
CPE 626 CPU Resources:
Multipliers

Aleksandar Milenkovic
E-mail: milenka@ece.uah.edu
Web: http://www.ece.uah.edu/~milenka

2

Outline
Ø Unsigned Multiplication
Ø Shift and And Multiplier/Divider
Ø Speeding Up Multiplication
Ø Array Multiplier
Ø Signed Multiplication
Ø Booth Encoding
Ø Wallace-tree

3

Unsigned Multiplication

• product = 0
• for i = 0 to n−1

– compute partial product
(AND operation)

– left-shift partial product by i
– product += partial product

0 1 1 1 0 1
x 1 0 1 0 1 1

0 1 1 1 0 1
0 1 1 1 0 1

0 0 0 0 0 0
0 1 1 1 0 1

0 0 0 0 0 0
0 1 1 1 0 1

1 0 0 1 1 0 1 1 1 1 1

partial product

multiplicand (29)
multiplier (43)

product

4

Shift and Add Multiplier
Ø for i = 0 to n−1
§ pp = B ⋅ a[0]
§ P[2n−1:n] += pp
§ P = P >> 1

B

A

pp

product P

multiplier

adder

multiplicand

5

Shift and Add Multiplier/Divider
Ø (a) Multiplier (b) Divider
Ø Operands:

n-bit unsigned integers
Ø Multiply steps (n steps)
§ if (A(0) == 1) P <= P + B

else P <= P + 0
§ P and A are shifted right

with carry out of the sum
being moved into the MSB of P,
the LSB of P moved into MSB of A,
and LSB of A being shifted out

6

Division
Ø Operands (a/b):

n-bit unsigned integers
§ put a in register A
§ put b in register B
§ put 0 in register P

Ø Divide steps (n steps)
§ Shift (P, A) register pair

one bit left
§ P <= P – B
§ if result is negative,

set the low order bit of A to 0,
otherwise to 1

§ if the result of step 2 is negative,
restore the old value of P by
adding the contents of B back to P

7

Speeding Up Multiplication (cont’d)
Ø Reduce the amount of computation

in each step by using carry-save adders (CSA)
Ø CSA is simply collection of n independent full adders
Ø Each addition operation results in a pair of bits,

stored in the sum and carry parts of P
Ø At each step, only the LSB bit of the sum needs to be shifted
Ø Steps

§ load the sum and carry bits of P with zero
§ perform first addition
§ shift the LSB sum bit of P into A, as well as A itself

Note: (n-1) bit of P do not need to be shifted because on the next cycle
the sum bits are fed into the next lower order adder

Ø Disadvantages
§ Additional hardware (keep both carry and sum)
§ After the last step, the high order word of the result must be fed into an ordinary

adder to combine the sum and carry parts

8

Speeding Up Multiplication

B

A

P

Carry

Sum

Shift

9

An Example
Ø 9 x 5 => 1001 x 0101 = 0010 1101
§ C = 0000

S = 0000 A = 0101
P = 1001

§ C = 0000
S = 1001 A = 1010
P = 0000

§ C = 0000
S = 0100 A = 0101
P = 1001

§ C = 0000
S = 1011 A = 1010
P = 0000

§ Carry Propagate
C = 0000
S = 0101 A = 1101
S = 0010 A = 1101

10

Speeding Up Multiplication (cont’d)
Ø Another approach is to examine k low order bits of A at each step,

rather than just one bit
=> higher-radix multiplication

Ø Radix-4 Booth recoding
Ø Radix-8 Booth recoding
Ø ...

11

Array Multiplier
Ø If the space for many adders

is available, then
multiplication speed
can be improved

Ø E. g. 5-bit multiplier
(3 CSA + CPA)

Ø Advantage
§ could be pipelined

Ø If space budget is limited,
use multiple-pass
arrangements

12

6-bit Array Multiplier
ØAdders a0-f0

may be eliminated =>
this eliminates adders a1-a6
ØComplexity:

CSA - 5x6 adders
(including 5 half adders)
CPA – 6 adders (2 HAs)
ØDelay:

proportional to n +
delay of CPA (f6 – b6)
ØHow to improve

performance?

§ decrease the
number of partial
products
§ improve the speed

of the addition of
the partial

B0

B1

A5

13

Floorplan of the 4-bit Array Multiplier

SCSCSCSC

SCSCSCSC

SCSCSCSC

S
C

S
C

S
C

S
C

Z0

Z1

Z2

Z3Z4Z5Z6Z7

X 0X1X2X3

Y1

Y2

Y3

Y0

Vector Merging Cell

HA Multiplier Cell

FA Multiplier Cell

X and Y signals are broadcasted
through the complete array.

()

14

Multipass Array Multiplier

15

Even/odd Array
Ø First two adders

work in parallel
Ø Their results are fed

into third and fourth
adders, which also work
in parallel

16

Using CSD Vector
Ø 15 (multiplicand) x 19 (multiplier) = ?

