CPE 626 CPU Resources:
Multipliers

Aleksandar Milenkovic
E-mail: milenka@ece.uah.edu

Web: http://www.ece.uah.edu/~milenka

Outline

» Unsigned Multiplication

» Shift and And Multiplier/Divider
» Speeding Up Multiplication

» Array Multiplier

» Signed Multiplication

» Booth Encoding

» Wallace-tree

Unsigned Multiplication

011101 multiplicand (29)
X 101011 multiplier (43)
01110 1« partial product
011101 «
000000 <
e fori=0ton-1
011101 N — compute partial product
000000 e (AND operation)
011101 “«— — left-shift partial product by i
____________________________ — product += partial product

1001101111 1« product

¢ product=0

Shift and Add Multiplier

» fori=0ton-1
= pp = B xa[0] [B] multiplicand
= P[2n-1:n] += pp
= P=P>>1

productP —»

multiplier

Shift and Add Multiplier/Divider

> (@) Multiplier (b) Divider -
» Operands:

n-bit unsigned integers
» Multiply steps (n steps)

= if (AQ)==1)P<=P+B

_snn__

?1 ST

elseP<=P+0 @ @
= P and A are shifted right i - —|
with carry out of the sum | |
being moved into the MSB of P, [. . |
the LSB of P moved into MSB of . | j g =
and LSB of A being shifted out (
&
o .
" A

set the low order bit of A to 0,
otherwise to 1

restore the old value of P by

if the result of step 2 is negative,

Division
» Operands (a/b): o i1
n-bit unsigned integers P
= put a in register A oo e
= put b in register B oort 100
= put O in register P g
> Divide steps (n steps) Sy
= Shift (P, A) register pair O
one bit left ety
= P<=P-B ot
= if result is negative, g

adding the contents of B back to P

Divide 14 = 1110, by 3= 11,. B always contains 0011,
step 10 it

stop 1 subtract

stap 1) resul i negativ, set uatient b 0.
step 1(v): estore.

stop 20): st

step 209 subtrat,

stop 2(i): resul i nonnegaive, set quatientbit 0 1.
siop 30): shi

stop 3(): subtact

step () result s nogative, set quotsnt b 0.0
step 3(v): estor.

stop 40): shit.

step () subtract.

stop 4(: resultis nogative, set quotient bt o .

Speeding Up Multiplication (cont’d)

» Reduce the amount of computation

in each step by using carry-save adders (CSA)

CSA is simply collection of n independent full adders

Each addition operation results in a pair of bits,

stored in the sum and carry parts of P

At each step, only the LSB bit of the sum needs to be shifted
» Steps

load the sum and carry bits of P with zero

perform first addition

shift the LSB sum bit of P into A, as well as A itself

Note: (n-1) bit of P do not need to be shifted because on the next cycle
the sum bits are fed into the next lower order adder

Disadvantages
= Additional hardware (keep both carry and sum)

= After the last step, the high order word of the result must be fed into an ordinary
adder to combine the sum and carry parts

A’

A’

A

A’

Speeding Up Multiplication

Shift

oo

b“@\b%b\%

An Example

» 9x5=>100] x 0101 = 0010 1101

= C=00
S=00p0 A=0101
P =10

= C = 0000
S=1001 A=1010
P = 0000

= C = 0000
S=0100 A=0101
P =1001

= C = 0000
S=1011 A=1010
P = 0000

= Carry Propagate
C = 0000

$=0101 A=1101
$=0010 A= 1101

Speeding Up Multiplication (cont’d)

» Another approach is to examine k low order bits of A at each step,
rather than just one bit
=> higher-radix multiplication

» Radix-4 Booth recoding

» Radix-8 Booth recoding

10

Array Multiplier

» If the space for many adders
is available, then
multiplication speed
can be improved

» E. g. 5-bit multiplier
(3 CSA + CPA)

» Advantage

= could be pipelined

» If space budget is limited,
use multiple-pass
arrangements

won 10T

| csA

csa

csh |

_
Propagate adder

6-bit Array Multiplier

B A A R A Ay mutpliend
B, B, By B B B mumpler

» Adders a0-f0

TR e e o o o may be eliminated =>
PR dvdivc bl sl prods this eliminates adders al-a6

by Ay Aol KO, Al KBy
Abs Aybs ABs ABs AiBs AoBs
Fu Pio Pa Ps Py Pg Pg Py Ps Py Py Fo

