UNTIL all numbers added
STOP #$2700

*
Table DC.B 1,4,2,6,5 Some dummy data

We are now going to trace through part of this program,
instruction by instruction.

The following fragment of code uses address register
indirect addressing with post-incrementing to add together
five numbers stored in consecutive memory locations.

Alex Milenkovich 15

CPE/EE 421/521 Microcomputers 57

>DF
PC=000400 SR=2000 SS=00A00000 US=00000000 X=0
A0=00000000 A1=00000000 A2=00000000 A3=00000000 N=0
A4=00000000 A5=00000000 A6=00000000 A7=00A00000 Z=0
D0=00000000 D1=00000000 D2=00000000 D3=00000000 V=0
D4=00000000 D5=00000000 D6=00000000 D7=00000000 C=0
---------->MOVE.B #$05,D0

>TR
PC=000404 SR=2000 SS=00A00000 US=00000000 X=0
A0=00000000 A1=00000000 A2=00000000 A3=00000000 N=0
A4=00000000 A5=00000000 A6=00000000 A7=00A00000 Z=0
D0=00000005 D1=00000000 D2=00000000 D3=00000000 V=0
D4=00000000 D5=00000000 D6=00000000 D7=00000000 C=0
---------->LEA.L $0416,A0

Trace>
PC=00040A SR=2000 SS=00A00000 US=00000000 X=0
A0=00000416 A1=00000000 A2=00000000 A3=00000000 N=0
A4=00000000 A5=00000000 A6=00000000 A7=00A00000 Z=0
D0=00000005 D1=00000000 D2=00000000 D3=00000000 V=0
D4=00000000 D5=00000000 D6=00000000 D7=00000000 C=0
---------->CLR.B D1

The first instruction
loads D0 with the literal
value 5

D0 has been
loaded with 5

This instruction
loads A0 with the
value $0416

A0 contains $0416

Use of Address Register Indirect
Addressing

CPE/EE 421/521 Microcomputers 58

Trace>
PC=00040C SR=2004 SS=00A00000 US=00000000 X=0
A0=00000416 A1=00000000 A2=00000000 A3=00000000 N=0
A4=00000000 A5=00000000 A6=00000000 A7=00A00000 Z=1
D0=00000005 D1=00000000 D2=00000000 D3=00000000 V=0
D4=00000000 D5=00000000 D6=00000000 D7=00000000 C=0
---------->ADD.B (A0)+,D1

Trace>
PC=00040E SR=2000 SS=00A00000 US=00000000 X=0
A0=00000417 A1=00000000 A2=00000000 A3=00000000 N=0
A4=00000000 A5=00000000 A6=00000000 A7=00A00000 Z=0
D0=00000005 D1=00000001 D2=00000000 D3=00000000 V=0
D4=00000000 D5=00000000 D6=00000000 D7=00000000 C=0
---------->SUBQ.B #$01,D0

Trace>
PC=000410 SR=2000 SS=00A00000 US=00000000 X=0
A0=00000417 A1=00000000 A2=00000000 A3=00000000 N=0
A4=00000000 A5=00000000 A6=00000000 A7=00A00000 Z=0
D0=00000004 D1=00000001 D2=00000000 D3=00000000 V=0
D4=00000000 D5=00000000 D6=00000000 D7=00000000 C=0
---------->BNE.S $040C

This instruction adds the
contents of the location
pointed at by A0 to D1

Because the operand was
(A0)+, the contents of A0
are incremented

ADD.B (A0)+,D1
adds the source operand
to D1

Use of Address Register Indirect
Addressing

CPE/EE 421/521 Microcomputers 59

Trace>
PC=00040C SR=2000 SS=00A00000 US=00000000 X=0
A0=00000417 A1=00000000 A2=00000000 A3=00000000 N=0
A4=00000000 A5=00000000 A6=00000000 A7=00A00000 Z=0
D0=00000004 D1=00000001 D2=00000000 D3=00000000 V=0
D4=00000000 D5=00000000 D6=00000000 D7=00000000 C=0
---------->ADD.B (A0)+,D1

Trace>
PC=00040E SR=2000 SS=00A00000 US=00000000 X=0
A0=00000418 A1=00000000 A2=00000000 A3=00000000 N=0
A4=00000000 A5=00000000 A6=00000000 A7=00A00000 Z=0
D0=00000004 D1=00000005 D2=00000000 D3=00000000 V=0
D4=00000000 D5=00000000 D6=00000000 D7=00000000 C=0
---------->SUBQ.B #$01,D0