Ø A x B, B = 00010111
§ B = 16 + 4 + 2 + 1 = 23
§ Computation: 4 add operations

Ø It is easier to multiply A with
the canonical signed-digit vector (CSD vector) D

§ Computation: 3 add/sub operations
(a subtraction is as easy as an addition)

Ø Weight – number of partial products by 1:
B has 4, D has 3

1215)120(151915 ×=−×=×

23183210010010D =−−==

17

CSD Vector
Ø Recode (or encode) any binary number, B,

as a CSD vector D

0C},CBB{CarryC

C2CBD

0ii1i1i

1iiii

=++=

−+=

++

+

1010D,0}100{CarryC

0211D,1}110{CarryC

1201D,1}011{CarryC

1B,1B,0B

011B

23

12

01

012

=−+==++=

=−+==++=

=−+==++=

===

=

18

CSD Vector
Ø N – (n + 1)-digit 2’s complement number
Ø Recode it using a Radix other than 2

1n
2n1nn

1i
i1i2i

1i
2i1ii

4
345

2
123

0
01

n
n1n

i
i1i

1
10

0
0

n
n

1n
1n

2
2

1
1

0
0

2)BBB2(

...2)BBB2(2)BBB2(...

2)BBB2(2)BBB2(2)BB2(

2)BB(...2)BB(...2)BB(2B

BB2B

2B2B...2B2B2BB

−
−−

+
++

−
−−

−−

−
−

⋅++⋅−+

+⋅++⋅−+⋅++⋅−++

⋅++⋅−+⋅++⋅−+⋅+⋅−=

⋅−++⋅−++⋅−+⋅−=

−⋅=

⋅−⋅++⋅+⋅+⋅=

19

CSD Vector: An Example – Radix = 2
Ø B = 101001, n = 5

Ø To multiply by B
§ encode it as a radix-2 signed digit E
§ Multiply by 2 (a shift) + 6 (n+1) add/subtract operations

23)32(16)8(02)1(

2)BB(2)BB(

2)BB(2)BB(2)BB(2)B0(B

233281B

5
54

4
43

3
32

2
21

1
10

0
0

−=−++−+++−=

⋅−+⋅−+

⋅−+⋅−+⋅−+⋅−=

−=−+=

231281632

2)1(212)1(212)1(101111E 01345

−=−+−+−=

⋅−+⋅+⋅−+⋅+⋅−==

20

Encoded Partial Products

n
n1n

i
i1i

1
10

0
0 2)BB(...2)BB(...2)BB(2)B0(B ⋅−++⋅−++⋅−+⋅−= −−

ai

bi

bi-1

ppi,j

(partial product row i, bit j)

multiplier subtract

zero

do nothing11

subtract A10

add A01

do nothing00

operationbi bi-1

21

Signed Multiplication (1)

p0

p1

p2

pp0,0

pp1,0

pp2,0

CPA
p3p4p5

pp0,1

pp1,1

pp2,1

pp0,2

pp1,2

pp2,2

c0c1c2

pp1,2

pp0,2

pp2,2

pp0,2pp0,2

pp1,2

n What are c0,
c1, and c2?

22

Signed Multiplication (2)

n Do not need
this? Why?

p0

p1

p2

pp0,0

pp1,0

pp2,0

CPA
p3p4p5

pp0,1

pp1,1

pp2,1

pp0,2

pp1,2

pp2,2

c0c1c2

pp1,2

pp0,2

pp2,2

pp0,2pp0,2

pp1,2

23

CSD Vector: An Example – Radix=4
Ø B = 101001, n = 5

Ø To multiply by B
§ encode it as a radix-4 signed digit E
§ Multiply by 4 (a shift by 2) + 3 add/subtract operation

231681

2)1012(2)0012(2)102(

2)BBB2(2)BBB2(2)BB2(B

233281B

420

4
345

2
123

0
01

−=−−=

⋅++⋅−+⋅++⋅−+⋅+⋅=

⋅++⋅−+⋅++⋅−+⋅+⋅−=

−=−+=

231681

4)1(4)2(41121E 210

−=−−=

⋅−+⋅−+⋅==

24

Booth Encoding (1)
Ø Encode a number by taking groups of 3 bits

where each 3-bit group overlaps by 1 bit

Ø Consider multiplier B with (n + 1) bit
§ Pad B with 0 to match the first term
§ if B has an odd number of bits,

then extend the sign BnBnBn-1...B00

i1i2i1j

2i1iij

BBB2E

BBB2E

++⋅−=

++⋅−=

+++

−−

1114164)1(4)1(41111E

110,101,0010010110B010110B

11128B01011B

012

102

=−−=⋅−+⋅−+⋅==

=>==>=

=++==>=

25

Booth Encoding (2)

0111

-1011

-1101

-2001

2110

1010

1100

0

Bi

0

Bi-1

00

OperationBi-2

26

Booth Multiply: An Example
Ø A = 1100, B = 0111, 2’s compl., n = 3
Ø M = A*B = ?
Ø B=0111.0 => 011, 110
Ø Step 1: 110 => M = -A = 0000 0100
Ø Step 2: 011 =>

