

	Outline
$>$ Unsigned Multiplication	
$>$ Shift and And Multiplier/ Divider	
$>$ Speeding Up Multiplication	
$>$ Array Multiplier	
$>$ Signed Multiplication	
$>$ Booth Encoding	
$>$ Wallace-tree	

Division

> Operands (a/b) n-bit unsigned integers

- put a in register A
- put b in register B
- put 0 in register P
$>$ Divide steps (n steps)
- Shift (P, A) register pair one bit left
- $\mathrm{P}<=\mathrm{P}-\mathrm{B}$
- if result is negative set the low order bit of A to 0 set the low ord
otherwise to 1
- if the result of step 2 is negative, restore the old value of P by adding the contents of B back to P
adding the contents of B back to P


```
*)
*)
```



```
coll
lol
*)
```



```
*-00011 (t)
-000011)
*)
*11102ty 3-11% Baways
```

Speeding Up Multiplication (cont'd) > Reduce the amount of computation in each step by using carry-save adders (CSA) > CSA is simply collection of n independent full adders > Each addition operation results in a pair of bits, stored in the sum and carry parts of P > At each step, only the LSB bit of the sum needs to be shifted > Steps - load the sum and carry bits of P with zero - perform first addition - shift the LSB sum bit of P into A, as well as A itself Note: $(\mathrm{n}-1)$ bit of P do not need to be shifted because on the next cycle the sum bits are fed into the next lower order adder Disadvantages - Additional hardware (keep both carry and sum) - After the last step, the high order word of the result must be fed into an ordinary adder to combine the sum and carry parts

An Example	
$\begin{aligned} >9 \times 5 & =>1001 \times 0101=00101101 \\ -C & =0000 \\ S & =0000 \quad A=010 \underline{1} \\ P & =100 \underset{\sim}{1} \\ -C & =0000 \\ S & =1001 \quad A=101 \underline{0} \\ P & =0000 \\ -C & =0000 \\ S & =0100 \quad A=0101 \\ P & =1001 \\ -C & =0000 \\ S & =1011 \quad A=101 \underline{0} \\ P & =0000 \\ =C a r r y & \text { Propagate } \\ C & =0000 \\ S & =0101 \quad A=1101 \\ S & =0010 \quad A=1101 \end{aligned}$	
	9

Speeding Up Multiplication (cont'd)

> Another approach is to examine k low order bits of A at each step, rather than just one bit
$=>$ higher-radix multiplication
$>$ Radix-4 Booth recoding
> Radix-8 Booth recoding
. ..
$C=0000$
$S=0100 \quad A=0101$
$\mathrm{P}=1001$
$S=1011 \quad A=101 \underline{0}$
Carry Propaga
C = 0000
$A=1101$

CSD Vector	
$>$ Recode (or encode) any binary number, B, as a CSD vector D	
$\mathrm{D}_{\mathrm{i}}=\mathrm{B}_{\mathrm{i}}+\mathrm{C}_{\mathrm{i}}-2 \mathrm{C}_{\mathrm{i}+1}$	
$C_{i+1}=\operatorname{Carry}\left\{B_{i+1}+B_{i}+C_{i}\right\}, C_{0}=0$	
$\mathrm{B}=011$	
$\mathrm{B}_{2}=0, \mathrm{~B}_{1}=1, \mathrm{~B}_{0}=1$	
$C_{1}=\operatorname{Carry}\{1+1+0\}=1, D_{0}=1+0-2=1$	
$\mathrm{C}_{2}=\operatorname{Carry}\{0+1+1\}=1, \mathrm{D}_{1}=1+1-2=0$	
$\mathrm{C}_{3}=\operatorname{Carry}\{0+0+1\}=0, \mathrm{D}_{2}=0+1-0=1$	
	17