Trace>

PC=000410 SR=2000 SS=00A00000 US=00000000 X=0
A0=00000418 A1=00000000 A2=00000000 A3=00000000 N=0
A4=00000000 A5=00000000 A6=00000000 A7=00A00000 Z=0
D0=00000003 D1=00000005 D2=00000000 D3=00000000 V=0
D4=00000000 D5=00000000 D6=00000000 D7=00000000 C=0
---------->BNE.S $040C

On the next cycle
the instruction
ADD.B (A0)+,D1
uses A0 as a source
operand and then
increments the contents
of A0

Use of Address Register Indirect
Addressing

CPE/EE 421/521 Microcomputers 60

Problem

Identify the source addressing mode used by each of the
following instructions.

Address register indirect addressing. The address
of the source operand is in A5.

Literal addressing. The source operand is the
literal value 12.

Memory direct addressing. The source operand is the
contents of the memory location whose
symbolic name is “TIME”.

Data register direct. The source operand is the
contents to D6.

Address register indirect with post-incrementing.
The address of the source operand is in A6. The
contents of A6 are incremented after the instruction.

ADD.B (A5),(A4)

MOVE.B #12,D2

ADD.W TIME,D4

MOVE.B D6,D4

MOVE.B (A6)+,TEST

Alex Milenkovich 16

CPE/EE 421/521 Microcomputers 61

Problem
If you were translating the following fragment of
pseudocode into assembly language, what addressing
modes are you most likely to use?

SUM is a temporary variable. You can put it in a
register and use register direct addressing

J is a temporary variable that would normally be
located in a register.

J is initialized to the literal value 5.

X(J) is an array element that
would be accessed via address
register indirect addressing.

SUM = 0

FOR J = 5 TO 19

SUM = SUM + X(J)*Y(J)

END FOR

CPE/EE 421/521 Microcomputers 62

Other ARI Addressing Modes

Address Register Indirect with Predecrement Addressing

MOVE.L –(A0),D3 (A0 is first decremented by 4!)
Combination: MOVE.B (A0)+,(A1)+

MOVE.B –(A1),(A0)+

Register Indirect with Displacement Addressing
d16(Ai) RTL: ea=d16+[Ai]

Register Indirect with Index Addressing
d8(Ai,Xj.W) or d8(Ai,Xj.L)
RTL: ea=d8+[Ai]+[Xj]

CPE/EE 421/521 Microcomputers 63

Other ARI Addressing Modes

Program Counter Relative Addressing

Program Counter With Displacement

d16(PC) RTL: ea=[PC]+d16

Program Counter With Index

d16(PC) RTL: ea=[PC]+[Xn]+d16

PC can be used only for SOURCE OPERANDS
MOVE.B TABLE(PC),D2

…
TABLE DC.B Value1

DC.B Value2

CPE/EE 421/521 Microcomputers 64

Summary
Addressing Modes

Register direct addressing is used for variables
that can be held in registers: ADD.B D1,D0
Literal (immediate) addressing is used for
constants that do not change: ADD.B #24,D0
Direct (absolute) addressing is used for
variables that reside in memory:
ADD.B 1000,D0
Address Register Indirect: ADD.B (A0),D0
Autoincrement: ADD.B (A0)+,D0

Alex Milenkovich 17

CPE/EE 421/521 Microcomputers 65

Summary
Addressing Modes

Address Register Indirect with Pre-decrement
Addressing

MOVE.L –(A0),D3 (A0 is first decremented by 4!)
Combination: MOVE.B (A0)+,(A1)+

MOVE.B –(A1),(A0)+

Register Indirect with Displacement Addressing
d16(Ai) RTL: ea=d16+[Ai]

Register Indirect with Index Addressing
d8(Ai,Xj.W) or d8(Ai,Xj.L)
RTL: ea=d8+[Ai]+[Xj]

CPE/EE 421/521 Microcomputers 66

Summary
Addressing Modes

Program Counter Relative Addressing

Program Counter With Displacement

d16(PC) RTL: ea=[PC]+d16

Program Counter With Index
d16(PC) RTL: ea=[PC]+[Xn]+d16

PC can be used only for SOURCE OPERANDS
MOVE.B TABLE(PC),D2
…

TABLE DC.B Value1
DC.B Value2

CPE/EE 421/521 Microcomputers 67

Outline

Programmer’s Model
Assembly Language Directives
Addressing Modes
Instruction Set

CPE/EE 421/521 Microcomputers 68

The 68000 Family Instruction Set

Assumption: Students are familiar with the
fundamentals of microprocessor architecture
Groups of instructions:

