CPE 626 CPU Resources: Multipliers

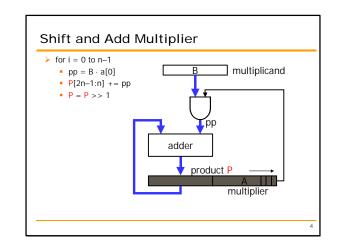
Aleksandar Milenkovic E-mail: milenka@ece.uah.edu Web: http://www.ece.uah.edu/-

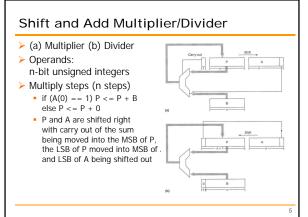
-milenka

Outline

- Unsigned Multiplication
- Shift and And Multiplier/Divider
- Speeding Up Multiplication
- Array Multiplier
- Signed Multiplication
- Booth Encoding
- ➢ Wallace-tree

0 1	011101 multiplicand (29) 101011 multiplier (43) 011101 ← partial product 011101 ← • product = 0 00000 ← • for i = 0 to n-1 - compute partial product (AND operation) 01 ← • left-shift partial product by i - product += partial product	
1001	I 1 0 1 1 1 1 1 ← product	3



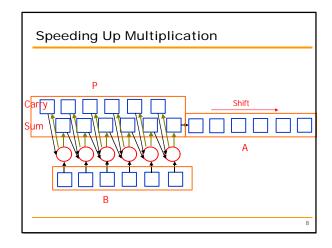


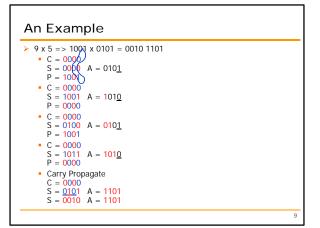
> Operands (a/b):	P 00000	A 1110	Divide 14 = 1110, by 3 = 11, B always contains 0011,
	00001	110	step 10); shift.
n-bit unsigned integers	-00011		step 1(i): subtract.
put a in register A	-00010	1100	step 1(iii): result is negative, set quotient bit to 0.
	00001	1100	step 1(iv): restore.
put b in register B	00011	100	step 2(i): shift.
put 0 in register P	-00011		step 2(i): subtract.
1 5	00000	1001	step 2(ii): result is nonnegative, set quotient bit to 1. step 3(): shift.
Divide steps (n steps)	-00011	001	step 30); subtract.
	-00010	0010	step 3000 result is negative, set quotient bit to 0.
 Shift (P, A) register pair 	00001	0010	step 3(iv): restore.
one bit left	00010	010	step 4(i): shift.
P <= P - B	-00011		step 4(ii): subtract.
	-00001	0100	step 4(iii): result is negative, set quotient bit to 0.
 if result is negative, 	00010	0100	step 4(iv): restore. The quotient is 01002 and the remainder is 0001
set the low order bit of A to	0,		
otherwise to 1			
If the result of step 2 is neg	ative		
restore the old value of P by			
adding the contents of B ba	ck to P		

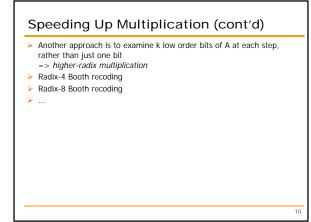
Speeding Up Multiplication (cont'd)

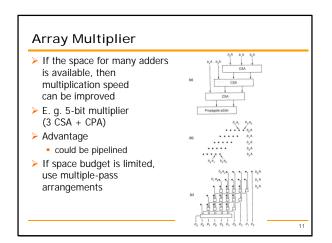
- Reduce the amount of computation \geq
- in each step by using carry-save adders (CSA)
- ۶ CSA is simply collection of n independent full adders
- Each addition operation results in a pair of bits, stored in the sum and carry parts of P
- > At each step, only the LSB bit of the sum needs to be shifted Steps

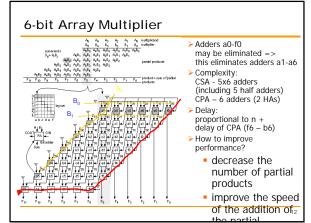
 - load the sum and carry bits of P with zero
 perform first addition
 shift the LSB sum bit of P into A, as well as A itself Note: (n-1) bit of P do not need to be shifted because on the next cycle the sum bits are fed into the next lower order adder
- Disadvantages
 Additional hardware (keep both carry and sum)
 - After the last step, the high order word of the result must be fed into an ordinary adder to combine the sum and carry parts