» Complexity:
CSA - 5x6 adders
(including 5 half adders)
CPA — 6 adders (2 HAs)
> Delay:
proportional to n +
delay of CPA (f6 — b6)

» How to improve
performance?
= decrease the
number of partial
products

= improve the speed
of the addition of
th

nartial

™ ‘n‘,
Bo T

.
o T

Floorplan of the 4-bit Array Multiplier

Xg ><2 x

X

0

Yo—n
. M\% [o con
D FA Multiplier Cell

. Vector Merging Cell

Y
P s X and Y signals are broadcasted
through the complete array.
(—)

Multipass Array Multiplier

14

Even/odd Array

> First two adders
work in parallel

» Their results are fed
into third and fourth
adders, which also work
in parallel

Using CSD Vector

» 15 (multiplicand) x 19 (multiplier) = ?
15-19=15" (20-)=15" 21
» Ax B, B=00010111
= B=16+4+2+1=23
= Computation: 4 add operations
> It is easier to multiply A with
the canonical signed-digit vector (CSD vector) D
D =00101001=32- 8- 1=23
= Computation: 3 add/sub operations
(a subtraction is as easy as an addition)

> Weight — number of partial products by 1:
B has 4, D has 3

16

CSD Vector

> Recode (or encode) any binary number, B,
as a CSD vector D

Di = Bi + Ci - 2Ci+]_
Ci;1= Carry{Bj,1+ B+ Ci}, Co =0

B=011

B,=0,B;=1By=1
Cy=Carry{l+1+0}=1 Dg=1+0- 2=1
Co=Carry{0+1+1}=1 D;=1+1- 2=0
Cz=Carry{0+0+1 =0, D, =0+1-0=1

CSD Vector

» N = (n + 1)-digit 2's complement number
> Recode it using a Radix other than 2

B=Bgyx20 +Byx2t+ By 22 + ...+ B 1 x2" 1. B, x2"

B=2-B- B

= -Bgx2®+ (Bg- By)x2t+ ..+ (Bj.1- B)x2 + ...+ (By 1- Bp)x2"

= (- 2:By + Bg)x20 + (- 2:Bg + By + By)x22 + (- 2xBg + By + Bg) x2*
+ot (- 25B+ B 1+ By p)x2" L (- 258y, 5 + Byyq + By) <2 L4 .
+(-2xB, + By 1+ By, o) x2™

18

CSD Vector: An Example - Radix = 2

» B=101001,n=5

E =101 = (- D=2 + 1x2% + (- 2% + 1x2L + (- 1) x2°
=-32+16-8+2-1=-23
» To multiply by B
= encode it as a radix-2 signed digit E
= Multiply by 2 (a shift) + 6 (n+1) add/subtract operations

Encoded Partial Products
B=(0- Bo)<2®+(Bo- BYx2+ ..+ (B.1- B)<2 + ...+ (Bn.1- By)<2"

b
multiplier{ b:'l

subtract
a
b,b,, |operation
00 do nothing
01 add A zero
10 subtract A
11 do nothing pp
ij

(partial product row i, bit j)

20

Signed Multiplication (1)

= What are ¢,
c;, and c,? [

Signed Multiplication (2)

= Do not need
this? Why?

22

CSD Vector: An Example - Radix=4

» B=101001,n=5

E=121=1x40 + (- 2)x41+ (- 1) <42
=1-8-16=-23
» To multiply by B
= encode it as a radix-4 signed digit E
= Multiply by 4 (a shift by 2) + 3 add/subtract operation

Booth Encoding (1)

» Encode a number by taking groups of 3 bits
where each 3-bit group overlaps by 1 bit
Ej=-2xBj+Bj1+Bj 2
Eji1=-2-Bj,2 + B + B

» Consider multiplier B with (n + 1) bit

Pad B with 0 to match the first term

= if B has an odd number of bits,
then extend the sign B, BB, ;...B,0

B=01011, => B=8+2+1=11,
B = 010110 => B = 0010110 => 001,101,110
E=11=1x42+ (-)xdt+ (-)=4® = 16- 4- 1=11

24

Booth Encoding (2)

™
=
W
~

Operation

0

rlr|r|r|o|lololo|m
r|lr|olo|r|r]|lolo
rlo|r|o|lr|olr]|o
'
N

Booth Multiply: An Example

» A =1100, B = 0111, 2's compl., n =3

> M=A*B="?