Data movement
Arithmetic operations
Logical operations
Shift operations
Bit Manipulation
Program Control

Important NOTE:
The contents of the
CC byte of the SR
are updated after
the execution of an
instruction. Refer
to Table 2.2

Alex Milenkovich 18

CPE/EE 421/521 Microcomputers 69

Data Movement Operations

Copy information from source to destination
Comprises 70% of the average program

MOVE/MOVEA
MOVE to CCR
MOVE <ea>,CCR – word instruction

MOVE to/from SR
MOVE <ea>,SR – in supervisor mode only;
MOVE #$2700,SR – sets the 68K in supervisor mode

MOVE USP – to/from User Stack Pointer
MOVE.L USP,A3 - transfer the USP to A3

MOVEQ – Move Quick(8b #value to 32b reg)
MOVEM – to/from multiple registers (W/L)
e.g., MOVEM.L D0-D5/A0-A5, -(A7)

MOVEM.L (A7)+,D0-D5/A0-A5

MOVEP – Move Peripheral CPE/EE 421/521 Microcomputers 70

Data Movement Operations, LEA
Calculates an effective address and loads it into an address
register – LEA <ea>,An

Can be used only with 32-bit operands

Assembly language RTL
LEA $0010FFFF,A5 [A5] ← $0010FFFF

Load the address $0010 FFFF into register A5.
LEA $12(A0,D4.L),A5 [A5] ← $12 + [A0] + [D4]

Load contents of A0 plus contents of D4 plus $12 into A5.

NOTE: If the instruction MOVEA.L $12(A0,D4),A5 had been used,
the contents of that address would have been deposited in A5.

Why use it? FASTER!
ADD.W $1C(A3,D2),D0 vs. LEA $1C(A3,D2),A5

ADD.W (A5),D0

CPE/EE 421/521 Microcomputers 71

Data Movement Operations, cont’d
Moving data from a 32-bit register
to memory using the MOVEP instruction

Bytes from the register
are stored in every other memory byte

NOTE:
The instruction takes 24
clock cycles to execute

CPE/EE 421/521 Microcomputers 72

68000 Registers
D0 01234567 D1 89ABCDEF D2 0001002D D3 ABCD7FFF
D4 33449127 D5 AAAAAAAA D6 ABCD0003 D7 55555555
A0 00007020 A1 00007000 A2 00007010 A3 00007030
A4 00010020 A5 00FF789A A6 00010000 A7 00010010
Status register2700

Main memory
007000 AE 007020 5A 010000 DD 010020 DC
007001 F2 007021 AD 010001 B2 010021 25
007002 32 007022 99 010002 00 010022 15
007003 77 007023 92 010003 15 010023 17
007004 89 007024 79 010004 76 010024 29
007005 90 007025 33 010005 19 010025 39
007006 1A 007026 97 010006 92 010026 49
007007 AE 007027 14 010007 26 010027 2D
007008 EE 007028 79 010008 17 010028 B2
007009 F1 007029 E7 010009 14 010029 62
00700A F2 00702A 00 01000A E7 01002A 81
00700B A4 00702B 0A 01000B E8 01002B 21
00700C AE 00702C 88 01000C 19 01002C 45
00700D 88 00702D 18 01000D 92 01002D 18
00700E AA 00702E 82 01000E 19 01002E 31
00700F E4 00702F 79 01000F 54 01002F D9
007010 7E 007030 23 010010 45 010030 AA
007011 8D 007031 17 010011 99 010031 77
007012 9C 007032 46 010012 15 010032 78
007013 C4 007033 9E 010013 43 010033 AE
007014 B2 007034 FC 010014 25 010034 EA
007015 12 007035 FF 010015 76 010035 34
007016 39 007036 77 010016 89 010036 25
007017 90 007037 60 010017 17 010037 17
007018 00 007038 21 010018 81 010038 15
007019 89 007039 42 010019 17 010039 14
00701A 14 00703A 55 01001A 4E 01003A 17
00701B 01 00703B EA 01001B 72 01003B F9
00701C 3D 00703C 61 01001C 33 01003C 8A
00701D 77 00703D 81 01001D 23 01003D 0F
00701E 89 00703E C9 01001E E1 01003E F2
00701F 9A 00703F AA 01001F CD 01003F E5