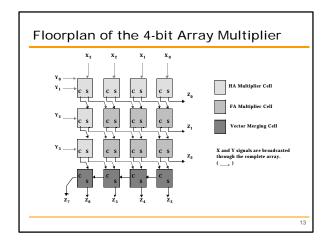


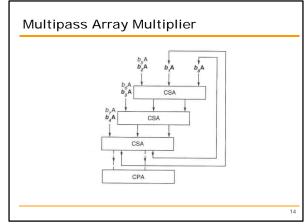


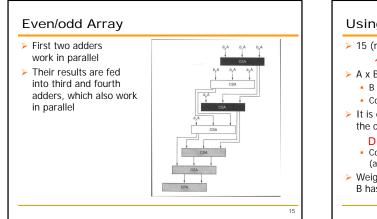


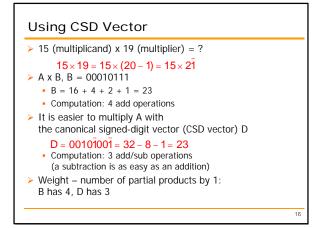






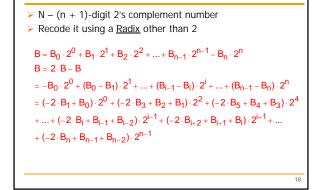






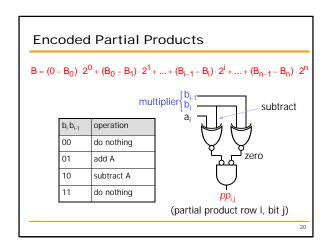
CSD Vector

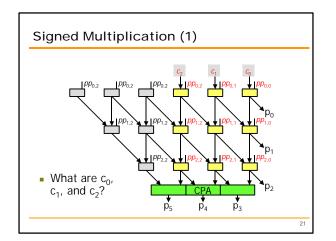
> Recode (or encode) any binary number, B, as a CSD vector D $D_i = B_i + C_i - 2C_{i+1}$ $C_{i+1} = Carry\{B_{i+1} + B_i + C_i\}, C_0 = 0$ B = 011 $B_2 = 0, B_1 = 1, B_0 = 1$ $C_1 = Carry\{1 + 1 + 0\} = 1, D_0 = 1 + 0 - 2 = \overline{1}$ $C_2 = Carry\{0 + 1 + 1\} = 1, D_1 = 1 + 1 - 2 = 0$ $C_3 = Carry\{0 + 0 + 1\} = 0, D_2 = 0 + 1 - 0 = 1$

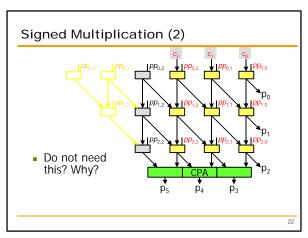


CSD Vector: An Example – Radix = 2

- > B = 101001, n = 5 B = 1+8-32 = -23 B = $(0-B_0) \cdot 2^0 + (B_0 - B_1) \cdot 2^1 + (B_1 - B_2) \cdot 2^2 + (B_2 - B_3) \cdot 2^3$
- $+ (B_3 B_4) \cdot 2^4 + (B_4 B_5) \cdot 2^5$ = (-1) + 2 + 0 + (-8) + 16 + (-32) = -23
- = (-1) + 2 + 0 + (-0) + 10 + (-32) = -23
- $E = \bar{1}1\bar{1}01\bar{1} = (-1) \cdot 2^5 + 1 \cdot 2^4 + (-1) \cdot 2^3 + 1 \cdot 2^1 + (-1) \cdot 2^0$
- = -32 + 16 8 + 2 1 = -23 ➤ To multiply by B
 - encode it as a radix-2 signed digit E
 - Multiply by 2 (a shift) + 6 (n+1) add/subtract operations







CSD Vector: An Example - Radix=4

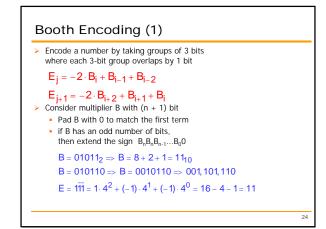
- ▶ B = 101001, n = 5
- B = 1 + 8 32 = -23
- $$\begin{split} &\mathsf{B} = (-2 \cdot \mathsf{B}_1 + \mathsf{B}_0) \cdot 2^0 + (-2 \cdot \mathsf{B}_3 + \mathsf{B}_2 + \mathsf{B}_1) \cdot 2^2 + (-2 \cdot \mathsf{B}_5 + \mathsf{B}_4 + \mathsf{B}_3) \cdot 2^4 \\ &= (2 \cdot 0 + 1) \cdot 2^0 + (-2 \cdot 1 + 0 + 0) \cdot 2^2 + (-2 \cdot 1 + 0 + 1) \cdot 2^4 \end{split}$$
- = 1-8-16 = -23

```
\mathsf{E} = 1\overline{21} = 1 \cdot 4^0 + (-2) \cdot 4^1 + (-1) \cdot 4^2
```