» B=0111.0 => 011, 110

» Step 1: 110 => M = -A = 0000 0100

» Step 2: 011 =>
M = M + 4*(2A) = 0000 0100 + 11100000
= 1110 0100 = -28 (dec)

26

Wallace-Tree

Improving Speed

~ Collapse the chain of
FAs a0-f5 (5 adders
delays) to the Wallace fzdndart
tree consisting of 5.1-
5.4 (4 adders delays)
»To form P use
= Summands:
SSU’ 541’ S32’ S23’
SlA' SUS
= 4 carries from P,

sawy-sve chain Wibllace tree

@) L]

28

What is Game?

» Dots and holes —

l Each dat

the outputs of one stage = inputs of the next , T

» At each stage we have three choices
(1) sum 3 outputs using Full Adder —
box with 3 dots
> (2) sum 2 outputs using Half Adder —
box with 2 dots
» (3) pass outputs directly to the next stage
» Choose (1), (2), or (3) at each stage to

maximize the performance of the multiplier

» Tree-based multipliers
= Work Forward (Wallace-tree
Multiplier)
= Work Backward (Dadda
Multiplier)

il
adder.

]
Mallacetree

o

6-bit Wallace Multiplier

» Complexity
CSA - 26 (incl.
6 HAs)
CPA-4

» Delay:
CSA-6
adders delay
+CPA-4

30

6-bit Dadda Multiplier

» Complexity
CSA - 20
(incl. 4 HAs)
CPA-10

> Delay:
CSA-3
adders delay #
+ CPA delay

Work Backward:
each successive stage is 3/2 times larger

Bas B Bi58a Sap 55

w5u Snin

ARM Multiplier design

> All ARMs apart form the first prototype have included
support for integer multiplication
= older ARM cores include low-cost multiplication hardware
that supports only the 32-bit result multiply and
multiply-accumulate
= recent ARM cores have high-performance multiplication
hardware and support 64-bit result multiply and
multiply-accumulate
» Low cost implementation
= Use the datapath iteratively, employing the barrel shifter
and ALU to generate 2-bit product in each clock cycle
= use early termination to stop the iterations when there are
no more ones in the multiply register

32

The 2-bit multiplication algorithm,
Nth cycle

» Control settings for the Nth cycle of the multiplication
» Use existing shifter and ALU + additional hardware

= dedicated two-bits-per-cycle shift register for the multiplier
and a few gates for the Booth's algorithm control logic
(overhead is a few per cent on the area of ARM core)

Carry-in_Multiplier | Shift ALU_Carry-out

0 x0 LSL#2N A+0]
x1 LSL#2N A+B 0
X2 LSL#(2N+1) A-B 1
x3 LSL#2N A-B 1
1 x0 LSL#2N A+B 0
x1 LSL#(2N+1) A+B 0
X2 LSL#2N A-B 1
x3 LSL#2N A+0 1

33

High speed multiplication

» Where multiplication performance is very important,
more hardware resources must be dedicated

= in some embedded systems the ARM core is used to perform
real-time digital signal processing (DSP) —
DSP programs are typically multiplication intensive

» Use intermediate results which include
partial sums and partial carries
= Carry-save adders are used for this

» These two binary results are added together at the end of
multiplication
= The main ALU is used for this

34

Carry-propagate (a) and carry-save
(b) adder structures

» Carry propagate adder takes two conventional (irredundant) binary
numbers as inputs and produces a binary sum

» Carry save adder takes one binary and one redundant (partial sum and
partial carry) input and produces a sum in redundant binary
representation (sum and carry)

ARM high-speed multiplier organization

> CSA has 4 layers of adders each handling 2 multiplier bits
=> multiply 8-bits per clock cycle
» Partial sum and carry are cleared at the beginning
or initialized to accumulate a value
» Multiplier is shifted right 8-bits
per cycle in the ‘Rs’ register
» Carry sum and carry
are rotated right 8 bits per cycle
» Performance: up to 4 clock cycles
(early termination is possible)
» Complexity: 160 bits in shift registers,
128 bits of carry-save adder logic
(up to 10% of simpler cores)

36

ARM high-speed multiplier organization

initiali zation for MLA
[E—

registers

Rs >> 8 bits/cycle

} 1]
rotate sum and carry-save adders
carry 8 bits/cycle T T
L>| partial sum | IJ
[partial carry ['J
5 v 40

ALU (add partials)

37