An Example

Alex Milenkovich 19

CPE/EE 421/521 Microcomputers 73

a) ORG $9000
LEA TABLE1(PC),A5
Assembly listing
1 00009000 ORG $9000
2 00009000 4BFA0FFE LEA TABLE1(PC),A5

An Example

b) LEA 6(A0,D6.W),A2

EA = $00009000 + 2 + $0FFE = $0000A000 A5=$0000A000, CC: Not affected (NA)

current PC value

EA = 6 + $00007020 + $0003 = $00007029 A2=$00007029 CC: NA

offset A0 D6.W

What is the effect of applying each of the following 68000 instructions assuming the
initial condition shown before? Represent modified internal registers, memory
locations and conditions.

CPE/EE 421/521 Microcomputers 74

Data Movement Operations, cont’d

PEA: Push Effective Address
Calculates an effective address and pushes it
onto the stack pointed at by A7 – PEA <ea>
Can be used only with 32-bit operands

EXG (EXG Xi,Xj)
Exchanges the entire 32-bit contents of two
registers

SWAP (SWAP Di)
Exchanges the upper- and lower-order words
of a DATA register

CPE/EE 421/521 Microcomputers 75

Integer Arithmetic Operations

Float-point operations not directly supported
Except for division, multiplication, and if destination is
Ai, all act on 8-, 16-, and 32-bit values
ADD/ADDA (no mem-to-mem additions, if destination is
Ai, use ADDA)
ADDQ (adds a small 3-bit literal quickly)
ADDI (adds a literal value to the destination)
ADDX (adds also the contents of X bit to the sum)
used for multi-precision addition
CLR (clear specified data register or memory location)
equivalent to MOVE #0, <ea>
for address registers use SUB.L An,An

CPE/EE 421/521 Microcomputers 76

Integer Arithmetic Operations, cont’d

DIVU/DIVS – unsigned/2’s-complement numbers
DIVU <ea>,Dn or DIVS <ea>,Dn
32-bit longword in Dn is divided by the 16-bit word at <ea>
16-bit quotient is deposited in the lower-order word of Dn
The remainder is stored in the upper-order word of Dn

MULU/MULS – unsigned/2’s-complement numbers
Low-order 16-bit word in Dn is multiplied by the 16-bit word at <ea>
32-bit product is deposited in Dn

SUB, SUBA, SUBQ, SUBI, SUBX
NEG – forms the 2’s complement of an operand

NEG <ea>
NEGX – Negate with Extend, used for multi-prec. arith.
EXT – Sign Extend
EXT.W Dn copies bit 7 to bits 8-15
EXT.L Dn copies bit 15 to bits 16-31

Alex Milenkovich 20

CPE/EE 421/521 Microcomputers 77

BCD Arithmetic Operations

Only 3 instructions support BCD
ABCD Di,Dj or ABCD –(Ai),-(Aj)
Add BCD with extend – adds two packed BCD digits
together with X bit from the CCR
SBCD – similar
[destination]←[destination]-[source]-[X]
NBCD <ea>
subtracts the specified operand from zero together
with X bit and forms the 10’s complement of the
operand if X =0, or 9’s complement if X =1

Involve X because they are intended to be used
in operations on a string of BCD digits

CPE/EE 421/521 Microcomputers 78

Logical Operations

Standard AND, OR, EOR, and NOT
Immediate operand versions: ANDI, ORI,
EORI
AND a bit with 0 – mask
OR a bit with 1 – set
EOR a bit with 1 – toggle

Logical operations affect the CCR in the
same way as MOVE instructions

CPE/EE 421/521 Microcomputers 79

Shift Operations

Logical Shift
LSL – Logical Shift Left
LSR – Logical Shift Right

CPE/EE 421/521 Microcomputers 80

Shift Operations, cont’d

Arithmetic Shift
ASL – Arithmetic Shift Left
ASR – Arithmetic Shift Right

Alex Milenkovich 21

CPE/EE 421/521 Microcomputers 81

Shift Operations, cont’d

Rotate
ROL – Rotate Left
ROR – Rotate Right

CPE/EE 421/521 Microcomputers 82

Shift Operations, cont’d

Rotate Through Extend
ROXL – Rotate Left Through Extend
ROXR – Rotate Right Through Extend