CSD Vector
$>N-(n+1)$-digit 2's complement number
$>$ Recode it using a Radix other than 2
$B=B_{0} \cdot 2^{0}+B_{1} \cdot 2^{1}+B_{2} \cdot 2^{2}+\ldots+B_{n-1} \cdot 2^{n-1}-B_{n} \cdot 2^{n}$
$B=2 \cdot B-B$
$=-B_{0} \cdot 2^{0}+\left(B_{0}-B_{1}\right) \cdot 2^{1}+\ldots+\left(B_{i-1}-B_{i}\right) \cdot 2^{i}+\ldots+\left(B_{n-1}-B_{n}\right) \cdot 2^{n}$
$=\left(-2 \cdot B_{1}+B_{0}\right) \cdot 2^{0}+\left(-2 \cdot B_{3}+B_{2}+B_{1}\right) \cdot 2^{2}+\left(-2 \cdot B_{5}+B_{4}+B_{3}\right) \cdot 2^{4}$
$+\ldots+\left(-2 \cdot B_{i}+B_{i-1}+B_{i-2}\right) \cdot 2^{i-1}+\left(-2 \cdot B_{i+2}+B_{i+1}+B_{i}\right) \cdot 2^{i+1}+\ldots$
$+\left(-2 \cdot B_{n}+B_{n-1}+B_{n-2}\right) \cdot 2^{n-1}$

```
CSD Vector: An Example - Radix = 2
> B = 101001, n=5
    B=1+8-32 = -23
    B=(0-B0})\cdot\mp@subsup{2}{}{0}+(\mp@subsup{B}{0}{}-\mp@subsup{B}{1}{})\cdot\mp@subsup{2}{}{1}+(\mp@subsup{B}{1}{}-\mp@subsup{B}{2}{})\cdot\mp@subsup{2}{}{2}+(\mp@subsup{B}{2}{}-\mp@subsup{B}{3}{})\cdot\mp@subsup{2}{}{3
    +(B3-B4)\cdot24+(B4-B5)\cdot2 }\mp@subsup{}{}{5
    =(-1)+2+0+(-8)+16+(-32)=-23
```



```
    = -32+16-8+2-1=-23
> To multiply by B
    - encode it as a radix-2 signed digit E
    * Multiply by 2 (a shift) + 6 ( }\textrm{n}+1)\mathrm{ add/subtract operations
```


Encoded Partial Products

$B=\left(0-B_{0}\right) \cdot 2^{0}+\left(B_{0}-B_{1}\right) \cdot 2^{1}+\ldots+\left(B_{i-1}-B_{i}\right) \cdot 2^{i}+\ldots+\left(B_{n-1}-B_{n}\right) \cdot 2^{n}$

$\mathrm{b}_{\mathrm{i}} \mathrm{b}_{i-1}$	operation
00	do nothing
01	add A
10	subtract A
11	do nothing

ier $\left\{\begin{array}{l}b \\ b\end{array}\right.$

(partial product row i, bit j)


```
CSD Vector: An Example - Radix=4
> B=101001, n=5
    B=1+8-32=-23
    B=(-2\cdot\mp@subsup{B}{1}{}+\mp@subsup{B}{0}{})\cdot\mp@subsup{2}{}{0}+(-2\cdot\mp@subsup{B}{3}{}+\mp@subsup{B}{2}{}+\mp@subsup{B}{1}{})\cdot\mp@subsup{2}{}{2}+(-2\cdot\mp@subsup{B}{5}{}+\mp@subsup{B}{4}{}+\mp@subsup{B}{3}{})\cdot\mp@subsup{2}{}{4}
    =(2\cdot0+1)\cdot\mp@subsup{2}{}{0}+(-2\cdot1+0+0)\cdot\mp@subsup{2}{}{2}+(-2\cdot1+0+1)\cdot\mp@subsup{2}{}{4}
    =1-8-16 = -23
    E=1\overline{21}=1\cdot4}\mp@subsup{4}{}{0}+(-2)\cdot\mp@subsup{4}{}{1}+(-1)\cdot\mp@subsup{4}{}{2
    =1-8-16=-23
    > To multiply by B
    " encode it as a radix-4 signed digit E
    " Multiply by 4 (a shift by 2) + 3 add/subtract operation
```


Booth Encoding (1)