M = M + 4*(2A) = 0000 0100 + 11100000
= 1110 0100 = -28 (dec)

27

Wallace-Tree

FA

FA

FA

FA

y 0 y1 y 2

y3

y4

y5

S

C i-1

C i-1

C i-1

C i

C i

C i

FA

y 0 y 1 y 2

FA

y 3 y 4 y 5

FA

FA

C
C S

C i-1

C i-1

C i-1

C i

C i

C i

28

Improving Speed
ØCollapse the chain of

FAs a0-f5 (5 adders
delays) to the Wallace
tree consisting of 5.1-
5.4 (4 adders delays)
ØTo form P5 use
§ Summands:

S50, S41, S32, S23,
S14, S05

§ 4 carries from P4

29

What is Game?
Ø Dots and holes –

the outputs of one stage = inputs of the next
Ø At each stage we have three choices

(1) sum 3 outputs using Full Adder –
box with 3 dots

Ø (2) sum 2 outputs using Half Adder –
box with 2 dots

Ø (3) pass outputs directly to the next stage
Ø Choose (1), (2), or (3) at each stage to

maximize the performance of the multiplier
Ø Tree-based multipliers

§Work Forward (Wallace-tree
Multiplier)
§Work Backward (Dadda

Multiplier) 30

6-bit Wallace Multiplier
Ø Complexity

CSA – 26 (incl.
6 HAs)
CPA – 4

Ø Delay:
CSA – 6
adders delay
+ CPA – 4

31

6-bit Dadda Multiplier
Ø Complexity

CSA – 20
(incl. 4 HAs)
CPA – 10

Ø Delay:
CSA – 3
adders delay
+ CPA delay

Work Backward:
each successive stage is 3/2 times larger

32

ARM Multiplier design
Ø All ARMs apart form the first prototype have included

support for integer multiplication
§ older ARM cores include low-cost multiplication hardware

that supports only the 32-bit result multiply and
multiply-accumulate

§ recent ARM cores have high-performance multiplication
hardware and support 64-bit result multiply and
multiply-accumulate

Ø Low cost implementation
§ Use the datapath iteratively, employing the barrel shifter

and ALU to generate 2-bit product in each clock cycle
§ use early termination to stop the iterations when there are

no more ones in the multiply register

33

The 2-bit multiplication algorithm,
Nth cycle
Ø Control settings for the Nth cycle of the multiplication
Ø Use existing shifter and ALU + additional hardware
§ dedicated two-bits-per-cycle shift register for the multiplier

and a few gates for the Booth’s algorithm control logic
(overhead is a few per cent on the area of ARM core)

Carry - i n Mul ti p l i er Shi f t ALU Carry -o ut
0 x 0 LSL #2N A + 0 0

x 1 LSL #2N A + B 0
x 2 LSL #(2N + 1) A – B 1
x 3 LSL #2N A – B 1

1 x 0 LSL #2N A + B 0
x 1 LSL #(2N + 1) A + B 0
x 2 LSL #2N A – B 1
x 3 LSL #2N A + 0 1

34

High speed multiplication
Ø Where multiplication performance is very important,

more hardware resources must be dedicated
§ in some embedded systems the ARM core is used to perform

real-time digital signal processing (DSP) –
DSP programs are typically multiplication intensive

Ø Use intermediate results which include
partial sums and partial carries
§ Carry-save adders are used for this

Ø These two binary results are added together at the end of
multiplication
§ The main ALU is used for this

35

Carry-propagate (a) and carry-save
(b) adder structures
Ø Carry propagate adder takes two conventional (irredundant) binary

numbers as inputs and produces a binary sum
Ø Carry save adder takes one binary and one redundant (partial sum and

partial carry) input and produces a sum in redundant binary
representation (sum and carry)

+
A B Cin

Cout S
(a) +

A B Cin

Cout S
+

A B Cin

Cout S
+

A B Cin

Cout S

+
A B Cin

Cout S
(b) +

A B Cin

Cout S
+

A B Cin

Cout S
+

A B Cin

Cout S

36

ARM high-speed multiplier organization
Ø CSA has 4 layers of adders each handling 2 multiplier bits

=> multiply 8-bits per clock cycle
Ø Partial sum and carry are cleared at the beginning

or initialized to accumulate a value
Ø Multiplier is shifted right 8-bits

per cycle in the ‘Rs’ register
Ø Carry sum and carry

are rotated right 8 bits per cycle
Ø Performance: up to 4 clock cycles

(early termination is possible)
Ø Complexity: 160 bits in shift registers,

128 bits of carry-save adder logic
(up to 10% of simpler cores)

37

ARM high-speed multiplier organization

Rs >> 8 bits/cycle

carry-save adders

partial sum

partial carry

initiali zation for MLA
registers

Rm

ALU (add partials)

rotate sum and
carry 8 bits/cycle