CPE/EE 421/521 Microcomputers 83

Effect of the Shift Instructions
After CCR After CCR

Initial Value First Shift XNZVC Second Shift XNZVC
ASL 11101011 11010110 11001 10101100 11001
ASL 01111110 11111100 01010 11111000 11011

ASR 11101011 11110101 11001 11111010 11001
ASR 01111110 00111111 00000 00011111 10001

LSL 11101011 11010110 11001 10101100 11001
LSL 01111110 11111100 01000 11111000 11001

LSR 11101011 01110101 10001 00111010 10001
LSR 01111110 00111111 00000 00011111 10001

ROL 11101011 11010111 ?1001 10101111 ?1001
ROL 01111110 11111100 ?1000 11111001 ?1001

ROR 11101011 11110101 ?1001 11111010 ?1001
ROR 01111110 00111111 ?0000 10011111 ?1001

CPE/EE 421/521 Microcomputers 84

Forms of Shift Operations

Mode 1
ASL Dx,Dy Shift Dy by Dx bits

Mode 2
ASL #<data>,Dy Shift Dy by #data bits

Mode 3
ASL <ea> Shift the contents

at the effective address
by one place

All three modes apply to all eight shift instructions

Alex Milenkovich 22

CPE/EE 421/521 Microcomputers 85

Bit Manipulation Operations

Act on a single bit of an operand:
1. The complement of the selected bit is moved to

the Z bit (Z set if specified bit is zero)
2. The bit is either unchanged, set, cleared, or toggled

NVCX bits are not affected
May be applied to a bit within byte or longword
BTST – Bit Test only
BSET – Bit Test and Set (specified bit set)

BCLR – Bit Test and Clear (specified bit cleared)

BCHG – Bit Test and Change (specified bit
toggled)

CPE/EE 421/521 Microcomputers 86

Effective address of
the operand

Bit Manipulation Operations, cont’d

All 4 have the same assembly language
forms:

BTST Dn, <ea> or BTST #<data>,<ea>

Location of the bit to be tested

CPE/EE 421/521 Microcomputers 87

Program Control Operations

Examine bits in CCR and chose between two
courses of action
CCR bits are either:

Updated after certain instruction have been
executed, or
Explicitly updated (bit test, compare, or test
instructions)

Compare instructions: CMP, CMPA, CMPI, CMPM
Subtract the contents of one register (or mem.
location) from another register (or mem. location)
Update NZVC bits of the CCR
X bit of the CCR is unaffected
The result of subtraction is ignored

CPE/EE 421/521 Microcomputers 88

Program Control Operations, cont’d

CMP: CMP <ea1>,<ea2>
[<ea2>]-[<ea1>]
CMPI: CMP #<data>,<ea>
comparison with a literal
CMPA: CMP <ea>,An
used for addresses, operates only on word and
longword operands
CMPM: CMP (Ai)+,(Aj)+
compares memory with memory, one of few that works
only with operands located in memory
TST: TST <ea>
zero is subtracted from specified operand;
N and Z are set accordingly, V and C are cleared, X is
unchanged
Except CMPA, all take byte, word, or longword operands

Alex Milenkovich 23

CPE/EE 421/521 Microcomputers 89

Program Control Operations, cont’d

Branch Instructions
Branch Conditionally
Branch Unconditionally
Test Condition, Decrement, and Branch

BRANCH CONDITIONALLY
Bcc <label>

cc stands for one of 14 logical conditions (Table 2.4)
Automatically calculated displacement can be d8 or
d16
Displacement is 2’s complement signed number
8-bit displacement can be forced by adding .S
extension
ZNCV bits are used to decide

CPE/EE 421/521 Microcomputers 90

Program Control Operations, cont’d

BRANCH UNCONDITIONALLY
BRA <label> or JMP (An)

JMP d16(An)
JMP d8(An,Xi)
JMP Absolute_address
JMP d16(PC)
JMP d8(PC,Xi)

TEST CONDITION, DECREMENT, and BRANCH
DBcc Dn,<label> (16 bit displacement only)

One of 14 values from Table 2.4, plus T, plus F

If test is TRUE, branch is NOT taken !