- Encode a number by taking groups of 3 bits
where each 3-bit group overlaps by 1 bit
$E_{j}=-2 \cdot B_{i}+B_{i-1}+B_{i-2}$
$\mathrm{E}_{\mathrm{j}+1}=-2 \cdot \mathrm{~B}_{\mathrm{i}+2}+\mathrm{B}_{\mathrm{i}+1}+\mathrm{B}_{\mathrm{i}}$
> Consider multiplier B with $(\mathrm{n}+1)$ bit
- Pad B with 0 to match the first term
- if B has an odd number of bits,
then extend the sign $B_{n} B_{n} B_{n-1} \cdots B_{0} 0$
$B=01011_{2} \Rightarrow B=8+2+1=11_{10}$
$B=010110 \Rightarrow B=0010110 \Rightarrow 001,101,110$
$E=1 \overline{11}=1 \cdot 4^{2}+(-1) \cdot 4^{1}+(-1) \cdot 4^{0}=16-4-1=11$

Booth Encoding (2)
$\qquad$$\mathrm{B}_{\mathrm{i}}$ $\mathrm{B}_{\mathrm{i}-1}$ $\mathrm{~B}_{\mathrm{i}-2}$ Operation 0 0 0 0 0 0 1 1 0 1 0 1 0 1 1 2 1 0 0 -2 1 0 1 -1 1 1 0 -1 1 1 1 0

Booth Multiply: An Example
$>A=1100, B=0111,2^{\prime}$ s compl., $n=3$
$>M=A^{*} B=?$
$>B=0111.0=>011,110$
$>$ Step $1: 110=>M=-A=00000100$
$>\operatorname{Step} 2: 011=>$
$M=M+4^{*}(2 A)=00000100+11100000$
$=11100100=-28(\operatorname{dec})$

ARM Multiplier design

$>$ All ARMs apart form the first prototype have included support for integer multiplication

- older ARM cores include low-cost multiplication hardware that supports only the 32-bit result multiply and multiply-accumulate
- recent ARM cores have high-performance multiplication hardware and support 64-bit result multiply and multiply-accumulate
> Low cost implementation
- Use the datapath iteratively, employing the barrel shifter and ALU to generate 2-bit product in each clock cycle
- use early termination to stop the iterations when there are no more ones in the multiply register

The 2-bit multiplication algorithm, Nth cycle
> Control settings for the Nth cycle of the multiplication
> Use existing shifter and ALU + additional hardware

- dedicated two-bits-per-cycle shift register for the multiplier and a few gates for the Booth's algorithm control logic (overhead is a few per cent on the area of ARM core)

Carry-in	Multiplier	Shift	alu	Carry-out
0	$\times 0$	LSL\#2N	A+0	0
	$\times 1$	LSL\#2N	A+B	0
	$\times 2$	LSL\#(2N+1)	A-B	1
	$\times 3$	LSL\#2N	A-B	1
1	$\times 0$	LSL\#2N	A+B	0
	$\times 1$	LSL\# $\#$ (2N+1)	A +B	0
	$\times 2$	LSL\#2N	A-B	1
	$\times 3$	LSL\#2N	A+0	1

Carry-propagate (a) and carry-save (b) adder structures

Carry propagate adder takes two conventional (irredundant) binary numbers as inputs and produces a binary sum
> Carry save adder takes one binary and one redundant (partial sum and partial carry) input and produces a sum in redundant binary representation (sum and carry)

High speed multiplication

> Where multiplication performance is very important, more hardware resources must be dedicated

- in some embedded systems the ARM core is used to perform real-time digital signal processing (DSP) -
DSP programs are typically multiplication intensive
> Use intermediate results which include partial sums and partial carries
- Carry-save adders are used for this
> These two binary results are added together at the end of multiplication
- The main ALU is used for this

[^0]

[^0]: ARM high-speed multiplier organization
 > CSA has 4 layers of adders each handling 2 multiplier bits => multiply 8-bits per clock cycle
 > Partial sum and carry are cleared at the beginning or initialized to accumulate a value
 > Multiplier is shifted right 8-bits per cycle in the 'Rs' register
 > Carry sum and carry
 are rotated right 8 bits per cycle
 $>$ Performance: up to 4 clock cycles (early termination is possible)
 > Complexity: 160 bits in shift registers, 128 bits of carry-save adder logic (up to 10\% of simpler cores)