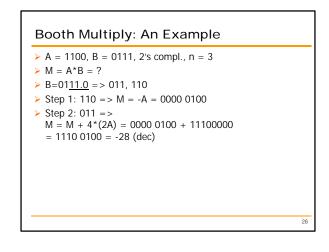
= 1- 8 - 16 = -23 ➤ To multiply by B

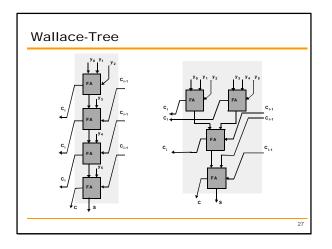
- encode it as a radix-4 signed digit E
- Multiply by 4 (a shift by 2) + 3 add/subtract operation

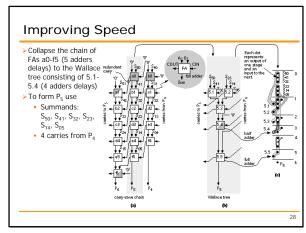
23

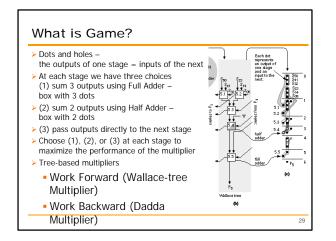


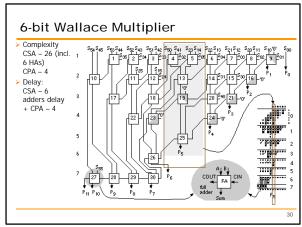
B	B _{i-1}	B _{i-2}	Operation	
0	0	0	0	
0	0	1	1	
0	1	0	1	
0	1	1	2	
1	0	0	-2	
1	0	1	-1	
1	1	0	-1	
1	1	1	0	

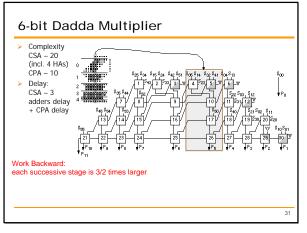


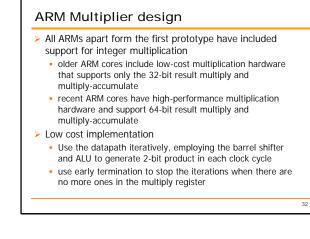








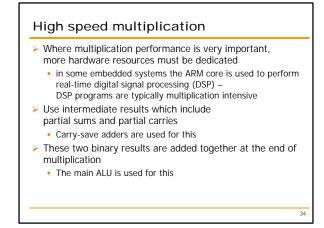




> Control settings for the Nth cycle of the multiplication

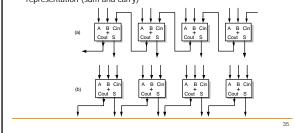
> Use existing shifter and ALU + additional hardware dedicated two-bits-per-cycle shift register for the multiplier and a few gates for the Booth's algorithm control logic (overhead is a few per cent on the area of ARM core)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
$\begin{array}{ccccc} x & 2 & LSL \#(2N+1) & A-B & 1 \\ x & 3 & LSL \#2N & A-B & 1 \\ 1 & x & 0 & LSL \#2N & A+B & 0 \\ x & 1 & LSL \#(2N+1) & A+B & 0 \end{array}$		0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	x 1 LSL#2N A+B	0
1 x 0 LSL #2N A+B 0 x 1 LSL #(2N+1) A+B 0	x 2 LSL #(2N+1) A – B	1
x 1 LSL #(2N+1) A+B 0	x 3 LSL#2N A-B	1
	1 x 0 LSL#2N A+B	0
x 2 LSL #2N A – B 1	x 1 LSL #(2N+1) A+B	0
	x 2 LSL#2N A-B	1
x 3 LSL #2N A+0 1	x 3 LSL #2N A+0	1



Carry-propagate (a) and carry-save (b) adder structures

- Carry propagate adder takes two conventional (irredundant) binary numbers as inputs and produces a binary sum
- Carry save adder takes one binary and one redundant (partial sum and > partial carry) input and produces a sum in redundant binary representation (sum and carry)



ARM high-speed multiplier organization

> CSA has 4 layers of adders each handling 2 multiplier bits => multiply 8-bits per clock cycle

36

- > Partial sum and carry are cleared at the beginning or initialized to accumulate a value
- Multiplier is shifted right 8-bits
- per cycle in the 'Rs' register
- Carry sum and carry are rotated right 8 bits per cycle Performance: up to 4 clock cycles (early termination is possible)
- Complexity: 160 bits in shift registers, 128 bits of carry-save adder logic (up to 10% of simpler cores)