If cc is NOT TRUE, Dn is decremented by 1;
If Dn is now equal to –1 next instruction is executed

if not, branch to <label is taken>

CPE/EE 421/521 Microcomputers 91

Stack Pointer

First-in-last-out
SP points to the element at the
top of the stack
Up to eight stacks
simultaneously
A7 used for subroutines
A7 automatically adjusted by 2
or 4 for L or W ops.
Push/pull implementation:

MOVE.W Dn,-(A7) <-PUSH
MOVE.W (A7)+,Dn <-PULL

SSP/USP

Figure 2.18

CPE/EE 421/521 Microcomputers 92

Subroutines

BRANCH TO SUBROUTINE
BSR <label> = [A7]← [A7] - 4

M([A7])]← [PC]
[PC]← [PC] + d8

RETURN FROM SUBROUTINE
RTS = [PC]← [M([A7])]

[A7]← [A7] + 4

Alex Milenkovich 24

CPE/EE 421/521 Microcomputers 93

Subroutines, cont’d
BRANCH TO SUBROUTINE
000FFA 41F900004000 LEA TABLE,
A0
001000 61000206 NextChr BSR GetChar
001004 10C0 MOVE.B

D0,(A0)
001006 0C00000D CMP.B #$0D,D0
00100A 66F4 BNE NextChr
001102 61000104 BSR GetChr
001106 0C000051 CMP.B #’Q’,D0
00110A 67000EF4 BEQ QUIT
001208 1239000080000 GetChr MOVE.B

ACIAC,D0

BSR d8 d8=? (or d16, to specify d8 use BSR.S)
d8 = $00001208 – ($00001000 + 2) = $00000206

current PC value
CPE/EE 421/521 Microcomputers 94

Nested Subroutines

CPE/EE 421/521 Microcomputers 95

Nested Subroutines, cont’d

CPE/EE 421/521 Microcomputers 96

Nested Subroutines, cont’d

Returning directly to a higher-level subroutine
Sub2 .

.
BEQ Exit
.
.
RTS

Exit LEA 4(A7),A7
RTS

RTR (Return and restore condition codes)
Save the condition code register on the stack:
MOVE CCR, -(A7)

Use RTR instead of RTS

Alex Milenkovich 25

CPE/EE 421/521 Microcomputers 97

Miscellaneous Instructions

Scc: Set byte conditionally
Scc <ea> (cc same as in DBcc)
If the condition is TRUE, all the bits of the byte specified
by <ea> are SET, if the condition is FALSE, bits are
CLEARED
NOP: No Operation
RTS: Return from Subroutine
STOP:
STOP #n
Stop and load n into Status Register; n is 16-bit number;
Privileged instruction
CHK, RESET, RTE, TAS, TRAPV - later

CPE/EE 421/521 Microcomputers 98

Example: Linked List

Adding an element to the end of a linked list
HEAD points to the first element, NEW contains the address of
the new item to be inserted
Longwords

LEA HEAD,A0 A0 initially points to the start of the
* linked list
LOOP TST.L (A0) IF the address field = 0

BEQ EXIT THEN exit
MOVEA.L (A0),A0 ELSE read the address of the next element
BRA LOOP Continue

EXIT LEA NEW,A1 Pick up address of new element
MOVE.L A1,(A0) Add new entry to end of list
CLR.L (A1) Insert the new terminator

CPE/EE 421/521 Microcomputers 99

Example: Linked List, cont’d

Initial linked list:

LEA HEAD,A0 A0 initially points to the start of the
* linked list
LOOP TST.L (A0) IF the address field = 0

BEQ EXIT THEN exit
MOVEA.L (A0),A0 ELSE read the address of the next element
BRA LOOP Continue

EXIT LEA NEW,A1 Pick up address of new element
MOVE.L A1,(A0) Add new entry to end of list
CLR.L (A1) Insert the new terminator

CPE/EE 421/521 Microcomputers 100

Example: Linked List , cont’d

Linked list after inserting an element at the end:

LEA HEAD,A0 A0 initially points to the start of the
* linked list
LOOP TST.L (A0) IF the address field = 0

BEQ EXIT THEN exit
MOVEA.L (A0),A0 ELSE read the address of the next element
BRA LOOP Continue

EXIT LEA NEW,A1 Pick up address of new element
MOVE.L A1,(A0) Add new entry to end of list
CLR.L (A1) Insert the new terminator

Alex Milenkovich 26

CPE/EE 421/521 Microcomputers 101

Example: Linked List , Memory Map

